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Lattice gauge theories are fundamental to various fields, including particle physics, condensed matter, and
quantum information theory. Recent progress in the control of quantum systems allows for studying Abelian
lattice gauge theories in table-top experiments. However, several challenges remain, such as implementing
dynamical fermions in higher spatial dimensions and magnetic field terms. Here, we map U(1) Abelian lattice
gauge theories in arbitrary spatial dimensions onto qudit systems with local interactions. We propose a variational
quantum simulation scheme for the qudit system with a local Hamiltonian, that can be implemented on a univer-
sal qudit quantum device as the one developed in [Nat. Phys. 18, 1053 (2022)]. We describe how to implement
the variational imaginary-time evolution protocol for ground-state preparation as well as the variational real-time
evolution protocol to simulate nonequilibrium physics on universal qudit quantum computers, supplemented with
numerical simulations. Our proposal can serve as a way of simulating lattice gauge theories, particularly in higher
spatial dimensions, with minimal resources, regarding both system sizes and gate count.
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I. INTRODUCTION

Most quantum information processing platforms are based
on qubits, the quantum generalization of classical bits. How-
ever, the underlying physical systems representing qubits
frequently involve higher-dimensional Hilbert spaces that
must be artificially restricted to two-level systems. Instead
of limiting it, however, one can use the Hilbert space that
the physical system provides for information processing.
This leads to the multilevel analog of the qubit—the qudit,
which can be a powerful resource for quantum information
processing [1]. The additional levels can enable alternative
implementations of quantum algorithms [2], the implemen-
tation of optimal quantum measurements [3], as well as the
native simulation of higher spin models or problems in quan-
tum chemistry [4]. Moreover, the fundamentally different
coherence [5], dissipation, and entanglement structure [6] of
qudit systems can be advantageous in terms of noise resilience
[7] or quantum error correction [8]. These prospects of qudit
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systems and recent experimental progress make multilevel
systems ideal for advanced quantum information processing.

So far, qudit experiments have been proposed [9] and ex-
tensively used in quantum cryptography [10] for increased
information capacity and improved resilience to perturba-
tions [7]. Beyond photons, almost all quantum technology
platforms have demonstrated some degree of qudit control.
More recently, superconducting systems [11], single photons
[12], and trapped-ion experiments [13] have demonstrated a
universal set of gates for qudit quantum computing. This rapid
development of qudit hardware allows for the study of state-
of-the-art quantum algorithms such as quantum simulation on
these novel devices. Originally driven by the goal of devel-
oping a large-scale quantum computer, quantum simulation
has been identified also as an attractive target for devices of
the so-called noisy intermediate-scale quantum era [14–16].
In particular, the quantum simulation of lattice gauge theories
(LGTs) has made spectacular progress over the last decade
[17–23].

LGTs are many-body systems with important applications
in high-energy physics, condensed matter systems, and quan-
tum information. In high energy physics, LGTs appear as
the space-discretized description of the standard model of
particle physics [24]. LGTs can also be found as an effective
description in condensed matter physics and are important
for quantum error correction, e.g., the toric code [25]. This
versatility of LGTs makes them a central object of research
for different communities. Quantum simulation protocols for
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LGTs have been proposed for numerous quantum platforms,
from cold atoms [26–39], through trapped ions [40–44] to su-
perconducting qubits [45–48] and others [49–52]. Indeed, first
experimental implementations of LGT simulations are now a
reality [53–62]. Even though it is possible to quantum simu-
late LGTs in the laboratory, the experimental demonstrations
remain constrained to specific scenarios. In particular, systems
in one spatial dimension and some specific systems in two
spatial dimensions with Abelian symmetry have been exper-
imentally realized. However, the implementation of Abelian
LGTs beyond one spatial dimension remains challenging due
to the presence of dynamical fermions and magnetic field
terms (four-body interactions on a lattice) in the Hamiltonian
of the theory [22,63].

Here, we propose a quantum simulation protocol for an
Abelian U(1) LGT in (1 + 1) and in (2 + 1) space-time di-
mensions for qudit quantum processors based on trapped ions
[13]. Following [64,65], we integrate out the fermionic fields
and construct an LGT that can directly be mapped to a qudit
system. The construction keeps the Hamiltonian of the theory
local even in the case of higher spatial dimensions and evades
the need of introducing Jordan-Wigner strings in order to
encode the fermionic degrees of freedom in the qudits. In
contrast to previous studies that make use of the procedure of
integrating out the fermions [66,67], we circumvent the need
for the precise implementation of the resulting interactions
in the Hamiltonian on the quantum device by proposing a
hybrid quantum-classical variational simulation scheme for
both ground-state preparation and quench dynamics. We also
elaborate on which quantities have to be measured on the
quantum device in order to execute the protocol and how to
perform the measurement. We benchmark this approach by
performing numerical simulations of the variational algorithm
with the specific quantum circuits we propose for preparing
the ground state of the LGT as well as simulating quench dy-
namics. As our results show, employing variational algorithms
for static and dynamic properties of Abelian gauge theories is
well within reach of current devices also for dimensions larger
than (1 + 1).

This paper is organized as follows. In Sec. II, we briefly
introduce the mathematical description of the target LGT
and construct the corresponding qudit Hamiltonian. Then, in
Sec. III, we give an outline of the variational algorithm we
use. Here, we also explain how the relevant quantities for the
execution of the algorithm can be measured in the experiment.
Later, in Sec. IV, we present specific quantum circuits that
need to be implemented on the quantum device and discuss
how the simulation protocol would be implemented. In Sec. V,
we present the results of the numerical study and discuss the
findings.

II. U(1) LGT WITH FERMIONIC MATTER

We consider a D-dimensional spatial lattice with sites x ∈
ZD. The spinless fermionic matter is localized on the sites
x where we denote the creation and annihilation operators
by ψ†

x and ψx, respectively. The gauge degrees of freedom
are situated on the links between neighboring sites x and
y and act on a d-dimensional Hilbert space with the ba-
sis |0〉 , . . . , |d − 1〉. The electric field operator Ex,i and the

parallel transport (link) operator Ux,i, where the latter keeps
track of the phase generated by the gauge field, are defined as

Ex,i |l〉 = (l − d ) |l〉 , (1a)

Ux,i |l〉 = ul |l + 1〉 , (1b)

where the subscript x, i denotes the link starting from the
lattice site x and pointing in direction i, i.e., the link be-
tween sites x and x + ei. For a D-dimensional spatial lattice,
there are also D distinct directions. We used the notation
ul = √

d (d + 1) − (l − d )(l − d + 1). Further, the fermionic
degrees of freedom fulfill the algebra

{ψx, ψ
†
y } = δx,y, {ψx, ψy} = 0, (2)

and the electric field and the link operator fulfill

[Ex,i,Uy, j] = δx,yδi, jUy, j . (3)

The dynamics of the quantum many-body system are de-
termined by the Hamiltonian

H = HG + HM + HGM, (4)

where the pure gauge part HG is given by

HG = g2

2

∑
x,i

E2
x,i − 1

2g2

∑
p

[Up + U †
p ], (5)

with the plaquette term

Up = Ux,1Ux+e1,2U
†
x+e2,1

U †
x,2 (6)

and the coupling constant g is given by the charge of the
electron. The first term in Eq. (5) has the meaning of the
electric field energy, whereas the second term, which involves
the plaquette terms, has the meaning of discretized magnetic
field energy. The fermionic part HM of the Hamiltonian is
given by

HM = M
∑

x

(−1)sx nx, (7)

where we introduced the occupation number operator

nx = ψ†
x ψx (8)

and the staggered charge

sx = 1
2 [1 − (−1)x]. (9)

M denotes the fermionic rest mass. The gauge-matter interac-
tion is

HGM = i

2

∑
x,i

[ψ†
xUx,iψx+ei − H.c.]. (10)

The system has local symmetries generated by the Gauss’s law
operator

Gx =
∑

i

[Ex,i − Ex−ei,i] − nx + sx. (11)

Because of the fact that the Hamiltonian H and the Gauss’s
law operator Gx commute, they have a common eigenvector
system and we restrict the dynamics to the zero eigenvalues
of each Gx, i.e.,

Gx |ψ〉 = 0 ∀x. (12)
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FIG. 1. Particle content on the lattice in the case of a two-
dimensional spatial lattice. (Left) The hardcore bosons ηx and the
fermions χx reside on the lattice sites (orange circles), whereas the
gauge fields Ex,i and the fermions ζx,i reside on the links (blue ovals).
(Right) The Majorana modes cx, αx,i, and βx,i defined by Eq. (14)
and the corresponding sites/links on which they reside. Thanks to
Gauss’s law, this configuration permits one to replace the fermionic
matter ψx residing in the original gauge theory on lattice sites, such
that the final theory contains only the gauge fields Ex,i.

Precisely these local constraints on the physical states be-
tween the matter and the gauge field degrees of freedom
will allow us later to formulate a unitarily equivalent system
without the matter.

A. U(1) LGT formulated as a qudit system

In this subsection, following two previous papers [64,65],
we construct a gauge theory from a system of hardcore
bosons, fermions, and gauge fields residing on a lattice.
This construction introduces one fermionic and one hardcore
bosonic degree of freedom per site, both constituting the mat-
ter of the LGT. The fermionic degree of freedom keeps track
of the fermionic statistics and the hardcore bosonic degree of
freedom allows to decouple the attachment of the gauge field
to the matter. On top of that, on each link of the lattice, gauge
field and fermionic degrees of freedom reside. Moreover, a
gauge-invariant Hilbert space and a local Hamiltonian for
these degrees of freedom are formulated, so that this Hamilto-
nian has the same matrix elements as the one of Eq. (4). The
degrees of freedom of the constructed LGT are mapped onto
a qudit system, while the locality of the interactions is pre-
served. This mapping allows for the efficient implementation
of the LGT simulation in a qudit-based quantum device. In
what follows, we present the details of this mapping.

We consider a Hilbert space consisting of three kinds of
particles: χx, ηx, and ζx,i where χx and ζx,i are fermionic
operators and ηx is a hardcore boson operator (see the defining
algebra below). While χx and ηx live on the sites of the lattice,
the fermion ζx,i lives on the links, see Fig. 1. Specifically, these
operators fulfill the following commutation and anticommuta-
tion relations,

{χx, χ
†
y } = δx,y, (13a)

{ζx,i, ζ
†
y, j} = δx,yδi, j, (13b)

[ηx, η
†
y] = [ηx, ηy] = 0 for x �= y, and (13c)

{ηx, η
†
x} = 1, {ηx, ηx} = 0. (13d)

For notational convenience, we introduce the following
Majorana operators for χx and ζx,i:

cx = χx + χ†
x , (14a)

αx,i = ζx,i + ζ
†
x,i, (14b)

βx,i = i(ζ †
x−ei,i

− ζx−ei,i ). (14c)

By having two modes per site (ηx and cx), and one
fermionic mode on each link (ζx,i), we have more degrees of
freedom than in the original formulation of the LGT. There-
fore, we restrict the operators to act on wave functions that
fulfill

χx |ψ〉 = 0,

ζx,i |ψ〉 = 0. (15)

We construct the operator

ψx = cxηx, (16)

which is fermionic as can be confirmed by direct calculation.
By gauging these fermions, i.e., by coupling them to a gauge
field residing on the links of the lattice, as explained above,
we can define a Hamiltonian of a LGT like the one in Eq. (4),
but acting on the Hilbert space defined by Eq. (15). This
Hamiltonian reads

H = g2

2

∑
x,i

E2
x,i − 1

2g2

∑
p

[Up + U †
p ] + M

∑
x

(−1)sxη†
xηx

− i

2

∑
x,i

(η†
xcxUx,icx+eiηx+ei − H.c.) (17)

and, using the notation introduced above, Gauss’s law is

Gx =
∑

i

[Ex,i − Ex−ei,i] − η†
xηx + sx. (18)

In the following, we perform two unitary transformations
to map the dynamics to a completely electric-field-dependent
operator being a pure qudit system. As shown in Ref. [64], for
specific gauge groups, one can define a unitary transformation
that replaces the fermionic operators in the Hamiltonian with
operators that act locally on the gauge fields. This unitary
transformation is given by the expression

Vx ≡
∏

i

(icxβx,i )
Ex−ei ,i

∏
i

(icxαx,i )
Ex,i . (19)

Since the different parts of the product do not commute with
each other, we have to explicitly specify the ordering. The
choice we made by writing Eq. (19) coincides with the one
in Ref. [64]. Transforming the operators of the gauge theory
degrees of freedom yields

VxUx,iV
†

x = ipx,i(E·,·)cxαx,iUx,i, (20a)

Vx+eiUx,iV
†

x+ei
= iUx,icx+eiβx+ei,i p̃x+ei,i(E·,·), (20b)

VxcxV †
x = exp[iπ

∑
i

(Ex,i + Ex−ei,i )]cx, (20c)

VxηxV †
x = ηx, (20d)

Vxζx,iV
†

x = ζx,i. (20e)
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FIG. 2. Two-dimensional spatial lattice with matter fields on the sites (orange circles) and gauge fields on the links (blue ovals). After
performing the transformation from Eq. (19), the hopping terms between two neighboring sites (indicated by an arrow) acquire prefactors that
depend on the electric fields on the adjacent links. The involved electric fields depend on the hopping direction (horizontal or vertical) and
result in direction-dependent phase factors as given in Eq. (23).

We have used the following abbreviation for the prefactors
of the transformed link operators:

px,i(E·,·) = exp

[
iπ

(∑
j>i

Ex, j +
∑

j

Ex−ej, j

)]
,

p̃x+ei,i(E·,·) = exp

(
iπ

∑
j>i

Ex+ei−ej, j

)
. (21)

Moreover, the property [Vx,Vy] = 0 allows us to define a
unitary transformation V = ∏

x Vx. This global unitary trans-
forms HGM as

VHGMV† = − i

2

∑
x,i

( fx,i(E·,·)η†
xαx,iUx,iβx+ei,iηx+ei − H.c.),

(22)

where fx,i(E·,·) is a prefactor that depends on the electric fields
around the site x and is also dependent on the spatial direction
i. Specifically, in (2 + 1) dimensions, i = 1, 2 for horizontal
and for vertical hopping, respectively, and we have

fx,1(E·,·) = (−1)Ex+e1 ,1+Ex+e1 ,2 ,

fx,2(E·,·) = (−1)Ex,1+Ex−e1+e2 ,1+Ex+e2 ,2+Ex+e2 ,1 . (23)

The electric fields involved in Eq. (23) are highlighted in
Fig. 2. In (1 + 1) dimensions, since there is only one direction,
we omit the index i and we have

fx(E·,·) = (−1)Ex+1 . (24)

The outcome of this transformation is that the hopping term
HGM does not include the Majorana modes cx anymore.

The plaquette term present in the Hamiltonian in higher
spatial dimensions also transforms nontrivially,

VHGV† = g2

2

∑
x,i

E2
x,i − 1

2g2

∑
p

(Ũp + Ũ †
p ), (25)

with the transformed plaquette operator defined as

Ũp = exp[iπ (Ex,1 + Ex+e1,2 + Ex+e2,2 + Ex+e2−e1,1)]

× Ux,1Ux+e1,2U
†
x+e2,1

U †
x,2. (26)

After the transformation, the occupation numbers of the
fermionic mode χx in the physical space are the same as the
occupation numbers of the hardcore bosons ηx. Furthermore,
as easy to see from Eq. (20e), the modes ζx,i transform iden-
tically, therefore they stay in vacuum. The Hamiltonian of the
system projected onto the subspace of absent fermions ζx,i

reads

H = g2

2

∑
x,i

E2
x,i − 1

2g2

∑
p

[Ũp + Ũ †
p ] + M

∑
x

(−1)sxη†
xηx

+ 1

2

∑
x,i

( fx,i(E·,·)η†
xUx,iηx+ei + H.c.). (27)

The hardcore bosons on each site are furthermore related
to the divergence of the gauge fields on the adjacent links due
to the Gauss’s law, Eq. (18). Precisely these local constraints
allow for complete elimination of the matter from the Hamil-
tonian, as shown in Ref. [65]. We can rewrite the Gauss’s law
also as

gx|ψ〉 = nx|ψ〉, (28)

where we introduced

gx =
∑

i

[Ex,i − Ex−ei,i] + sx. (29)

We introduce the operator

Ux = (ηx + η†
x )gx (30)

and the unitary transformation for the entire lattice

U =
∏

x

Ux. (31)
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We denote physical states transformed by U by a tilde |ψ̃〉 and
define them as

|ψ̃〉 = U |ψ〉. (32)

The matter transforms as

Uxη
†
xηxU†

x = (−1)gxη†
xηx + 1

2 (1 − (−1)gx ). (33)

η†
xηx|ψ̃〉 = (1 − (−1)gx (1 − 2gx))|ψ̃〉. (34)

Since for a vector of the physical Hilbert space, the operator
gx has eigenvalues 0 or 1, we obtain

η†
xηx|ψ̃〉 = 0. (35)

This last equation signifies that all matter will be transformed
to its vacuum state.

Next, we apply the unitary transformation on the Hamil-
tonian of the gauge theory. In order to write down the
transformed Hamiltonian in a convenient form, we define on
each vertex x the operators Pg,x, which projects on the g = 0
or g = 1 eigenspace of the operator gx. Applying Eq. (30) to
the raising and the lowering operators in the interaction part
of the Hamiltonian, we get precisely the projector P1,x. Note
that the ordering of the link operators and the projectors is
now important since they do not commute. We end up with
the following Hamiltonian in (2 + 1) dimensions:

H = g2

2

∑
x,i

E2
x,i − 1

2g2

∑
p

[Ũp + Ũ †
p ] + 2M

∑
x,i

(−1)xEx,i

+ 1

2

∑
x

(P1,x(−1)Ex,1+Ex+e1−e2 ,2−sx+e1 Ux,1P1,x+e1

− P1,x(−1)Ex,1+Ex,2−sx+e2 Ux,2P1,x+e2 + H.c.). (36)

In (1 + 1) dimensions, the Hamiltonian simplifies to the form

H = g2

2

∑
x

E2
x + 2M

∑
x

(−1)xEx

+
∑

x

[P1,x(−1)Ex+1UxP1,x+1 + H.c.]. (37)

Since we have decoupled the matter by a unitary transforma-
tion, we are left with a system of qudits that reside on the links
of the lattice, with dynamics governed by a local Hamiltonian.
This formulation allows for an efficient implementation on a
qudit quantum device.

In summary, we achieved the following: We applied two
transformations on the LGT. The first transformation Eq. (19)
removed the Majorana modes cx from the Hamiltonian and
replaced them effectively with electric-field–dependent pref-
actors. On the Hilbert space level, it coupled the modes cx
and ηx so that physical states only contain configurations with
equal occupation numbers for both cx and ηx. This allowed us
to keep the modes ηx only.

The second transformation Eq. (30), removed the hard-
core bosons ηx by using the constraints between matter and
gauge field degrees of freedom (Gauss’s law). As indicated in
Eq. (35), physical states after the transformation are the ones
with all the matter fields in the vacuum state. Furthermore,
the transformed Hamiltonian projects onto the subspace of
physical states, making only the gauge fields have nontrivial

dynamics. This allowed us to consider a system of gauge fields
only. Combining both transformations, we arrived at local
qudit Hamiltonian, given by Eq. (36) or (37) in (2 + 1) or
(1 + 1) dimensions, respectively.

In this section, we gave an alternative formulation of
(1 + 1)- and (2 + 1)-dimensional U(1) lattice gauge theo-
ries coupled to fermionic matter, which are the respective
lattice versions of quantum electrodynamics. These two mod-
els present a rich arena for exploring physical phenomena
such as quantum anomalies [68], confinement [69], charge
fractionalization or chiral symmetry breaking [70]. More-
over, the real-time dynamics of gauge theories is an active
research field with fundamental questions concerning the ther-
malization [58] or transport properties [71]. While quantum
electrodynamics in (1 + 1) dimensions is frequently used as
a pedagogical tool or numerical testbed, quantum electrody-
namics in (2 + 1) dimensions has been frequently proposed
as a field theory describing the low-energy effective theory
of spin liquids [72] or quantum phase transitions in two-
dimensional frustrated magnets [73]. Later in this paper, for
the numerical studies and the explicit circuits, we will con-
sider a system of qutrits—qudits with three internal levels
(d = 3). However, our approach is general and can be used
(after modification of the quantum circuits) for general d-level
qudits.

III. VARIATIONAL QUANTUM SIMULATION

The simulation of quantum many-body systems stands as
a top application of quantum computers. However, the task of
engineering intricate Hamiltonians poses a significant chal-
lenge. A quantum simulator employs a quantum system to
model and analyze another quantum system [74], typically
using platforms like atoms, ions, molecules, solid-state, or
photonic systems. In analog quantum simulation, the Hamil-
tonian of one system is directly mapped onto another system.
This mapping often requires intricate engineering of the quan-
tum system used for simulation and can form a technical
challenge. Although analog simulation offers high fidelity,
it is frequently confronted with limits concerning parameter
tuning. In contrast, digital quantum simulation uses a pro-
grammable quantum computer to study quantum many-body
systems [75]. Due to its programmability, digital quantum
computation offers excellent versatility in engineering differ-
ent quantum systems. However, it comes with the challenge
of resource intensity and high demands on the fidelity of the
used quantum gates.

In the context of analog versus digital quantum simula-
tion, variational algorithms [76] have emerged as a hybrid
approach, utilizing parametrizable gates of modern digital
quantum hardware. To tackle these obstacles in both analog
and digital quantum simulation, variational algorithms [16]
have emerged as particularly powerful and represent a potent
tool for both classical and quantum systems. In this approach,
a parametrized family of quantum states is efficiently prepared
through a variational Ansatz circuit, which is typically based
on the physical properties and symmetries of the system under
study. Here, the classical computer is tasked with optimizing
a cost function, such as the energy of the candidate states
for a given Hamiltonian, while the quantum computer is
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responsible for measuring the cost function on the system.
Through an iterative process, this variational approach can
provide an efficient representation of quantum many-body
states, such as ground states of a given Hamiltonian. In pre-
vious work, the real-time evolution of lattice gauge theories
was simulated by a Trotterization approach [42,53]. While in
practice, a threshold of Trotter step size exists below which
a digital quantum simulation works reliably [60,77], a rigor-
ous reduction of Trotter error requires deeper circuits [75].
In contrast, variational real-time evolution allows the control
of the time-discretization error with classical resources while
keeping the depth of the circuit fixed, which appears beneficial
for NISQ devices. Nevertheless, variational algorithms face
several challenges, some of which are intrinsic to the current
state of quantum technology and others that are more fun-
damental, e.g., barren plateaus (leading to scalability issues)
[78], noise sensitivity [79], difficulties with initialization, sus-
ceptibility to local minima, and significant quantum-classical
communication overhead [80].

Despite the challenges recent technological advancements
now permit the implementation and study of quantum
variational algorithms. In the quantum domain, variational
simulation finds frequent application in many-body physics,
encompassing disciplines such as solid-state physics, high-
energy physics, and chemistry [81]. Notably, in the field of
LGTs, there have been proposals and experimental imple-
mentations of simulation protocols based on the variational
principle [43,47,55,82–84]. The principle has been used to
create approximations to the ground state [47,55,85,86], ther-
mal states [87], excited states [47,88], or the dynamics
[89–91] of a quantum many-body system.

A. Parametrized quantum circuits

We consider trial quantum states generated by a
parametrized quantum circuit (PQC) of the form

|ψ (θ)〉 = U (θ) |ψ0〉 = UN (θN ) . . .Uk (θk ) . . .U1(θ1) |ψ0〉 ,

(38)

where Uk (θk ) are unitary operations acting on the initial state
|ψ0〉. These unitaries are parameterized by a real number θk

and which can be written as

Uk (θk ) = e−iθk gk . (39)

The generators gk can be chosen in a hardware-efficient fash-
ion according to the native operations that can be performed
on the specific quantum device, where the variational algo-
rithm should be executed. Here, we consider the gate set
used in the trapped-ion qudit quantum computer of Ref. [13],
where the native gates are two-level single-qudit rotations and
entangling Mølmer–Sørensen (MS) gates. In addition, we will
consider qudit controlled-rotation (CROT) gates, which can
be constructed from the MS gate [13]. For more details on the
implementation, see Sec. IV.

In the following, we discuss the variational princi-
ple for imaginary-time and real-time evolution. The exact
imaginary-time evolution converges to the ground state of the
quantum many-body systems at infinite imaginary-time and
the real-time evolution describes the change of the quantum
many-body dynamics. In addition, we explain a strategy to

determine the imaginary- and real-time evolution from a mea-
surement of the quantum device.

B. Variational time evolution

The equation describing the dynamics of a quantum state
ρ of a system with Hamiltonian H is

∂tρ(t ) = L[ρ(t )], (40)

where the superoperator L[·] is given by

L[ρ(t )] = −i[H, ρ(t )] (41)

for Hamiltonian dynamics and

L[ρ(t )] = −{H, ρ(t )} + 2〈H〉ρ(t ) (42)

for imaginary-time evolution. The expectation value in
Eq. (42) is taken in the state ρ(t ), leading to nonlinear dy-
namics.

In the following, we parametrize the quantum state ρ(t ) by
a set of variational parameters θ(t ), which are time dependent
on their own, and we can obtain the (approximate) time evo-
lution by minimizing the so-called McLachlan distance,∥∥∥∥∥

∑
μ

∂ρ

∂θμ

θ̇μ − L[ρ]

∥∥∥∥∥
2

, (43)

with respect to θ(t ), i.e., trajectories of the variational param-
eters. The minimization leads to the equations of motion for
the variational parameters∑

ν

Mμνθ̇ν (t ) = Vμ. (44)

The real symmetric matrix Mμν represents the so-called
Fubini-Study metric tensor [92] and is defined by

Mμν =Tr

[
∂ρ

∂θμ

∂ρ

∂θν

]
. (45)

Note that Mμν does not contain information about the time
evolution operator. In turn, the vector

Vμ = Tr

[(
∂ρ

∂θμ

L[ρ]

)]
(46)

contains information about the time-evolution operator L[·],
which is different for real-time Eq. (41) and for imaginary-
time evolution Eq. (42).

In the following, we will assume that the variational state
ρ(θ) is a pure state defined by a PQC:

ρ(θ) = |ψ (θ)〉 〈ψ (θ)| . (47)

We will suppress the explicit dependence on θ for notational
convenience. Inserting the pure state from Eq. (47) in the
definition of the metric tensor Eq. (45) leads to

Mμν = Re(〈∂μψ |∂νψ〉) − 〈∂μψ |ψ〉〈ψ |∂νψ〉. (48)

For imaginary-time evolution, the vector V I
μ, once we insert

the pure state into Eq. (46), is given by

V I
μ = 〈∂μψ |H |ψ〉 + 〈ψ |H |∂μψ〉 = ∂μ〈H〉. (49)
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For real-time evolution, instead, we have

V R
μ = i(〈ψ |H |∂μψ〉 − 〈∂μψ |H |ψ〉)

+ i(〈∂μψ |ψ〉 − 〈ψ |∂μψ〉)〈H〉. (50)

The execution of the variational time evolution algorithm re-
quires that the quantities Mμν in Eq. (48), V I

μ in Eq. (49), and
V R

μ in Eq. (50) are being measured on the quantum device.
In the rest of this section, we will give possible measurement
schemes for these quantities.

C. Direct measurement protocol for Mμν

and Vμ in the experiment

We proceed with the discussion on how to measure the
quantities of Eqs. (45) and (46) on the quantum device. First,
we define the overlap functions

fμν (a) = Tr[ρ(θ + aeμ)ρ(θ + aeν )],

pμ(a) = Tr[ρ(θ + aeμ)ρ(θ)]. (51)

The components of the metric tensor are related to the second
derivatives of these functions as

∂2
a fμν (a)

∣∣
a=0 = 2Mμν − ∂2

a pμ(a)
∣∣
a=0 − ∂2

a pν (a)
∣∣
a=0. (52)

For the diagonal elements, since we consider pure states with
the property

Tr[ρ(θ + aeμ)ρ(θ + aeμ)] = 1, (53)

we obtain

Mμμ = ∂2
a pμ(a)

∣∣
a=0. (54)

Therefore, either measuring the derivatives of the functions
in Eq. (51) directly on the quantum device or measuring the
functions and then calculating the derivatives, will allow us to
obtain the metric tensor. In Appendix A, we explain how to
extract the derivatives by measuring the functions, using the
parameter shift rules [92].

The components of the vector Vμ for imaginary-time evolu-
tion are also derivatives of observables that can be measured
on the quantum device. From Eq. (49), it is evident that the
first derivatives of the functions

vI
μ(a) = Tr{ρ(θ + aeμ)H}, (55)

are directly connected to the components of V I
μ,

V I
μ = ∂av

I
μ(a)|a=0. (56)

In Appendix B, we discuss how to extract V I from the values
of the function vI

μ(a).
For real-time evolution, in contrast, V R

μ cannot be repre-
sented as a derivative of an observable. However, we can make
use of the representation of the unitary operations involved in
the PQC in Eq. (39). Performing the derivatives with respect
to the variational parameters in Eq. (50), we obtain

V R
μ = 〈{g̃μ, H̃}c〉0, (57)

where we defined

g̃μ = U†(θ1:μ)gμU (θ1:μ),

H̃ = U (θ)†HU (θ), (58)

using the notation

U (θi: j ) = Uj (θ j ) . . .Uk (θk ) . . .Ui(θi ). (59)

The subscript c in Eq. (57) means that we consider the con-
nected (anti)commutator. One possible measuring procedure
for such a quantity involves averaging over global random
unitaries [93,94]

〈{g̃μ, H̃}c〉0 = NH (NH + 1)〈g̃μ〉u〈H̃〉u[(NH + 2)〈ρ0〉u − 1]

− Tr(g̃μ)〈H̃〉μ − Tr(H̃ )〈g̃μ〉0. (60)

Here, · denotes the averaging over random unitaries, drawn
from the so-called circular unitary ensemble (see Ref. [93]
for details), and NH is the Hilbert space dimension. Hence,
instead of having to deal with the unequal-time anticommuta-
tor of Eq. (57), we just have to measure expectation values of
observables (〈·〉u) in states that result from the action of global
random unitaries on the state to be measured and averaged
over these unitaries.

Here, we used a generic operator H representing the whole
Hamiltonian. However, the local structure of our particular
Hamiltonian from Eq. (36) or (37) is of great use, since we
can represent the anticommutator from Eq. (57) as a sum of
anticommutators with each summand of the Hamiltonian.

One challenge related to the execution of this direct mea-
surement protocol is the high number of repetitions that is
needed for the reliable estimation of the matrix and vector
elements Mμν and Vμ. This is due to the fact that these
quantities contain derivatives of observables, the estimation of
which requires the evaluation of the function at many nearby
points. Remarkably, this difficulty can be circumvented by
performing an alternative measurement procedure using an
additional ancilla, as described below.

D. Indirect measurement of Mμν and Vμ through an ancilla

In this subsection, we give an alternative protocol for
measuring the components of the matrix Mμν and the vec-
tor Vμ. This protocol is based on performing Hadamard
tests on the quantum device in order to extract unequal-time
(anti)commutators. We have already shown in Eq. (57) that
for real-time evolution, the components of V R

μ can be written
as unequal-time anticommutators of observables. It is also
possible for the components of Mμν and V I

μ to be written as
unequal-time (anti)commutators. A simple calculation shows
that for pure states, we have

Mμν = 〈{g̃μ, g̃ν}c〉0 (61)

and

V I
μ = i〈[g̃μ, H̃ ]〉0. (62)

We now present a protocol for indirect measurement of such
qudit quantities through an ancilla. In the following, we briefly
outline the main idea of the protocol and show how to use it
for measuring Mμν and Vμ. In a separate paper [95], we will
present the algorithm in a more general framework, show how
one can use it to extract unequal-time correlation functions of
observables in the experiment and compare it to other such
algorithms.
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FIG. 3. Hadamard test for measuring unequal-time
(anti)commutators. In order to measure the (anti)commutator,
the ancillary qubit needs to be initialized in an equal superposition of
|0〉 and |1〉 with a relative phase of α = 0 ( π

2 ). We obtain the desired
correlation function by measuring the probability of the ancilla to be
in the state |+〉.

We observe that we can write a general Hermitian matrix
H as a sum of two unitary matrices, i.e., UH + U †

H . Once we
insert this expression in the unequal-time (anti)commutator,
we obtain a sum of four quantities. We measure the unequal-
time (anti)commutator of two generators gk and gl with the
circuits shown in Fig. 3. In these circuits we have to couple
an ancillary qubit to the qudit register that represents our
system, using a controlled operation that corresponds to each
of the unitaries UH . These circuits are also known as the
Hadamard test. In total, we can measure the (anti)commutator
by performing four Hadamard tests, one for each combina-
tion of unitaries. Further, we can measure anticommutator
or commutator, if we choose the initial phase α = 0 or π

2 ,
correspondingly.

E. Measuring the Hamiltonian

In this subsection, we rewrite the Hamiltonian in a form
convenient for performing the measurement protocols from
the previous subsection. For simplicity, we discuss the case
of a (1 + 1)-dimensional theory and comment on the case
of (2 + 1) dimensions. The first two terms in Eq. (37) are
diagonal in the computational qudit basis, and thus can di-
rectly be measured by projectively reading out the qudit state.
In addition, these terms are also local, so that the resulting
controlled unitaries for the execution of the Hadamard test
represent entangling operations between only the ancilla and
the corresponding qudit.

The third term in Eq. (37) has to be rewritten as a tensor
product of local observables in order to be measured projec-
tively. In the case of qutrits, we have

HGM = P1
x−1σ

1,2
X,xP1

x+1 − P0
x−1σ

0,1
X,xP0

x+1. (63)

Here, we introduced the projector onto the ith level of the
qudit on site x as Pi

x. The matrices σ
i, j
X,x are two-level Pauli-

X matrices embedded in the qudit Hilbert space; these are
defined as

(
σ

i, j
X

)
m,n =

{
1, if (m, n) = (i, j) or ( j, i)

0, otherwise
(64)

(
σ

i, j
Y

)
m,n =

⎧⎨
⎩

−i, if (m, n) = (i, j)
i, if (m, n) = ( j, i)
0, otherwise

(65)

(
σ

i, j
Z

)
m,n =

⎧⎨
⎩

1, if (m, n) = (i, i)
−1, if (m, n) = ( j, j)
0, otherwise.

(66)

Measuring this part of the Hamiltonian projectively would
therefore involve a local change of bases.

In order to implement the measurement procedure involv-
ing Hadamard tests for this part of the Hamiltonian in a
quantum device, we need to rewrite the different terms as
a sum of unitaries. For a Pauli matrix acting on a two-level
subspace of a qutrit, the corresponding unitary decomposition
is given by

σ 1,2
X,x = U 1,2

X,x + (
U 1,2

X,x

)†
(67)

where we defined

U 1,2
X,x = 1

2

(
σ 1,2

X,x + i |0〉x 〈0|x
)
. (68)

We construct the unitary decomposition of the product of all
projectors

P1
x−1P1

x+1 = W P,1
x + (

W P,1
x

)†
, (69)

with

W P,1
x = i

2
1 + 1 − i

2
(|1〉x−1 ⊗ |1〉x+1)(〈1|x−1 ⊗ 〈1|x+1).

(70)

The unitary decomposition of the first term in the Hamiltonian
HGM is given by

P1
x−1σ

1,2
X,xP1

x+1 = U 1,2
X,xW P,1

x + U 1,2
X,x

(
W P,1

x

)† + H.c.. (71)

The decomposition of the whole Hamiltonian as a sum of
local unitary operators has to be inserted in Eqs. (57) and
(62). Furthermore, each term of the resulting expression can
be measured by the circuits given in Fig. 3.

In the case of the Hamiltonian in (2 + 1) spatial dimen-
sions, the number of summands of HGM is larger and we need
to perform entangling gates that correspond to the few-body
product of projectors. This means some few-body-controlled
operations are involved. Recent proposals for the experimental
implementation of such gates have been made [96]. Alterna-
tively, we could write each projector as a sum of two unitaries;
in this case, we would only have to perform two-body entan-
gling operations at the expense of more Hadamard tests.

In summary, we have proposed two measurement protocols
for the extraction of the geometric tensor Mμν and of the
vector Vμ, which make the implementation of the variational
time evolution on a qudit quantum device possible.

IV. TOWARDS IMPLEMENTATION
ON QUDIT HARDWARE

In this section, we explain how an implementation of
the time evolution protocol would look on qudit quantum
hardware. We briefly discuss what solution strategy for the
equations of motion of the variational parameters we could
employ and we present details about parametrized quantum
circuits that can be implemented on the qudit device from
Ref. [13].

A. Solving the equation of motion for the variational parameters

For both variational real- and imaginary-time evolution,
solving Eq. (44) would involve a feedback loop between the
quantum device and a classical computer. In practice, one
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needs to solve a discretized version of Eq. (44). For example,
a possible discretization is

∑
ν

Mμν (tn)[θν (tn+1) − θν (tn)] = Vμ(tn)�t, (72)

with tn = n�t and where �t is the time step. Here, we have
used Euler discretization, but other discretizations (Runge-
Kutta, etc.) for better numerical stability are also possible.
The quantities Mμν (tn) and Vμ(tn) have to be measured on the
quantum device; then Eq. (72) for the values of the parameters
for the next time step θν (tn+1) has to be solved classically,
and then the obtained values have to be given to the quantum
device for the next iteration. The whole procedure has to be
repeated until the end of the simulation.

B. Ansatz for the variational quantum circuit

One important aspect of our paper is the choice of the
parametrized quantum circuit. On the one hand, we need an
expressive ansatz that allows for the parametrization of the
gauge invariant Hilbert space. That is, we would ideally like to
have a parametrized quantum circuit that can reproduce every
physical state of the system we want to simulate, for some set
of values for the variational parameters. On the other hand,
we aim at near-term realizability of the simulation protocol
on qudit hardware. This naturally restricts the types of quan-
tum gates available for implementation and the number of
entangling operations we can perform since each entangling
operation introduces errors. Furthermore, high expressivity
can restrict the efficiency of the classical optimization of the
variational parameters. For these reasons, we have to look for
the middle ground between expressivity and realizability.

In the case of quench dynamics, the entanglement in the
system may grow fast. This fact suggests that the expres-
sivity of the quantum circuit for real-time evolution should
be chosen high. Reversely, if the expressivity and in partic-
ular the entanglement that the ansatz allows, are not chosen
correspondingly, the real-time evolution simulation may fail
to reproduce the correct time evolved state already at early
times. For ground states, in contrast, it is known for various
systems that the entanglement structure follows an area law
[99], and a small number of entangling operations as well as
a small number of single qudit operations should be sufficient
to deliver the desired approximation with high precision.

The depth of the circuit, as well as the number of
variational parameters, can be reduced by exploiting the sym-
metries of the system. For example, the (1 + 1)-dimensional
Schwinger model has a CP symmetry that can be used to
reduce the number of variational parameters by applying the
same gates with the same variational parameters on various
qudits in the system, as shown for qubits in Refs. [55,100].

For both variational imaginary- and real-time evolution,
we employ a variational quantum circuit structured in layers.
Each layer consists of a set of single qudit operations and
entangling two-qudit gates, see Figs. 4 and 5. Each gate in
each layer of the circuit has a variational parameter given by
the respective angle of rotation. We choose the set of single-
qudit operations differently for imaginary- and for real-time
evolution. In the case of imaginary-time evolution, we employ

FIG. 4. Individual layers of the variational quantum circuit for
seven qudits in (1 + 1) dimensions. Each building block of the
parametrized quantum circuit used for generating the trial states
is built from a set of single qudit operations, given by two-level
rotations, and entangling operations, given by the two-level Mølmer-
Sørensen [97,98] gate.

single qudit unitaries given by

Ue,o,r (θ0:2) = R0,1
X (θ2)R0,2

X (θ1)R1,2
Y (θ0), (73)

where the subscripts e, o, and r stand for even, odd, and edge
links, respectively and mean that for some set of qudits, we ap-
ply gates with the same variational parameter (in accordance
with the symmetry of the system). In the above unitary, the
single qudit rotations are defined as

Ri, j (θ, ϕ) = exp

(
− iθ

2
σ i, j

ϕ

)
, (74)

with σ
i, j
ϕ = cos(ϕ)σ i, j

X + sin(ϕ)σ i, j
Y .

For real-time evolution, we choose the single-qudit unitary
operations more expressively as

Ue,o(θ0:7) = R0,1
X (θ7)R0,1

Y (θ6)R0,2
X (θ5)R0,2

Y (θ4)

× R1,2
X (θ3)R1,2

Y (θ2)R0,1
Z (θ1)R0,2

Z (θ0),

Ur (θ0:7) = R1,2
X (θ3)R1,2

Y (θ2)R0,1
Z (θ1)R0,2

Z (θ0). (75)

FIG. 5. Individual layers of the variational quantum circuit for
one plaquette in (2 + 1) dimensions. Each building block of the
parametrized quantum circuit used for generating the trial states
is built from a set of single-qudit operations, given by two-level
rotations, and entangling operations, given by the CROT gate
[see Eq. (77) for definition].
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FIG. 6. Variational imaginary-time evolution of a system of seven qudits in (1 + 1) dimensions. (Left) Fidelity Fθ (τ ) of the variational
state with respect to the exact ground state as a function of the imaginary time for different circuit depths (N = 1, 2, and 3 layers). All of the
results converge after a finite time. The highest reached fidelities are ∼74%, ∼99%, and >99% for N = 1, 2, and 3 layers, respectively. (Right)
Expectation value of the Hamiltonian of the system in the trial state as a function of the imaginary time. The error of the ground-state energy
in the final time of the simulation is below 1% for N = 3 layers.

In each layer, after a set of single-qudit unitaries, we apply
a set of two-qudit entangling operations. For most of cases,
these entangling gates will be Mølmer-Sørensen gates

MSi, j (θ ) = exp

(
− iθ

4

(
σ

i, j
X ⊗ 1 + 1 ⊗ σ

i, j
X

)2
)

. (76)

Note that the set of single-qudit unitaries used for the sim-
ulation of real-time evolution, together with the entangling
Mølmer-Sørensen gate, constitute a universal set of operations
for the qudit device.

In the case of real-time evolution of a plaquette in (2 + 1)
dimensions, we use CROT entangling gates, which for qutrits
is defined as

CROT(θ ) = (1 − |2〉 〈2|) ⊗ 1 + |2〉 〈2| ⊗ exp

(
− iθ

2
σ 1,2

X

)
.

(77)

Due to the connectivity in the trapped-ion quantum device
of Ref. [13], entangling MS and CROT gates can be imple-
mented between any pair of qudits, thus not restricting the
setup to nearest-neighbour entangling gates.

V. RESULTS

To benchmark the experimental realizability, we perform
numerical simulations for the real- and imaginary-time evolu-
tion of an Abelian LGT in (1 + 1) and (2 + 1) dimensions. As
proof of principle, we set the coupling constant g = 1 and the
fermion mass to M = 0.1 and work with a number of qudits
and gate sets feasible with current hardware [13] and also
considered in theoretical study [101]. In terms of entangling
gate count, for simulating a system with L links in (1 + 1)
dimensions, we construct circuits that use L − 1 entangling
gates per layer of the variational circuit, or L gates for the
(2 + 1)-dimensional case. Hence, for N layers, we need at
most LN qudit entangling gates; see Appendix E.

A. Variational imaginary-time evolution

For simulating variational imaginary-time evolution, we
employ a quantum circuit with variable number of layers
N , where each individual layer looks like the one in Fig. 4
for a system in (1 + 1) dimensions and Fig. 5 for a system
in (2 + 1) dimensions. The variational circuit is applied on
an initial state that is easy to implement, for example, the
product state of all qudits initialized in the state |1〉, |ψ0〉 =⊗

i |1〉i. For performing the imaginary-time evolution, we
are interested in initializing random states captured by the
parametrized circuit. To prepare such random states, we have
to choose a random set of variational parameters and apply the
corresponding circuit on the state |ψ0〉.

By numerically solving the discretized equation of motion
for the variational parameters during imaginary-time evolu-
tion, we obtain a set of values for the parameters for each time
instance. For each such set of parameters, we calculate the
fidelity of the variational state with the exact ground state

Fθ (τ ) = |〈ψ (θ (τ ))|ψground〉|2 (78)

and the energy of the variational state 〈H〉θ .
In Figs. 6 and 7, these two quantities are plotted as a

function of the imaginary time for a system of seven qudits in
(1 + 1) dimensions and for a plaquette in (2 + 1) dimensions,
respectively. The different lines correspond to variational cir-
cuits with different number of layers N = 1, 2, and 3. We see
that for all circuits, the fidelity and the energy converge. In
addition, the quantities converge to the exact ones with the
infidelity of less than 1% for three layers. Correspondingly,
we can obtain the correct energy with a relative error below
1%.

B. Variational real-time evolution

With the variational time-evolution approach, we can also
approximate quench dynamics. Initially, a system of five qu-
dits is prepared in the product state |ψ0〉 = ⊗

i |1〉i, which
corresponds to the ground state of the Hamiltonian in Eq. (4)
for infinite fermion rest mass M → ∞. Then, we apply the
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FIG. 7. Variational imaginary-time evolution of a system of one plaquette in (2 + 1) dimensions. (Left) Fidelity Fθ (τ ) of the variational
state with respect to the exact ground state as a function of the imaginary time for different circuit depth (N = 1, 2, and 3 layers). All of the
results reach high fidelity after a finite time, around ∼91%, ∼99%, and >99% for N = 1, 2, and 3 layers, respectively. (Right) Expectation
value of the Hamiltonian of the system in the trial state as a function of the imaginary time. The error of the ground-state energy in the final
time of the simulation is below 1% for N = 3 layers.

time evolution operator with respect to the Hamiltonian in
Eq. (4). In Fig. 8, the fidelity of the trial state with respect
to the ideally time-evolved state

Fθ (t ) = |〈ψ (θ (t ))|ψ (t )〉|2 (79)

is shown as a function of time. The fidelity can serve as a strict
quantifier of how reliable the variational approach reproduces
the time evolution of the state of the system. In Fig. 8 also
the evolution in time of a gauge invariant observable—the
fermion number 〈n〉θ—is given for different circuit depths
(number of layers N = 2, 3, and 4). The dashed black line
represents the exact time evolution of the fermion numbers
under the Hamiltonian of the gauge theory. We observe good
qualitative agreement between the variationally evolved and
the exactly evolved fermion numbers in the case of N = 3, 4
(blue lines). Furthermore, for four layers, we also obtain quan-
titatively high fidelity (>80%) for times up to two oscillation
periods of the fermion numbers.

A quantity that can give us insight about why the varia-
tional time evolution starts to deviate after some time is the
entanglement (von Neumann) entropy. We introduce a cut
in the system of qudits (for example, in the middle of the
one-dimensional chain) and denote the two resulting subsys-
tems as A and B. Then, the bipartite entanglement entropy of
subsystem A reads

S (ρA) = −TrA[ρA ln ρA], (80)

where the reduced density matrix of subsystem A is

ρA = TrB |ψ〉 〈ψ | . (81)

In Fig. 9, we plot this entropy as a function of time. As we
expect, initially, the entropy grows linearly with time. After
that, it saturates and becomes constant, up to some fluctuations
due to finite-size effects. We observe a correlation between the
ability of the quantum circuit to capture this entropy growth
up to the saturated value and its ability to reproduce the correct

FIG. 8. Variational real-time evolution of a system of five qudits in (1 + 1) dimensions. (Left) Fidelity of the variational state with respect
to the exactly time-evolved state [see Eq. (79)]. The fidelity decreases with time as the correct time evolution of the initial state becomes harder
and harder to approximate with fixed number of layers. (Right) Real-time dynamics after a quench of the gauge invariant fermionic numbers
in the middle of the one-dimensional system. The dashed line corresponds to the exact time evolution of the fermion numbers, and the colorful
lines correspond to the approximate time evolution with different number of layers N .
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FIG. 9. Evolution of the entanglement entropy of subsystem A
after a quench in a system of five qudits in (1 + 1) dimensions. After
initial linear growth, the entropy S(ρA) saturates to a finite constant
up to fluctuations due to finite size effects. As we increase the number
of layers N in the variational circuits, we observe better and better
approximations to this behavior of the entropy in the trial state.

behavior of the time-evolved system. Therefore we need a
circuit capable of generating sufficient entanglement for the
correct simulation of the time evolution. This capability grows
with the number of entangling operations in the circuit. How-
ever, we need to restrict this number to keep the experimental
error low.

We also simulate the variational real-time evolution for a
system of one plaquette in (2 + 1) dimensions. In Fig. 10, the
gauge-invariant fermion occupation numbers 〈n〉θ in the lower
left corner of the plaquette is shown as a function of time.
Also, the fidelity with respect to the exactly time-evolved state
is shown as a function of time. Quantitatively, the fidelity
drops below 80% for early times, and the time evolution of the
fermion occupation numbers slightly deviates from the exact
one. However, qualitatively, the time evolution of 〈n〉θ is cap-
tured very well. As we see from the fidelity plot, even for later
times, the fidelity remains constant. Here again, we investigate

FIG. 11. Evolution of the entanglement entropy of subsystem A
after a quench in a system of one plaquette in (2 + 1) dimensions.
We observe that the growth of entropy at very early times is not
correct; however, there is a qualitative agreement with the exact
diagonalization. This growth of entropy leads to small deviations
from the exact result for the fermionic occupation numbers; however,
these deviations do not grow with time.

the bipartite entanglement entropy (Fig. 11) and establish the
correlation between quantitative results and entropy growth at
early times. In Appendix D, we show how to modify the vari-
ational circuit to give very good qualitative results throughout
the simulation. The new element is an entangling gate mo-
tivated by the plaquette term present in the Hamiltonian of
the gauge theory in (2 + 1) dimensions. Though currently
not state of the art, there are considerable efforts towards
constructing native multipartite gates in trapped-ion quantum
computers [96,102].

VI. CONCLUSIONS

The core of the presented approach to the quantum sim-
ulation of Abelian LGTs is based on three ingredients: the
hardware-efficient implementation of the LGT by integrating
of redundant degrees of freedom, while preserving the locality

FIG. 10. Variational real-time evolution of a system of one plaquette in (2 + 1) dimensions. (Left) Fidelity of the variational state with
respect to the exactly time-evolved state [see Eq. (79)]. The fidelity for N = 2 and 3 layers decreases with time, while the decrease for N = 4
is much slower. This suggests that for a system of 1 plaquette, there might not be a need to gradually increase the circuit depth with time to
approximate the time evolution reliably. (Right) Real-time dynamics after a quench of the gauge invariant fermionic numbers in the middle of
the one-dimensional system. The dashed line corresponds to the exact time evolution of the fermion numbers, and the colored lines correspond
to the approximate time evolution with a different number of layers N .
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of the Hamiltonian; the mapping of the resulting LGT on a
qudit model that can be directly implemented on qudit quan-
tum hardware; and the application of a variational quantum
simulation protocol for ground-state preparation as well as
quench dynamics.

In particular, we showed how to encode a U(1) LGT with
dynamical fermions in arbitrary dimensions in a qudit sys-
tem that can be implemented on already existing trapped-ion
quantum computers [13]. In a proof-of-principle numerical
simulation, we showed the power of the variational time
evolution algorithm in finding the ground state of this LGT
in (1 + 1) and in (2 + 1) dimensions, for a measurement
based implementation of imaginary-time evolution we refer to
[103]. Using only gates available in present-day experimental
platforms and a small number of entangling operations, we
successfully found a good approximation of the ground state
of the LGT for various system sizes, including a system in
(2 + 1) dimensions.

Furthermore, we also showed that we can variationally
simulate the real-time evolution of an LGT and provided a
circuit that is implementable on present-day devices. Gauge
invariant quantities such as fermion occupation numbers
showed several periods of oscillating behavior, a clear im-
provement with respect to previous studies [53,59]. We also
simulated the real-time dynamics of an LGT in (2 + 1) di-
mension and showed an improvement over various oscillation
periods by extending the circuit with a four-body entangling
gate.

So far, we were primarily concerned with the case of
Abelian LGTs. In the future, our methods can be extended to
gauge theories with a non-Abelian symmetry, such as SU(2)
and SU(3), relevant for the standard model of particle physics
[104], but also some discrete non-Abelian gauge groups such
as the dihedral groups Dn. The gauge field Hilbert space
of the latter is naturally finite dimensional and thus can be
implemented without truncation in a qudit quantum device.
By combining the resource-friendly variational approach with
a qudit-based quantum computation strategy, we anticipate
significant improvement in the quantum simulation of non-
Abelian gauge theories in the near future.

Finally, we comment on the prospects of quantum ad-
vantage in the context of quantum simulating lattice gauge
theories. Quantum advantage entails a quantum computer
calculating physical quantities with given precision more ef-
ficiently (time, memory, energy, money, etc.) than classical
computer algorithms [74]. A key area where the quantum ad-
vantage is achievable is the time evolution of two-dimensional
quantum many-body systems, like the presented (2 + 1)-
dimensional lattice version of quantum electrodynamics.
Classical methods like exact diagonalization or tensor net-
work methods [105,106] often face memory or computational
constraints in simulating quantum many-body dynamics, ar-
eas where digital quantum computers can excel. Currently, the
limitation of our proposal primarily lies in the quality of qudit
hardware rather than the variational algorithm itself, and we
are looking forward to technological developments in the field
of qudit-based quantum computation.

The data set used in this paper is available on Zenodo
[107].
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APPENDIX A: PARAMETER SHIFT RULES FOR
THE COMPONENTS OF THE METRIC TENSOR

The problem we faced in the main text is how to compute
the derivatives of a function given we can measure the func-
tion itself. We start by writing the function fμν (a) in Eq. (51)
in an analytical form. We then perform the derivative with
respect to a analytically, motivated by the so-called parameter
shift-rules, see for example [92].

In order to derive an analytical expression for the deriva-
tives, we focus on fμν (a) for pure states. If we assume trial
states of the form as in Eq. (38), after we insert this trial state
into the definition of the function fμν (a) from Eq. (51), we
obtain the expression

fμν (a) = |〈ψμ|Wμ(a)VUν (a)|ψν〉|2, (A1)

where the states |ψμ〉 is defined as

|ψμ〉 = Uμ−1(θμ−1) . . .U1(θ1) |ψ0〉 (A2)

and Wμ(a), Uν (a), and V are unitary matrices and

Wμ(a) = eia wμ, (A3)

Uν (a) = eia uν , (A4)

with Hermitian operators wμ and uν . Because of Eq. (38), the
eigenstates of W and U can be written as

Wμ(a) |wμ,m〉 = eiawμ,m |wμ,m〉 , (A5a)

Uν (a) |uν,n〉 = eiauν,n |uν,n〉 , (A5b)

where the labels m and n enumerate possible degeneracies.
Inserting the resolution of the identity in Eq. (A1), we obtain

fμν (a) =
∑

m,n,p,q

f μν
m,n,p,qeia(wμ,m+uν,n−wμ,p−uν,q ), (A6)

with f μν
m,n,p,q being (up to a linear transformation) the Fourier

coefficients of fμν (a). Considering all possible combinations
of m, n, p, and q there are R f ,μν different values of wμ,m +
uν,n − wμ,p − uν,q. We denote these values by ωr with r ∈

{1, . . . , R f ,μν}. Summarizing the eigenvalues in this form al-
lows us to rewrite the above expression for fμν (a) as

fμν (a) =
R f ,μν∑
r=1

Fμν,reiaωr . (A7)

We use this analytical form to determine the coefficients Fμν
r .

To this end, we evaluate the function fμν (a) at R f ,μν different
values of al with l ∈ {1, . . . , R f ,μν} such that we obtain R f ,μν

different linear equations

fμν (al ) =
R f ,μν∑
r=1

eial ωr Fμν,r for l ∈ {1, . . . , R f ,μν} (A8)

with the unknown variables Fμν,r . The above system of equa-
tions has a solution if the matrix Alr = eial ωr has full rank. If
that is not the case, we change the evaluation points al until
the matrix Alr achieves full rank. Having the coefficients of
the Fourier sum of the function fμν (a), we can calculate its
derivatives by deriving this Fourier sum. These derivatives, on
the other hand, directly give us the matrix elements of Mμν , as
shown in Eq. (52).

In order to obtain the diagonal elements Mμμ, we deter-
mine the function pμ(a) and use Eq. (51). For this, we rewrite
p(a) as

pμ(a) = | 〈ψμ|Pμ(a)|ψμ〉 |2, (A9)

where T is a unitary matrix and Pμ(a) is of the form

Pμ(a) = eia pμ . (A10)

This is a unitary matrix with the eigenvectors and eigenvalues
given by

Pμ(a) |pμ,m〉 = eiapμ,m |pμ,m〉 , (A11)

where the label m enumerates the eigenvectors. Inserting the
resolution of the identity in Eq. (A9), we obtain

pμ(a) =
∑
k,l

pμ

k,l e
ia(pμ,k−pμ,l ). (A12)

FIG. 12. Variational real-time evolution of a system of one plaquette in (2 + 1) dimensions with a circuit that includes a four-body gate.
(Left) Fidelity of the variational state with respect to the exactly time-evolved state [(see Eq. (79)]. For N = 4, the fidelity does not drop below
80% for the whole simulation period. (Right) Real-time dynamics after a quench of the gauge invariant fermionic numbers in the bottom left
corner site of the plaquette. We see virtually perfect agreement between the exactly diagonalized (dashed line) result and the result from the
variational simulation for N = 4 layers.
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FIG. 13. Evolution of the entanglement entropy of subsystem A
after a quench in a system of 1 plaquette in (2 + 1) dimensions.
The initial growth of the entropy is captured very accurately for
N = 2, 3, 4 layers. Furthermore, for N = 4 layers, the time evolution
of the entropy is very well approximated over the whole simulation
time.

Considering all possible combinations of k and l , there are
Rμ,p different values of pμ,k − pμ,l . We denote these Rμ,p

different values by λμ,r with r ∈ {1, . . . , Rμ,p}, giving

pμ(a) =
∑

r

pμ,reiaλμ,r . (A13)

We use the above analytical form of pμ(a) to determine the
coefficients Pμ,rp . Tho this end, we evaluate the function pμ(a)
at Rμ,p different values of a, which we denote aμ,rp with rp ∈
{1, . . . , Rp}, such that we obtain a system of linear equations

pμ

(
arp

) =
∑

r

pμ,reiaμ,rpλμ,r , (A14)

with the unknown variable pμ,r . Having the derivatives of pμ

and fμν , we can calculate the coefficients of the metric tensor,
using Eq. (52).

APPENDIX B: HOW TO MEASURE Vμ

FOR IMAGINARY TIME EVOLUTION

Since the components of the vector V I
μ from the main

text are connected to the derivatives of the function vI
μ(a)

[see Eq. (55)], we show here how to calculate these deriva-
tives by measuring the function itself. Similar to fμν (a), the
function vI

μ(a) is of the form

vI
μ(a) = 〈ψμ|Q†

μ(a)R†HRQμ(a)|ψμ〉 , (B1)

with unitary operators R and Qμ(a). The latter is of the form

Qμ(a) = eia qμ (B2)

with hermitian qμ. Using the eigenvalue equation for

Qμ(a) |qμ,m〉 = eiqμ,ma |qμ,m〉 , (B3)

we can rewrite the function vI
μ(a) as

vI
μ(a) =

∑
m,n

vI
μ,mneia(qμ,m−qμ,n ). (B4)

There are Rμ,v different values of qμ,m − qμ,n, which we call
χμ,rv

, allowing us to rewrite the sum in Eq. (B4) as

vI
μ(a) =

∑
rv

vI
μ,rv

eiaχμ,rv . (B5)

In order to determine the Fourier coefficients vμ,rv
we evaluate

the function vμ(a) at Rμ,v different values of a and determine
the Fourier coefficients vμ,rv

by solving the linear system

vI
μ(aμ,r ) =

∑
rv

vI
μ,rv

eiaμ,rχμ,rv . (B6)

Given the analytical form of vI
μ(a) the derivative is given by

∂

∂a
vI

μ(a) = i
∑

rv

vI
μ,rv

χμ,rv
eiaχμ,rv . (B7)

FIG. 14. Variational real-time evolution of a system of seven qudits in (1 + 1) dimensions. (a) Fidelity of the variational state |ψ (θ (t ))〉
with respect to the exactly time-evolved state |ψ (t )〉. (b) Real-time dynamics after a quench of the gauge invariant fermionic numbers in the
middle of the one-dimensional system. The dashed line corresponds to the exact time evolution of the fermion numbers and the colorful lines
correspond to the approximate time evolution with different number of layers N .
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FIG. 15. Evolution of the entanglement entropy of subsystem A
after a quench in a system of seven qudits in (1 + 1) dimensions.
After initial linear growth, the entropy S(ρA) saturates to a finite
constant up to fluctuations due to finite size effects. As we increase
the number of layers N in the variational circuits, we observe better
and better approximation to this behavior of the entropy in the trial
state.

Having this derivative, the component of the vector V I
μ are

obtained by Eq. (56).

APPENDIX C: REPRESENTING A HERMITIAN MATRIX
AS A SUM OF TWO UNITARIES

A simple calculation shows that every Hermitian matrix
S can be represented as a sum of two unitary matrices. We
construct those unitaries as follows:

(1) Diagonalise S → DS = V †SV.

(2) Define ||S|| := max
i

|λi|, where λi are the diagonal ele-

ments of DS .
(3) Define the normalised D̃S := 1

||S||DS .

(4) Define the unitary matrix UD := D̃S + i
√

1 − D̃S.

(5) Define US := VUDV †.
Then, the relation holds

S = 1
2 ||S||(US + U †

S ), (C1)

where we have an explicit construction of the matrix US .

APPENDIX D: VARIATIONAL REAL-TIME EVOLUTION
WITH A FOUR-BODY ENTANGLING GATE

Here, we propose how to minimally enhance the variational
quantum circuit from Fig. 5, so that we obtain significantly
better results for the real-time evolution in (2 + 1) dimen-
sions. The Hamiltonian of the system includes a four-body
interaction, given by the plaquette term. If we include such a
gate and assign a variational parameter to it

Uplaq(θ ) = exp(−i(ŨP + Ũ †
P )θ ), (D1)

we can extend each layer of the parametrized quantum cir-
cuit by one such unitary. Then, performing the variational
real-time evolution, we obtain the results shown in Figs. 12
and 13.

APPENDIX E: VARIATIONAL REAL-TIME EVOLUTION
FOR 7 QUDITS IN (1 + 1) DIMENSIONS

In Sec. V, we studied the variational real-time evolution
of 5 qudits in (1 + 1) dimensions and observed qualitative
agreement for the period of two oscillations (see Fig. 8).
Here, we complement the study of the variational real-time
for a system of seven qudits. We calculate the fidelity of
the variational state at each time step concerning the exact
state, see Fig. 14. In addition, we calculate the dynamics of
the fermion numbers in the center of the one-dimensional
system. We observe that the variational circuit for N = 3 and
N = 4 layers can capture the correct behavior of the fermion
number for up to one oscillation period. However, the fidelity
drops significantly at later times, and the time evolution is no
longer accurate. To understand this limitation, we investigate
the entanglement entropy in the system of seven qudits, shown
in Fig. 15 and observe a restriction in the growth of the
entanglement entropy. The limitation of entanglement entropy
suggests that the circuits cannot generate the correct form of
entanglement to approximate the exact real-time evolution for
times later than one oscillation period. In future studies, we
will improve this circuit by going to deeper circuits but also
by choosing different entangling gates.
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