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Recently, strong evidence for a gravitational-wave background has been reported by collaborations of pulsar
timing arrays (PTAs). In the framework of scalar-induced gravitational waves, we concurrently investigate the
second- and third-order gravitational waves by jointly analyzing PTA data alongside big-bang nucleosynthesis
and cosmic microwave background datasets. We determine the primordial curvature spectral amplitude as
0.021 < Aζ < 0.085 and the spectral peak frequency as 10−7.3 Hz < f∗ < 10−6.3 Hz at a 95% confidence
interval, pointing towards a mass range for primordial black holes of 10−4.5M� < mPBH < 10−2.5M�. Our
findings suggest that third-order gravitational waves contribute more significantly to the integrated energy density
than the second-order ones when Aζ � 0.06. Furthermore, we expect future PTA projects to validate these
findings and provide robust means to investigate the genesis and evolution of the universe, especially inflation.
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I. INTRODUCTION

The theory of scalar-induced gravitational waves (SIGWs)
[1–6] has been proposed to interpret the substantial evidence
of nano-Hertz gravitational-wave background (GWB) signals
reported by several pulsar timing array (PTA) collaborations
[7–10]. It has been suggested to offer a better fit than the astro-
physical interpretation in the context of super-massive black
hole (SMBH) binaries [11–13]. Subsequent related studies are
detailed in Refs. [14–23]. Significant constraints have been
imposed on the enhanced primordial curvature power spec-
trum at small scales which are unreachable for conventional
probes, such as the cosmic microwave background (CMB)
that is sensitive to physics on the largest observable universe
scales [24]. However, these studies have solely considered
second-order gravitational waves, disregarding contributions
from higher-order ones.

In addition to the direct measurements of SIGWs from the
PTA probe, early-universe probes offer indirect constraints
on the integrated SIGW spectrum [25]. Given that SIGWs
behave like radiation in the universe, their energy can alter
the growth of cosmological density perturbations and the
universe’s expansion rate at the time of decoupling. Conse-
quently, the CMB probe is sensitive to the integrated SIGW
spectrum [26,27]. Simultaneously, the success of big-bang
nucleosynthesis (BBN) theory can limit the number of rel-
ativistic species at the nucleosynthesis epoch. Therefore the
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BBN probe is sensitive to the energy of SIGWs [28]. Both
probes independently measure cosmological GWBs of fre-
quency bands above 10−10 Hz but are insensitive to other
GWBs produced due to astrophysical processes in the late
universe.

In this study we simultaneously consider second- and
third-order gravitational waves and explore joint constraint
on them from BBN, CMB, and PTA datasets. Previous re-
search on third-order gravitational waves is documented in
Refs. [29,30]. We will demonstrate that they dominate the
SIGW’s energy density if the primordial curvature spectral
amplitude exceeds O(0.06). We will also illustrate that they
do not significantly alter the PTA bound but cause substantial
changes in the BBN and CMB bounds. Consequently, the
joint constraint will also experience significant alterations.
Moreover, we will explore these possibilities and potential
future improvements.

II. SCALAR-INDUCED GRAVITATIONAL WAVES

Adhering to the conventions of Ref. [31], we adopt the
perturbed, spatially flat Friedman-Robertson-Walker metric in
Newtonian gauge, specifically,

ds2 = a2
{−(1 + 2φ(1) + φ(2) )dη2 + V (2)

i dηdxi

+ [
(1 − 2ψ (1) − ψ (2) )δi j + 1

2 h(2)
i j + 1

6 h(3)
i j

]
dxidx j

}
,

(1)

where the superscript (n) signifies the nth-order perturbations,
φ and ψ represent scalar perturbations, Vi indicates transverse
vector perturbations, and hi j denotes transverse-traceless ten-
sor perturbations.

Tensor perturbations hi j induced by the linear scalar pertur-
bations are referred to as SIGWs. Second-order gravitational
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waves have been investigated in the literature [1–6], and we
follow the conventions of Ref. [6]. As shown in Appendix A,
the equation of motion for third-order gravitational waves
is [30]

h(3)′′
i j + 2Hh(3)′

i j − �h(3)
i j = −12�lm

i j S
(3)
lm , (2)

where H is conformal Hubble parameter, � is a Laplacian,
�lm

i j is the transverse-traceless operator, and S (3)
lm (η, x) de-

notes source terms, as expressed in Eq. (A2). Leveraging the
two-point correlators of h(3)

i j,k, i.e., 〈h(3)
i j,kh(3)

i j,k′ 〉 = 2(2π )3δ(k +
k′)(2π2)k−3P (3)

h (k), we get the power spectrum for third-
order gravitational waves, i.e.,

P (3)
h (k, η) = k3

32π2

(
4

9

)3 ∑
∗,∗∗

∫
d3 pd3q

|k − p|3|p − q|3|q|3 {Pζ (|k − p|)Pζ (|p − q|)Pζ (q)

× P∗,i j (k, p, q)I (3)
∗ (|k − p|, |p − q|, |q|, |p|, k, η)[P∗∗,i j (−k,−p,−q)I (3)

∗∗ (|k − p|, |p − q|, |q|, |p|, k, η)

+ (p → p − q) + (p → k − q, q → k − p) + (p → k − q, q → p − q)

+ (p → k − p + q) + (p → k − p + q, q → k − p)]}, (3)

where we introduce the quantities P∗(k, p, q) and the kernel
functions I (3)

∗ (p1, p2, p3, p4, k, η) in Appendix A, the sub-
scripts ∗ and ∗∗ denoting different sources of third-order
gravitational waves, i.e., in terms of (φ(1) )3, φ(1)ψ (2), φ(1)V (2)

i ,
φ(1)h(2)

i j .
Regarding the primordial black hole (PBH) formation,

there should be a large-amplitude peak on the power spec-
trum of primordial curvature perturbations [32–34]. Inflation
models with sound speed resonance can generate a nearly
monochromatic spectrum [35–40]. For simplicity, we con-
sider a δ-function spectrum

Pζ (k) = Aζ k∗δ(k − k∗), (4)

where Aζ is the amplitude and k∗ is the pivot wave number.
The energy-density fraction spectrum of SIGWs is defined
as 
GW(k, η) = 2πG〈∂l hi j∂l hi j〉/[a2ρc(η)] [6], where hi j ≡
(1/2)h(2)

i j + (1/6)h(3)
i j , and ρc is critical density at conformal

time η. We determine it as


GW(k, η) = A2
ζ

24

(
k

H

)2[
P (2)

h (k, η) + Aζ

9
P (3)

h (k, η)

]
, (5)

where the power spectrum of second-order gravitational
waves, P (2)

h (k, η), is calculated in pioneers’ works [1–6], and
the power spectrum of third-order ones, P (3)

h (k, η), is shown
in Eq. (3). Since gravitational waves behave like radiations,
the energy-density fraction spectrum in the present universe is
[41]


GW,0(k) = 
r,0

[
g∗,ρ (T )

g∗,ρ (Teq )

][
g∗,s(Teq )

g∗,s(T )

] 4
3


GW(k, η), (6)

where the physical energy-density fraction of radiations in
the present universe is 
r,0h2 	 4.2×10−5, with h = 0.6766
being the dimensionless Hubble constant [42], a subscript
eq denotes cosmological quantities at the epoch of matter-
radiation equality, and both g∗,ρ and g∗,s stand for the effective
relativistic specifies in the universe [43]. Moreover, cosmic

temperature T is related with k, i.e.,

k

nHz
= 83.25

(
T

GeV

)[
g∗,ρ (T )

106.75

] 1
2
[

g∗,s(T )

106.75

]− 1
3

. (7)

It should be emphasized that the contributions from the
third-order gravitational waves become significant on the
small scales k 
 k∗. This is primarily due to the additional
enhancement in their power spectrum originated from reso-
nance of the higher-order perturbations at late times. On the
other hand, for the large scales k � k∗, the contributions from
the third-order gravitational waves can be neglected because
their power spectrum is highly suppressed compared to that of
the second-order gravitational waves.

The theoretical predictions of the aforementioned spec-
trum are depicted in Fig. 1. In this case we set the model
parameters to Aζ = 0.1 (solid curves) and Aζ = 0.01 (dashed
curves). The spectrum of the second-order gravitational waves
is represented in blue, while the combined spectrum of both
the second- and third-order gravitational waves is shown in
red. In comparison to the second-order gravitational waves,
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FIG. 1. This figure contrasts the energy-density spectra of sec-
ond order (blue) with those of both second and third orders (red).
The model parameters provided are Aζ = 0.1 (solid) and Aζ = 0.01
(dashed).
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FIG. 2. The posteriors for the model parameters Aζ and f∗ de-
rived from the NG15 PTA dataset (contours), in addition to the BBN
(thick dotted lines) and CMB (thick dashed lines) upper limits on
Aζ . For the one-dimensional posteriors, the 68% confidence intervals
are indicated by thin dashed lines. Deep green line denotes fPBH = 1,
indicating that all of dark matter is composed of PBHs [12].

the third-order gravitational waves primarily contribute to the
spectrum around the peak frequencies.

III. JOINT CONSTRAINTS

It is known that the PTA probe is directly sensitive to
the energy density of SIGWs. Following the methodology
of Ref. [12], we examine the parameter space by con-
ducting a Bayesian analysis over the NANOGrav 15-year
(NG15) dataset [9]. The priors of log10( f∗/Hz) and log Aζ are
uniformly set within the intervals of [−11,−5] and [−3,1], re-
spectively. In fact, our results are robust with respect to priors.
Here, we neglect the very likely presence of an astrophysical
foreground, which has been considered in Refs. [44,45].

We consider two scenarios related to SIGWs. The first sce-
nario (scenario I) includes only the second-order gravitational
waves, while the second scenario (scenario II) incorporates
both the second- and third-order gravitational waves. For both
scenarios we derive the posteriors of f∗ and Aζ , which are
illustrated in Fig. 2. Statistically, it is challenging to differen-
tiate between the two scenarios since their posteriors nearly
overlap. We conclude that the third-order gravitational waves,
when being compared with the second-order ones, have negli-
gible impact on the interpretation of the observed PTA signal
in terms of SIGWs.

The BBN and CMB probes are indirectly sensitive to the
energy density of SIGWs.1 Specifically, they are sensitive

1Dr. Carlo Tasillo tells us via email that they have studied phase-
transition gravitational waves by jointly analyzing the BBN, CMB,
and NANOGrav 12.5-year data [46].

only to the integrated energy-density fraction, as described by

∫ ∞

kmin

d ln k h2
GW,0(k) < 1.3×10−6

(
Neff − 3.046

0.234

)
, (8)

where kmin = 2π fmin sets the lower bound of the integral,
and Neff represents the number of relativistic species. As fmin

is dependent on the physical process that occurred during
the epochs of BBN and CMB formation, we adopt fBBN 	
1.5×10−11 Hz for BBN and fCMB 	 3×10−17 Hz for CMB
[24]. According to the Planck 2018 CMB plus BAO dataset
[42], the right-hand side of Eq. (8) equals 2.9×10−7 [27],
resulting in an upper limit of Aζ � 0.130 for scenario I and
Aζ � 0.085 for scenario II. In contrast, for BBN the right-
hand side equals 1.3×10−6 [28], yielding an upper limit of
Aζ = 0.275 for scenario I and Aζ = 0.150 for scenario II.
These upper limits are illustrated in Fig. 2. Though the con-
tours are almost the same as those in Ref. [12], the BBN and
CMB upper bounds would significantly alter the posteriors via
reducing a large portion of the posteriors. This indicates the
importance of the data combination.

The results from the joint analysis are as follows. In both
scenarios the parameter region inferred from the NG15 data is
notably refined by the inclusion of the BBN and CMB data.
The permissible upper limit on Aζ is somewhat smaller in
scenario II than in scenario I, highlighting the significance of
third-order gravitational waves. Starting from the peak of the
posterior, we derive the combined constraints on Aζ and f∗ as

0.021 < Aζ < 0.085, (9)

5.0×10−8Hz < f∗ < 5.0×10−7Hz, (10)

at the 95% confidence level. To our knowledge, these findings
represent the state-of-the-art and most stringent constraints on
the model parameters.

It should be noted that when Aζ � 0.06, the third-order
gravitational waves contribute more to the integrated energy
density than the second-order ones. This outcome suggests
that the third-order gravitational waves cannot be disregarded
in the data analysis of BBN and CMB.

Taking into account both the second- and third-order grav-
itational waves, we also find that the CMB bound, denoted by
the dashed red line in Fig. 2, is comparable to the deep green
line, which indicates all of dark matter to be composed of
PBHs, i.e., fPBH = 1 [12]. There may be a risk of overproduc-
ing PBHs. However, the allowed maximum peak amplitude of
the power spectrum is Aζ 	 0.058, an amplitude making the
third-order contribution as nearly equal as the second-order
one. Therefore it is important to take into account the third-
order gravitational waves in our analysis.

IV. ANTICIPATED CONSTRAINTS

It is anticipated that the energy-density fraction spec-
trum of SIGWs, and subsequently the power spectrum of
primordial curvature perturbations, will be potentially mea-
sured by the Square Kilometre Array (SKA) [47–49], μAres
[50], Laser Interferometer Space Antenna [51,52], big bang
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FIG. 3. Projected constraint capabilities of future gravitational-
wave detection projects. The allowable parameter region inferred
from Fig. 2, as well as the upper limits from present BBN and
CMB observations, are also displayed for comparison. Here, we set
SNR = 1 and neglect the very likely presence of an astrophysical
foreground.

observer [53,54], Deci-Hertz Interferometer Gravitational
Wave Observatory [55,56], Einstein Telescope [57], and Ad-
vanced LIGO and Virgo [58–60]. Complementing CMB,
which is sensitive to the earliest stages of inflation,
gravitational-wave probes offer the capability to investigate
the physics of the early universe that occurred during later
stages of inflation. Conducting multiband gravitational-wave
observations, we expect to explore the origin and evolution of
the universe throughout the entire inflationary era.

Following Ref. [61], we examine this subject. During a
GWB search, if neglecting the very likely presence of an
astrophysical foreground, the optimal signal-to-noise ratio is
defined as [62]

SNR2 = ndetTobs

(
3H2

0

2π2

)2 ∫ fu

fl

[

GW,0( f )

f 3Seff
n ( f )

]2

d f , (11)

where ndet represents the number of detectors, Tobs is the
observation duration, the frequency band extends from fl to
fu, and Seff

n denotes the effective noise power spectral density
of the detector network. Here, H0 = 100h km/s/Mpc is the
Hubble constant. For the aforementioned experiments, we
employ the setups summarized in Table 2 of Ref. [44].

Requiring SNR = 1, we illustrate the anticipated con-
straint contours in the Aζ – f∗ plane for SKA in Fig. 3. The
allowable parameter region (blue shaded contours) inferred
from this study is presented for comparison. Notably, we find
that our inferred contours can be further tested with SKA
and μAres. We note superb performance in measuring the
primordial curvature spectral amplitude, i.e., Aζ ∼ 10−6 for
PTA projects, Aζ ∼ 10−8 for space-borne projects, and Aζ ∼
10−5 for ground-based projects. The high sensitivities should
enable us to explore the early universe more comprehensively.

V. CONCLUSION AND DISCUSSION

In this study we have delved into the gravitational waves
induced by scalar perturbations, up to the third order, by
scrutinizing recent PTA datasets in conjunction with BBN and
CMB data. We have calculated the energy-density spectrum
of SIGWs up to third order. Through the analysis of the joint
datasets of BBN, CMB, and PTA, we inferred the allowable
parameter region, which is depicted in Fig. 2. The inferred
constraints on Aζ and f∗ are presented in Eqs. (9) and (10).

Interestingly, we found that the third-order gravitational
waves could contribute more to the integrated energy density
than the second-order ones when the primordial curvature
spectral amplitude Aζ exceeds approximately 0.06. This find-
ing underscores the importance of third-order gravitational
waves in our joint data analysis.

As illustrated in Fig. 3, we anticipated that the energy-
density fraction spectrum of scalar-induced gravitational
waves, and subsequently the power spectrum of primordial
curvature perturbations, will be potentially measured by fu-
ture gravitational-wave experiments, which should enable us
to explore the early universe more comprehensively and fur-
ther test the predictions of our study. Our findings represent a
significant step forward in our understanding of the universe,
particularly in relation to cosmic inflation.

The next-generation CMB experiments, e.g., CMB-S4
[63], Simons Observatory [64], and LiteBIRD [65], are
expected to reach better sensitivity that would lead to im-
provements of the present CMB upper limits on Aζ , also
indicating potential improvements of the best bound inferred
in our current work.

Our results also suggest a mass range for PBHs (see
reviews in Ref. [66]) of 10−4.5M� < mPBH < 10−2.5M�, as-
suming the observed PTA signal is interpreted as originating
from SIGWs [14–17,67–75]. Notably, this mass range could
account for the evidence for Planet 9 in the Outer Solar Sys-
tem [76–82].
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APPENDIX: ESSENTIAL FORMULAS

Once the perturbed metric in Eq. (2) is known, we derive the equations of motion for SIGWs from the Einstein’s equations in
a hierarchical approach. For third-order gravitational waves we have [30]

h(3)′′
i j (η, x) + 2Hh(3)′

i j (η, x) − �h(3)
i j (η, x) = −12�lm

i j S
(3)
lm (η, x), (A1)
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where the source term is given by

�ab
i j S(3)

ab (η, x) = �ab
i j

[
12φ(1)∂aφ

(1)∂bφ
(1) − 4

Hφ(1)′∂aφ
(1)∂bφ

(1) + 2

3H2
�φ(1)∂aφ

(1)∂bφ
(1)

+ 2

3H4
�φ(1)∂aφ

(1)′∂bφ
(1)′ − 3

H2
φ(1)′∂aφ

(1)′∂bφ
(1) − 3

H2
φ(1)′∂bφ

(1)′∂aφ
(1)

+ 2

3H3
�φ(1)∂aφ

(1)′∂bφ
(1) + 2

3H3
�φ(1)∂bφ

(1)′∂aφ
(1) − 2

H3
φ(1)′∂aφ

(1)′∂bφ
(1)′ − 4

H2
φ(1)∂aφ

(1)′∂bφ
(1)′

− 1

2
φ(1)

(
h(2)′′

ab + 2Hh(2)′
ab − �h(2)

ab

) − φ(1)�h(2)
ab − φ(1)′Hh(2)

ab − 1

3
�φ(1)h(2)

ab − ∂cφ(1)∂ch(2)
ab

+ φ(1)∂a
(
V (2)′

b + 2HV (2)
b

) + φ(1)∂b
(
V (2)′

a + 2HV (2)
a

) + φ(1)′(∂aV
(2)

b + ∂bV
(2)

a

)
− φ(1)

8H
(
∂b�V (2)

a + ∂a�V (2)
b

) − φ(1)′

8H2

(
∂b�V (2)

a + ∂a�V (2)
b

) + 1

H
(
φ(1)∂a∂bψ

(2)′)

+ 1

H
(
φ(1)′∂a∂bφ

(2)
) + 1

H2

(
φ(1)′∂a∂bψ

(2)′) + 3
(
φ(1)∂a∂bφ

(2)
)]

. (A2)

Third-order gravitational waves are produced by both the linear scalar perturbations and second-order metric perturbations that
are produced by the linear scalar perturbations. The latter were studied in the literature [30,83].

In Fourier space, the evolution of the first- and second-order metric perturbations is given by

φ
(1)
k = 
kTφ (kη), (A3a)

φ
(2)
k =

∫
d3k

(2π )3
{
k−p
pIφ (|k − p|, |p|, kη)}, (A3b)

ψ
(2)
k =

∫
d3k

(2π )3
{
k−p
pIψ (|k − p|, |p|, kη)}, (A3c)

V (2)
i,k =

∫
d3k

(2π )3

{

k−p
pVab

i

pa pb

k2
IV (|k − p|, |p|, kη)

}
, (A3d)

h(2)
i j,k =

∫
d3k

(2π )3

{

k−p
p�

ab
i j

pa pb

k2
Ih(|k − p|, |p|, kη)

}
, (A3e)

where Vab
j (k) = −ik j (δab − kakb/k2)/k2 is helicity decomposition operator for vector perturbations, �ab

i j (k) = 1
2 [(δb

i −
kbki/k2)(δa

j − kak j/k2) + (δa
i − kaki/k2)(δb

j − kbk j/k2) − (δab − kakb/k2)(δi j − kik j/k2)] is that for tensor perturbations [31],
and 
k is a stochastic variable characterizing the primordial scalar perturbations. During radiation domination, the initial
conditions lead to 
k = 2ζk/3, where ζk denotes primordial curvature perturbations with wave vector k. The transfer function
Tφ is obtained by solving the master equation for the linear scalar perturbations [84]. As shown in Ref. [30], the kernel functions
Iφ , Iψ , IV , and Ih are obtained by solving the equations of motion for φ(2), ψ (2), V (2), and h(2), respectively.

In Fourier space, Eq. (A2) is reformulated as

�ab
i j (k)S(3)

ab,k = P(φ(1) )3,i j (k, p, q) f1
[
φ

(1)
k−p, φ

(1)
p−q, φ

(1)
q

] + Pφ(1)h(2),i j (k, p, q) f2
[
φ

(1)
k−p,
p−q
qIh(|p − q|, |q|, |p|η)

]
+ Pφ(1)V (2),i j (k, p, q) f3

[
φ

(1)
k−p,
p−q
qIV (|p − q|, |q|, |p|η)

]
+ Pφ(1)ψ (2),i j (k, p, q) f4

[
φ

(1)
k−p,
p−q
qIψ (|p − q|, |q|, |p|η)

]
, (A4)

where fn[...] with n = 1, 2, 3, 4 are homogeneous functions of order 1, that can be read straightforwardly from Eq. (A2), and we
introduce

P(φ(1) )3,i j (k, p, q) = 1

k2
�ab

i j (k)[(pa − qa)qb + (pb − qb)qa], (A5a)

Pφ(1)ψ (2),i j (k, p, q) = 1

k2
�ab

i j (k)pa pb, (A5b)

Pφ(1)V (2),i j (k, p, q) = 1

k2
�ab

i j (k)
[
Vcd

a (p)qcqd pb + Vcd
b (p)qcqd pa

]
, (A5c)

Pφ(1)h(2),i j (k, p, q) = 1

k2
�ab

i j (k)�cd
ab(p)qcqd . (A5d)
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Solving Eq. (A1) in Fourier space, we get the strain of third-order gravitational waves as

h(3)
i j,k ≡

∫
d3 p

(2π )3

d3q

(2π )3

{

k−p
p−q
q

[
P(φ(1) )3,i j (k, p, q)I (3)

(φ(1) )3 (|k − p|, |p − q|, |q|, |p|, k, η)

+ Pφ(1)h(2),i j (k, p, q)I (3)
φ(1)h(2) (|k − p|, |p − q|, |q|, |p|, k, η) + Pφ(1)V (2),i j (k, p, q)I (3)

φ(1)V (2) (|k − p|, |p − q|, |q|, |p|, k, η)

+ Pφ(1)ψ (2),i j (k, p, q)I (3)
φ(1)ψ (2) (|k − p|, |p − q|, |q|, |p|, k, η)

]}
, (A6)

where the kernel functions I (3)
∗ (|k − p|, |p − q|, |q|, |p|, k, η) are defined as

I (3)
(φ(1) )3 =

∫ η

0
dη̄Gk (η, η̄) f1[Tφ (|k − p|η̄), Tφ (|p − q|η̄), Tφ (|q|η̄)], (A7a)

I (3)
φ(1)h(2) =

∫ η

0
dη̄Gk (η, η̄) f2[Tφ (|k − p|η̄), Ih(|p − q|, |q|, |p|η̄)], (A7b)

I (3)
φ(1)V (2) =

∫ η

0
dη̄Gk (η, η̄) f3[Tφ (|k − p|η̄, IV (|p − q|, |q|, |p|η̄)], (A7c)

I (3)
φ(1)ψ (2) =

∫ η

0
dη̄Gk (η, η̄) f4[Tφ (|k − p|η̄), Iψ (|p − q|, |q|, |p|η̄)], (A7d)

with the Green’s function during radiation domination being

Gk (η, η̄) = 1

k
sin[k(η − η̄)]. (A8)

There is not a kernel function with a subscript φ(1)φ(2), since φ(2) has been replaced with ψ (2) via the second-order equation of
motion.
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