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Harmonically trapped imbalanced quantum droplets
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A two-component quantum droplet is an attractive mixture of ultracold bosons stabilized against collapse
by quantum fluctuations. Commonly, two-component quantum droplets are studied within a balanced mixture.
However, the mixture can be imbalanced resulting in a lower energy but less stably bound droplet, or even a
droplet submerged in a gas. This work focuses on the experimentally relevant question: how are imbalanced
droplets modified by harmonic trap potentials? Droplet ground states and breathing modes are analyzed across
the two-dimensional parameter space of imbalance and trap strength. The robustness of the droplet imbalance is
also studied by releasing the droplet from the trap, demonstrating that this can lead to the creation of free-space,
imbalanced droplets.
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I. INTRODUCTION

Quantum gases have developed into a rich platform to
study a variety of physics from analogs of condensed matter
and many-body systems, [1–3], to simulators of cosmological
processes [4–6]. Much of the theoretical and experimental
results of these studies are dominated by mean-field (MF)
contributions. At ultracold temperatures quantum mechanical
effects are pronounced, enabling the study of beyond-
mean-field (BMF) contributions, i.e., quantum fluctuations.
Two-component quantum droplets are one such quantum gas
system in which quantum fluctuations are significant [7,8].

The quantum droplets considered here are formed of three-
dimensional (3D) ultracold mixtures of atomic Bose gases in
which the interactions between the two species are tuned to be
dominantly attractive. Two-body interactions, characterized
by the scattering length, as, can be controllably tuned via
a Feshbach resonance [9–11]. Taking into account only MF
physics, these attractive mixtures would be unstable to col-
lapse. The contraction of the cloud leads to an increased den-
sity and consequently an increased contribution from the BMF
corrections. Quantum fluctuations, described to first order by
the Lee-Huang-Yang (LHY) correction [12], lead to an effec-
tive repulsion between the atoms that balances the attraction
forming a self-bound, dilute liquid droplet [7,8]. Therefore,
quantum droplets are an experimentally observable state of
matter in which quantum fluctuations not only contribute, but
are integral. It should be noted that the BMF stabilized col-
lapse does not carry across to the single-component Bose gas,
which has been experimentally demonstrated to be unstable
under attractive two-body interactions [13,14].
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Though quantum droplets were first predicted in 3D
mixtures of Bose gases, it has been shown that quantum
droplets can be formed in other quantum gas systems [15,16].
Aside from three dimensions, quantum droplets can also be
formed in low-dimensional mixtures [17]; however, the form
of the LHY correction varies with dimensionality [17–19].
For example, in one dimension the mechanism for droplet
formation is the reverse of three dimensions, i.e., the two-body
interactions are dominantly repulsive and stabilize attraction
from quantum fluctuations [17]. The intermediate case
of two dimensions can have both repulsive and attractive
contributions from the LHY correction [17]. Beyond
mixtures, quantum droplets have also been widely studied in
dipolar quantum gases [20–23], where quantum fluctuations
stabilize a collapse from long-ranged, anisotropic attractive
interactions [24] resulting in anisotropic droplet profiles
[25–29].

As indicated above, quantum gases are a platform for
probing physics from areas that appear disparate. One field
that has benefited from a close connection with quantum
gases is fluid dynamics. Many quantum gases exhibit super-
fluidity, which has been used as an analog to the dynamics
of classical fluids such as vortex dynamics [30] or turbu-
lence [31,32]. Quantum droplets are a further extension of
this tradition as they can be used to probe liquid proper-
ties such as surface tension [7,33,34] and incompressibility
[35,36].

Two-component quantum droplets have been experimen-
tally observed in both homonuclear 39K [36–39] and heteronu-
clear, 41K-87Rb and 23Na-87Rb [40,41], mixtures. The benefit
of using homonuclear mixtures is the precise control over
the population numbers of each component. Homonuclear
mixtures are made of atoms prepared in different hyperfine
states. Experiments begin with all atoms in one component; a
radio frequency pulse is then used to controllably transition a
proportion of the atoms to the second component. This control
allows for probing one of the predictions of two-component
droplets: density balancing.
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The original droplet prediction of Ref. [7] argues that a
density balance is preserved during the droplet formation.
This density balance is due to an energetic favorability for
the two-component densities to maintain a fixed ratio n2/n1 =
const. where ni is the number density of the ith compo-
nent. The majority of theoretical studies of two-component
quantum droplets assume density balancing. Removing the
assumption of density balancing gives the freedom to explore
droplets with imbalanced component population numbers.
Imbalanced droplets have been studied in one dimension [42],
confined to both a ring [43] and an optical lattice [44]. There
have also been works exploring 3D imbalanced droplets in
free space [45] and confined to a toroidal trap [46]. Imbal-
anced droplets have also been theoretically studied in the
growing area of dipolar mixtures [47,48].

Imbalanced droplets fall into two main regimes [7,45]:
(i) bound, imbalanced droplets, in which there is a popula-
tion imbalance in the droplet core; (ii) saturated, imbalanced
droplets, corresponding to a droplet core that is saturated with
majority-component atoms, with any further majority compo-
nent surrounding the droplet as an unbound gas.

Reference [45] studied the ground states and breathing
modes of imbalanced quantum droplets in free space, and
showed that a droplet can lower its total energy by absorb-
ing atoms into one of its components. The decrease in total
energy corresponds to an increase in the energy per particle,
indicating that imbalanced droplets are less stably bound,
which is demonstrated further by the larger parameter space
of unstable breathing modes of such droplets due to particle
shedding. The primary focus of this paper is to investigate how
the ground states and breathing modes are modified with the
application of an isotropic harmonic trap. These investigations
are motivated by the experimental feasibility of creating and
probing harmonically trapped imbalanced quantum droplets.
Additionally, this work explores the stability of these droplets
when released into free space across a variety of timescales.

This work starts by defining the theory used to model
quantum droplets in Sec. II. This model is first implemented
in Sec. III to explore how the imbalanced droplet ground
states are modified by isotropic, harmonic trapping poten-
tials. Section IV looks at propagating these ground states in
time, subject to an initial perturbation, to analyze the droplet
breathing modes, both for varying trap strength, and size of
imbalance. Section V investigates the stability of imbalanced
droplets under an instantaneous and linearly ramped removal
of the trapping potential, as these are methods widely used in
quantum gas experiments. Finally, the main conclusions and
future work are discussed in Sec. VI.

II. MODEL

A zero-temperature mixture of two weakly interacting, di-
lute, homonuclear Bose gases can be described by the energy
functional [7,49]

E =
∫ [

h̄2

2m
|∇�1|2 + h̄2

2m
|∇�2|2 + V1|�1|2

(1)

+V2|�2|2 + EMF + ELHY

]
d3r,

in which m is the atomic mass of both components and Vi is
the trapping potential applied to the ith component. The first
two terms of Eq. (1) are the kinetic energy contributions, while
EMF is the MF energy density term given by,

EMF =2π h̄2a11

m
|�1|4 + 2π h̄2a22

m
|�2|4 + 4π h̄2a12

m
|�1|2|�2|2,

where aii and a12 are the intra- and interspecies scattering
lengths. The final term, ELHY, is the energy density of the
LHY correction, which, to first order, describes the effects of
quantum fluctuations on the condensate [12]. For a homonu-
clear bosonic mixture the LHY correction takes the analytic
form [7]

ELHY = 256
√

π h̄2

15m

(
a11|�1|2 + a22|�2|2

)5/2
. (2)

The LHY energy density does not depend on a12 due to
the assumption that the mixtures lies at the critical point of
attractive instability, i.e., a2

12 = a11a22, removing the issue
of complex contributions resulting from an unstable phonon
mode [7,50,51]. It should be noted that this approximation is
made only in the derivation of Eq. (2), and does not imply any
parameter choice in later sections.

The energy functional in Eq. (1) can be minimized via the
variational relation ih̄(∂�i/∂t ) = δE/δ�∗

i , giving the equal-
mass, coupled extended GP equations [7]

ih̄
∂�1

∂t
=

[
− h̄2

2m
∇2 + V1 + 4π h̄2

m

(
a11|�1|2 + a12|�2|2

)

+ 128
√

π h̄2a11

3m

(
a11|�1|2 + a22|�2|2

)3/2
]
�1,

(3)

ih̄
∂�2

∂t
=

[
− h̄2

2m
∇2 + V2 + 4π h̄2

m

(
a22|�2|2 + a12|�1|2

)

+ 128
√

π h̄2a22

3m

(
a11|�1|2 + a22|�2|2

)3/2
]
�2.

The dimensional scalings r = ξ r̃, t = τ t̃ and �i = ρ
1/2
i �̃i

result in the dimensionless, equal-mass coupled extended GP
equations,

i
∂�1

∂t
=

[
−1

2
∇2 + V1 + |�1|2 + η|�2|2

+ α
(|�1|2 + β|�2|2

)3/2
]
�1,

i
∂�2

∂t
=

[
− 1

2
∇2 + V2 + β|�2|2 + ηβ|�1|2

+ αβ2(|�1|2 + β|�2|2
)3/2

]
�2,

(4)

in which all tildes have been neglected and the dimensionless
parameters are

η = a12√
a11a22

, β =
(

a22

a11

)1/2

,

α = 32

3

[
2

3π

|δa|a5/2
11 n(0)

1√
a11 + √

a22

]1/2

,
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with dimensional parameters

ξ =
√

3

8π

(√
a11 + √

a22
)

|δa|√a11n(0)
1

, τ = 3m

8π h̄

(√
a11 + √

a22
)

|δa|√a11n(0)
1

,

ρ1 = 2

3

|δa|n(0)
1√

a11
(√

a11 + √
a22

) , ρ2 = 2

3

|δa|n(0)
1√

a22
(√

a11 +√
a22

) ,

where δa = a12 + √
a11a22 and n(0)

1 is the equilibrium density
of component 1 for the balanced mixture [7]. The expression
of the equilibrium density is calculated in a homogeneous
infinite system under the criterion of a vanishing pressure, i.e.,
the droplet in equilibrium with the vacuum, and takes the form
[7]

n(0)
1 = 25π

1024

(
a12 + √

a11a22
)2

a3/2
11 a22

(√
a11 + √

a22
)5 .

The density scalings ρi correspond to rescaled normalization
constants, Ñi = Ni/(ρiξ

3), in which Ni is the population of
the ith-component wave function. By breaking the assumption
of density locking, it is possible to imbalance the population
numbers such that N2/N1 �= √

a11/a22.
The trapping potentials are nondimensionalized by Vi =(

mξ 2/τ 2
)
Ṽi. This work only considers isotropic harmonic

trapping with equal traps applied to each component, i.e., Vi =
V = 1

2 mω2
r r2. Under nondimensionalization this becomes

Ṽ = 1
2 ω̃2

r r̃2, in which ω̃2
r = (

τξ 2m/h̄
)
ω2

r . In subsequent sec-
tions the dimensionless population numbers and trapping
potentials are presented without tildes, as only dimensionless
parameters are used hereafter.

The results in this paper will be contrasted with the density-
locked model, used widely in modeling quantum droplet
experiments [36,37,39]. The density-locked model assumes
a constant density ratio, n2/n1 = √

a11/a22, such that the
two-component wave functions can be expressed in terms of
a single wave function, �i = √

niφ, neglecting any out-of-
phase motion between the components [7,52,53]. Under these
assumptions, Eqs. (3) can be nondimensionalized and reduced
to a single equation,

i
∂φ

∂t
=

[
−1

2
∇2 − 3|φ|2 + 5

2
|φ|3

]
φ,

with the system described by a single parameter, an effective
atom number, Ñ , given by [7]

Ñ =
( √

a22

n(0)
1

(√
a11 + √

a22
)
)

N

ξ 3
, (5)

in which N here is the total atom number N = N1 + N2.
Within this work, balanced and imbalanced droplets are both
modeled by Eqs. (4), though it should be noted that for a bal-
anced droplet the dimensionless parameters (N1, N2, α, β, η)
can be recast to Ñ . In the density-locked model a given set of
scattering lengths, aii and a12, correspond to a fixed population
number ratio, N2/N1 = √

a11/a22.

III. GROUND STATES

How the density of a spherically symmetric balanced
droplet varies with harmonic trap frequency has been studied

in Ref. [54]. The trap frequency can be considered low if
there is no significant change from the free-space droplet
density, whereas a higher-frequency trap eventually leads to
the flat-top density of large droplets being lost. Furthermore,
in free space the negative chemical potential, −μ, is described
as the particle emission threshold of the droplet, however, this
description breaks down in a trap [54]. It can therefore be
argued that in the trap-dominated regime the idea of a droplet
begins to be less defined, and the mixture transitions to a
trapped gas. Reference [54] approximates the transition to the
trap-dominated regime as the point in which the potential en-
ergy at the droplet surface becomes comparable to the binding
energy of the droplet, resulting in ω(c)

r ∼ (
4π/3Ñ

)1/3
where

Ñ is the effective atom number of the density-locked model in
Eq. (5) [7].

One main assumption of this work is spherical symmetry.
Density is assumed to be a function of radius only, reducing
the computational problem to an effective 1D system with the
kinetic term becoming ∇2�i → [

∂2(r�i )/∂r2
]
/r. Another

assumption of this work is balanced intraspecies scattering
lengths (a11 = a22 ⇒ β = 1). Thus, the only possibly dif-
ference between components is from an imposed population
number imbalance of N1 = N2 + δN1. To find ground states,
Eqs. (4) are evaluated numerically in imaginary time until the
energy of the mixture is adequately converged.1 The numer-
ical scheme is a fourth-order Runge-Kutta method, using a
second-order centred finite-difference scheme for the spatial
derivatives. Neumann boundary conditions (∂�i/∂r = 0) are
applied at r = 0 and at r = Lr , where Lr is the radial com-
putational box size. Note that for all simulations presented in
this work, ω(c)

r ≈ 0.186.
Figure 1(a) shows balanced (purple) and imbalanced (or-

ange) droplet density profiles in a trap with frequency ωr ≈
0.0442. Figure 1(b) presents an example of the imbalanced
atoms forming a significant gas density around the surface
of the droplet in a trap with higher frequency ωr ≈ 0.353.
Figure 1(a) shows that the imbalanced and balanced droplets
have comparable density profiles, whereas Fig. 1(b) shows a
more considerable deviation between the balanced and imbal-
anced droplets, in a higher-frequency trap. The central density
splitting becomes more pronounced in the higher-frequency
trap, showing a more suppressed minority-component central
density.

The divergence of the two chemical potentials with increas-
ing imbalance is a key observation of Ref. [45]. For increasing
trap frequency the chemical potential of a balanced droplet
increases, eventually becoming positive as the density of the
mixture significantly deviates from the free-space droplet den-
sity. Figure 1(c) presents chemical potential data, defined
by a 2D parameter space of imbalance and trap frequency
(δN1, ωr ), where ωr ≈ {0.00441, 0.0662, 0.128, 0.190}, i.e.,
showing trap frequencies up to approximately ω(c)

r .
Figure 1(c) shows that the two-component chemical po-

tentials of balanced droplets are equal and increase with

1To check for ground-state convergence, the energy difference be-
tween two successive time steps, εdiff , is used. The tolerance for
convergence is εdiff � 10−8.
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FIG. 1. Balanced and imbalanced quantum droplets in isotropic
harmonic traps (with, N2 ≈ 17027, α ≈ 0.00657, and η ≈ −1.11).
(a) Droplet ground-state density profiles, of size Ñ ≈ 649 with
balanced components, δN1 = 0, (the light and dark purple dashed
lines) and an imbalance of δN1 ≈ 8513 (majority component, dark
orange; minority component, light orange), in a trap of frequency
ωr ≈ 0.0442. (b) Equivalent balanced and imbalanced droplet to (a),
but with a trapping frequency of ωr ≈ 0.353. (c) Majority (orange)
and minority (purple) chemical potentials across the 2D parameter
space of imbalance and trap frequency, i.e., (δN1, ωr ), for the fixed
droplet size considered in (a) and (b), at trap frequencies of ωr ≈
{0.00441, 0.0662, 0.128, 0.190}, with 0 � δN1 � 4257. The inset
shows the surfaces for the majority (orange) and minority (purple)
component chemical potentials across the 2D parameter space for
which the curves in (c) are 1D slices of set ωr values. Note that
the two surfaces are equal at δN1 = 0 imbalance, but diverge for
increasing imbalance.

trap frequency, in agreement with Ref. [54]. Beyond the bal-
anced case, the lowest-frequency trap (ωr ≈ 0.00441) shows
similar behavior to the free-space chemical potentials pre-
sented in Ref. [45], in that the chemical potentials appear
to reach a saturation limit, though there will be effects from
the unbound gas such that these curves are approximate to
the saturated limit. For the higher trap frequencies of ωr ≈
{0.0663, 0.128, 0.190}, the two chemical potentials diverge
with the majority-component chemical potential becoming
large and positive, while the minority-component chemical

potential becomes large and negative. The diverging chemi-
cal potentials represent a clear distinction between balanced
and imbalanced trapped droplets, and an excerpt of the 2D
parameter space is included in the inset of Fig. 1(c), with the
majority and minority chemical potentials plotted as orange
and purple surfaces, respectively, demonstrating the chemical
potentials diverging for increased trap strength and imbalance.

Adding harmonic traps to both balanced and imbalanced
droplets causes the flat-topped density profile to eventually
be lost with increasing trap frequency. One key difference
between balanced and imbalanced droplets is that the trap
causes any unbound atoms to form a trapped gas at the
droplet surface. For balanced droplets the chemical potential
increases with trap frequency until eventually becoming pos-
itive. Whereas, for imbalanced droplets it is always possible
for the minority-component chemical potential to be made
negative in isotropic harmonic traps by tuning the imbalance.
One way to understand the effect that this squeezed external
gas cloud has on the droplet is to analyze the breathing modes
of the droplets.

IV. BREATHING MODES

To initiate the breathing mode dynamics of trapped
droplets, a perturbation is made by imprinting a harmonic po-
tential of the form eiεr2

, where ε is small (here ε = 10−5) onto
the minority-component ground-state wave function [55,56].
This perturbed ground state is then propagated in real time.

The breathing modes of balanced droplets in free space
have two regimes, self-evaporative and non-self-evaporative
[7,57]. In the self-evaporative regime the breathing mode is
unstable because the mode frequency exceeds the particle
emission threshold, −μ. Hence, the droplet will emit atoms
to lower its energy, corresponding to a decaying sinusoidal
oscillation with a frequency that asymptotes to the particle
emission threshold, −μ. In the non-self-evaporative regime,
the breathing mode frequency does not exceed the particle
emission threshold therefore the mode is stable and nonde-
caying. Additionally, the frequency of the balanced droplet
breathing mode varies with droplet size only [7].

Breathing modes in imbalanced droplets are instead dom-
inated by unstable regions. For both self-evaporative and
non-self-evaporative droplets, an imbalance implies an unsta-
ble, decaying breathing mode except for small imbalances in
the non-self-evaporative regime [45].

In this analysis, the focus will be on decaying breath-
ing modes (i.e., excluding non-self-evaporative droplets that
are either balanced or have sufficiently small imbalances).
Trapped balanced droplets exhibiting nondecaying breathing
modes have already been studied in Ref. [54]. To examine the
breathing modes of trapped, imbalanced droplets, this section
will take one example droplet size, Ñ ≈ 649 (as in Fig. 1).
Different droplet sizes yield qualitatively the same behavior,
with only a difference in mode frequency. By fixing droplet
size, the system is again reduced to a 2D parameter space
in imbalance and trap frequency, (δN1, ωr ). The remainder of
this section is split into two subsections: first, breathing modes
are observed with varying trap strengths with small imbal-
ances, of a similar magnitude to those in Fig. 1(c); second,
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trap frequency is fixed allowing for breathing modes to be
observed with imbalances much larger than those in Fig. 1(c).

A. Varying trap strength

The top panel of Fig. 2(a) shows an example of a self-
evaporative, balanced droplet in a trap of frequency ωr ≈
0.00883. The data shown is a measure of the droplet cen-
tral density, n̄i(t ) = ni(r = 0, t ) − 〈ni(r = 0)〉t , where 〈· · · 〉t

represents time averaging. The droplet exhibits a decaying
oscillation due to the emission of particles, causing the droplet
to asymptotically relax to a lower-energy state. However, the
emitted particles are refocused by the trap back toward the
droplet resulting in the short-lived, high-amplitude oscilla-
tions, which are the result of a recombination event between
the droplet and the reabsorbed wave packet. This then leads
to the self-evaporation reoccurring at set intervals of approxi-
mately half the associated trap period of T = 2π/ωr ≈ 712 =
2 × 356 with t = 356 being the approximate time for the
reinitialized decay in Fig. 2(a).

The balanced droplet recombination can be thought of as
clean, as there is little noise produced and the reinitialized os-
cillation is approximately equivalent to the initial oscillations.
In the presence of an imbalance (δN1 ≈ 4257), given in the
bottom panel of Fig. 2(a), the recombination events are not
clean as each separate repetition of decaying oscillation is not
equivalent to the previous. The trapped, unbound atoms alter
the recombination of the emitted particles. Eventually these
recombination events will lead to significant noise and thus
the remainder of the analysis presented here will focus on the
dynamics prior to the first recombination event.

Figures 2(b), 2(c) and 2(d) show the same self-evaporative
droplet given in Fig. 2(a) with an imbalance of δN1 ≈ 4257,
for three trap frequencies ωr ≈ {0.00662, 0.0106, 0.0309},
with each figure showing times before the first recombination
event. The data presented is the same measure of central den-
sity as in Fig. 2(a), with insets of the associated power spectra
|F ′[n̄i]|2 in which F ′[·] denotes the power spectrum rescaled
by the mean, and all negative frequencies set to zero purely for
better data visualization. The time periods are chosen to high-
light the behavior of the modes, largely after the decay of the
initial mode, except for in Fig. 2(d), discussed further below.

The breathing mode dynamics of an imbalanced droplet in
a trap of frequency ωr ≈ 0.00662 are given in Fig. 2(b). These
dynamics exhibit the three distinct modes of the equivalent
free-space droplet (with the associated three peaks given in
the inset power spectrum) [45]. The near-zero frequency peak
in the power spectrum of the majority component corresponds
to the free-space majority component chemical potential, and
is the highest amplitude mode. The effect of this mode can
be seen by the relative difference in oscillation between the
two components in Fig. 2(b). There is also the superposition
of two other modes, which are of comparable amplitude in
both the majority and minority component, corresponding to
the intrinsic droplet breathing mode (the central peak of the
inset), i.e., the initial, high-amplitude mode, and the minority-
component chemical potential (the highest-frequency mode in
the inset).

Increasing the trap frequency to a balanced droplet cor-
responds to a relatively small increase in breathing mode

FIG. 2. Breathing modes of trapped imbalanced droplets.
(a) Droplet central densities in time for both a self-evaporative, bal-
anced (top) and imbalanced (bottom) droplet (with imbalance δN1 ≈
4257) in a trap with frequency ωr ≈ 0.00883. The droplet is defined
with the same parameters as in Fig. 1. Note the recombination events
that cause the self-evaporative dynamics to be reinitiated. (b) Droplet
central density for the δN1 ≈ 4257 imbalanced droplet in the bottom
panel of (a), in a trap with ωr ≈ 0.00662. The trap frequency is
sufficiently low such that all three modes, i.e., the intrinsic mode,
and the two modes corresponding to the two chemical potentials, can
be observed before the first recombination event. (c) A higher trap
frequency of ωr ≈ 0.0106 showing that the shorter period between
recombination events no longer allows for the long wavelength os-
cillation of the majority component. (d) An increased trap frequency
of ωr ≈ 0.0309. The recombination events occur within such short
intervals that the dynamics are dominated by the intrinsic droplet
breathing mode as there is not sufficient time for this mode to decay.

frequency [54], and this effect appears to carry over to the
trapped, imbalanced droplet. The inset power spectrum of
Fig. 2(b) includes the three free-space breathing modes given
by the vertical, dashed lines. All three of these modes have
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an upshifted frequency due to the trap, though this increase is
small due to the relatively low trap frequency.

Figure 2(c) shows that if the trap frequency is increased,
eventually the highest-amplitude mode is lost. By increasing
the trap frequency to ω ≈ 0.0106, the two component central
densities oscillate in phase with one another, i.e., there is no
long-wavelength oscillation between the two components as
given in Fig. 2(b). The low-frequency mode cannot oscillate
within the reduced period between recombination events from
the increased trap frequency.

Figure 2(d) shows the highest trap frequency, ωr ≈ 0.0309,
considered in this section. At this trap frequency, the pe-
riod between recombination events is considerably shortened.
Hence the time window in focus is dominated by the initial,
high-amplitude mode of the droplet, shown by the single peak
in the inset power spectrum. There are some interactions with
other modes at the later times shown in Fig. 2(d), but there is
not sufficient time for the initial mode to decay.

No higher trap frequencies are studied here because the
high recombination rate implies only the intrinsic mode is
observable. Note too that this highest trapping frequency is
still an order of magnitude smaller than ω(c)

r ≈ 0.188.
In summary, there is a close relationship in the dy-

namics between imbalanced droplets in free space and in
harmonic traps. For low trap frequencies the three breath-
ing modes of the free-space, imbalanced droplet are visible.
However, increasing the trap frequency leads to the loss of
the majority component mode. Eventually for higher trap
frequencies, the oscillations are dominated by the intrinsic
droplet mode, as there is not sufficient time between recombi-
nation events for the initial mode to decay, resulting in the loss
of the minority-component mode. The recombination events
in higher-frequency traps lead to dynamics rapidly dominated
by excitations. Therefore, if the multiple breathing modes of
trapped imbalanced droplets were to be experimentally ob-
served, it is advised to use low trap frequencies, such that the
initial intrinsic mode can sufficiently decay.

B. Varying imbalance

Having established how the breathing modes of imbal-
anced droplets vary with trap frequency, this section focuses
on how these modes vary with increasing imbalance. To an-
alyze the breathing modes as a function of imbalance, the
weakest trap strength studied in Fig. 2 is used, because all
three imbalanced droplet breathing modes are observable.

Figure 3(a) shows an example ground-state density pro-
file of a weakly trapped, highly imbalanced droplet with the
majority and minority components shown in dark and light
orange, respectively. The inset shows the density difference,
δn(r) = n1(r) − n2(r), between the majority and minority
component. The density structure within the droplet core is
comparable to the small imbalances shown in Fig. 1(a). How-
ever, the key different with a highly imbalanced mixture is the
large radius gas surrounding the droplet.

Figure 3(b) highlights two examples of breathing mode
oscillations for droplets with high population imbalances.
The top panel shows a mixture with δN1 ≈ 170267, while
the bottom panel shows a mixture with δN1 ≈ 16856418.
These population imbalances are so large due to the weak trap

FIG. 3. Ground states and breathing modes for high imbalances
in a low-frequency trap. (a) Example ground-state density profile
in a trap of frequency ωr ≈ 0.00662, and an imbalance of δN1 ≈
16856418. (b) Two examples of breathing modes with a smaller
imbalance of δN1 ≈ 170267 in the top panel, and a considerably
larger imbalance of δN1 ≈ 16856418 in the bottom panel. These
example imbalances are highlighted in (c) by the vertical dashed
lines. (c) Fitted decay rate to the initial droplet breathing mode, with
varying size of imbalance.

geometry used, i.e., to achieve significant gas densities in
these low-frequency traps, substantial imbalances are needed.
The same measure of central density as used in Fig. 2 is
shown, prior to the first recombination event.

In both panels of Fig. 3(b) there does not appear to be
any out-of-phase oscillations between the two components
from the majority-component chemical potential mode, as
shown in Fig. 2(b). The surrounding gas therefore seems to
have frozen out this long-wavelength mode, similar to the
higher-frequency trap in Fig. 2(c). The main difference be-
tween the top and bottom panels of Fig. 3(b) is the lower
decay rate of the initial, high-amplitude mode in the more
imbalanced mixture. As shown in Fig. 2(b), at later times the
initial mode in the top panel has decayed sufficiently such that
the minority-component chemical potential mode is visible.
By driving the imbalance even higher the decay rate of the
initial rate is greatly reduced, such that minority-component
chemical mode cannot be observed.
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In Fig. 3(c), the droplet central density is fitted to a de-
caying sinusoidal curve, of the form n̄i = Ae−γ t sin(ωt + φ)
+ c.2 With increasing imbalance there is a corresponding de-
crease in the fitted decay rate, γ . This implies that a higher
surrounding gas density resists the particle emission from the
droplet. This could be of potential benefit to experiments as
it implies that larger imbalances would give more time to
observe the decaying breathing mode oscillations.

Beyond the observation of trapped imbalanced droplets,
there are also questions to be asked of the experimental re-
alisability of a free-space imbalanced droplet. For example,
how stable is the imbalance under the transition from the trap,
used to prepare the mixture, to the free-space droplet.

V. RELEASE INTO FREE SPACE

This section studies the dynamics of trapped, imbalanced
droplets when released into free space. This is similar to a
time-of-flight (TOF) expansion, a method used in experiments
in which trap potentials are switched off and the atomic cloud
expands, often used for imaging. Imbalanced droplets are less
stably bound than balanced droplets [45], thus the motivating
question is whether it is possible to preserve the imbalance
when released from a trap. This is a crucial question in the
feasibility of experimentally creating a free-space, imbalanced
droplet.

TOF expansion has been a widely used technique in quan-
tum gas experiments [60] from the very first experimental
observation of Bose-Einstein condensation [61,62]. Typically,
by removing the trap the resulting expansion increases the
scale of defects, such as vortices, accounting for the low
resolution of imaging apparatus [63–65]. Measurements of
condensate density from TOF images can also be used to
compute approximate temperatures and population numbers
of the cloud [66,67].

While most quantum gas experiments are inherently in the
gas phase, droplets are by definition self-bound, liquid states
[7], and hence must retain an approximately fixed size when
released into free space. This property is useful for exper-
iments as evidence for the production of quantum droplets
[37–41,68], though relatively high-resolution imaging is nec-
essary.

The two observables used here to measure the dynamics
resulting from the release into free space, are the population
numbers contained within the droplet, and the central droplet
density difference, δn(r = 0) = n1(r = 0) − n2(r = 0). The
population numbers are used to measure the particle loss from
each component, while the central density difference is used
as a measure of how the droplet core evolves after being
released from the trap. The population numbers of the droplet
are computed by

Ndrop
i (t ) = 4π

∫ Rdrop(t )

0
r2|�i(r, t )|2dr,

in which Rdrop(t ) is defined as the radius at which the compo-
nent density equals 0.1% of the maximum component density,

2Curve fitting is implemented by the optimize.curve_fit function
[58] from the SCIPY library for PYTHON [59].

i.e., giving an approximate droplet radius. The population
numbers are extracted in time, and Rdrop(t ) is allowed to vary
dynamically.

A. Instantaneous trap release

To simulate the release into free space, ground states are
computed as in Sec. III. The traps are then instantaneously
turned off and the mixture is evolved in real time. The instant
trap turn off can be quite a violent excitation of the droplet
particularly with higher trap frequencies.

Figure 4(a) shows the population numbers of each com-
ponent for two different initial trap frequencies: a lower
frequency of ωr ≈ 0.0132, given by the orange curves, and
a higher frequency of ωr ≈ 0.261, given by the purple curves.
The droplet size is the same as in Secs. III and IV, and is
within the bound, imbalanced regime (δN1 ≈ 596), i.e., there
is no surrounding gas. The population numbers of both the
minority (light orange) and majority (dark orange) compo-
nents in the lower frequency trap remain relatively constant,
as does the central density difference given in the left inset.
Due to the arbitrary cutoff used, there are some small oscilla-
tions in the population numbers. In the higher-frequency trap,
both the majority (light purple) and minority (dark purple)
components exhibit heavy initial losses before equilibrating
to a population balance. Further evidence of this density bal-
ancing is given by the zero central density difference given in
the right inset.

Figure 4(a) indicates that the equilibrated population num-
bers following the release into free space depend on the
initial trap frequency. Figure 4(b) shows the trap frequency
dependency of the late-time equilibrated population numbers,
Ni, f . Presented are the majority (dark orange) and minority
components (light orange) of a bound, imbalanced droplet
(top panel) and a saturated, imbalanced droplet surrounded by
an unbound gas (bottom panel), with the equilibrated central
density difference, δn(r = 0) f , inset.

The top panel of Fig. 4(b) shows that the imbalance can
be approximately conserved following the release from an
initial low-frequency trap, though the imbalance is lost at
higher trap frequencies as demonstrated by the zero central
density difference inset. Increasing the trap frequency further
results in losses from both components. A larger imbalance
of δN1 ≈ 4257 is given in the bottom panel, showing that
the transition to balanced droplets is suppressed to higher
trap frequencies. For example the central density difference
drops to zero for ωr ≈ 0.125 in the top panel but is shifted to
ωr ≈ 0.2 in the bottom panel.

B. Ramping down the trap

Having shown a population imbalance is lost when droplets
are released instantaneously from a high-frequency trap, it is
natural to investigate whether the imbalance can be retained
when slowly released from a high-frequency trap. To do this
the trap frequency is ramped down to zero in real time over a
set time, tramp.

Figure 5(a) shows the population numbers in time of a
droplet in a ramped-down trap of initial frequency ωr ≈
0.261. The trap frequency is ramped down by the relationship,
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FIG. 4. Dynamics of imbalanced droplets due to an instanta-
neous release into free space, with the same parameters as in
Figs. 1–3. (a) Population numbers varying in time following the re-
lease into free space at t = 0. The bound, imbalanced droplet has an
initial imbalance of δN1 ≈ 596. The orange curves correspond to an
initial low-frequency trap with ωr ≈ 0.0132 (dark and light orange
corresponding to majority and minority components, respectively),
while the purple curves correspond to an initial high-frequency trap,
with ωr ≈ 0.261 (light and dark purple corresponding to majority
and minority components, respectively). The insets show the central
density differences in time, with the left and right panels correspond-
ing to the low- and high-frequency traps, respectively. These two
example simulations are highlighted in the top panel of (b) by the
vertical, dashed lines. (b) The equilibrated population numbers and
central density differences (inset) for varying initial trap frequencies,
in the range 0.00442 � ωr � 0.269. The top panel corresponds to a
bound, imbalanced droplet (δN1 ≈ 596) while the bottom panel cor-
responds to a saturated, imbalanced droplet with an external unbound
gas (δN1 ≈ 4257).

Vi = (
1 − t/tramp

)
V init

i , in which V init
i is the initial trap profile.

To compute the population numbers, the same method and
radial cutoff as in Fig. 4 is used. The dark and light orange
curves correspond to the majority and minority components,
respectively, under a ramp-down time of tramp ≈ 0.781, which

FIG. 5. Dynamics of imbalanced droplets due to a ramped down
trap potential, with the same parameters as in Figs. 1–4. (a) Popula-
tion numbers varying in time with the orange curves correspond to
a relatively slow ramp down of tramp ≈ 38.3 (dark and light orange
corresponding to majority and minority components, respectively),
and purple colors corresponding to a relatively fast ramp down
of tramp ≈ 0.781 (light and dark purple corresponding to majority
and minority components, respectively). The insets show the central
density differences in time, with the left and right panels correspond-
ing to the slow and fast ramps, respectively. These two example
simulations are highlighted in the top panel of (b), by the vertical,
dashed lines. (b) The equilibrated population numbers and central
density differences (inset) for varying ramp-down times, tramp, in
the range 0.0 � tramp � 39.1. The top panel corresponds to a bound,
imbalanced droplet (δN1 ≈ 596) while the bottom panel corresponds
to a saturated, imbalanced droplet with an external unbound gas
(δN1 ≈ 4257).

is fast relative to the trap period, ttrap ≈ 24.1. Both compo-
nents undergo heavy losses before equilibrating to balanced
population numbers, and zero central density difference, com-
parable to the high-frequency instantaneous trap release given
by the purple curves in Fig. 4(a). The dark and light purple
curves correspond to the minority and majority components,
respectively, under a ramp-down time of tramp ≈ 38.3, which
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is slow relative to the trap period, ttrap. There are some small
losses primarily from the majority component; however, the
imbalance is largely retained during these ramp-down dynam-
ics. Furthermore, the central density difference of a trapped
droplet is larger than that of a free-space imbalanced droplet
as highlighted in Figs. 1(a) and 1(b). The left inset of Fig. 5(a)
shows that the central density difference initially decreases
but stabilizes at a nonzero value. Thus, the imbalance can be
retained under the release from a high-frequency trap, though
the trap must be ramped down sufficiently slowly.

Figure 5(b) shows the ramp-down time, tramp, dependency
of the final equilibrated population numbers and central den-
sity difference (inset). The top panel considers a bound,
imbalanced droplet showing that fast ramps result in balanced
droplets that undergo losses from both components though
slower ramps can retain some atoms in both components.
Increasing the ramp-down time above tramp ≈ 8 indicates that
the original imbalance can be approximately retained. A sat-
urated, imbalanced droplet with an unbound cloud is given
in the bottom panel of Fig. 5(b) and likewise shows that fast
ramps result in balanced droplets, while slower ramps yield a
preservation of some imbalance. Note that the initial imbal-
ance is not retained in the bottom panel, because the unbound
cloud will always be lost in free space, i.e., the resulting
droplet is approximately a saturated, imbalanced droplet in
free space.

To summarize, an imbalanced droplet prepared in a rela-
tively low-frequency trap can retain the majority of the initial
imbalance after an instantaneous release into free space. With
increasing trap frequency, the majority component will lose
atoms until no imbalance is retained. The loss of imbalance
can, in general, be suppressed by increasing the initial imbal-
ance, lowering the initial trap frequency, or lengthening the
ramp-down time. These results show that imbalanced droplets
can be robust to a release into free space suggesting that
free-space, imbalanced droplets are feasible using modern
experimental techniques.

VI. DISCUSSION

This work has investigated ground states, breathing modes
and the release into free space of imbalanced droplets con-
fined in isotropic harmonic traps. First, Sec. III demonstrates
that the trapping potential squeezes any unbound gas up to
the droplet, forming a significant gas density at the droplet
surface. The imbalance-dependent divergence in the majority-
and minority-component chemical potentials, increases fur-
ther with higher trap frequencies.

Section IV focuses on the breathing modes of imbalanced
droplets, and contrasts the trapped geometry with the free-
space results of Ref. [45]. This section highlights that the
presence of a trap causes recombination events from reflected
particles. For a free-space imbalanced droplet there are three
breathing mode frequencies [45]. These three modes can be
observed in the trapped, imbalanced droplet though Sec. IV
shows that with increasing trap frequency these modes are

lost. Similarly the decay rate of the imbalanced droplet breath-
ing mode can be reduced by the presence of a significant
majority-component gas.

The final results presented are the dynamics of releasing
imbalanced droplets into free space given in Sec. V. The
results show primarily that with a low-frequency initial trap,
the droplet imbalance can be preserved under an instantaneous
release, though higher trap frequencies lead to a loss of the im-
balance. However, a droplet released from a higher-frequency
trap can preserve its imbalance by ramping down the trap.
This gives promise for the experimental realization of free-
space, imbalanced quantum droplets.

The stability of the imbalance under release from a trap
may be significant in the experimental results of Refs. [36,38],
in which the mixture is prepared with N2/N1 = 1 �= √

a11/a22.
These works assume that the droplet will dynamically bal-
ance, after the release into free space, to N2/N1 = √

a11/a22.
This could explain why the data points of N1/N2 in Fig. 4(c)
of Ref. [38] are upshifted from the balanced line of N2/N1 =√

a11/a22, as component 1 is set up to be the majority compo-
nent. Likewise, some of the results in Ref. [39] are speculated
to be sensitive to imbalance. This work suggests that balanced
droplets could be a special case, and that imbalanced droplets
are more common.

The analysis of spherically symmetric ground states and
breathing mode dynamics presented could be extended to
explore heteronuclear mixtures. The different kinetic energy
contributions of the two components may lead to novel
physics, as adding an imbalance to either component is no
longer symmetric. This is, however, a nontrivial extension
due to the form of the two-component LHY correction of a
heteronuclear mixture [7,33].

The recombination events from the trap limit the time
for observing collective modes. This restriction implies that
smaller computational boxes could be used to probe collective
modes in more general 3D simulations, allowing for obser-
vation of nonzero angular momentum modes such as dipole
[53,68] and quadrupole modes in both balanced and imbal-
anced droplets.

The potential of new mixtures for probing droplet physics
is exciting but some experiments use highly anisotropic trap
potentials with significant population number imbalances
[69]. Therefore it is vital to understand how droplets are
modified from the prototypical balanced, free-space profile,
by population imbalances and trap potentials.

The data presented in this paper are available [70].

ACKNOWLEDGMENTS

The authors acknowledge support from the UK Engineer-
ing and Physical Sciences Research Council (Grants No.
EP/T015241/1 and No. EP/T01573X/1). T.A.F. also ac-
knowledges support from the UK Engineering and Physical
Sciences Research Council (Grant No. EP/T517914/1). This
research made use of the Rocket High Performance Comput-
ing service at Newcastle University.

[1] I. Bloch, Ultracold quantum gases in optical lattices, Nature
Phys. 1, 23 (2005).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

013209-9

https://doi.org/10.1038/nphys138
https://doi.org/10.1103/RevModPhys.80.885


FLYNN, KEEPFER, PARKER, AND BILLAM PHYSICAL REVIEW RESEARCH 6, 013209 (2024)

[3] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations
with ultracold quantum gases, Nat. Phys. 8, 267 (2012).

[4] T. Roger, C. Maitland, K. Wilson, N. Westerberg, D. Vocke,
E. M. Wright, and D. Faccio, Optical analogues of the Newton–
Schrödinger equation and boson star evolution, Nat. Commun.
7, 13492 (2016).

[5] S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K.
Campbell, A rapidly expanding Bose-Einstein condensate: An
expanding universe in the lab, Phys. Rev. X 8, 021021 (2018).

[6] N. Proukakis, D. Snoke, and P. Littlewood, Universal Themes
of Bose-Einstein Condensation (Cambridge University Press,
Cambridge, 2017).

[7] D. S. Petrov, Quantum mechanical stabilization of a collapsing
Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).

[8] D. S. Petrov, Liquid beyond the Van der Waals paradigm, Nat.
Phys. 14, 211 (2018).

[9] P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen,
and B. J. Verhaar, Observation of a Feshbach resonance in cold
atom scattering, Phys. Rev. Lett. 81, 69 (1998).

[10] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Observation of Feshbach res-
onances in a Bose-Einstein condensate, Nature (London) 392,
151 (1998).

[11] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225
(2010).

[12] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and
eigenfunctions of a Bose system of hard spheres and its low-
temperature properties, Phys. Rev. 106, 1135 (1957).

[13] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley,
E. A. Cornell, and C. E. Wieman, Controlled collapse of a
Bose-Einstein condensate, Phys. Rev. Lett. 86, 4211 (2001).

[14] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts,
E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and
exploding Bose-Einstein condensates, Nature (London) 412,
295 (2001).

[15] F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D.
Graham, M. Guo, T. Langen, and T. Pfau, New states of mat-
ter with fine-tuned interactions: Quantum droplets and dipolar
supersolids, Rep. Prog. Phys. 84, 012403 (2021).

[16] Z.-H. Luo, W. Pang, B. Liu, Y.-Y. Li, and B. A. Malomed, A
new form of liquid matter: Quantum droplets, Front. Phys. 16,
32201 (2021).

[17] D. S. Petrov and G. E. Astrakharchik, Ultradilute low-
dimensional liquids, Phys. Rev. Lett. 117, 100401 (2016).

[18] T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler,
Dimensional crossover for the beyond-mean-field correction in
Bose gases, Phys. Rev. A 98, 051604(R) (2018).

[19] P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quan-
tum Bose-Bose droplets at a dimensional crossover, Phys. Rev.
A 98, 051603(R) (2018).

[20] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-
Barbut, and T. Pfau, Observing the Rosensweig instability of a
quantum ferrofluid, Nature (London) 530, 194 (2016).

[21] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of quantum droplets in a strongly dipolar
Bose gas, Phys. Rev. Lett. 116, 215301 (2016).

[22] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Self-bound droplets of a dilute magnetic quantum liquid,
Nature (London) 539, 259 (2016).

[23] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L.
Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover
from a dilute Bose-Einstein condensate to a macrodroplet in a
dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016).

[24] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
The physics of dipolar bosonic quantum gases, Rep. Prog. Phys.
72, 126401 (2009).

[25] F. Wächtler and L. Santos, Quantum filaments in dipolar Bose-
Einstein condensates, Phys. Rev. A 93, 061603(R) (2016).

[26] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Ground-
state phase diagram of a dipolar condensate with quantum
fluctuations, Phys. Rev. A 94, 033619 (2016).

[27] S. Pal, D. Baillie, and P. B. Blakie, Excitations and number
fluctuations in an elongated dipolar Bose-Einstein condensate,
Phys. Rev. A 102, 043306 (2020).

[28] A.-C. Lee, D. Baillie, and P. B. Blakie, Numerical calculation
of dipolar-quantum-droplet stationary states, Phys. Rev. Res. 3,
013283 (2021).

[29] S. Pal, D. Baillie, and P. B. Blakie, Infinite dipolar droplet: A
simple theory for the macrodroplet regime, Phys. Rev. A 105,
023308 (2022).

[30] C. F. Barenghi, R. J. Donnelly, and W. Vinen, Quantized Vortex
Dynamics and Superfluid Turbulence, Vol. 571 (Springer Sci-
ence & Business Media, Berlin, 2001).

[31] C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, Introduction
to quantum turbulence, Proc. Natl. Acad. Sci. USA 111, 4647
(2014).

[32] C. F. Barenghi, H. A. J. Middleton-Spencer, L. Galantucci,
and N. G. Parker, Types of quantum turbulence, AVS Quantum
Science 5, 025601 (2023).

[33] F. Ancilotto, M. Barranco, M. Guilleumas, and M. Pi,
Self-bound ultradilute Bose mixtures within local density ap-
proximation, Phys. Rev. A 98, 053623 (2018).
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