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Dynamically encircling exceptional points for robust eigenstate generation and all-optical logic
operations in a three-dimensional photonic chip
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Dynamically encircling exceptional points (EEPs) in non-Hermitian systems have been utilized to realize
robust on-chip mode conversions by taking the advantage that the output states are usually fixed and independent
of the input states. This highly protects one of the specific eigenstates, but restricts their practical applications
requiring superposition states. Here, we realize an on-chip robust eigenstate generator using a depth-varying
3D waveguide to overpass the EEP system. It not only preserves the robustness of the EEP system to generate
one determinate eigenstate, but also generates another two-level eigenstate and arbitrary superposition states.
Furthermore, by ingeniously combining two identical generators with a symmetric Y combiner, both the
all-optical XOR and OR logic operations insensitive to the variations in the input light are realized by the
destructive or constructive interference between the two generators’ near-neighboring output signals. This paper
paves the way for applications of EEP systems to highly robust state manipulations and information processing
in integrated photonic and quantum devices.
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I. INTRODUCTION

The exceptional points (EPs) [1,2] in non-Hermitian sys-
tems have garnered great interest due to the simultaneous
coalescence of eigenvalues and eigenstates, resulting in fun-
damentally different state evolution compared to traditional
Hermitian systems [3–5]. Novel physical phenomena and ap-
plications have been investigated in photonic platforms [6–23]
including microcavities [24], photonic crystals [25], and cou-
pled waveguide structures [7–9,11–15,20,21,26].

One of the most fascinating phenomena is the dynamical
encircling of EPs in parameter spaces by tuning two dif-
ferent parameters [6–16,20,21,27,28]. This results in chiral
mode transitions and have been theoretically and experimen-
tally demonstrated in two-level coupled waveguide systems
[6,8,9,21,27,28]. The encircling exceptional point (EEP) sys-
tems exhibit high robustness of the state transformations, in
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which the output state is determined solely by the encir-
cling direction. Additionally, the higher-order EPs and the
efficiency of the state transformations have also been studied
recently [20,29]. There have been already numerous applica-
tions based on EEP principles, including asymmetric mode
converters [6,15,21,26] and on-chip polarizers [9,20].

Previous studies mainly focused on the mode conversions
within the two-level EEP systems themselves because it is
challenging to realize robust state manipulations since the
output state in an EEP system is usually fixed as one of the
eigenstates of the two-level system and remains independent
of the input state for a determined encircling direction. It
cannot generater another eigenstate without switching the en-
circling direction, which means light should propagate in a
reversed direction. As a result, the EEP systems are hard to
integrate in the 2D case to realize robust state manipulations
required in the photonic devices, such as the generation of
superposition states and the on-chip all-optical logic opera-
tions [16,28,30]. Therefore, a new design that can maintain
the robustness of the EEP system and perform state operations
is desired.

In this paper, we develop a robust on-chip two-level
eigenstate generator with a unique 3D configuration inside
borosilicate glass by utilizing the 3D direct writing capability
of the femtosecond laser [31,32]. It combines a two-level

2643-1564/2024/6(1)/013203(8) 013203-1 Published by the American Physical Society

https://orcid.org/0000-0003-2374-9076
https://orcid.org/0009-0005-4556-2087
https://orcid.org/0000-0001-7431-4844
https://orcid.org/0009-0004-4862-7133
https://orcid.org/0000-0003-4974-6244
https://orcid.org/0000-0003-0607-3166
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013203&domain=pdf&date_stamp=2024-02-26
https://doi.org/10.1103/PhysRevResearch.6.013203
https://creativecommons.org/licenses/by/4.0/


CHU LI et al. PHYSICAL REVIEW RESEARCH 6, 013203 (2024)

waveguide EEP system with a depth-varying waveguide over-
passing the EEP system. It not only preserves the robustness
of the EEP system to generate one determinate eigenstate
[33], but also generates another eigenstate. The independent
control of the two eigenstates makes it possible to generate
arbitrary superposition states by controlling the power ratio
and the phase difference of two input paths. Furthermore, by
integrating two such generators with a symmetric Y-shaped
combiner, on-chip all-optical XOR and OR logic operations
are realized by the destructive or constructive interference
between the two generators’ near-neighboring output signals.
In contrast to traditional all-optical logic operations without
the EEP systems [34–36], these operations are highly
insensitive to the variations in the input beam parameters,
such as the wavelength and the polarization. This insensitivity
further highlights the advantages of EEP systems for more
complex state manipulations and information processing
in 3D integrated photonic and quantum devices. It also
provides a promising platform to explore the physics in the
combination of non-Hermitian and Hermitian systems.

II. THE ON-CHIP 3D GENERATOR
OF THE TWO-LEVEL EIGENSTATES

We first analyze the state transformations in the conven-
tional EEP system made up of two waveguides with a length
L = 16 mm labeled as WG I with the z-dependent loss and
WG II with the z-dependent propagation constant as shown in
Fig. 1(a). The distance between them is fixed at d = 10.5 µm,
corresponding to a coupling strength of κ = 0.39 mm−1 for
the horizontally polarized light with a wavelength of 785 nm.
Scatterers with varying distances are rewritten in WG I to
obtain a loss modulation gI (z), as shown in the upper gI−z
relationship in Fig. 1(b). During the fabrication of WG II, the
writing speed is continuously changed to modulate the propa-
gation constant in the z direction, as shown in the lower βII−z
relationship in Fig. 1(b) (see Appendix for detailed fitting
relationships). These two z-dependent parameters gI (z) and
βII (z) form a closed loop in the parameter space. It encircles
the EP located at (0,2) as shown in the following, enabling the
chiral state transformation between the two-level eigenstates.

By defining the path-encoded input orthogonal states as
|0〉 = (1, 0)T and |1〉 = (0, 1)T for light input into the port 0
and 1, the two orthogonal eigenstates of the two-level system
are the symmetric state |+〉 =

√
2

2 (|0〉 + |1〉) =
√

2
2 (1, 1)T and

the antisymmetric state |−〉 =
√

2
2 (|0〉 − |1〉) =

√
2

2 (1,−1)T .
Besides, we define the light in the overpass waveguide as an
auxiliary state |A〉.

In waveguide systems where the waveguides are placed
at distances from each other such that adjacent waveg-
uides can evanescently couple, the light propagation in such
systems consisting of N unit cells can be modeled by ap-
plying the tight-binding approximation [37], which leads to
a Schrödinger-type equation [38–43],

i
dψ (z)

dz
+ H (z)ψ (z) = 0, (1)

where ψ (z) corresponds to the state vector and H (z) is an
N × N Hamiltonian where the diagonal elements denote the
complex propagation constant of the waveguide, while the

FIG. 1. State transformation in the EEP system. (a) Schematic
of the EEP system. For the CCW encircling direction, both the
states |0〉 from the input port 0 and |1〉 from the input port 1 are
transformed into the antisymmetric state |−〉. For an arbitrary input
state C0|0〉 + C1|1〉, it is still transformed into the antisymmetric state
|−〉 with amplitude C′. (b) Design parameters of the EEP system. The
loss gI (z) varies along the z direction in WG I and the propagation
constant βII (z) varies in WG II. (c) The CCW encirclement of EP in
parameter space, corresponding to the forward propagation of light.
(d) The eigenvalues swap with each other after a whole encirclement
path. The red curve is the trajectory of the EII to EI path and the blue
curve is the trajectory of the EI to EII path. (e) Normalized power
ratios of symmetric (red curve) and antisymmetric (blue curve) states
when light is injected into the WG I.

off-diagonal elements represent the coupling strength between
waveguides [9]. Therefore, the light propagation exhibits a
similar evolution equation of a quantum particle by mapping
the time evolution to the propagation length.

In the EEP system, the z-dependent Hamiltonian can be
expressed as

HEEP(z) =
[

igI (z) κ

κ βII (z)

]
. (2)

Using scaled variables (βII/κ, gI/κ ), the EP is established
in parameter space at (0,2), as shown in Fig. 1(c). The coun-
terclockwise (CCW) and the clockwise (CW) encirclements
correspond to the light traveling forward and backward, re-
spectively. At the initial/final point or the start/end position
of the EEP system, the parameters of the WG I and WG II
are identical, so gI=gII=0 and βI=βII=0. As a result, the two
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real eigenvalues are EI = κ and EII = −κ , and the eigenstates
are just the symmetric state |+〉 and the antisymmetric state
|−〉, respectively.

As shown in Fig. 1(d), when the EP is encircled, the two
eigenvalues swap with each other after a whole encirclement.
For the CCW encircling directions, the value of the EII to
EI path is obviously higher than the EI to EII path in the
imaginary plane during the entire evolution. Thus, the eigen-
state |+〉 experiences much higher loss, and the antisymmetric
state |−〉 eventually dominates. As a result, for an arbitrary
input state C0|0〉 + C1|1〉, the output state of the EEP system
is still the antisymmetric state C′|−〉 with an amplitude C′
as shown in Fig. 1(a). Take the case when light is injected
into WG I as an example, the calculated normalized power
ratio η± = |c±|2/(|c+|2 + |c−|2) is shown in Fig. 1(e), where
c+ and c− are the complex amplitude of the symmetric and
antisymmetric states, respectively, and η+(η−) corresponds to
the symmetric(antisymmetric) state. It is clear that the value
of η− is much higher at the output ports.

The EEP system provides high robustness for the state
transformations, but it also bring challenges for the robust
state manipulations in integrated devices because any input
state is transformed into the antisymmetric state |−〉 for the
CCW direction. The symmetric state |+〉 cannot be gener-
ated without switching the encircling direction, which means
the light should propagate in the backward direction of the
system. As a result, the EEP systems in two-dimensional
structures are hard to generate the arbitrary superposition
states required in the photonic devices, making it difficult to
integrate.

To overcome this obstacle, we propose the 3D structure
of the eigenstate generator using a depth-varying overpass
waveguide to generate the symmetric state |+〉 while preserv-
ing the robustness of the EEP system as shown in Fig. 2(a).
The generator is fabricated inside borosilicate glass using
the femtosecond laser direct writing (FLDW) as shown in
Fig. 2(b). It realizes nearly complete transmission of light
from port 1 to the overpass waveguide before the EEP system.
To block the residual light, scatterers are added at the entrance
of WG II in the EEP system. As a result, only the state |0〉
enters the EEP system and is transformed into the state |−〉,
while the state |1〉 overpasses the EEP system and turns into
the auxiliary state |A〉, then the state |A〉 is transformed into
the state |+〉, as demonstrated in the following.

The overpass waveguide couples with other two identi-
cal neighboring symmetrically arranged waveguides after the
EEP system, where the distance between adjacent waveguides
is fixed at 10 µm corresponding to a coupling strength of
κ ′ = 0.45 mm−1 and the coupling length is 2.0 mm. The
Hamiltonian of this structure is given by

H|A〉↔|+〉 =

⎡
⎢⎣

0 κ ′ 0

κ ′ 0 κ ′

0 κ ′ 0

⎤
⎥⎦. (3)

According to Eq. (3), the three eigenvalues and correspond-
ing eigenstates are E1 = 0, �1 =

√
2

2 (1, 0,−1)T and E2,3 =
±√

2κ , �2,3 = 1
2 (1,±√

2, 1)T . By applying these results to
Eq. (1), we find that the symmetric state |+〉 and the auxiliary
state |A〉 transform into each other as the light travels, while

FIG. 2. Working principle of the eigenstate generator.
(a) Schematic of the two-level eigenstate generator, which is a
3D integration of the EEP system and the overpass waveguide. The
blue and red arrows represent the independent paths of the input
state |0〉 and |1〉, respectively. When the input state is |0〉, it enters
into the EEP system and is transformed into the antisymmetric state
|−〉, then the state |−〉 maintains as an eigenstate until it is eventually
outputted. While the input state is |1〉, it first enters into the overpass
waveguide and turns into the auxiliary state |A〉, then the state |A〉
is transformed into the symmetric state |+〉 during the coupling
between the overpass waveguide and the two identical neighboring
symmetrically arranged waveguides. (b) The micrographs of the
EEP system with different depth of focus, which demonstrates
that the depth-varying waveguide overpasses EEP system without
crossing. (c) The intensity of the states |A〉 and |+〉 during the
coupling between the overpass waveguide and the two identical
neighboring symmetrically arranged waveguides.

the antisymmetric state |−〉 maintains as an eigenstate �1.
The coupling strength and the coupling length only affect the
amplitudes of the output state as shown in Fig. 2(c). Therefore,
the generation of the symmetric state |+〉 from the state |A〉
and the preservation of the antisymmetric state |−〉 from the
output of the EEP system are realized.

For an arbitrary input state |ψ〉in = C0|0〉 + C1|1〉, it is
transformed to |ψ〉out = p0C0exp(iϕ)|−〉 + p1C1|+〉, where
C0 and C1 are the normalized real coefficients of the states
|0〉 and |1〉 and the values of p0, p1, and ϕ are inherently
dependent on the transformation rates. Since the state transfor-
mations of the two input ports are independent, it is possible
to tune the values of p0, p1, and ϕ by controlling the power
ratio and the path difference of the input port 0 and port
1. This advantage enables tunable manipulation of arbitrary
input states to realize the robust generation of any desired
superposition states of symmetric and antisymmetric states,
which are crucial in the study of non-Hermitian systems such
as the investigation of the eigenstate conversion efficiency.

III. ROBUST GENERATION OF THE TWO-LEVEL
EIGENSTATES AND THE SUPERPOSITION STATES

To verify the function of the robust generation of the two-
level eigenstates, we build the experimental setup as shown in
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FIG. 3. Experimental results. (a) The experimental setup. (b) Ex-
perimental results of single port input. The dashed bars represent the
theoretical results. (c) The evolution of normalized intensity of port
0’ and port 1’ with different values of ϕ. (d) Experimental results of
vertically polarized 785 nm light input and both the horizontally and
vertically polarized 808 nm light input. The horizontal (vertical) ar-
row represents horizontal (vertical) polarization. (Coupling lens, CL;
beam splitter, BS; power attenuator, PA; delay line, DL; polarization
controller, PC; objective lens, OL.)

Fig. 3(a). The coherent light beam from the laser source is split
into two paths by a 50:50 beam splitter. A translation stage
with high precision is positioned in one of the two paths to
scan the delay line and ensure that the path difference does not
exceed the coherent length of the source. The phase difference
ϕ is then adjusted. Two attenuators are placed in the two paths
to control the power and thus modify the value of p0 and p1

of the structure. With the elimination of the global loss and
the phase, the state evolution can be expressed as a transform
matrix U that satisfies |ψ〉out = U |ψ〉in,

U =
√

2

2

[
p0eiϕ p1

−p0eiϕ p1

]
. (4)

We first inject light to the single port by blocking the
light beam in one of the two paths. A horizontally polarized
coherent laser with a wavelength of 785 nm is injected into
either port 0 or port 1 to create the input state |0〉 or |1〉,
respectively. The measured output intensity of the port 0’ and
port 1’ exhibit a nearly 1:1 distribution as shown in Fig. 3(b)
that agree well with the theoretical results.

Then we construct the superposition input state by chang-
ing the power ratio and the phase difference of the two input
ports. Without loss of generality, the power ratio of the two
optical paths is adjusted to make p0 = p1 and the phase dif-
ference ϕ is tuned by scanning the delay line. We measure the
total output intensity for the single port input case of |0〉 or |1〉,
respectively, then we tune the two attenuators until the output
intensities of the two input states are nearly identical to make
p0 = p1. We prepare the initial state as a superposed state
|ψ〉in =

√
2

2 (|0〉 + |1〉) by the 50:50 beam splitter and use a
fiber array to inject light. Applying the transformation matrix
U to it, we can get the final state as |ψ〉out = 1

2 [(1 + eiϕ )|0〉 +

(1 − eiϕ )|1〉], thus the intensity of the two output ports are
I0′ = 1

2 (1 + cosϕ), I1′ = 1
2 (1 − cosϕ).

By varying the phase difference ϕ, the measured output
optical intensities within one period of different ϕ are shown
in Fig. 3(c). These results agree well with the calculated values
[solid line in Fig. 3(c)].

Conventional devices without EEP systems are always sen-
sitive to variations in input light, such as the wavelength and
the polarization. This sensitivity, which arises from the fact
that changes of the input parameters lead to alterations in the
coupling strength and propagation constants, has a significant
impact on the overall performance. On the contrary, the two-
level eigenstate generator exhibits a remarkable robustness.
As the key part, the EEP system is highly robust to the param-
eter disturbances due to the unique topological structure in the
parameter space as long as the EP remains encircled within the
loop, thus the output state is the antisymmetric state |−〉 from
the input state |0〉. In addition, the scatterers at the entrance of
WG II blocks light from entering the EEP system through port
1 and the output state remains the symmetric state |+〉 from
the input state |1〉.

We conduct various experiments to demonstrate the ro-
bustness. Firstly, we input the vertically polarized light, and
the measured output intensity at port 0’ and port 1’ with
single port input still shows a nearly 1:1 distribution as shown
in the left column in Fig. 3(d). Secondly, by switching the
wavelength of the input light to 808 nm, we obtain similar
results for both horizontally and vertically polarized light as
shown in the center and right columns in Fig. 3(d), which also
exhibit a nearly 1:1 distribution. These results indicate that the
performance of the generator is highly robust to the variations
of the input light, which shows great potential for the EEP
system to realize robust state manipulations in broadband and
polarization-insensitive devices.

IV. REALIZATION OF THE ROBUST ALL-OPTICAL
XOR AND OR OPERATIONS

All-optical logic operations, which usually based on the in-
terference effect, play a crucial role in information processing
and communication in optical integrated devices [35]. Con-
ventional all-optical logic operations without EEP systems
require extremely accurate manipulations of the dynamical
phases thus are sensitive to the deviations of the input light
[34,36]. Robust on-chip all-optical logic operation has been
realized based on the topological protection [44,45], but it
usually requires a photonic lattice or crystal with periodic
structures. In contrast, the state transformation in the EEP
system exhibits strong robustness using a few waveguides
without complex lattice structures and has been proposed for
the robust optical logic gates, but to the best of our knowledge,
there has been no experimental report.

As demonstrated above, the integration of the EEP system
and the 3D overpass waveguide facilitates the robust gener-
ation of the two-level eigenstates |−〉 and |+〉. The phase
difference of the two output ports is 0 for the symmetric state
and π for the antisymmetric state, respectively and relatively
insensitive to parameter disturbances. Inspired by this charac-
teristic, we fabricate a structure that combines two identical
generators through a simple symmetric Y-shaped combiner to
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FIG. 4. On-chip robust XOR and OR operations. (a) Schematic
diagram of the structure that combines two generators with a Y-
shaped combiner. The multiplexing of the XOR and OR operations
are shown in the right column. [(b),(c)] The output intensity dis-
tributions for both single and superposition inputs at ports A0(A1)
and B0(B1), which indicate a XOR(OR) operation. (d) The output
intensity for both the horizontally and the vertically polarized light
input cases with the wavelength of 785 nm and 808 nm. The top
(bottom) four columns represent the case where A0 and B0 (A1
and B1) are the input ports, corresponds to the XOR (OR) opera-
tion. The horizontal (vertical) arrow represents horizontal (vertical)
polarization.

achieve robust on-chip all-optical logic operations based on
the interference between the two generators’ near-neighboring
output signals as shown in Fig. 4(a).

The four ports A0, B0, A1, and B1 are the input ports, the
two near-neighboring output ports of the generators, namely
O1 and O2, comprise the two arms of the Y combiner used
for interference and the combining path of the Y combiner
serves as the output port, with two reference ports R1 and
R2. The presence or absence of optical signals at the input
or output ports corresponds to the logic state “1” or “0”.
When two coherent light beams are injected simultaneously
into ports A0 and B0 with identical phase, the output states
of both generators are

√
2

2 p0exp(iϕ)(−1, 1)T and the phase
difference between the two output ports is π . Due to the iden-
tical structures of the two generators and the symmetric arms
of the Y-combiner, both the global losses and the propagation
phases of the two output states are nearly equal. Consequently,
the phase difference between the two arms of the Y- com-
biner (O1 and O2) is π , leading to destructive interference
at the output port as shown in the right part in Fig. 4(a).
On the other hand, for input ports A1 and B1, the output
states are both |ψ〉out = p1|+〉 =

√
2

2 p1(1, 1)T , thus the phase
difference is 0, leading to constructive interference as shown
in the right part in Fig. 4(a). As a result, this configuration
enables the multiplexing of all-optical XOR and OR logic

gates by choosing ports A0 and B0 or A1 and B1 as the input
ports. The two operations are insensitive to the variations
in the input light as a result of the robustness of the two
generators.

In the experiment, we first perform the single port injec-
tion, where 785 nm horizontally polarized light is injected into
either port A0 or B0 to achieve input logic states of (1,0) or
(0,1). The output results are shown in the left and middle parts
of Fig. 4(b). Taking into account the potential additional loss
from the Y-shaped combiner, here we normalize the output
intensity to the total optical intensity of all output ports (i.e.,
ports R1, R2, and Out).

To realize an input logic state of (1,1), a new series of
samples are fabricated with equally arms Y-shaped splitters
connecting the ports A0 and B0 that allow simultaneous in-
jection of light into the two ports with equal power and phase.
The normalized output result under this condition is shown in
the right part of Fig. 4(b). Clearly, under the input condition
of logic state (1,1), the optical intensity at the output port is
significantly lower compared to the input situations of logic
states (1,0) and (0,1), corresponding to the output logic state
“0” thus demonstrating the success of the XOR operation. The
results for the OR operation are obtained by injecting light
into the ports A1 and B1 simultaneously using the similar
method, as shown in Fig. 4(c).

To verify the robustness of the all-optical logic operations,
we change the wavelength and polarization of the input light
beam and the results for these cases are shown in Fig. 4(d).
We find that when selecting ports A0 and B0 as input ports,
the normalized output intensity under simultaneous injection
conditions is significantly lower compared to the single port
injection case [as shown in the top row of Fig. 4(d)], demon-
strating the successful XOR operation. Conversely, when
ports A1 and B1 are chosen as input ports, the normalized
output intensity shows minimal variation under simultaneous
injection conditions compared to the case of single-port injec-
tion [as shown in the bottom row of Fig. 4(d)], indicating the
success of the OR operation. These results provide definitive
evidence for the robustness of multiplexed XOR and OR op-
erations and further indicate the potential applications of EEP
systems to realize robust state manipulations and operations
in optical information processing devices.

V. DISCUSSION

In summary, we present a 3D on-chip eigenstate generator
consisting of the EEP system and the depth-varying overpass
waveguide utilizing femtosecond laser’s 3D direct writing
capability. The EEP system has high robustness conversion
characteristics but is difficult to apply in integrated photonic
devices because the output states are usually fixed and inde-
pendent of the input state. To overcome this limitation, we
use the depth-varying waveguide to overpass the EEP sys-
tem and realize the robust generation of the eigenstates from
the path-dependent states. The independent control allows to
tune the transformation rates and the phase difference thus
enables to generate states with different components of the
eigenvectors. Moreover, by combining two such generators
with a Y-shaped combiner, we realize the multiplexing of
all-optical XOR and OR logic gates. Both the XOR and the
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OR operations show strong robustness to the variations of
the input light including the wavelength and the polariza-
tion. These results indicate great potential applications for
encircling exceptional point systems to realize highly robust
state manipulations and information processing in integrated
broadband and polarization-insensitive photonic and quantum
devices. Additionally, our paper offers a promising platform to
explore phenomena that combine non-Hermitian and Hermi-
tian structures, paving the way for integrated non-Hermitian
photonic chips.
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APPENDIX

1. Fabrication of samples

The on-chip two-level eigenstate generator consisting of
coupled waveguides are fabricated in borosilicate glass (Eagle
XG, Corning) by focusing pulses generated by a regen-
eratively amplified Yb: KGW femtosecond laser system
(Pharos20, Light Conversion) at a wavelength of 1030 nm
with a duration of 240 fs, and 1-MHz repetition rate. The
microscope objective (20×, NA = 0.4) focus the pulse with
a power of 157 nJ at a depth of 170 µm below the glass
surface to write straight waveguides, while the depth of
the overpass waveguide varies between 130 µm to 170 µm.
The small NA objective lens ensures that the cross sec-
tion of waveguides within a certain depth range is nearly
identical and the propagation loss of the straight waveguide
is about 0.96 dB/cm. We use a computer-controlled high-
precision three-axis air-bearing stage (FG1000, Aerotech)
to move the sample at a constant speed of 25 mm/s, ex-
cept for fabrication of the WG II with a continuously
varying speed.

In order to introduce extra losses into WG I, we focus the
laser pulses on specific designed sites inside the waveguide
with pulse energy of 235 nJ and an exposure time of 0.5 s
to create scatterers. These scatterers, spaced sufficiently apart,
cause nearly identical losses.

The distance between the two input or output ports is
127 µm to suit the fiber arrays. For the curved segments, the
bending radius is set as 80 mm on the x-z plane and 140 mm
on the y-z plane to minimize the bending loss and avoid
undesired coupling. The height of the overpass waveguides
is 40 µm. The total length of the generator is 40 mm.

2. Fitting the parameters of Hamiltonians

There are three critical parameters of Hamiltonians: the
coupling strength κ between waveguides, the propagation
constants β, and the relative loss g.

FIG. 5. Schematic of the systems to obtain the fitted parameters
and the results. (a) The schematic of the systems to measure the cou-
pling strength, the propagation constants and the extra loss. (b) The
relationship between the coupling strength and the distance. (c) The
relationship between the propagation constant and the writing speed.
(d) The relationship between the total additional loss and the number
of scatterers in a 20 mm waveguide.

It is well accepted that the coupling strength is determined
by the distance between the neighboring waveguides. To
get the relationship, we fabricate several identical triple-
waveguide systems, as shown in the upper portion of Fig. 5(a).
In these systems, the two side waveguides have a distance of
d from the center waveguide, and the coupling length is L.
When light is injected into the center waveguide, the output
intensities meet IC = cos2(

√
2κL) and IN = 1

2 sin2(
√

2κL).
We fabricate several similar structures with different coupling
lengths L and fit the corresponding κ for a fixed distance
d . Then, we repeat the same process for another d .
Finally, based on these results, we obtain the relationship
between coupling strength and distance for horizontally
polarized light with the wavelength of 785 nm, as shown
in Fig. 5(b).

To achieve different propagation constants for the waveg-
uides, the writing speed is varied. We set the propagation
constant for the writing speed of 25 mm/s as zero, and a lower
(higher) speed resulted in a positive (negative) propagation
constant. To get the relationship, we change the writing speed
v for the center waveguide in the triple-waveguide systems in
Fig. 5(a), thus the center waveguide will acquire a different
propagation constant β. In such case, when light is injected

into it, the output intensities are IC = cos2(
√

β2+8κ2

2 L) +
β2

β2+8κ2 sin2(
√

β2+8κ2

2 L) and IN = 4κ2

β2+8κ2 sin2(
√

β2+8κ2

2 L). We
fabricate several similar structures with different L for a fixed
distance d (where κ is known) and writing speed v, and fit the
propagation constant β. Then, we repeat the same steps for
another v. Finally, we use the obtained results to deduce the
relationship between the propagation constant and the writ-
ing speed, as shown in Fig. 5(c). Therefore, by continuously
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FIG. 6. Results of different coupling strength and length of the
EEP system. (a) The trajectories of the loops for three different
coupling strengths. (b) The normalized power ratios of the antisym-
metric states when light is injected into the WG I for three different
coupling strengths. (c) and (d) are the normalized power ratios of the
symmetric and antisymmetric states when light is injected into the
WG I for L = 12 mm and L = 20 mm, respectively.

changing the writing speed of the WG II, we can get the β(z)
according to Fig. 1(b).

To introduce additional loss into the waveguides, we focus
laser pulses with an energy of 235 nJ inside a written waveg-
uide and create scatterers with an exposure time of 0.5 s. We
compare the output intensity IS of the waveguide with several
evenly spaced scatterers inside it to the output intensity I0

of the waveguide without scatterers. The additional loss is

expressed as γ = −10lg(IS/I0), and we establish the relation-
ship between the number of scatterers and the total additional
loss, as shown in Fig. 5(d), where each scatterer induces an
average loss of 0.5 dB. Note that the value of g in the Hamil-
tonian causes the output intensity to decay to exp(−2gL)
compared to the initial, thus we get γ = −10lg(exp(−2gL))
and g = 0.115γ with L = 1 mm (the unit length). Therefore,
by fabricating unevenly distributed scatterers inside the WG I,
we can get the g(z) according to Fig. 1(b).

3. Additional calculation results to demonstrate
the robustness of the EEP system

The coupling strength between waveguides may vary
slightly due to deviations in distance, polarizations, and
wavelengths. For the EEP system, changes in coupling
strength can cause the trajectory of the loop in Fig. 1(c)
to deform. However, here we show that as long as the ex-
ceptional point (EP) is dynamically encircled, the output
states are highly robust, as demonstrated through numerical
calculations.

The evolution of the normalized ratios of antisymmetric
states for three different cases are shown in Figs. 6(a) and
6(b). We find that for three different coupling strengths with
differences close to 10%, all the normalized power ratios at
the output interface remain a high level. These results demon-
strate the high robustness of the EEP system to the coupling
strength.

For the EEP system, we demonstrate its high robustness to
coupling length by presenting results for two different lengths,
as shown in Figs. 6(c) and 6(d). The normalized power ratios
of the antisymmetric states at the output interface are 87%,
91%, and 95% for the coupling lengths of 12 mm, 16 mm
(as utilized in the main text), and 20 mm, respectively. Re-
markably, even with a nearly 50% variation in the evolution
length, all of these ratios remain close to each other and at a
high level.
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