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Controlling the quantum interface between two bosonic modes is essential in countless implementations
of quantum information processing. However, full controllability is rarely achieved in most platforms due to
specific physical limitations. In this work, we completely characterize the linear two-mode interfaces under the
most pessimistic restriction that only single-mode operation is available. When arbitrary Gaussian single-mode
operations can be applied to both modes, we find that every interface can be characterized by an invariant
transmission strength. Moreover, in the practical situation that squeezing is restricted in one of the modes, we
discover two additional quantities, irreducible squeezing and irreducible shearing, that are invariant under the
allowable controls. By using this characterization, we develop systematic strategies to engineer an arbitrary linear
interface through cascading multiple fixed component interfaces. Without squeezing restriction, our protocol is
optimal and requires at most three component interfaces. Under the squeezing constraint, our protocol can be
extended to engineer also the additional invariants by using no more than two more rounds of cascade. We
also propose the remote squeezing scheme to tackle the squeezing restriction through interfacing with an active
auxiliary mode.
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I. INTRODUCTION

Bosonic quantum systems are ubiquitous in implementing
platforms of quantum technologies. For example, photon is
widely used as an information carrier in quantum commu-
nication systems [1] and photonic quantum computers [2,3].
Superconducting microwave resonator is a key element in the
circuit quantum electrodynamics quantum computing archi-
tecture [4,5], bosonic coding implemented in this platform has
achieved break-even point of quantum error correction [6].
The controllable phonon-photon interaction in optomechan-
ical systems [7] has been utilized to implement cutting-edge
technologies [8], such as microwave-to-optical transduction
[9], topologically protected transport [10,11], and small-scale
thermal machines [12,13]. In the low-excitation regime, an
ensemble of spin also behaves as bosonic [14]; such platform
has been proposed to be a robust quantum memory for light
[15–17] and microwave [18–20], as well as the building block
of quantum repeaters [21,22]. Generally, bosonic systems
can also be applied in continuous variable (CV) quantum
computing [23–25], quantum sensing and metrology [26–28],
demonstrating quantum computational advantages [29–32],
and quantum chemistry simulation [33,34].

To realize the above implementations and applications, it
is essential to generate a Gaussian interface with purpose-
specific strength and type. Gaussian interfaces are categorized
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into seven types in Ref. [35] and each type is utilized
with specific purposes. They are Beam-splitter (BS), two-
mode squeezing (TMS), quantum nondemolition interface
(QNDI), SWAP, identity interface, swapped-TMS (sTMS),
and swapped-QNDI (sQNDI). BS-type interfaces between
modes are required for boson sampling [36,37] and quan-
tum walk simulators [38,39]. Two-mode-squeezing (TMS)
is the interface underlying spontaneous parametric down-
conversion photon generation [40–42] and phase-insensitive
amplification [43]. Quantum nondemolition interface (QNDI)
is utilized in generating CV cluster states for measurement-
based quantum computing [44,45] and quantum secret sharing
[46–48]. There has been increasing interest in engineering
SWAP for transducing information [17,49–51] between dif-
ferent components of hybrid quantum systems [52,53], and
rapidly cooling trapped ions [54,55]. Identity interfaces are
sometimes engineered to avoid unnecessary excitation, such
as in heatingless ion separation and merging [56,57]. sTMS
and sQNDI are newly discovered in Ref. [35]. sQNDI allows
quantum transduction with less stringent conditions [35,58],
while there is no proposed application of sTMS yet.

Two-mode linear interfaces have been widely studied by
different scientific communities under different names. For
example, in quantum information processing they are usually
used as Gaussian logic gates in CV quantum computing, or a
description of Gaussian quantum channels in the open quan-
tum system [25]. In condensed matter physics, it is commonly
known as Bogoliubov transformation [59,60]. In mathematics,
the transformation introduced by such interface is studied un-
der the name of symplectic transformation [61]. In this work,
since we focus on the processes’ properties in interacting two
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independent bosonic degrees of freedom, we will consistently
denote the process as “interface.”

Implementing a two-mode interface with the desired type
and strength is generally challenging due to various exper-
imental limitations. First the type of interaction is usually
restricted by the physical properties of the platform. For exam-
ple, the Stokes and anti-Stokes interactions in electro-optical
[62] or optomechanical systems [7] typically generate either a
TMS or BS interface; QNDI arises naturally between light and
atoms ensemble as the interaction is bilinear in the quadrature
of each system [17,63]. Furthermore, there are limitations
in the interaction strength. For example, the strength of the
quantum light-atom interface is characterized by the optical
depth of the atomic ensemble [64] that cannot be arbitrarily
large, since the dense atomic ensemble is avoided to prevent
unwanted interaction, such as the dephasing induced by the
dipole interaction [65].

One might naively think that the unwanted properties of
an imperfect interface can be removed by applying single-
mode operations. However, this idea is disproved because the
interfaces with different characteristic properties are not inter-
convertible by single-mode operations [35]. To overcome this
fundamental limitation, one approach is to cascade multiple
rounds of the restricted interfaces. Earlier proposals suggested
that SWAP can be implemented by cascading multiple QNDIs
[63,66–68]. Recently, Lau and Clerk [35] developed a more
general scheme to construct SWAP and sQND cascading up to
any six fixed interfaces. Zhang et al. [69] generalized this pro-
tocol to implement arbitrary Gaussian operations by applying
exponentially many rounds of the same multimode interface.
In spite of the possibilities introduced by these protocols, two
important practical issues have not been fully addressed:

(1) Optimality in rounds of applied interface: all the above
protocols have not explored the minimum number of the re-
quired interfaces. It is generally beneficial to apply fewere
rounds of interface because engineering intermode interaction
is challenging, especially for the hybrid system.

(2) Squeezing: some existing protocols assume that all
modes can be squeezed, so they cannot be applied to the
platforms involving systems that squeezing is challenging,
e.g., optical and spin-ensemble systems.

Our work will address both of these issues. In the first
half, we focus on the situation every single-mode operation
is allowed. We find that every interface can be characterized
by its invariant transmission strength, and every interface
sharing the same transmission strength is interconvertible.
We then develop the protocols for engineering an interface
with arbitrary transmission strength. By applying single-mode
controls between at most three directly available interfaces
with predetermined strength, referred to as component in-
terfaces hereafter, our protocol can manipulate the overall
transmission strength through amplification and interference.
We prove that our protocol is optimal in the sense that it
involves the fewest possible number of component interfaces.

In the second half, we extend the study to the restricted
scenario that squeezing is available to only one of the modes.
We discover two more quantities, irreducible squeezing and
irreducible shearing, that are invariant under this additional
operational restriction. To engineer an interface with any de-
sired magnitudes of these invariant quantities, we develop

a protocol that involves at most four component interfaces.
To resolve the squeezing restriction, we also introduce the
remote squeezing scheme that squeezes the restricted mode
by interfacing it with an active auxiliary mode.

Our paper is organized as follows. We start with the general
scenario and review the interfaces’ characterization by the
transmission strength in Sec. II. Then, we present the opti-
mal interface engineering protocols in Sec. III. In Sec. IV,
we discuss the new invariant parameters for characterizing
an interface in the squeezing-restricted scenario. In Sec. V,
we propose the squeezing-restricted protocols that construct
interfaces with any desired characteristic parameters. Particu-
larly, we present the remote squeezing protocol that can serve
as a new method to overcome the squeezing restriction in
Sec. V F. Section VI concludes the paper.

II. CHARACTERIZATION OF TWO-MODE
LINEAR INTERFACE

We consider two modes, denoted by the annihilation op-
erators â1 and â2, interacting through a linear interface.
By introducing the Hermitian quadrature operators via â ≡
(q̂ + i p̂)/

√
2, the transformation induced by the interface is

represented as (
q̂out

i

p̂out
i

)
=

2∑
j=1

Ti j

(
q̂in

j

p̂in
j

)
. (1)

Here Ti j with i, j ∈ {1, 2} is the 2×2 submatrix of the 4×4
real symplectic matrix T; describes the reflection or trans-
mission of quadratures via the interface when i = j or i �= j,
respectively [25]. q̂in(out) and p̂in(out) denote the quadrature
operators before (after) the interface. We note that Eq. (1) is
a general description of linear interfaces, i.e., it covers both
the ones induced by scattering processes and coherent inter-
action. For scattering-type, e.g., interaction of travel photons
via an optical beam splitter, âin and âout represent, respec-
tively, the input and output propagating mode operators; for
coherent interaction, e.g., coherent mode coupling between
superconducting cavities [70], âin and âout are the initial and
final time mode operators, respectively, i.e., âin ≡ â(0) and
âout ≡ Û†â(0)Û for some evolution operator Û .

Any interface can be converted by suitable single-mode
operations to one of the seven typical interfaces: identity,
QNDI, TMS, BS, sTMS, sQNDI, and SWAP [35], i.e.,

Lout
1 Lout

2 TLin
1 Lin

2 = Ū. (2)

Here Lin(out)
i is a 4×4 matrix denoting the single-mode

Gaussian transformation on the ith mode and Ū denotes
the standard form of the interface that both reflection and
transmission matrices are diagonal and the nonzero diagonal
entries have equal magnitude. This form is significant not only
because the typical interfaces are usually expressed in the
standard form in the literature, but it is also useful in interface
engineering. The operator and matrix representations of the
standard forms are listed in Table I.

Generally, if single-mode operations are applied before
and after the interface, then the overall transformation matrix
will be altered. Moreover, one would expect that an interface
can generate intermode correlations that cannot be affected
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TABLE I. Characterization of interfaces and requirements for interface engineering. The first and second columns, respectively, show
the equivalent well-known operation for each class and the corresponding transmission strength, χ ≡ det(T21). The third column shows the
additional characteristic parameters when squeezing is restricted to only one mode. The fourth and fifth columns list the operator and matrix
representations of the interfaces in the standard form. Here r is the TMS strength, θ is the BS angle, η is the QND strength, I and Z are the
2×2 identity and Pauli-Z matrices, respectively. The last two columns are the number of fixed interfaces required for engineering a interface
in this class under the general and squeezing-restricted situations.

No. of interfaces
Characterization Standard form for protocol

Transmission Characteristic
Class strength parameters Operator Matrix General Restricted

TMS χ < 0 � exp (−ir(q̂1 p̂2 + p̂1q̂2))

(
cosh rI sinh rZ
sinh rZ cosh rI

)
2 4

Identity (nT = 0) χ = 0 � Î

(
I 0
0 I

)
3 5

QNDI (nT = 1) χ = 0 � κ exp (−iηq̂1 p̂2)

(
I η I−Z

2
η I+Z

2 I

)
2 4

BS 0 < χ < 1 � exp (iθ (q̂1 p̂2 − p̂1q̂2))

(
cos θI − sin θI
sin θI cos θI

)
2 4

sQNDI (nR = 1) χ = 1 � Ŝ exp (−iηq̂1 p̂2)

(
η I−Z

2 I
I η I+Z

2

)
2 4

SWAP (nR = 0) χ = 1 / Ŝ ≡ exp (i π

2 (â†
1 − â†

2 )(â1 − â2))

(
0 I
I 0

)
3 3

sTMS χ > 1 � Ŝ exp (−ir(q̂1q̂2 + p̂1 p̂2))

(
sinh rZ cosh rI
cosh rI sinh rZ

)
2 4

by single-mode operations. Indeed, Ref. [35] identified that
the ranks of the reflection and transmission matrices, nR ≡
rank(T22) ∈ {0, 1, 2} and nT ≡ rank(T21) ∈ {0, 1, 2}, are in-
variant under single-mode operations. For the purpose of
transduction, they show that each class of interface, as clas-
sified by the different combinations of ranks, has different
utility in engineering a perfect transduction.

In additional to the ranks, another invariant, the determi-
nant of the transmission matrix T21,

χ ≡ det(T21) ∈ (−∞,∞), (3)

is recognized in Ref. [35], although it is not involved in the en-
gineering of transduction. For our current purpose of interface
engineering, however, we realize that χ is a good classifier
because all interfaces that share the same χ and ranks are
interconvertible. Explicitly, any two interfaces A and A′ with
the same χ and ranks have the same standard form according
to Eq. (2), i.e., Lout

1 Lout
2 TALin

1 Lin
2 = Lout′

1 Lout′
2 TA′Lin′

1 Lin′
2 = Ū.

The two interfaces can thus be interconverted by single mode
operations, i.e., (Lout′

1 Lout′
2 )−1Lout

1 Lout
2 TALin

1 Lin
2 (Lin′

1 Lin′
2 )−1 =

TA′ .
To observe the physical meaning of χ , we consider that for

a BS with angle θ ∈ (−π/2, π/2),

χBS = sin2 θ. (4)

In this case, χBS is the magnitude square of the transmittance
of the BS. Moreover, we recognize that no information is
transmitted through identity interface, of which χI = 0. While
all information is transmitted through SWAP, this interface has
a χSWAP = 1. From these examples, we can observe that χ

can characterize the strength of the transmission through an
interface, and hence we will call χ the transmission strength.

We now discuss the meaning of χ of the remaining inter-
faces. For sTMS and TMS, their transmission strengths are
given by

χsTMS = cosh2 r, (5)

χTMS = − sinh2 r, (6)

where r ∈ (−∞,∞) is the TMS strength. sTMS is equivalent
to cascading two operations: amplifying by TMS and trans-
mitting via SWAP. χsTMS is always larger than 1 and implies
that the transmitted information via sTMS is amplified. For
TMS, the transmitted mode is associated with noise [43] and
the negative χTMS is the signature of this fundamental incor-
porated noise. Both QNDI (nT = 1) and identity (nT = 0)
have the zero transmission strength, χQNDI = χI = 0, it is
because no quantum information is transmitted through either
of them. Identity interface obviously transfers no informa-
tion. Even though QNDI (nT = 1) transmits the information
of one quadrature, its quantum capacity vanishes because
this transmission can be equivalently implemented by homo-
dyne detection and transmitting the classical measurement
outcome. sQNDI (nR = 1), similar to SWAP (nR = 0), has
infinite quantum capacity [58] and completely transmits quan-
tum information without adding noise, so it has χsQNDI =
χSWAP = 1.

Interestingly, even though both QNDI and sQNDI involve
a nonzero QND strength η ∈ (−∞,∞), this parameter can-
not be used as a classifier since it is not invariant under
single-mode transformation. More explicitly, it is easy to
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show that

S1(γ −1)ŪQ(η)S1(γ ) = ŪQ(γ η), (7)

S1(γ −1)ŪSQ(η)S2(γ ) = ŪSQ(γ η), (8)

where Si(γ ) denotes the single-mode squeezing with strength
γ ∈ (−∞,∞) of mode i [71], ŪQ(η) and ŪSQ(η) denote,
respectively, the standard form of QNDI and sQNDI with
QND strength η. Equations (7) and (8) show that the QND
strength can always be manipulated by applying single-mode
squeezing before and afterward the interface.

III. INTERFACE ENGINEERING WITH ARBITRARY
SINGLE-MODE OPERATIONS

Each quantum information process requires purpose-
specific interfaces. According to our characterization in
Sec. II, implementing them is equivalent to implementing
the target interfaces with the specific transmission strength
χtgt and ranks ntgt

R and ntgt
T . However, physical platforms are

usually subjected to practical limitations, so the available in-
terfaces may be restricted. Inspired by previous works [35,69],
we develop a systematic scheme that can engineer an interface
with arbitrary transmission strength and ranks by cascading
multiple component interfaces, i.e., platform-available inter-
faces. In this section, we consider the situation that any
single-mode rotation and squeezing can be implemented on
both modes. Our scheme is designed to account for the most
general restrictions of the available interface, as we assume
that both the ranks and transmission strength of every compo-
nent interface are fixed but known.

Before discussing the details, it is worth clarifying the dif-
ferences between our scheme and other interface engineering
techniques. First, both the strength and type of an interface can
be modified, respectively, by Hamiltonian amplification [72]
and Lloyd-Braunstein protocol [23]. However, the required
number of component interfaces in these schemes grows with
the accuracy and strength of the desired interface. On the
contrary, our scheme requires at most three component inter-
faces to exactly engineer an interface with any desired strength
and type. Second, by Bloch-Messiah decomposition [73], any
two-mode interface can be decomposed into two BS and a
round of single-mode squeezing in between. However, engi-
neering interfaces by this method requires implementing BS
with tunable angles, which is in stark contrast to our scheme
that can utilize any nontrivial component interfaces with fixed
strength.

A. Two-interface setup

The basic setting consists of two cascading component
interfaces as illustrated in Fig. 1. This setup is implemented
in the following sequence: (1) two modes couple via the first
component interface A; (2) they are transformed by control-
lable single-mode operations, L1 and L2; (3) they couple again
via the second component interface B. After the sequence,
the two modes are effectively transformed under the resultant
interface AB.

For simplicity, we assume that the component interfaces
A and B have already been converted to the standard form

FIG. 1. Two-interface setup for engineering a nontrivial inter-
face. It consists of two two-mode component interfaces TA(B) (blue)
interspersed with the controllable ith mode operations Li (gray). The
right-to-left black arrows represent the evolution of the bosonic mode
operators.

by appropriate single-mode operations. Then, the resultant
transformation matrix TAB is given by

TAB = ŪBL1L2ŪA. (9)

Our aim is to find the suitable single-mode operations L1(2),
for constructing a resultant interface TAB with the desired rank
and transmission strength χAB.

In principle, there are 49 combinations of component inter-
faces because A and B can belong to any of the seven classes
in Table I. Fortunately, as explained below, only six combina-
tions are independent and need to be considered individually.

First, for engineering a nontrivial interface, it is legitimate
to assume component interfaces A and B do not belong to
identity and SWAP, because these two classes do not generate
any nontrivial correlation between the involving modes.

Second, any combination involving sTMS or sQNDI com-
ponents, which can be treated, respectively, as a TMS or
QNDI followed by a SWAP, needs not be considered indi-
vidually. We note that applying a SWAP after an interface
with strength χ ′ will result in an overall interface with
strength 1 − χ ′. It is because SWAP exchanges the transmit-
ted and reflected quadratures, and hence their strengths, and
the sum of transmission and reflection strengths always equal
to unity according to the canonical commutation relations,
i.e., det(T22) + det(T21) = 1 [35]. If the combination of A
and B can engineer a resultant strength χAB, then by using
the same single-mode operations, an interface with strength
χAB′ = 1 − χAB can be engineered by combining A with a
component B′ with strength χ ′

B = 1 − χB, where χB is the
transmission strength of B. As a result, the combination in-
volving sTMS or sQNDI components can be deduced from
the combinations of TMS or QNDI, respectively.

Third, the order of interfaces does not affect the transmis-
sion strength. It can be understood by considering the inverse
of Eq. (9), i.e.,

(ŪA)−1(L1L2)−1(ŪB)−1 = (TAB)−1, (10)

and recognizing that any interface has the same transmission
strength as its inverse. For any nontrivial interface, its inverse
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FIG. 2. Interference of q-quadrature transmission for the cascad-
ing interfaces setup. There are two paths for transmitting q̂in

1 to q̂out
2 .

Due to the squeezing of mode 1 (triangle), the blue path is amplified
and the red one is unchanged. The overall transmission amplitude is
determined by the interference of the two paths and thus controllable
by the squeezing strength γ .

can be constructed by applying single-mode operations before
and after itself, i.e.,

(Ūχ )−1 =
{

R1(π )ŪχR1(π ) for χ < 1
R1(2)(π )ŪχR2(1)(π ) for χ > 1

, (11)

(ŪQ(η))−1 = R1(π )ŪQ(η)R1(π ), (12)

(ŪSQ(η))−1 = F−1
1 F2ŪSQ(η)F1F−1

2 , (13)

where Ri and Fi ≡ Ri(π/2) denote, respectively, the rotation
and Fourier gate for the ith mode [71]. The standard form of
BS, TMS and sTMS interfaces are denoted as Ūχ . If there
exists a protocol that engineers a desired interface AB by first
applying A then B (denoted by combination A + B hereafter),
then one can substitute Eqs. (11)–(13) into Eq. (10) to obtain
a protocol to generate AB by first applying B then A.

As a consequence, we need to consider only six com-
binations: BS+BS, TMS+TMS, QND+QND, BS+TMS,
BS+QND and TMS+QND.

B. Interference mechanism

The principle of the cascading interface setup is to use
the controllable single-mode operations L1(2) to interfere and
hence manipulate the transmission. As a pedagogical exam-
ple, we consider a simple setting with only one controllable
squeezing in between, i.e., L1 = S1(γ ) and L2 = I. Further-
more, we assume the component interfaces A and B are,
respectively, BS and TMS in the standard form. Since both in-
terfaces and single-mode operations are quadrature-diagonal,
the overall transmission matrix is given by

T21
AB =

(
T 21,q

AB 0
0 T 21,p

AB

)
, (14)

where

T 21,q
AB = γ

√
χB(χA − 1) −

√
(1 − χB)χA, (15)

T 21,p
AB = −γ −1

√
χB(χA − 1) −

√
(1 − χB)χA. (16)

As illustrated in Fig. 2, the q-transmission amplitude of q̂1

to q̂2 is the sum of the amplitudes of two paths: the upper path

TABLE II. Possibility of engineering each class of interface with
the six combinations of two component interfaces. For the resultant
interface being BS/TMS/sTMS, it is always possible to engineer χ

to any desired value. ∗It is generally not possible except the special
case that the two component interfaces have the same strength, χA =
χB. †It is generally not possible except the special case that the two
component interfaces have complementary strengths, χA = 1 − χB.

Config. Identity QNDI BS/TMS/sTMS sQNDI SWAP

BS+BS ×∗ √ √ √ ×†

TMS+TMS ×∗ √ √ √ ×
QNDI+QNDI

√ √ √ √ ×
BS+TMS × √ √ √ ×
BS+QNDI × √ √ √ ×
TMS+QNDI × √ √ √ ×

(blue) reflects in A, passes through the squeezer and transmits
in B; and the lower path (red) transmits in A and reflects in B.
The squeezer amplifies the amplitude of the first path, i.e., the
first term in Eq. (15), while the amplitude of the second path
is not modified, i.e., the second term in Eq. (15). A similar
process happens for the p transmission in Eq. (16), except
that the first path is deamplified by the squeezer. It is clear
that adjusting the squeezing strength γ can tune the resultant
transmission strength χAB = T 21,q

AB T 21,p
AB . χAB can be arbitrarily

small near destructive interference, i.e., a γ is chosen that
T 21,q

AB or T 21,p
AB is close to zero, while it can be arbitrarily large

by exerting a large γ such that T 21,q
AB is large. As a result, the

whole spectrum of χAB can be covered by manipulating γ .

C. General two-interface protocols

Next, we present the complete protocols for all six com-
binations of component interfaces. We will consider the
setting that consists of mode-1 squeezing and rotations on
both modes, i.e., L1 = R1(φ1)S1(γ ) and L2 = R2(φ2), where
φ1, φ2 ∈ (0, 2π ) are the rotation angles. A straightforward
calculation shows that the resultant transmission strength is
given by

χAB ≡ det[[ŪBR1(φ1)S1(γ )R2(φ2)ŪA]21]

= Xf + Z, (17)

where Xf ≡ χB + χA − 2χBχA is determined only by the
transmission strength of the component interfaces, and Z
accounts for the interference that is controllable by the in-
between single-mode operations. Our strategy is to tune Z to
adjust χAB to the desired value, χtgt. Z takes different forms
for different combinations. We will discuss each combination
as follows, and the result is summarized in Table II.

1. BS+TMS, BS+QNDI, or TMS+QNDI

When two interfaces of different classes are combined,
we turn off all the rotations, i.e., φ1 = φ2 = 0, and the value
of Z is solely determined by the squeezing strength γ . For
BS+TMS, Z is given by

ZBS+TMS =
√

χB(1 − χB)χA(χA − 1)
γ 2 − 1

γ
, (18)
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which can be tuned to arbitrary values. For BS+QNDI and
TMS+QNDI, their Z are expressed as

ZBS+QNDI = −
√

χB(1 − χB)ηγ −1, (19)

ZTMS+QNDI = −
√

χB(χB − 1)ηγ −1, (20)

which can be arbitrary nonzero value [74]. Under these set-
tings, the resultant interface can be any nontrivial interface,
i.e., BS, TMS, sTMS, QNDI, or sQNDI, but not identity and
SWAP. We will discuss more about the latter two in Sec. III D.

2. BS+BS or TMS+TMS

For the combination BS+BS or TMS+TMS with
χA �= χB, 1 − χB, we can set φ2 = 0, and obtain Z as

ZBS+BS = Z0

2

γ 2 + 1

γ
cos φ1, (21)

ZTMS+TMS = −Z0

2

γ 2 + 1

γ
cos φ1, (22)

where Z0 ≡ 2
√

χB(1 − χB)χA(1 − χA).
Although |(γ 2 + 1)/γ | is lower bounded by 2, Z covers all

real values thanks to the rotation φ1. More explicitly,
(1) When χtgt falls between Xf − Z0 < χtgt < Xf + Z0,

we turn off the squeezing, i.e., γ = 1, and adjust the value
of Z by φ1.

(2) Otherwise, i.e., χtgt < Xf − Z0 or χtgt > Xf + Z0, we
set φ1 = 0 and manipulate the value of Z by γ .

Under these settings, we can engineer any nontrivial inter-
face.

We now discuss two special cases. First, for χA = χB,
we will obtain identity instead of QNDI when χAB = 0. To
engineer QNDIs, a rotation is needed to mix the q and p
quadratures to avoid the complete destructive interference of
both quadratures in the transmission. We show in Appendix B
that QNDIs can be constructed by setting φ1 �= 0, φ2 = 0 and
γ = tan φ1 − sec φ1.

Another special case is χA = 1 − χB, which may happen in
BS+BS combination. Tuning χAB = 1 by the above protocol
will result in a SWAP but not sQNDI. To construct sQNDIs,
we need a modified setting to prevent reflection from com-
pletely destructively interfering in both quadratures. We show
in Appendix B that this can be achieved by setting φ1 �= 0,
φ2 = 0 and γ = − tan φ1 − sec φ1.

3. QNDI+QNDI

If one of the available component interfaces is a QNDI,
then it can be used to engineer a QNDI with arbitrary QND
strength by applying single-mode squeezing, i.e., Eq. (7). For
other nontrivial interfaces, we can pick φ1 = φ2 = π/2 and
obtain

ZQNDI+QNDI = −ηAηBγ −1, (23)

which can be adjusted by γ to cover all nonzero values [75].
We are also able to engineer an identity by changing the
setting to φ1 = φ2 = 0 and γ = −ηA/ηB, then the two com-
ponent QNDIs will be mutually canceled.

D. Three-interface protocols for identity and SWAP

In view of the success of two-interface protocol in engi-
neering nontrivial interface, one might be tempted to use such

protocol to also engineer identity and SWAP. Engineering
these interfaces requires eliminating the amplitudes of both
q and p quadratures in either the transmission (for identity) or
reflection (for SWAP). However, in the two-interface configu-
ration, there is only one round of squeezing between the two
component interfaces. Intuitively, it seems impossible to si-
multaneously destructively interfere both q and p quadratures
as the squeezing of one quadrature will inevitably antisqueeze
the other.

To verify this intuition, we exploit all available single-
mode controls in Appendix B, and discover that identity and
SWAP cannot be engineered by the two-interface protocol
unless the two interfaces follow stringent relations. For engi-
neering identity, the component interfaces must have the same
strength, χA = χB. In this situation, interface A can always
be converted to the inverse of B by appropriate single-mode
operations [see Eqs. (11)–(13)], then the two component in-
terfaces mutually cancel and the resultant interface becomes
an identity.

To engineer SWAP, the strengths of the component in-
terfaces must be complemented, i.e., χA = 1 − χB. This
condition implies that interface A can be converted to the
swapped-inverse of interface B, i.e., TA = T−1

B ŪS , where ŪS

is the standard form of SWAP. By eliminating TB, we obtain
a SWAP.

In general, the available component interfaces may not sat-
isfy the above stringent conditions. To engineer identity and
SWAP, our strategy is to cascade more interfaces and single-
mode controls, such that additional rounds of interference can
be implemented to destructively interfere both quadratures.
Inspired by the above understandings, we develop systematic
protocols that require the minimum rounds of component in-
terfaces, i.e., using three interfaces, A, B, and C, as illustrated
in Fig. 3(a).

For engineering identity, our strategy is to apply the two-
interface protocol in Sec. III C to combine two component
interfaces, A and B, to construct an intermediate interface
AB that is the inverse of C [Fig. 3(b)]. Similarly, to engineer
SWAP, AB can be engineered to be the swapped-inverse of
C, i.e., TAB = T−1

C ŪS , so that the resultant interface ABC
becomes a SWAP [Fig. 3(c)].

To summarize this section, any nontrivial interface, BS,
TMS, sTMS, QNDI, and sQNDI, can be engineered by cas-
cading two component interfaces with suitable single-mode
controls. Moreover, engineering identity and SWAP is gener-
ally impossible with only two arbitrary interfaces, so we have
introduced a three-interface protocol. Comparing with the ex-
isting schemes that require six arbitrary component interfaces
to engineer a SWAP [35], and four identical component in-
terfaces for engineering an arbitrary two-mode interface [69],
our protocols are optimal because the number of component
interface involved is the minimum possible.

IV. CHARACTERIZING SQUEEZING
RESTRICTED INTERFACE

So far we have considered the situation that all single-
mode operations are available on both modes. However, this
situation is not always relevant in practice because actively
squeezing an unknown state is known to be challenging in
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FIG. 3. Three-interface protocol for engineering identity and
SWAP. (a) The scheme involves cascading three component in-
terfaces A, B, and C and suitable single-mode controls. (b) For
engineering identity, A and B are utilized to engineer an intermediate
interface AB to be the inverse of C. (c) For constructing SWAP, AB
is engineered to be the swapped-inverse of C.

many platforms, such as optics and spin ensembles. If one
involved platform in a hybrid quantum system suffers from
such squeezing restriction, then one would expect that the
interfaces with different squeezing on the restricted mode can-
not be interconverted by the available single-mode controls.

Apart from hybrid quantum systems, such squeezing re-
striction can also be found even when all modes have the
same physical nature, but each mode plays a different role in
the application. For example, in collision-based trapped ion
cooling [76], which aims to cool data ions that encoded infor-
mation in their internal states, squeezing can only be applied
to the ancillary coolant ions that do not encode information.
It is because squeezing ion motion would require coupling
the motional and internal states [77] and thus will corrupt the
encoded information.

Although the squeezing restriction is not uncommon, its
implications on interface characterization and engineering are
not well understood. In the relevant literature, Ref. [35] stud-
ies this issue only for the engineering of a specific interface
(i.e., SWAP). The interface engineering scheme in Ref. [69],
moreover, heavily relies on the phase-sensitive amplification
of every mode and thus cannot be applied under this practi-
cal restriction. We will fill this missing gap in the following
sections. In this section, we will first complete the interface

characterization, and its implication in interface engineering
will be discussed in Sec. V.

A. Diagonalizing mode-2 reflection matrix T22

In the previous sections, we illustrate that each interface
can be classified by its transmission strength and subma-
trix ranks under the assumption that arbitrary Gaussian
single-mode operation can be applied. Under the squeezing
restriction, however, these classifiers are no longer sufficient.
Here is an example: consider a linear interface that introduces
only single-mode squeezing to the restricted mode, this inter-
face falls into the class of identity. Obviously, this interface
cannot be converted to some other interface belongs to the
same class, e.g., an operation that is identity on both modes,
because it requires squeezing of the restricted mode. Thus,
a modified scheme is needed to classify the interfaces under
squeezing restriction, and we will introduce it as follows.

Without loss of generality, we assume mode 2 is squeezing-
restricted, the allowable operation in this setup will consist
of any single-mode operation on mode 1 but only rotation
on mode 2. We first consider the mode-2 reflection matrix
T22 since it is the part in the transformation matrix T that
is mostly affected by this restriction, i.e., T22 can be altered
by rotation only. According to the property of singular value
decomposition (SVD) [78], the singular values of a matrix are
invariant under rotation operations. The SVD of T22 is given
by

T22 = [(
Rout

2

)−1]22
�

[(
Rin

2

)−1]22
, (24)

where � is a 2×2 diagonal matrix with the singular values. We
thus realize that the singular values of T22 can be used to con-
struct the invariant classifier under squeezing restriction. We
will discuss its physical meaning for each class of interface.

1. Interfaces with χ �= 0, 1

For interfaces with χ �= 0, 1, the corresponding � can al-
ways be written as

�χ ≡
(

�
√|1 − χ | 0

0 ±�−1√|1 − χ |
)

, (25)

where the + and – signs are, respectively, for the interfaces
with χ < 1 and χ > 1. The additional classifier � charac-
terizes the discrepancy between the two singular values. We
identify � as the irreducible squeezing strength since it will
not be altered unless squeezing is applied on mode 2. We can
denote � as the squeezing of mode 2, i.e., � � 1, by setting
�χ with the positive and larger upper diagonal element, since
the squeezed and antisqueezed quadratures of mode 2 can
always be exchanged by applying Fourier gates before and
after the interface.

In Appendix C, we show that the transformation matrix T
of any interface in this class can always be transformed, by the
allowable single-mode operations, into one of the following
two simplest forms that consist of only two irreducible parts: a
standard-form interface and a mode-2 squeezing. They are the
pre-squeezing form, i.e., mode-2 squeezing is applied before
a standard-form interface,

Lout
1 Rout

2 TLin
1 Rin

2 = ŪχS2(�), (26)
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and the post-squeezing form, i.e., mode-2 squeezing is applied
after a standard-form interface,

L ¯out
1 R ¯out

2 TLīn
1 Rīn

2 = S2(�)Ūχ . (27)

They are useful for constructing the squeezing-restricted pro-
tocols in Sec. V–V F and show clearly that each interface in
this class is characterized by two invariant parameters: the
transmission strength χ �= 0, 1, and the irreducible squeezing
� � 1.

2. sQNDIs (χ = 1, nR = 1)

For interfaces with χ = 1 and nR = 1, their � is of rank 1
and given by

�SQ ≡
(

� 0
0 0

)
. (28)

Here the nonzero singular value � can be recognized as the
QND strength of the sQNDI. Different from � � 1 for in-
terfaces with χ �= 0, 1 (Sec. IV A 1), � for sQNDIs should
denote both squeezing or antisqueezing of mode 2, i.e., � >

0. It is because only one quadrature is presented in the reflec-
tion through a sQNDI, applying Fourier gates cannot switch
the squeezing to antisqueezing of this quadrature nor vice
versa. Moreover, in contrast to the situation that both modes
can be squeezed, the QND strength is invariant under the
squeezing restriction. This can be understood from Eq. (8)
that altering the QND strength of a sQNDI requires squeezing
both modes, but since it is forbidden in this situation, the QND
strength becomes invariant. We show in Appendix C that any
interface in this class can be transformed into the pre- and
post-squeezing forms,

Lout
1 Rout

2 TLin
1 Rin

2 = ŪSQ(1)S2(�), (29)

L ¯out
1 R ¯out

2 TLīn
1 Rīn

2 = S2(�)ŪSQ(1). (30)

Both forms consist of a sQNDI with a unity strength and a
mode-2 squeezing with strength �. The latter can be rec-
ognized as an irreducible squeezing and it can be used to
characterize a sQNDI.

3. QNDIs (χ = 0, nT = 1)

For interfaces with χ = 0 and nT = 1, their T22 can always
be diagonalized by SVD as

�Q ≡
(

� 0
0 �−1

)
. (31)

Same as Sec. IV A 1,� � 1 can be recognized as irreducible
squeezing and can be used to characterize QNDIs. Surpris-
ingly, in addition to �, we discover another parameter from
the transmission matrix T21 that is invariant under the allow-
able operations. We show in Appendix C that the transmission
matrix can be decomposed as T21 = [(Rout

2 )−1]22N[(Lin
1 )−1]11

by QL decomposition [78], where

N ≡
(

η 0
ηκ 0

)
=

(
1 0
κ 1

)(
η 0
0 0

)
. (32)

Here η is the QND strength, which can be manipulated by
squeezing mode 1. Moreover, the parameter κ is invariant
under the available single-mode operations. We call κ the

irreducible shearing [25] since it can be recognized as an
additional mode-2 shearing applied after the standard-form
QNDI.

Since a shearing operation can be decomposed into rotation
and squeezing [25], in Appendix C we show that any QNDI
can be transformed to the following pre- and post-squeezing
forms [79],

L ˜out
1 R ˜out

2 TLĩn
1 Rĩn

2 = ŪQ(η)R2(φR)S2(�), (33)

L ¯out
1 R ¯out

2 TLīn
1 Rīn

2 = S2(�)R2(φL )ŪQ(η). (34)

Here tan φR ≡ κ and tan φL ≡ −κ�2. Overall, any QNDI is
characterized by three parameters, χ = 0, �, and κ .

4. Identity (χ = 0, nT = 0)

Any interface with χ = 0 and nT = 0 is equivalent to
single-mode operations applying to both modes. Under the
squeezing restriction, any operation on the unrestricted mode
1 can be removed by single-mode controls, while that on the
squeezing-restricted mode 2 can be removed up to a squeezing
operation, i.e.,

Lout
1 Rout

2 TLin
1 Rin

2 = S2(�). (35)

In other words, T22 can be diagonalized according to Eq. (24)
with � = S22

2 (�). As such, any interface in this class is char-
acterized by the irreducible squeezing strength �.

5. SWAP (χ = 1, nR = 0)

Any interface with χ = 1, nR = 0 can always be converted
to a standard-form SWAP by the available single-mode oper-
ations, i.e.,

Lout
1 Rout

2 TLin
1 Rin

2 = ŪS. (36)

There is no irreducible squeezing for this class since any
squeezing applying on mode 2 can be swapped to mode 1, i.e.,
ŪSS2(�) = S1(�)ŪS , and be canceled by mode-1 squeezing
controls.

We summarize all additional characteristic parameters due
to the squeezing restriction for every class of interface in
Table I. We note that, in analogous to the unrestricted case,
any two interfaces A and A′ that share the same set of char-
acteristic parameters are interconvertible. It is because they
can be transformed by the allowable single-mode operations
to the same standard form in conjunction with the same irre-
ducible local operations [Eqs. (26), (27), (29), (30), (33), (34),
(35), and (36)], i.e., Lout

1 Rout
2 TALin

1 Rin
2 = Lout′

1 Rout′
2 TA′Lin′

1 Rin′
2 .

Interconversion can then be done by inverting the single-mode
operations.

V. SQUEEZING-RESTRICTED PROTOCOLS

Because each interface possesses additional invariant prop-
erties under the squeezing restriction, one might expect that
the protocols in Sec. III are no longer general in engineering
arbitrary interfaces in this situation. Indeed, there are two
main reasons that a modified interface engineering protocol
is needed: (1) in addition to ranks and transmission strength,
the protocol should also generate a target interface with the
desired irreducible squeezing and shearing; (2) the irreducible
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FIG. 4. Two-interface module for engineering an intermediate
interface under squeezing restriction. (a) Component interfaces A
and B are first converted to, respectively, the pre- and post-squeezing
forms, and then combined to form an intermediate interface AB with
strength χAB by using the protocol in Sec. V A. (b) With suitable
single-mode operations, interface AB can be transformed to the pre-
squeezing (or post-squeezing) form for further processing.

properties of the component interfaces have to be considered.
In the following, we will present the modified protocols that
take these two issues into account. Intuitively, to cope with the
additional restrictions, the number of the required component
interfaces will increase; such requirement is summarized in
Table I.

A. Two-interface module

We start with introducing the two-interface module that is
required in the protocols. Assuming a component interface A
is applied before B, the first step is to convert A and B into,
respectively, the pre- and post-squeezing forms, as illustrated
in Fig. 4(a), such that the irreducible mode-2 operations are
placed at the very beginning and very end of the whole se-
quence. By considering the standard-form parts of A and B,
we can then apply the two-interface protocols in Sec. III C
to engineer an intermediate interface AB with the desired
χAB, which is not affected by the irreducible squeezing and
shearing of A and B. After that, we can convert AB into either

FIG. 5. Three-interface protocol for engineering SWAP under
the squeezing restriction. (a) Component interface A is combined
with B to form an intermediate interface AB with the transmission
strength χAB = 1 − χC . (b) Such interface AB can be converted to a
swapped-inverse of interface C, i.e., Ū−1

C ŪS , up to irreducible mode-2
operations, LAB. (c) After eliminating ŪC , the irreducible mode-2
operations, LAB and LC , can be removed by swapping operations
from mode 1. Finally, the standard-form SWAP is formed.

the pre- or post-squeezing form [Fig. 4(b)], depending on the
context of the protocol.

B. SWAP

We first discuss the protocol for SWAP, which has no
additional characteristic parameter. We realize that the pro-
tocol in Sec. III D can be applied with minor modifications
to take care of the irreducible squeezing and shearing of the
component interfaces. Our protocol is illustrated in Fig. 5(a).
An intermediate interface AB with χAB = 1 − χC is first con-
structed by the two-interface module in the last subsection.
Next, the component interface C is converted into the post-
squeezing form and applied after AB, as shown in Fig. 5(b).
By converting AB into the swapped-inverse of C up to some
irreducible mode-2 operations LAB, i.e., TAB = Ū−1

C ŪSLAB,
the nontrivial interface C will be canceled. A SWAP will be
remained together with mode-2 operations [Fig. 5(c)], which
can be eliminated by swapping squeezing and rotating from
mode 1. At the end, we will have a SWAP in the standard
form.

C. Interfaces with χ �= 0, 1

The next protocol is for engineering an interface with
χ �= 0, 1. Our goal is to obtain the target interface with the
transmission strength χtgt and the irreducible squeezing �tgt.
Our protocol involves four nontrivial component interfaces A,
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FIG. 6. Four-interface protocol to engineer an interface with
χ �= 0, 1 under squeezing restriction. (a) Each pair of two com-
ponent interfaces are combined to form the intermediate interfaces
AB and CD. They are then converted to pre- and post-squeezing
form. (b) According to Eqs. (39) and (40), the controllable mode-1
rotations Rα

1 and Rβ

1 effectively introduces controllable mode-2 rota-
tions between the standard-form transformation and the irreducible
squeezing. (c) The equivalent circuit after the rearrangement. R2 is
chosen to cancel all rotation between AB and CD, while mode-1
control follows the noninterfering setup in Fig. 7. (d) The resultant
interface ABCD. Its transmission strength χABCD can be engineered to
the desired value according to Eq. (42), and the resultant irreducible
squeezing �ABCD, which is determined by �AB, �CD and the control-
lable �a can be tuned to the target value according to Eq. (43) or
(44).

B, C, and D. The strategy is to match the characteristics pa-
rameters sequentially: two intermediate interfaces AB and CD
are first engineered that their combined transmission strength
matches χtgt, then �tgt is matched through controlling the
squeezing in between.

1. Tuning χABCD

To match the transmission strength, our first step is to
combine A with B and C with D to form two intermediate
interfaces AB and CD [Fig. 6(a)] by applying the two-interface
module. χAB should be chosen according to the criteria [80]:

χAB > χtgt for χtgt < 0, 1/2 < χtgt < 1

χAB < χtgt for 0 < χtgt � 1/2, χtgt > 1, (37)

and χCD should be tuned according to

χAB + χCD − 2χABχCD = χtgt. (38)

FIG. 7. Illustrating the shutdown of transmission amplitude
interference, i.e., Z = 0 for any γ . After passing through the in-
termediate interface AB, a Fourier gate F ≡ R(π/2) is applied on
mode 1 to interchange the q and p quadratures. After passing through
intermediate interface CD, each output quadrature will contain trans-
mitted information from both input quadratures, each coming from
an independent path. There is thus no interference, and the squeez-
ing on mode 1 (triangle) does not alter the resultant transmission
strength.

The reason for the above choice is to guarantee the combi-
nation of intermediate interfaces is BS+BS, TMS+TMS, or
TMS+sTMS; otherwise, the resultant irreducible squeezing
�ABCD will be bounded (details in Appendix D).

Second, we convert AB and CD into, respectively, pre- and
post-squeezing forms, as illustrated in Fig. 6(b). The mode-1
operation in between AB and CD is chosen as Rβ

1 S1(γ )F1Rα
1 .

As illustrated in Fig. 6(c), the purpose of Rα
1 and Rβ

1 is to

introduce a controllable rotations, Rα′′′
2 and Rβ ′′′

2 , between the
standard-form interfaces and the irreducible mode-2 opera-
tions through the following equivalent circuits,

Rα
1 Ūχ

AB = Rα′
2 Ūχ

ABRα′′
1 Rα′′′

2 , (39)

Ūχ
CDRβ

1 = Rβ ′′
1 Rβ ′′′

2 Ūχ
CDRβ ′

2 , (40)

where the relation between the rotations can be found in
Appendix B. As will be discussed in Sec. V C 2, this setting
will be helpful to engineer the desired irreducible squeezing.
Other rotations listed in Eqs. (39) and (40) will be canceled by
the controllable rotations, such that the overall transmission
strength is determined by Tζ ≡ Ūχ

CDS1(γ )F1Ūχ
AB, which is

labeled in Fig. 6(c).
As illustrated in Fig. 7, the purpose of F1 is to exchange the

q and p quadratures of mode 1 after passing through AB, so the
quadrature interference between AB and CD can be switched
off. This can be seen from the transmission matrix of Tζ ,

T21
ζ =

(
Ū 22,q

CD Ū 21,q
AB −γ −1Ū 21,q

CD Ū 11,p
AB

γ Ū 21,p
CD Ū 11,q

AB Ū 22,p
CD Ū 21,p

AB

)
, (41)

where Ūi j
α ≡ diag(Ū i j,q

α , Ū i j,p
α ) for α = AB,CD. The ampli-

fication and deamplification due to the controllable mode-1
squeezing S1(γ ) appear only in the off-diagonal entries of
Eq. (41), so their effects in the transmission strength compen-
sate each other, i.e., χABCD ≡ det(T21

ζ ) is independent of γ .
We find that the overall transmission strength is then given by

χABCD = χAB + χCD − 2χABχCD, (42)
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which is determined by the strengths of AB and CD only.
Then, the choice of χAB and χCD guarantees that χABCD

matches χtgt [cf. Eq. (38)].

2. Manipulating �ABCD

Although the resultant transmission strength is indepen-
dent of the in-between mode-1 squeezing S1(γ ), the resultant
irreducible squeezing does depend on γ . This gives us the
ability to engineer the resultant interface with the desired
irreducible squeezing, i.e., �ABCD = �tgt. Explicitly, thanks

to the controllable rotations Rα′′′
2 and Rβ ′′′

2 introduced by the
equivalent circuit in Eqs. (39) and (40), the intermediate in-
terface Tζ can be quadrature-diagonalized, as illustrated in
Fig. 6(d). The resultant irreducible squeezing is then given by
a simple product of those of the intermediate interfaces AB,
CD, and Tζ , i.e.,

�ABCD = �AB�CD�a, (43)

or the division of them, i.e.,

�ABCD = �AB�CD/�a. (44)

�AB and �CD are by-products of engineering AB and CD
and assumed to be untunable; �a � 1 is determined by the
singular values of T22

ζ , which is controllable by the mode-1
squeezing γ . In Appendix D, we show that �a, and hence
�ABCD, can be tuned to arbitrary values. Overall, this protocol
can engineer an interface with arbitrary χtgt �= 0, 1 and �tgt.

D. sQNDIs

Our protocol to engineer arbitrary sQNDIs involves four
nontrivial component interfaces. As illustrated in Fig. 8(a), by
using the two-interface module in Sec. V A, we first combine
the component interfaces A and B to form a standard-form
sQNDI, and similarly C with D to form a QNDI in the post-
squeezing form. Next, the QND strength of CD is manipulated
by using the mode-1 squeezing according to Eq. (7). Finally,
by recognizing that a sQNDI is equivalent to a QNDI fol-
lowed by a SWAP, i.e., ŪSQ(�) = ŪQ(�)ŪS , and applying
two standard-form QNDIs in sequence will result in a QNDI
with the sum of their strengths, i.e., ŪQ(η)ŪQ(η′) = ŪQ(η +
η′), cascading AB with CD will result in a sQNDI with a
controllable QND strength, and equivalently a controllable
irreducible squeezing. By considering the explicit expression
of the mode-2 reflection matrix, including the irreducible
squeezing and shearing of CD, we show in Appendix D that
the resultant irreducible squeezing strength is given by

�ABCD = (γ ηCD + �AB)

×
√(

�4
CD + 1

) + (
�4

CD − 1
)

cos φCD

2�CD
, (45)

where tan φCD ≡ κCD�2
CD. By controlling γ , �ABCD can be

tuned to any desired value.

E. QNDIs

Surprisingly, any QNDI can be engineered by using also
four nontrivial interfaces, even though there is one more pa-
rameter to be matched. Our strategy is to reverse engineer

FIG. 8. Four-interface protocol for constructing arbitrary sQND
under squeezing restriction. (a) Component interfaces A and B are
combined to form a sQNDI while C and D are forming a QNDI. The
QND strength of the ŪQ(ηCD ) is modified by controllable mode-1
squeezing before and afterwards according to Eq. (7). Subsequently,
it is combined with ŪQ(�AB) to form a standard-form QNDI with
the controllable strength γ ηCD + �AB. (b) The resultant interface
is a sQNDI. Its QND strength, which is determined by both the
controllable strength γ ηCD + �AB and the irreducible squeezing and
shearing of CD, is given by Eq. (45).

the required single-mode controls by using the sQND engi-
neering protocol in Sec. V D. Explicitly, we first construct
two standard-form sQNDIs by combining the component
interfaces A with B and C with D according to the two-
interface-module. Our aim is to explore the single-mode
controls, L(n)(n = 1, 2, 3), that can generate the desired
QNDI when cascading with the two intermediate sQNDI com-
ponents, i.e.,

L(3)ŪSQ(�CD)L(2)ŪSQ(�AB)L(1)

= ŪQ(η)R2(φtgt )S2(�tgt ), (46)

where κtgt ≡ tan φtgt and �tgt are, respectively, the target ir-
reducible shearing and squeezing. We note that the QND
strength η is unimportant as it is adjustable by mode-1 op-
eration.

By rewriting Eq. (46) as

L(1)
(
ŪQ(η)R2(φtgt )S2(�tgt )

)−1
L(3)ŪSQ(�CD)L(2)

= (ŪSQ(�AB))−1, (47)

it coincides with the configuration of sQNDI engineering in
Sec. V D, i.e., a sQNDI with strength �AB is constructed
by cascading a sQNDI with strength �CD and a QNDI with
irreducible shearing κtgt and squeezing �tgt. By applying our
protocol in Sec. V D, the required L(n) can be identified.
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FIG. 9. Five-interface protocol for engineering remote squeez-
ing. (a) By using the four-interface protocol for engineering arbitrary
nontrivial interface, component interfaces A, B,C, D can always be
combined to become the inverse of the component E preceded with
an extra mode-2 squeezing S(�tgt ). (b) Cascading these interfaces
will result in a remote squeezing with strength �tgt.

F. Remote squeezing

Finally, we discuss the protocol to engineer an arbitrary
identity class interface, i.e., an interface with nT = 0, χ = 0
and a controllable �. Under the squeezing restriction, a gen-
eral interface in this class is no longer an identity operation
but an irreducible squeezing in mode 2. Constructing this in-
terface is thus equivalent to “remotely” squeeze the restricted
mode with any desired strength �tgt through interfacing with
an active mode; we thus call this type of protocol remote
squeezing. Remote squeezing can be straightforwardly imple-
mented by using two rounds of SWAP. After the first SWAP,
the mode-2 initial state is transferred to mode 1 and then
directly squeezed. With the second SWAP, the squeezed initial
state is sent back to mode 2. By using the three-interface
SWAP engineering protocol in Sec. V B, this double-swap
method can be implemented with any six nontrivial compo-
nent interfaces.

Moreover, we developed a simplified remote squeezing
scheme that requires only five nontrivial component inter-
faces, as illustrated in Fig. 9. Following the four-interface
protocols in Secs. V C–V E, our idea is to use the first four
components to engineer an intermediate interface ABCD that
is the inverse of the fifth component E preceded with the
desired mode-2 squeezing, i.e., TABCD = T−1

E S2(�tgt ). After
cascading with E , the nontrivial transformations are elimi-
nated and the resultant interface becomes a remote squeezing
at our desired value, S2(�tgt ).

As a remark, we have also presented other remote squeez-
ing schemes in Appendix E that could use fewer component
interfaces except a few special cases.

VI. CONCLUSION

We have completely characterized the linear bosonic two-
mode interfaces under single-mode operational constraints.
We have studied two situations: the general situation that any
single-mode operation is available on both modes, and the
restricted situation that squeezing is available on one mode
only. We recognized the classifiers that are useful in identi-
fying interfaces: interfaces with different classifiers are not
interconvertible by any allowable single-mode control. Under
the general situation, any nontrivial interface can be classified
by its transmission strength χ . For the restricted situation,
we discovered two additional invariant classifiers: irreducible
squeezing � and irreducible shearing κ . The main results of
characterization are listed in Table I.

Guided by the characterization, we developed the protocols
for engineering arbitrary linear two-mode interfaces with any
available interface in the platform. Our protocols incorporate
the available interfaces as components, and cascade multiple
of them with suitable single-mode controls. For the general
situation, our protocol can construct any nontrivial interface
by using only two rounds of component interface, and SWAP
and identity by using only three rounds. We prove that our
protocols are optimal because they involve the fewest possible
rounds of component interface. Under the squeezing restric-
tion, we also developed the modified protocols to engineer the
additional invariant classifiers. The required number of com-
ponent interface remains three for engineering SWAP, while
four is needed for engineering other interfaces. To resolve the
squeezing restriction, we introduce the remote squeezing pro-
tocol to squeeze a restricted mode through interfacing with an
active mode. We summarize the number of required interfaces
in Table I.

Our characterization can help benchmarking experiment
platforms and optimizing their designs for implementing spe-
cific applications. Our interface engineering protocols can
overcome the limitations of physical platforms in imple-
menting interfaces. They thus facilitate the realization of
quantum technologies in a wider range of platforms, such
as implementing universal CV logic gates in passive sys-
tems, reducing noise in quantum transduction, and conducting
interferometry between hybrid quantum systems. Moreover,
our remote squeezing scheme can help generating resourceful
states for sensing, communication and computation, such as
spin squeezed state [81] and squeezed optical state [82].
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APPENDIX A: MATRIX FORM OF
SINGLE-MODE OPERATIONS

We list the expression of the single-mode operations, es-
pecially the rotation and squeezing, in this Appendix. In the
main text, we denote mode-1 and mode-2 operations by the
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4×4 matrices L1 and L2, respectively. Since L1 and L2 trans-
form only one mode, their off-diagonal blocks should be null
and the block acting on the other mode should be identity, i.e.,

L1 ≡
(

L11
1 0
0 I

)
and L2 ≡

(
I 0
0 L22

2

)
. (A1)

Single-mode rotation induces phase shift to the mode op-
erator, i.e., âout

j = e−iφ âin
j or

(
q̂out

j
p̂out

j

)
=

(
cos φ − sin φ

sin φ cos φ

)(
q̂in

j

p̂in
j

)
(A2)

for j = 1, 2. Therefore, the mode- j rotation operation denoted
by R j (φ) should have the nonidentity block

[R j (φ)] j j =
(

cos φ − sin φ

sin φ cos φ

)
. (A3)

Single-mode squeezing amplifies one quadrature while
deamplifies the other, i.e., it transforms the quadrature oper-
ators as

(
q̂out

j
p̂out

j

)
=

(
γ 0
0 γ −1

)(
q̂in

j

p̂in
j

)
. (A4)

Therefore, the mode- j squeezing operation denoted by S j (γ )
should satisfy

[S j (γ )] j j =
(

γ 0
0 γ −1

)
. (A5)

APPENDIX B: RESULTANT INTERFACES
OF TWO-INTERFACE SETUP

1. Necessary and sufficient conditions for engineering
identity and SWAP

In this Appendix, we will show that it is impossible
to construct identity nor SWAP by the two-interface setup,
ŪBL1L2ŪA, unless the component interfaces satisfying some
specific conditions. We will exploit all the possible combina-
tions of component interfaces and single-mode operations L1

and L2.
First, we recognize some combinations of single-mode

operations are redundant. Each Gaussian single-mode oper-
ation is generally characterized by three parameters since
it can always be decomposed into a rotation-squeezing-
rotation sequence [25], i.e., Li = R(2)

i SiR
(1)
i . Then, the

two-interface setup contains six single-mode operational
parameters; however, not all parameters are independent.
To identify the independent parameters, we rearrange the
single-mode operations and eliminate the redundant param-
eters. The rearrangement is based on the fact that the
standard-form interface is invariant under some single-mode

transformations, i.e.,

Lx
1Ly

2ŪLu
1Lv

2 ≡ Ū, (B1)

where Lu
1, Lv

2, Lx
1 and Ly

2 will be determined later. By applying
Eq. (B1) on both interfaces, we can rewrite the two-interface
setup as

ŪBL1L2ŪA

= (
LB,x

1

)−1(
LB,y

2

)−1
ŪBL′

1L′
2ŪA

(
LA,u

1

)−1(
LA,v

2

)−1
, (B2)

where

L′
1 = (

LB,u
1

)−1
L1

(
LA,x

1

)−1
, (B3)

L′
2 = (

LB,v
2

)−1
L2

(
LA,y

2

)−1
(B4)

will be shown to be characterized by fewer parameters. Since
the single-mode transformations after interface B, LB,x

1 and
LB,y

2 , and that before interface A, LA,u
1 and LA,v

2 , do not alter
the class and transmission strength of the resultant inter-
face AB, we can examine the simplified configuration, TAB ≡
ŪBL′

1L′
2ŪA, for the transmission strength χAB ≡ det(T21

AB).
To explore the single-mode transformations satisfying

Eq. (B1), we rewrite Eq. (B1) as

ŪLu
1Lv

2(Ū)−1 = (
Lx

1

)−1(
Ly

2

)−1
, (B5)

that is explicitly(
Ū11 Ū12

Ū21 Ū22

)([
Lu

1

]11
0

0
[
Lv

2

]22

)(
Ū22 −Ū12

−Ū21 Ū11

)

=
(([

Lx
1

]11)−1
0

0
([

Ly
2

]22)−1

)
. (B6)

By considering the off-diagonal block matrices of Eq. (B6),
we obtain the conditions of Lu

1 and Lv
2 that are given by

−Ū11
[
Lu

1

]11
Ū12 + Ū12

[
Lv

2

]22
Ū11 = 0, (B7)

Ū21
[
Lu

1

]11
Ū22 − Ū22

[
Lv

2

]22
Ū21 = 0. (B8)

By considering the explicit form of Ū, we find that Eqs. (B7)
and (B8) are equivalent. We have two unknowns, Lu

1 and Lv
2,

but one equation, it implies that there exists a family of Lu
1 and

Lv
2 satisfying the invariant condition Eq. (B1) for each class of

interface.
When the interface is BS, TMS, or sTMS, since their Ūi j’s

are of rank 2, there is no restriction to the matrix Lv
2 and we

can choose any mode-2 operation. Then, Lu
1 is determined by

Eq. (B7) or Eq. (B8). After some algebra, we obtain

[Lu
1]11 =

(
Lv

11 ±Lv
12±Lv

21 Lv
22

)
, (B9)

where Lv
i j is the matrix element of the block matrix [Lv

2]22, +
sign is for BS and – sign is for TMS and sTMS. Then, Lx

1 and
Ly

2 are determined by the diagonal block matrices of Eq. (B6),

Ū11[Lu
1

]11
Ū22 − Ū12[Lv

2

]22
Ū21 = ([

Lx
1

]11)−1
, (B10)

−Ū21[Lu
1

]11
Ū12 + Ū22[Lv

2

]22
Ū11 = ([

Ly
2

]22)−1
. (B11)
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TABLE III. Transmission matrices T21
AB for different combinations. Here θA(B), rA(B), and ηA(B) are, respectively, the BS angle, TMS strength,

and QND strength of the interface A(B).

Combination Transmission matrix TAB
21

BS+BS

(− cos θB sin θA − sin θB cos θAγ cos φ1 sin θB cos θAγ −1 sin φ1

− sin θB cos θAγ sin φ1 − cos θB sin θA − sin θB cos θAγ −1 cos φ1

)

TMS+TMS

(
cosh rB sinh rA + sinh rB cosh rAγ cos φ1 − sinh rB cosh rAγ −1 sin φ1

− sinh rB cosh rAγ sin φ1 − cosh rB sinh rA − sinh rB cosh rAγ −1 cos φ1

)

BS+TMS

(
cos θB sinh rA − sin θB cosh rAγ cos φ1 sin θB cosh rAγ −1 sin φ1

− sin θB cosh rAγ sin φ1 − cos θB sinh rA − sin θB cosh rAγ −1 cos φ1

)

BS+QNDI

(
sin θBηA − cos θB(γ cos ε cos φ1 − γ −1 sin ε sin φ1) sin θB(γ cos φ1 sin ε + γ −1 cos ε sin φ1)

− sin θB(γ cos ε sin φ1 + γ −1 cos φ1 sin ε) − sin θB(γ −1 cos ε cos φ1 − γ sin ε sin φ1)

)

TMS+QNDI

(
sinh rBηA + cosh rB(γ cos ε cos φ1 − γ −1 sin ε sin φ1) − sinh rB(γ cos φ1 sin ε + γ −1 cos ε sin φ1)

− sinh rB(γ cos ε sin φ1 + γ −1 cos φ1 sin ε) − sinh rB(γ −1 cos ε cos φ1 − γ sin ε sin φ1)

)

QNDI+QNDI

(
ηB(γ cos ε cos φ1 − γ −1 sin ε sin φ1) + ηA cos φ2 −ηB(γ sin ε cos φ1 + γ −1 cos ε sin φ1)

−ηA sin φ2 0

)

By substituting Eq. (B9) into Eqs. (B10) and (B11), we obtain

[
Lx

1

]11 =
{([

Lu
1

]11)−1
for BS, TMS([

Lv
2

]22)−1
for sTMS

, (B12)

[
L

y

2

]22 =
{([

Lu
1

]11)−1
for BS, TMS([

Lv
2

]22)−1
for sTMS

. (B13)

When the interface is QNDI (sQNDI), since its trans-
mission (reflection) matrices are of rank 1, only the upper
triangular [Lu

1]11 and lower triangular [Lv
2]22, i.e.,

[
Lu

1

]11 =
(

a−1 b
0 a

)
,
[
Lv

2

]22 =
(

a 0
c a−1

)
, (B14)

satisfy Eqs. (B7) - (B8), where a, b, c are arbitrary con-
stants. Moreover, we can determine Lx

1 and Ly
2 by substituting

Eq. (B14) into Eq. (B6) and they are

[
Lx

1

]11 =
{([

Lu
1

]11)−1
for QNDI([

Lv
2

]22)−1
for sQNDI

, (B15)

[
L

y

2

]22 =
{([

Lu
1

]11)−1
for QNDI([

Lv
2

]22)−1
for sQNDI

. (B16)

Now, we are able to determine L′
1 and L′

2 for different com-
bination of component interfaces. As discussed in Sec. III A,
it is legitimate to assume component interfaces A and B do
not belong to identity and SWAP, and the combination in-
volving sTMS or sQNDI components can be deduced from
the combinations of TMS or QNDI, respectively, so we need
to consider only six combinations: BS+BS, TMS+TMS,
BS+TMS, BS+QNDI, TMS+QNDI, and QNDI+QNDI.

For BS+BS, TMS+TMS, and BS+TMS, we are always
able to find the suitable LB,u

1 , LB,v
2 , LA,x

1 , and LA,y
2 to simplified

L′
1 as R1(φ1)S1(γ ) and L′

2 as I2, respectively, according to
Eqs. (B3) and (B4). Therefore, these combinations have only
2 independent single-mode operational parameters, and the

corresponding simplified configuration is given by

TAB = ŪBR1(φ1)S1(γ )ŪA. (B17)

For BS+QNDI or TMS+QNDI, the rearrangement of
single-mode transformations around the QNDI, which is the
interface B, is restricted according to Eqs. (B14), (B15),
and (B16). We find that L′

2 can still be chosen as iden-
tity by setting LB,v

2 = I and LA,y
2 = L2. However, under this

setting, L′
1 cannot be simplified, i.e., it is still character-

ized by the general rotation-squeezing-rotation sequence,
L′

1 = R1(φ1)S1(γ )R1(ε). Then, the simplified configuration
is given by

TAB = ŪBR1(φ1)S1(γ )R1(ε)ŪA, (B18)

that contains three independent single-mode operational pa-
rameters.

For QNDI+QNDI, we discover that even though LB,v
2

and LA,y
2 are restricted, L′

2 can still be reduced to R2(φ2).
Explicitly, we can choose LB,v

2 = I2, but R2(φ2)LA,y
2 = L2.

This choice is based on the QR decomposition [78], i.e., any
real matrix, [L2]22, can be decomposed into an orthogonal
matrix, [R(φ2)]22, and a triangular matrix, [LA,y

2 ]22. Similar as
BS+QNDI or TMS+QNDI, L′

1 cannot be simplified, there-
fore the most simplified configuration is given by

TAB = ŪBR1(φ1)S1(γ )R1(ε)R2(φ2)ŪA, (B19)

that contains four independent single-mode operational pa-
rameters.

With the above simplified configurations, we can deter-
mine the sufficient and necessary conditions for engineering
identity and SWAP by brute force calculation based on
Eqs. (B17)–(B19). To engineer identity interfaces, it requires
the overall transmission matrix to be null. We list the trans-
mission matrices for all combinations in Table III. By direct
calculation, we determine that a null transmission matrix can
be generated if and only if two interfaces are of the same type
with the identical transmission strength, i.e., χA = χB. There
are three possible combinations, BS+BS, TMS+TMS, and
QNDI+QNDI. Specifically, for BS+BS, two BS angles are
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TABLE IV. Reflection matrices T22
AB for different combinations.

Combination Reflection matrix T22
AB

BS+BS

(
cos θB cos θA − sin θB sin θAγ cos φ1 sin θB sin θAγ −1 sin φ1

− sin θB sin θAγ sin φ1 cos θB cos θA − sin θB sin θAγ −1 cos φ1

)

TMS+TMS

(
cosh rB cosh rA + sinh rB cosh rAγ cos φ1 sinh rB sinh rAγ −1 sin φ1

− sinh rB sinh rAγ sin φ1 cosh rB cosh rA + sinh rB sinh rAγ −1 cos φ1

)

BS+TMS

(
cos θB cosh rA − sin θB sinh rAγ cos φ1 − sin θB sinh rAγ −1 sin φ1

− sin θB sinh rAγ sin φ1 cos θB cosh rA + sin θB sinh rAγ −1 cos φ1

)

BS+QNDI

(
cos θB − sin θBηA(γ sin ε cos φ1 + γ −1 cos ε sin φ1)

0 cos θB − sin θBηA(γ sin ε sin φ1 − γ −1 cos ε cos φ1)

)

TMS+QNDI

(
cosh rB sinh rBηA(γ sin ε cos φ1 + γ −1 cos ε sin φ1)

0 cosh rB − sinh rBηA(γ sin ε sin φ1 − γ −1 cos ε cos φ1)

)

QNDI+QNDI

(
cos φ2 sin φ2 + ηBηA(γ sin ε cos φ1 + γ −1 cos ε sin φ1)

− sin φ2 cos φ2

)

required to be equal, i.e., |θA| = |θB|, and hence two modes are
split by the first interface but recombined by the second inter-
face For TMS+TMS, two TMS strength are equal, |r1| = |r2|,
so the modes are amplified and then deamplified sequentially..
For QNDI+QNDI, the QND strength of one QNDI is manip-
ulated by applying single-mode squeezing before and after the
interface as discussed in Sec. II, such that the two QNDIs will
have QND strengths with the same magnitude but opposite
sign. Then, the two QNDIs can cancel each other.

For constructing SWAP, the overall reflection matrix
should be engineered to null matrix. We list the explicit
expression of the reflection matrix of all combinations on
Table IV. By straight forward calculation, we determine that
except for BS+BS combination under the stringent condition,
χA = 1 − χB, it is impossible to engineer a null reflection
matrix with any γ , ε, φ1 and φ2. This stringent condition is
nothing but the case that the two BS are complementary, i.e.,
|θA| + |θB| = π/2 + nπ for integer n, so that the combined
interface will be a BS with resultant angle θAB = |θA| + |θB|,
which is essentially a SWAP.

2. Supplement for two-interface protocol
of BS+BS and TMS+TMS

In Sec. III C 2, we discussed two special cases. First, when
χA = χB, we are able to engineer QNDI and identity. To
construct the QNDI, it is required to engineer a rank 1 trans-
mission matrix. According to the results in Table III, we can
verify that γ = tan φ1 − sec φ1 and φ1 �= 0 is a solution for
engineering a QNDI from BS+BS and TMS+TMS combina-
tions. For other combinations of γ and φ1, e.g., the protocol
discussed in the beginning of Sec. III C 2, we will obtain a
rank 0 transmission matrix and construct the identity.

Second, when we are considering BS+BS combination
and χA = 1 − χB, there are two possible resultant interfaces,
sQNDI or SWAP. The requirement for engineering sQNDI is
to have a rank 1 reflection matrix. According to the results
in Table IV, we can verify that a sQNDI is engineered when
γ = − tan φ1 − sec φ1. Any other combinations of γ and φ1

gives SWAP as the resultant interface.

3. Supplement for squeezing-restricted protocol
for interfaces with χ �= 0, 1

In Sec. V C 1, the squeezing-restricted protocol for inter-
faces with χ �= 0, 1 requires the identities Eqs. (39) and (40),
i.e.,

Rα
1 Ūχ

AB = Rα′
2 Ūχ

ABRα′′
1 Rα′′′

2 , (B20)

Ūχ
CDRβ

1 = Rβ ′′
1 Rβ ′′′

2 Ūχ
CDRβ ′

2 . (B21)

They are just variants of the interface invariant Eq. (B1).
By using Eqs. (B1), (B9)–(B13), we are able to determine
the relation between all rotation operations. Defining Rs

1 ≡
R1(θs), Rs′

2 ≡ R2(θ ′
s ), Rs′′

1 ≡ R1(θ ′′
s ) and Rs′′′

2 ≡ R2(θ ′′′
s ) with

s = α, β, the relation between rotation angles are listed in the
following table:

Class of interface θ ′
s θ ′′

s θ ′′′
s

χ < 0 −θs −θs θs

0 < χ < 1 θs −θs θs

χ > 1 θs θs −θs

APPENDIX C: DERIVATION OF PRE- AND
POST-SQUEEZING FORMS

In this Appendix, we will show that a nontrivial interface
can always be converted to pre- [Eqs. (26), (29), and (33)]
and post-squeezing [Eqs. (27), (30), and (34)] forms under the
squeezing restriction by the allowable single-mode controls.

1. Any nontrivial interface except for QNDI

Our aim is to show that there always exists a set
of single-mode controls to implement the conversion, i.e.,
Lout

1 Rout
2 TLin

1 Rin
2 = ŪS2 or S2Ū. We will show that this iden-

tity is satisfied for every block matrix, by illustrating how the
suitable single-mode operations are constructed. First, we can
always identify the required mode-2 rotations by the SVD of
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T22, i.e., [
Rout

2

]22
T22

[
Rin

2

]22 = �, (C1)

where � ≡ diag(λq
22, λ

p
22) is equal to [ŪS2]22 = [S2Ū]22. Ex-

plicitly, λ
q
22 and λ

p
22 are given by

λ
q
22 =

{
�

√|1 − χ | for BS, TMS, sTMS
� for sQNDI

, (C2)

λ
p
22 =

⎧⎨
⎩

�−1√|1 − χ | for BS, TMS
−�−1√|1 − χ | for sTMS
0 for sQNDI

. (C3)

Next, we can choose Lin
1 to diagonalize T21 as follows:[

Rout
2

]22
T21

[
Lin

1

]11 = D, (C4)

where D ≡ diag(λq
21, λ

p
21) satisfying [ŪS2]21 or [S2Ū]21 for,

respectively, pre- or post-squeezing form. For the post-
squeezing form, λ

q
21 and λ

p
21 are given by λ

q
21 = �

√|χ | and
λ

p
21 = ±�−1√|χ |, where + is for BS, sTMS and sQNDI, and

– is for TMS. For post-squeezing form, λ
q
21 = �

√|χ | and
λ

p
21 = ±�−1√|χ |.

Finally, Lout
1 is chosen to satisfy the following diagonaliza-

tion of T11,

[Lout
1 ]11T11[Lin

1 ]11 = Ū11. (C5)

With the above choices of Lout
1 , Rout

2 , Lin
1 and Rin

2 , T11,
T21, T22 are transformed into the diagonal form satisfying the
pre- or post-squeezing form of T. Now, we show that T12 is
also transformed to the corresponding diagonal form. First,
we consider how the quadratures are transformed under the
converted interface:⎛

⎜⎜⎝
q̂out

1
p̂out

1
q̂out

2
p̂out

2

⎞
⎟⎟⎠ = Lout

1 Rout
2 TLin

1 Rin
2

⎛
⎜⎜⎝

q̂in
1

p̂in
1

q̂in
2

p̂in
2

⎞
⎟⎟⎠. (C6)

According to Eqs. (C1) and (C4), the transformation to mode
2 can be represented as(

q̂out
2

p̂out
2

)
= D

(
q̂in

1
p̂in

1

)
+ �

(
q̂in

2
p̂in

2

)
. (C7)

Then, by the commutation relation between all the output
quadratures, we determine that the output mode-1 quadra-
tures must be the linear combination of (λp

22q̂in
1 − λ

p
21q̂in

2 ) and
(λq

22 p̂in
1 − λ

q
21 p̂in

2 ), i.e.,(
q̂out

1
p̂out

1

)
= V�̃

(
q̂in

1
p̂in

1

)
+ VD̃

(
q̂in

2
p̂in

2

)
, (C8)

where �̃ ≡ diag(λp
22, λ

q
22), D̃ ≡ diag(−λ

p
21,−λ

q
21) and V is a

symplectic matrix representing the linear combination. Since
the transformation V�̃, the first term in Eq. (C8), represents
the mode-1 reflection, it should be equal to the diagonalized
T11, i.e., V�̃ = Ū11. The second term in Eq. (C8) represents
the mode-1 transmission, and hence VD̃ = [Lout

1 ]12T12[Rin
2 ]12.

By using V�̃ = Ū11, we can determine V and then obtain

VD̃ = Ū11

(−λ
p
21/λ

p
22 0

0 −λ
q
21/λ

q
22

)
. (C9)

Finally, by considering the explicit expression of λ
q
22 and

λ
p
22 for each interface, for the pre-squeezing form, Eq. (C9)

becomes

VD̃ =
(

�
√|χ | 0
0 ±�

√|χ |
)

= [ŪS2]12. (C10)

For the post-squeezing form, Eq. (C9) becomes

VD̃ =
(√|χ | 0

0 ±√|χ |
)

= [S2Ū]12. (C11)

2. For QNDI

For QNDIs, their pre- or post-squeezing form has the
nondiagonal mode-2 reflection matrix, so the required single-
mode operations are generally different from that determined
in the Sec. C 1. We first show that any QNDI can be
transformed into the semi-quadrature-diagonal form, i.e.,
Lout

1 Rout
2 TLin

1 Rin
2 = W, where

W ≡

⎛
⎜⎜⎝

�−1 0 0 0
0 � κη�2 −η

η 0 � 0
κη 0 0 �−1

⎞
⎟⎟⎠. (C12)

Then, we show that W can always be converted into the pre-
or post-squeezing form by suitable single-mode operations.

For QNDI, T22 can still be diagonalized according to
Eq. (C1) with λ

q
22 = (λp

22)−1 = �. However, Eq. (C4) is not
guaranteed, since T21 is of rank 1. Instead, we consider
[Rout

2 ]22T21 ≡ J, where J is a general rank-1 matrix and can
always be expressed as

J =
(

μ αμ

κμ καμ

)
. (C13)

To determine the mode-1 operation Lin
1 for diagonalizing T21,

we decompose J as follows:

J =
(

η 0
κη 0

)[
S1

(
μ

√
1 + α2

η

)
R1(φLQ)

]11

, (C14)

where tan φLQ ≡ −α. In Eq. (C14), the rotation R1(φLQ) is
determined from the LQ decomposition [78] of J, and the
squeezing S1(μ

√
1 + α2/η) is set such that the QND strength

of T, denoted by the upper diagonal element of leftmost
matrix on the right hand side of Eq. (C14), is manipulated
from μ

√
1 + α2 to η. Comparing to Eq. (32), we determine

Lin
1 = [S1(μ

√
1 + α2/η)R1(φLQ)]−1 and

[
Rout

2

]22
T21

[
Lin

1

]11 =
(

η 0
κη 0

)
. (C15)

Then, Lout
1 is chosen to satisfy

[
Lout

1

]11
T11

[
Lin

1

]11 =
(

�−1 0
0 �

)
. (C16)

Considering the transformation of the quadratures under
the converted interface, Eq. (C6), and its expression Eqs. (C1),
(C15) and (C16), the output transformed mode-2 quadratures
should be given by(

q̂out
2

p̂out
2

)
=

(
η 0
κη 0

)(
q̂in

1
p̂in

1

)
+

(
� 0
0 �−1

)(
q̂in

2
p̂in

2

)
,
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and the output transformed mode-1 quadratures should be
written as(

q̂out
1

p̂out
1

)
=

(
�−1 0

0 �

)(
q̂in

1
p̂in

1

)
+ M

(
q̂in

2
p̂in

2

)
. (C17)

Here M is determined by the commutation relation of the
output quadratures, and it is equal to

M =
(

0 0
κη�2 −η

)
. (C18)

These results imply that any QNDI can be transformed into
the semi-quadrature-diagonal form W [Eq. (C12)].

Finally, by direct calculation, we show that W can be
rewritten as

W = S1(�R)R2(−φR)[ŪQ(η)R2(φR)S2(�)]S1(�′
R), (C19)

where tan φR ≡ κ and �R ≡ (�
√

1 + κ2)−1, �′
R ≡ √

1 + κ2.
Therefore, the pre-squeezing form can be achieved by un-
doing the squeezing S1(�R) and rotation R2(−φR) after the
interface, and S1(�′

R) before the interface.
For post-squeezing form, we rewrite W as

W = S1(�L )[S2(�)R2(φL )ŪQ(η)]S1(�′
L )R2(−φL ), (C20)

where tan φL ≡ −κ�2, �L ≡ (�
√

1 + κ2�4)−1 and �′
L ≡√

1 + κ2�4�−1. Similarly, the post-squeezing form is
achieved after undoing the squeezing S1(�′

L ) and rotation
R2(−φL ) before the interface, and S1(�L ) before the inter-
face.

APPENDIX D: DETAILS OF IRREDUCIBLE SQUEEZING

1. Engineering interfaces with χ �= 0, 1

In the protocol engineering interfaces with χ �= 0, 1 in
Sec. V C, two intermediate interfaces AB and CD are cascaded
according to

Tζ ≡ Ūχ
CDS1(γ )F1Ūχ

AB, (D1)

where Tζ denotes an interface with χ �= 0, 1. Under this
configuration, the overall transmission strength, χABCD ≡
det[Tζ ], is independent of the mode-1 squeezing γ , but the
resultant irreducible squeezing is manipulated by γ . In this
Appendix, we investigate the irreducible squeezing of Tζ .

By directly calculating the singular values of T22
ζ , we de-

termine irreducible squeezing as

�a =
√

|X | + � +
√

�2 + 2|X |�, (D2)

where

X = 1 − χABCD

|1 − χABCD| , (D3)

and the expression of � ≡ �(γ ) is different for each com-
bination. Only four combinations of intermediate interfaces
give unbounded irreducible squeezing, they are BS+BS,
TMS+TMS, TMS+sTMS, and sTMS+sTMS. It is because
their � are given by

� = |χABχCD|
2|1 − χABCD|

(
γ 2 − 1

γ

)2

, (D4)

that can be tuned to arbitrary positive value by choosing the
suitable single-mode squeezing γ . This allows us to engineer
�a to be any value larger than or equal to 1. It is straightfor-
ward to show that �a � √|X | = 1 because � � 0. Therefore,
the resultant irreducible squeezing can be tuned to any desired
value according to Eqs. (43) and (44).

We note that our protocol in Sec. V C is designed to
avoid other combinations since they give the bounded irre-
ducible squeezing or cannot engineer the desired transmission
strength. For BS+TMS and BS+sTMS, their � is given by

� = |χABχCD|
2|1 − χABCD|

(
γ 2 + 1

γ

)2

, (D5)

that has the lower bound 2|χABχCD|/|1 − χABCD|, and hence
�a is bounded. For the combinations involving one QND
or sQND, we lose the ability to introduce the controllable
rotation Rβ ′′′

2 to quadrature-diagonalize Tζ , since Eq. (40) is
invalid for QNDI or sQND due to the constraint Eq. (B14),
which tells only shearing operation can satisfy Eq. (B1).
Without the ability to quadrature-diagonalize Tζ , the re-
sultant irreducible squeezing may be bounded. Finally, for
QNDI+QNDI, QNDI+sQNDI and sQNDI+sQNDI, they
must generate an interface with χ = 0 or 1 according to
Eq. (D1) that is not the aim of the protocol.

2. Engineering sQNDI

Second, we provide the detail calculation for the resultant
irreducible squeezing for the sQNDI protocol in Sec. V D. Af-
ter cascading the interfaces AB and CD according to Fig. 8(a),
we have the configuration Fig. 8(b),

TABCD ≡ S2(�CD)R2(φCD)ŪQ(γ ηCD + �AB)ŪS, (D6)

and then the mode-2 reflection matrix is given by

T22
ABCD = [S2(�CD)R2(φCD)]22

(
γ ηCD + �AB 0

0 0

)
. (D7)

By direct calculation, the nonzero singular value is given by

(γ ηCD + �AB)

√
(�4

CD + 1) + (�4
CD − 1) cos φCD

2�CD
, (D8)

This is the QND strength, and hence the irreducible squeezing
strength, of the resultant sQNDI [cf. Eq. (28)].

APPENDIX E: ALTERNATIVE REMOTE
SQUEEZING PROTOCOLS

In this Appendix, we present two alternative remote
squeezing schemes that uses fewer component interfaces than
the standard scheme in Sec. V F but works under specific
conditions.

The first alternative scheme applies the same idea of the
standard scheme that requires N component interfaces in total
and uses N − 1 component interfaces to engineer an inter-
mediate interface that is the inverse of the last component
interface preceded with the desired mode-2 squeezing. The
standard scheme requires N = 5 since the intermediate inter-
face is engineered according to the four-interface protocols
in Secs. V C–V E. We note that it is possible to engineer the
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intermediate interface with fewer component interfaces if we
can prepare particular components. To engineer the interme-
diate interface with χ �= 0, 1, we can use three component
interfaces by replacing the interface AB with the component
interface A (or B) in the protocol in Sec. V C, if A (or B) sat-
isfies the criteria Eq. (37). Then, we can have a four-interface
protocol for remote squeezing. To engineer a sQNDI as the
intermediate interface, it is possible to use only 2 components
if one component is QNDI and another component is sQNDI.
Then we can directly cascade them according to Fig. 8(b).
Similar for engineering a QNDI as the intermediate interface,
it requires only 2 component interfaces if we can prepare two
sQNDIs as components.

The second alternative scheme requires four nontrivial
component interfaces A, B, C and D that are neither QNDI
nor sQNDI. The strategy is to engineer two intermediate in-
terfaces AB and CD with the same χ such that AB and CD are
inverse of each other up to the mode-2 operation. The explicit
protocol is

(1) Converting A (C) and B (D) into, respectively, the pre-
and post-squeezing forms, same as the first step of the two-
interface module in Sec. V A;

(2) Combining interfaces A with B and C with D to form,
respectively, the intermediate interface AB and CD with the
same transmission strength, i.e., χAB = χCD ≡ χint according
to

TAB(CD) ≡ S2(�B(D) )Ū
χ

B(D)S1Ūχ

A(C)S2(�A(C) ); (E1)

(3) Applying suitable single-mode controls on AB accord-
ing to Eqs. (11)-(13), such that AB is engineered to be the
inverse of CD with the specific mode-2 squeezing, i.e., T′

AB =
T−1

CDS2(�ABCD), where �ABCD = �AB�CD;
(4) Tuning χint such that the resultant remote squeezing

�ABCD = �tgt.
According to Eq. (E1), the irreducible squeezing of the

intermediate interface is given by

�AB(CD) = �A(C)�B(D)√|1 − χint|
[2 − χA(C) − χB(D) − χint

+√
(χint − Xf ,+)(χint − Xf ,−)], (E2)

where Xf ,± ≡ ±2
√

χA(C)χB(D)(1 − χA(C) )(1 − χB(D) ) +
χA(C) + χB(D) − 2χA(C)χB(D). We note that �AB(CD) has no
bound and hence �ABCD can be tuned to arbitrary values.

To summarize, these two alternative protocols requires at
most four component interfaces, but they have limitations,
both of them requires particular component interfaces. The
first protocol considers the special case of the protocols in
Secs. V C–V E, and the second protocol works when the com-
ponents are BS, TMS, or sTMS. If we have ability to choose
the type of component interfaces in a platform, then these
alternative protocols are preferred since they requires fewer
number of interfacing. It may reduce the implementation time
and the chance of the operation error.
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