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Investigating the cosmological implication of the fact that neutrino has finite mass is of importance for
fundamental physics. In particular, massive neutrino affects the formation of the large-scale structure (LSS)
of the universe, and, conversely, observations of the LSS can give constraints on the neutrino mass. Numerical
simulations of the LSS formation including massive neutrino along with conventional cold dark matter is thus an
important task. For this, calculating the neutrino distribution in the phase space by solving the Vlasov equation is
a suitable approach, but it requires solving the PDE in the (6 + 1)-dimensional space and is thus computationally
demanding: Configuring ngr grid points in each coordinate and nt time grid points leads to O(n6

gr ) memory space
and O(nt n6

gr ) queries to the coefficients in the discretized PDE. We propose a quantum algorithm for this task.
Linearizing the Vlasov equation by neglecting the relatively weak self-gravity of the neutrino, we perform the
Hamiltonian simulation to produce quantum states that encode the phase-space distribution of neutrino. We also
propose a way to extract the power spectrum of the neutrino density perturbations as classical data from the
quantum state by quantum amplitude estimation with accuracy ε and query complexity of order Õ[(ngr + nt )/ε].
Our method also reduces the space complexity to O[polylog(ngr/ε)] in terms of the qubit number, while using
quantum random access memories with O(n3

gr ) entries. As far as we know, this is the first quantum algorithm for
the LSS simulation that outputs the quantity of practical interest with guaranteed accuracy.

DOI: 10.1103/PhysRevResearch.6.013200

I. INTRODUCTION

A. Background

Quantum computing is an emerging technology and has
the potential to speed up numerical tasks intractable by
classical computers, today’s ordinary computers including
supercomputers. Witnessing the recent rapid advance of quan-
tum computing, people are now trying to find use cases of
quantum computers with the quantum advantage in various
fields. In this paper, we focus on the simulation of the large-
scale structure (LSS) of the universe with massive neutrino,
an important task in cosmology.

In the standard cosmological model, all the rich struc-
tures of the present-day universe formed through gravitational
instability of tiny density fluctuations seeded in the early
universe [1]. The structure at the largest scale probed by
cosmological observations is called the LSS. The evolution
and the resultant LSS have been shaped by the nature of
the mysterious constituents of the universe. Interestingly, the
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major components of the universe are largely unidentified. In
terms of the energy fraction, about 69% is contributed by the
so-called dark energy, perhaps some unknown form of energy
different from matter, and about 26% is dark matter (DM),
which is often thought to be unknown elementary particles
that are not predicted to exist in the Standard Model (SM) of
particle physics [2]. Observations of the cosmic LSS can shed
light on the nature of such dark components and, eventually,
provide an important clue on physics beyond the SM.

An important issue toward a better understanding of par-
ticle physics through the LSS is that neutrinos have finite
masses. Neutrinos are massless particles in the SM, but the
detection of neutrino flavor oscillation [3] has now established
that they have nonzero mass. The current constraint from the
neutrino oscillation experiments is given as the lower bound
on the neutrino mass. Although the estimated mass is much
smaller than other SM particles such as electron with 0.51
MeV, the nonzero neutrino mass is definite evidence that there
is physics beyond the SM. Intriguingly, astronomical observa-
tions of the cosmic LSS provide independent constraints on
the neutrino mass.1 Neutrinos produced in the early universe

1We also note that there are some researches for constraining the
neutrino mass through other types of particle physics experiments or
astronomical observations [4–7].
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exist even today as relics and constitute a part of matter
component, along with cold dark matter (CDM), the conven-
tional picture of DM as particles with much larger mass, e.g.,
TeV order for supersymmetric particles. In the LSS formation,
neutrino behaves differently from CDM and ordinary matter
(baryons), which we hereafter call CDM collectively since
they behave similarly under the action of mutual gravity.
Neutrinos have nonrelativistic but extremely large velocities
and thus stream almost freely in the gravitational potential of
CDM. Hence neutrinos used to be thought as hot dark matter
(HDM) distinguishing from CDM. The distribution and grav-
itational dynamics of neutrinos affect the formation of LSS
differently from the conventional picture with CDM only. This
gives hope that, by comparing the theoretical prediction on
the LSS with massive neutrino to the results of cosmological
observations, one can derive constraints on the neutrino mass.
We also note that some particle physics models beyond the
SM predict other light elementary particles such as axion
[8–12], and they can behave as HDM and be constrained from
LSS observations, too [13].

This background gives us a strong motivation for the
numerical simulation of the LSS with massive neutrino.
However, it is a computationally demanding task. N-body
simulations are often chosen as a powerful method for the
study of LSS, where we employ a large number of particles
and follow their gravitational dynamics. Massive neutrinos
have been also incorporated into this method, by either adopt-
ing approximate corrections or by directly represented by
“light” particles [14–23]. However, there remains a concern
that such N-body simulations with massive neutrino may lead
to imprecise results because, unlike the conventional matter
components, CDM, and baryons, neutrinos have typically a
much larger velocity dispersion, and the so-called shot noise
can be significant unless an extremely large number of simu-
lation particles are employed.

An alternative approach is the Vlasov simulation, that is,
solving directly the collisionless Boltzmann equation, also
known as the Vlasov equation2:

∂ f

∂t
(t, x, v) + v · ∂ f

∂x
(t, x, v) + F(t, x) · ∂ f

∂v
(t, x, v) = 0,

(1)

where f (t, x, v) is the neutrino’s distribution function in the
six-dimensional (6D) phase space consisting of the 3D po-
sition x and the 3D velocity v at time t and F(t, x) is the
gravitational force per unit mass on a neutrino at position x
at time t . However, solving this is also a challenging task.
Since there is no exact analytic solution of Eq. (1) in real-
istic settings, we need to resort to some numerical method.
A straightforward way to solve a partial differential equa-
tion (PDE) is discretization: Setting grid points in the phase
space, we can convert the PDE to a linear system of ordinary
differential equations (ODEs) and then apply some algorithm

2Here we do not explicitly take into account cosmic expansion and
hereafter we consider integration over a sufficiently short time so
that the expansion parameter does not vary significantly. We leave
the formulation including cosmic expansion as our future work.

for solving ODE. This approach, though, has limited fea-
sibility because of the so-called curse of dimensionality. If
we take ngr grid points in one direction, then the total grid
number in the 6D phase space becomes n6

gr and so does the
dimension of the ODE. Then, in the time integration of the
ODE, the memory space used is of order O(n6

gr ), and if we
take nt time steps in the integration, then O(n6

grnt ) queries to
the coefficients in the ODE are made in total. This sixth-order
scaling makes the Vlasov simulation heavier than the N-body
simulation, where we deal with equations of motion in the
3D space. Although there are some studies that try to solve
Eq. (1) by supercomputers [24–26], the room to increase the
grid number to improve accuracy is limited.

B. Our contribution

Motivated by the above things, in this paper, we propose
the quantum algorithm for the Vlasov simulation of neutrino
run on a fault-tolerant quantum computer (FTQC).

Our first key observation is that we can reduce Eq. (1) to
the form to which Hamiltonian simulation [27–36] can be ap-
plied. At first glance, applying a quantum algorithm to Eq. (1)
seems difficult, since it is a nonlinear PDE. F is composed of
not only the gravity from CDM but also the self-gravity of
neutrino and thus depends on f , which makes Eq. (1) non-
linear. Because of the unitarity of quantum operations, using
quantum computing for nonlinear problems is not straightfor-
ward. In fact, for solving differential equations, most existing
quantum algorithms are dedicated to linear ones [37–55], and
those for nonlinear ones have application conditions such
as the nonlinear term needing to be small in some sense
[50,56–62]. Nevertheless, we can approximately transform
Eq. (1) into a linear PDE as follows. Since neutrino accounts
for a much smaller fraction than CDM, we can neglect the
gravity from neutrino to itself and CDM unless the neu-
trino density is extremely nonuniform. Then, we obtain the
gravitational field FCDM(t, x) by CDM using, e.g., the N-
body simulation in advance and approximate F(t, x) with
FCDM(t, x). The resulting linear PDE can be transformed
into the ODE by discretization. Importantly, the ODE has
an antisymmetric coefficient matrix A and thus is considered
as a Schrödinger equation with the Hermitian iA being the
Hamiltonian. We then apply the Hamiltonian simulation, a
methodology to generate a quantum state evolved under a
given Hamiltonian, and yield the quantum state |f (T )〉 encod-
ing the value of f on the grid points at the terminal time T
in the amplitudes. As seen later, this takes the Õ(ngr + nt )3

complexity in terms of the number of queries to the oracle to
access the entries in A, which indicates a large speedup from
O(n6

grnt ).
It should be noted that extracting some quantities of inter-

est from the quantum state encoding f in the amplitudes is
another issue [63]. Then we also present how to obtain a typi-
cal target quantity in the LSS simulation, the power spectrum
Pν (k) of the neutrino density perturbation, which indicates the
magnitude of the perturbation at the specified scale k, from

3Õ(· · · ) hides the logarithmic factors in the Landau’s big-O
notation.
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the quantum state. This is done by some additional unitary op-
erations on |f (T )〉 and quantum amplitude estimation (QAE)
[64]. In total, the proposed method outputs an estimate on
the power spectrum of accuracy ε with Õ[(ngr + nt )/ε] query
complexity.

We also note that the proposed quantum algorithm can
provide the advantage on space complexity, too. In the above
task for calculating Pν (k), our algorithm uses O(log5/2(ngr/ε))
qubits in total, which is exponentially smaller than the
O(n6

gr ) memory space in the aforementioned classical method.
However, our method uses some quantum random access
memories (QRAMs) [65] with O(n3

gr ) entries to store the
precomputed CDM gravitational field FCDM(t, x) on the grid
points.

In addition, the proposed method can cope with the follow-
ing complication in the practical problem setting. Reflecting
the stochastic nature of the initial value of the perturbation,
Pν (k) is defined as an ensemble average. In the classical LSS
simulation, it is estimated through multiple runs of the N-
body or Vlasov simulation with different initial conditions.
In our quantum method, we do not need multiple runs: We
can generate the quantum state that encodes the results from
different initial conditions in superposition and estimate Pν (k)
with the single quantum state.

C. Comparison to previous studies

Quantum algorithms for solving the Vlasov equation have
been considered in previous studies. Most of them give dis-
cussions in the context of plasma physics, and there has been
no study focusing on the gravitational LSS simulation with
massive neutrino as far as we know. Also in the technical
aspect, the existing studies are in directions different from
ours.

References [66–68] presented FTQC algorithms to solve
the Vlasov-Poisson equation, in which the force induced
by the particles themselves is considered, in the context
of plasma physics. They considered the linearized Vlasov-
Poisson equation, which describes the perturbative solution
on the zeroth-order analytical solution. Compared to this,
our approach for linearization, which approximates the force
field by only that from CDM based on the small neutrino
mass fraction, is different in the following points. First, the
CDM gravity is externally given by, e.g., N-body simulation,
in which the nonlinear dynamics is incorporated, and it is
reflected to the neutrino dynamics solved in the current ap-
proach. Second, the condition for our approximation to be
valid is that neutrino density nonuniformity is not so large that
the neutrino self-gravity is negligible compared to the CDM
gravity. This is different from the condition for the perturba-
tive approach to be valid, the perturbation being smaller than
the zeroth-order solution, which is the neutrino background
density in this case. The fractional mass (and energy) density
of neutrino is less than 1% of that of CDM, as given in
Eq. (3) later. Also, recent fully nonlinear simulations show
the maximum local over-density of neutrino is of the order
unity [24,69]. These values depend slightly on the neutrino
mass but remain extremely small compared to those of CDM
whose maximum over-densities reach 500–1000 in nonlinear

“halos.” Hence the local gravitational potential is dominated
by CDM in most of the regime of interest.

As a difference from the other aspect, although
Refs. [66–68] also used the Hamiltonian simulation, they
worked in the Fourier space instead of working in the
position space x like us. This does not fit our setting that the
position-wise CDM gravity FCDM(t, x) are given.

There are also studies on quantum algorithms to solve
the Vlasov equation in the nonlinear form. Reference [70]
considers approaches via some linearization methods such
as Carleman linearization [71]. However, like the exist-
ing quantum solvers for nonlinear differential equations
[50,56–62], the method in Ref. [70] has some application
conditions such as weakness of the nonlinearity. If such
conditions are satisfied, then quantum nonlinear differential
equation solvers based on Carleman linearization provide a
solution with space and query complexities of the same or-
der as linear ones except for some logarithmic overheads
[50]. Reference [72] summarizes the prospect of quantum
algorithms to solve plasma dynamics in both linearized and
nonlinear settings and also mentions the variational quantum
algorithms (VQAs) [73]. They might be able to run on noisy
intermediate-scale quantum devices in the near term, but they
are genuinely heuristic.

When it comes to the simulation of self-gravitating sys-
tems, in which LSS simulation is included, Ref. [74] proposes
a VQA to solve the nonlinear governing equation. Reference
[75] also presents a VQA, with the fuzzy DM [76], a spe-
cific scenario for DM, in mind. Although their numerical
experiment shows a promising result in the proof-of-concept
problem, it is unclear whether their methods scale to the larger
problem. Reference [77] proposes an FTQC algorithm for
the Vlasov equation based on the reservoir method in the
context of fluid dynamics, and Ref. [78] proposes a similar
algorithm for self-gravitating systems. By their method, the
Vlasov equation is simulated by appropriately arranging quan-
tum circuits performing increment and decrement operations.
While classically controlling the arrangement of the quantum
circuits, it allows the delegation of six-dimensional operations
to quantum computation. As a result, their method can reduce
the complexity scaling on ngr to O(n3

gr ), and thus our method
achieves larger speedup.

We also comment that the method to extract the power
spectrum from the quantum state has not been proposed to
our knowledge.

D. Organization

The rest of this paper is organized as follows. In Sec. II,
we will explain some basics of the LSS simulation and quan-
tum algorithms used in this paper. Section III is the main
part, where we will explain each part of our method one by
one: discretizing the Vlasov equation, obtaining the solution-
encoding quantum state by Hamiltonian simulation, extracting
the power spectrum from the quantum state by QAE, coping
with the ensemble average, and so on. To illustrate our algo-
rithm, we present a demonstrative numerical experiment on
the Hamiltonian simulation-based time evolution of f (t, x, v)
in Sec. IV. Section V summarizes this paper.
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II. PRELIMINARIES

A. Notation

We use I to denote an identity operator. To avoid ambiguity,
we may write it as In with n ∈ N when its size is n × n. We
define R+ by the set of all positive real numbers. For every
n ∈ N, we define [n]0 := {0, 1, . . . , n − 1}. If a matrix A has
at most s ∈ N nonzero elements in each row and each column,
then we say that A is s-sparse and the sparsity of A is s.

For a vector x ∈ Cn, ‖x‖ denotes its Euclidean norm. For
an (unnormalized) quantum state |ψ〉 on a multiqubit system,
‖ |ψ〉 ‖ denotes the Euclidean norm of its state vector. For a
matrix A ∈ Cm×n, ‖A‖ denotes its spectral norm, and ‖A‖max

denotes its max norm, the maximum of the absolute values of
its entries.

For ε ∈ R+, we say that x′ ∈ R is an ε approximation of
x ∈ R if |x′ − x| � ε holds. We use log and lg for the natural
and binary logarithms, respectively.

We label the position of an entry in a vector and the
row and column in a matrix with an integer starting from
0. For example, we write a vector v ∈ Cn entrywise as v =
(v0, v1, . . . , vn−1) and call vi the ith entry, and a matrix A ∈
Cm×n as A = (ai j )i∈[m]0, j∈[n]0 and call ai j the (i, j)-th entry.

We denote by 1C the indicator function, which takes 1 if
the condition C is satisfied and 0 otherwise.

B. Simulation of large-scale structure formation
with massive neutrinos

Here we briefly explain some basics of the LSS simulation
and review recent developments of simulations that include
massive neutrinos.

1. N-body simulation

N-body simulations are often employed to simulate the
LSS formation. In this approach, the mass distribution is
represented by a collection of a large but tractable number
of superparticles. By populating the simulation volume with
Np superparticles, we numerically solve the time-evolution
equation for them:

d2

dt2
xi(t ) = Fi({x j (t )}), (2)

where xi(t ) is the space coordinate of the ith superparticle and
Fi is the gravitational force per unit mass on it caused by the
other ones. Then the important statistical quantities such as
the power spectrum of the density perturbation are estimated
from the distribution of the superparticles. When simulating
the LSS that consists of multiple species of particles, e.g.,
CDM and neutrino, one may naively attempt to use different
sets of superparticles for each component.

We need to distribute the particles sufficiently densely in
the 3D space in order to estimate the quantities of interest
accurately. A common setting on Np is Np = n3

p with large np,
say, O(102), which means Np can be of order of million. Thus,
the N-body simulation is a rather heavy calculation, which
may need a supercomputer in classical computing. Neverthe-
less, it is tractable compared to the Vlasov simulation, which
deals with the 6D space-velocity phase space. In particular, it
is commonly considered that if the velocity dispersion of the

particles is small as is the case for CDM, then the N-body sim-
ulation yields accurate result. On the other hand, for particles
with large velocity dispersion such as massive neutrino, it is
difficult to use a sufficiently large number of superparticles so
that the distribution in the velocity space is represented, and
often the N-body simulation may lead to imprecise results.

2. Vlasov simulation for massive neutrinos

In light of the above issue, a more desirable approach for
LSS simulation with massive neutrinos is solving the Vlasov
equation (1) directly. In particular, for neutrino, we can sim-
plify Eq. (1) using the fact that it accounts for only a small part
of the matter: The ratio of the neutrino energy fraction �ν to
�m that of the whole of the matter is [24,79]

�ν

�m
= Mν/93.14 eV

�mh2
� 7.6 × 10−3 × Mν

0.1 eV
, (3)

where h is the present value of the Hubble parameter in units
of 100 km/s and we use �mh2 � 0.14 [2]. Based on this fact,
we hereafter neglect the self-gravity of neutrino. Then, Eq. (1)
approximately boils down to the linear equation,

∂ f

∂t
(t, x, v) + v · ∂ f

∂x
(t, x, v) + FCDM(t, x) · ∂ f

∂v
(t, x, v) = 0,

(4)

where

FCDM(t, x) = (FCDM,x(t, x), FCDM,y(t, x), FCDM,z(t, x)) (5)

is the gravitational force per unit mass on a neutrino particle
at position x and time t exerted by CDM. This type of ap-
proximation can be found also in previous studies [80]. We
also neglect the gravitational back reaction from neutrino to
CDM and then obtain FCDM from the dynamics of CDM only
by, e.g., the N-body simulation. In other words, we consider
the neutrino dynamics given the gravity by CDM as an ex-
ternal force field. This leads to the difference between the
equation we try to solve and those in the previous studies on
the Vlasov-Poisson equation in plasma physics and LSS sim-
ulation [66–68,70,72,74]. Although both consider the Vlasov
equation (1) for some particles, in the latter, the force field
F is generated by the particles themselves and given through
the Poisson equation, and thus the system of the Vlasov and
Poisson equations is solved. On the other hand, in our setting,
F is explicitly given as a known function FCDM, and only
Eq. (4) is solved.

Solving Eq. (4) numerically is still a difficult task. As ex-
plained in Introduction, taking ngr grid points in each of the six
directions in the phase space leads to the total number of the
grid points being n6

gr. The total grid number rapidly increases
with ngr, and so do the query and space complexity in this
approach. Although there are some studies in this direction4

that use supercomputers and take hundreds to thousands of
grids in each position direction and tens of grids in each

4In Refs. [24–26], taking into account the gravity by neutrino to
itself and CDM, the authors performed the N-body simulation for
CDM and the Vlasov simulation for neutrino in combination, unlike
this paper neglecting the neutrino gravity.
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velocity direction [24–26], increasing the grid point number
largely is hard to desire in classical computing.

3. Neutrino power spectrum

Once we get the neutrino distribution function f (T, x, v)
at the terminal time T of the simulation, we can derive the
quantities of interest from it as follows.

A quantity we are typically interested in is the neutrino
power spectrum Pν (k). It is defined as

〈δ̃ν (T, k)δ̃∗
ν (T, k′)〉 = (2π )3Pν (k)δ(3)(k − k′). (6)

Here δ̃ν (t, k) := ∫
δν (t, x)e−ik·xd3x is the Fourier component

of the neutrino density perturbation

δν (t, x) := ρν (t, x) − ρ̄ν (t )

ρ̄ν (t )
(7)

at time t , where

ρν (t, x) :=
∫

f (t, x, v)d3v (8)

is the neutrino density and ρ̄ν (t ) is its average with respect
to position. 〈·〉 denotes the ensemble average with respect
to the randomness of the inflationary perturbation, which is
assumed to be homogeneous. δ(3)(·) denotes the 3D Dirac’s
delta function. Because of the assumption that the universe is
isotropic, Pν depends on k only through k := ‖k‖, the norm
of the wave-number vector.

Although neutrino and CDM behave as nonrelativistic mat-
ters in the present universe, the fluctuations of the neutrino
density and the CDM density leave different imprints in cos-
mological observations. It is implied that the galaxy number
density traces the mass density which is mostly contributed
by CDM [19,20,81–86]. The effect of neutrino is imprinted
in LSS over a wide range of length scales [1]. Combining
the results from, for instance, galaxy surveys and gravita-
tional lensing observations, we can obtain the information on
neutrino distribution and on the shape of Pν . Comparing this
to the result of the Vlasov simulation, we eventually obtain
constraints on the neutrino mass.

C. Quantum algorithms

We now introduce some basics of quantum computing and
quantum algorithms used as the building blocks in this paper.
For more general basics on quantum computing, we refer to
Ref. [87].

1. Arithmetic circuits

In this paper, we consider computation on the system with
multiple quantum registers. We use the fixed-point binary rep-
resentation for real numbers and, for each x ∈ R, we denote
by |x〉 the computational basis state on a quantum register
where the bit string corresponds to the binary representation
of x. We assume that every register has a sufficient number of
qubits and thus neglect errors by finite-precision representa-
tion. For z = x + iy ∈ C, we define |z〉 := |x〉 |y〉, and the real
and imaginary parts are held on separate registers.

We can perform arithmetic operations on numbers
represented on qubits. For example, we can implement

quantum circuits for four basic arithmetic operations:
addition Oadd : |a〉 |b〉 |0〉 	→ |a〉 |b〉 |a + b〉; subtraction
Osub : |a〉 |b〉 |0〉 	→ |a〉 |b〉 |a − b〉; multiplication Omul :
|a〉 |b〉 |0〉 	→ |a〉 |b〉 |ab〉; and division Odiv : |a〉 |b〉 |0〉 |0〉 	→
|a〉 |b〉 |q〉 |r〉, where a, b ∈ Z and q and r are the quotient and
remainder of a/b. For concrete implementations, see Ref. [88]
and the references therein. In the finite-precision binary
representation, these operations are immediately extended to
those for real numbers and then complex numbers. Hereafter,
we collectively call these circuits arithmetic circuits.

2. Block encoding

Block encoding, which was first introduced in Ref. [36],
is a technique to encode a nonunitary matrix as an upper-
left block of a unitary matrix. Overcoming the restriction of
the unitarity of quantum circuits, this block-encoding tech-
nique makes various types of matrix computation efficiently
implementable and thus is widely used in various quantum
algorithms as a fundamental building block. We will give the
rigorous definition of the block encoding in Appendix A 1.
In some situations, there are some ways to implement the
block-encoding unitary. For example, if we have sparse-access
to a matrix A, that is, if A is sparse and we have access to
oracles that provide positions and values of nonzero entries
in A, then we can construct the block encoding of A, whose
implementation cost is shown as Theorem 3 in Appendix A 1.
The Vlasov simulation applies to this case, since, as we will
see later, A in this case corresponds to the sparse matrix
resulting from discretizing the Vlasov equation and we can
calculate its entries for given FCDM(t, x).

3. Hamiltonian simulation

With H a Hamiltonian of a multiqubit system and an
initial state |ψ0〉, the Hamiltonian simulation is the task to
generate the quantum state |ψt 〉 after the evolution under H
for time t . In other words, we aim to implement the time-
evolution operator exp(−iHt ) as a quantum circuit. This task
has been investigated as a core quantum algorithm for a long
time [27,28,31], and recently it has been shown that, given
a block encoding of H , we can implement a quantum circuit
for the simulation of H with the optimal query complexity
[35,89–91]. Roughly speaking, we can construct a block
encoding of exp(−iHt ) with O(‖H‖t ) queries to a block
encoding of H . The rigorous statement is given as Theorem
4 in Appendix A 1.

4. Quantum amplitude estimation

Even if we obtain some quantum state by a quantum algo-
rithm such as Hamiltonian simulation, extracting information
of interest from the state is another issue [63]. There is no
general prescription, unfortunately, and we need to devise
a way to extract the quantity we want on a case-by-case
basis. In some cases, the necessary quantity is encoded in
the quantum state |
〉 as the amplitude of a specific basis
state, and then we can use the quantum algorithm called QAE
[64] to estimate the amplitude. Roughly speaking, we can
estimate the amplitude with accuracy ε, using the quantum
circuit to generate |
〉 O(1/ε) times. The rigorous statement
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on the query complexity of QAE is given as Theorem 5 in
Appendix A 1.

5. Quantum random access memory

As we will see later, in the algorithm we propose, we need
to load the data obtained outside the quantum algorithm onto
the quantum register. A QRAM [65] is a device for such
an aim. Specifically, we assume that, given a set of N real
numbers X = {x0, . . . , xN−1}, we can implement the unitary
operation on a two-register system like

UX

N−1∑
i=0

αi |i〉 |0〉 =
N−1∑
i=0

αi |i〉 |xi〉 (9)

for any α0, . . . , αN−1 ∈ C such that
∑N−1

i=0 |αi|2 = 1.
Originally, a QRAM was proposed as a dedicated device

for data loading, consisting of “atoms” that emit “photons”
and enabling the parallel data loading in superposition in time
O(log N ) [65]. However, some issues on the implementability
of such a device have been pointed out, for example, the
feasibility of error correction [92,93]. On the other hand, there
are some proposals on quantum circuit-based QRAM [94–98],
into which we can incorporate error correction. However,
proposed circuit-based implementations need O(N ) gates and
qubits, which reduces the feasibility for large N , although the
circuit depth can be logarithmic in N . In any case, imple-
menting a QRAM is highly challenging, and in this paper, we
simply assume the availability of the operation (9).

III. QUANTUM ALGORITHM FOR VLASOV SIMULATION
OF MASSIVE NEUTRINOS

Now we present the quantum algorithm for the neutrino
Vlasov simulation, including the procedure to estimate the
neutrino power spectrum.

A. Discretizing the Vlasov equation

Let us start from discretization, which transforms Eq. (4)
to a set of ODEs.

We set the range [0, L] for each of the position coordinates
x = (x, y, z) and the range [−V,V ] for each of the velocity co-
ordinates v = (u, v,w) with sufficiently large L,V ∈ R+. The
region in the phase space we consider is thus V := [0, L] ×
[0, L] × [0, L] × [−V,V ] × [−V,V ] × [−V,V ]. As a com-
mon boundary condition, we impose the periodic condition
for each position coordinate, and the Dirichlet condition f =
0 for each velocity coordinate. Then, we introduce ngr grid
points in each coordinate: We set

xix = ix�x, �x := L

ngr
, ix ∈ [ngr]0 (10)

for x, and similarly for y and z, and

uiu = −V + (iu + 1)�v, �v := 2V

ngr + 1
, iu ∈ [ngr]0

(11)

for u, and similarly for v and w. The grid points in the 6D
phase space are(

xix , yiy , ziz , uiu , viv ,wiw

)
, ix, iy, iz, iu, iv, iw ∈ [ngr]0. (12)

We hereafter label the grid points with vectors of indexes:

i = (ix, iy, iz, iu, iv, iw ) ∈ I6 := [ngr]0 × · · · × [ngr]0︸ ︷︷ ︸
6

. (13)

Sometimes, we also use the label i ∈ [Ngr]0, which is related
to i as

i = σ (i) := ix + iy × ngr + iz × n2
gr + iu × n3

gr

+ iv × n4
gr + iw × n5

gr. (14)

Here Ngr := n6
gr is the total number of the grid points in the

phase space. For the later convenience, we assume that ngr =
2mgr with some mgr ∈ N.

Although we take the same number of grid points in each
of position and velocity coordinates just for simplicity, we can
take different numbers and such a generalization is straight-
forward. In fact, in simulations in Refs. [24–26], the grid
number in each position coordinate is different from that in
each velocity coordinate.

Using this grid, we approximate the partial derivative with
the central difference, that is,

∂

∂x
f (t, x, v) � f (t, x + �xex, v) − f (t, x − �xex, v)

2�x
,

(15)

where ex = (1, 0, 0), and similarly for the derivatives with
respect to y, z, u, v and w. Then Eq. (4) is transformed into

d

dt
f (t ) = A(t )f (t ). (16)

f (t ) is a vector in RNgr , which can be seen as Rngr × · · · × Rngr︸ ︷︷ ︸
6

.

In light of this, we label each entry in f (t ) with i ∈ I6, as well
as i ∈ [Ngr]0 in Eq. (14). Although we define f (t ) as a solution
of Eq. (16) with some initial value, we expect that the ith entry
of f (t ) approximates the value of f at time t on the ith grid
point:

fi(t ) � f
(
t, xix , yiy , ziz , uiu , viv ,wiw

)
. (17)

A(t ) is a Ngr × Ngr matrix and we again label its rows and
columns with both i ∈ I6 and i ∈ [Ngr]0. A(t ) is written as

A(t ) = Ax + Ay + Az + Au(t ) + Av (t ) + Aw(t ). (18)

Ax is defined as

Ax = −Dper ⊗ Ingr ⊗ Ingr ⊗ Eu ⊗ Ingr ⊗ Ingr , (19)

where Dper and Eu are ngr × ngr matrices defined as

Dper :=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 −1

−1 0 1
. . .

. . .
. . .

−1 0 1

1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (20)

and

Eu :=

⎛⎜⎝
u0

2�x
. . .

ungr−1

2�x

⎞⎟⎠, (21)
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respectively. Ay and Az are defined similarly. Au(t ) is a time-
varying Ngr × Ngr matrix and its (i, j) entry is

(Au(t ))i,j =

⎧⎪⎪⎨⎪⎪⎩
−FCDM,x (t,xix ,yiy ,ziz )

2�v
; if j = i + eu

FCDM,x (t,xix ,yiy ,ziz )
2�v

; if j = i − eu

0; otherwise

, (22)

where eu := (0, 0, 0, 1, 0, 0); Av (t ) and Aw(t ) are defined
similarly.

We now comment on what are conserved in the time evo-
lution of the ODE system (16). First, ‖f (t )‖ the norm of the
solution is constant in time, which is seen as follows. A is
antisymmetric, as is easily checked from the definition. Thus,

H (t ) := iA(t ) (23)

is Hermitian, and we can regard Eq. (16) as the Schrödinger
equation with the Hamiltonian H . As a property of the
Schrödinger equation, ‖f (t )‖ is conserved. This means that
in the ODE system (16), there is no instability such that the
solution explodes. This is a merit of the current discretization
as Eq. (15), which leads to the antisymmetricity of A.

Second, fsum(t ) := ∑
i∈I6

fi(t ), the sum of all the entries in
f (t ) is approximately conserved. This is seen by noting that

d

dt
fsum(t ) =

∑
i,j∈I6

(A(t ))i,j fj(t )

=
∑
i∈Bl

u

(A(t ))i+eu,i fi(t ) +
∑
i∈Bu

u

(A(t ))i−eu,i fi(t )

+ (u ↔ v) + (u ↔ w), (24)

where (u ↔ v) [respectively, (u ↔ w)] denotes the same as
the first and second terms expect u is replaced with v (respec-
tively, w), and Bl

u := {i ∈ I6 | iu = 0}, Bu
u := {i ∈ I6 | iu =

ngr − 1}, and similarly defined Bl
v,Bu

v,Bl
w,Bu

w are the sets
of the indexes of the grid points on the boundaries in the
velocity coordinates. That is, the time derivative of fsum is
almost vanishing except for the contributions from the bound-
ary grids. The conservation of fsum has the physical meaning
that the number of the neutrino particles in the 6D simulation
box is conserved, which is desirable in the simulation. The
violation of the conservation corresponds to the escapes of
the particles from the box, which is controllable by setting the
box sufficiently large.

Although these conservation properties are desirable, there
might be other properties the solution f (t ) should have from
the physical perspective. For example, since f (t ) denotes the
distribution density function in the phase space, it must be
nonnegative, but, it is not clear that this is satisfied in the
current approach. We leave incorporating some schemes guar-
anteeing the nonnegativity such as upwind difference into the
quantum algorithm as future work.

B. Generating the solution-encoding quantum state

As seen above, we can regard Eq. (16) as the Schrödinger
equation. If we rewrite it a la quantum mechanics, then it
becomes

d

dt
|f (t )〉 = −iH (t )|f (t )〉, (25)

where |f (t )〉 is the quantum state encoding the value of f (t ) in
the amplitudes:

|f (t )〉 := 1

‖f (t )‖
∑
i∈I6

fi(t )|i〉. (26)

Here |i〉 := |ix〉 |iy〉 |iz〉 |iu〉 |iv〉 |iw〉, which can be also seen as
|i〉 under the correspondence between i and i in Eq. (14), since
concatenating the binary representations of ix, . . . , iw yields
that of i.

Now let us consider generating the quantum state |f (T )〉
encoding f at the terminal time T by Hamiltonian simulation.
To apply this, we make the following assumption.

Assumption 1 (Piecewise time constancy of FCDM and or-
acles to access it). Let T ∈ R+ and nt ∈ N. Let tit = it�t for
it ∈ [nt ]0 with �t := T/nt . Then, for any ix := (ix, iy, iz ) ∈
I3 := [ngr]0 × [ngr]0 × [ngr]0 and it ∈ [nt ]0,

FCDM,x
(
t, xix

) = F it ,ix
CDM,x

FCDM,y
(
t, xix

) = F it ,ix
CDM,y

FCDM,z
(
t, xix

) = F it ,ix
CDM,z, (27)

holds for any t ∈ [tit , tit +1). Here xix := (xix , yiy , ziz ), and, for
each (it , ix ) ∈ [nt ]0 × I3, F it ,ix

CDM,x, F it ,ix
CDM,y, and F it ,ix

CDM,z are some
real numbers. Furthermore, for any it ∈ [nt ]0, we are given
accesses to the oracles Oit

FCDM,x
, Oit

FCDM,y
, and Oit

FCDM,z
that act as

Oit
FCDM,x

|ix〉 |0〉 = |ix〉
∣∣F it ,ix

CDM,x

〉
Oit

FCDM,y
|ix〉 |0〉 = |ix〉

∣∣F it ,ix
CDM,y

〉
Oit

FCDM,z
|ix〉 |0〉 = |ix〉

∣∣F it ,ix
CDM,z

〉
(28)

for any ix ∈ I3, where |ix〉 := |ix〉 |iy〉 |iz〉.
The assumption that FCDM is piecewise constant in time

matches the practical setting. From the N-body simulation,
we obtain FCDM only on the discrete time points, since in the
N-body simulation we discretize the time for time integration
of the equation of motion, and interpolating them as Eq. (27)
is a common approximation. We also note that, for this type
of FCDM, the Hamiltonian H (t ) is also piecewise constant in
time: for any it ∈ [nt ]0,

H (t ) = Hit := H
(
tit
)

(29)

holds for any t ∈ [tit , tit +1).
We also assume that we can prepare the quantum state

encoding the initial value of f (t ).
Assumption 2. For a given initial value f (0), we have an

access to the oracle Of (0) that acts as

Of (0) |0〉 = |f (0)〉. (30)

We will discuss the implementation of the above oracles in
Sec. III E.

Then, we can apply Hamiltonian simulation to generate
|f (T )〉.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then,
for any ε ∈ (0, 1/2), we have a quantum circuit Uf (T ),ε on the
(2 lg Ngr + 5)-qubit system that acts as

Uf (T ),ε |0〉⊗(2 lg Ngr+5) = |0〉⊗(lg Ngr+5) |f (T )〉 + |ψgar〉, (31)
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where |f (T )〉 is the quantum state that encodes the so-
lution of Eq. (16) at time T with the initial value
f (0) as Eq. (26), and |ψgar〉 is some unnormalized quan-
tum state satisfying ‖ |ψgar〉 ‖ � ε. In Uf (T ),ε , (controlled)
{Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
}it , arithmetic circuits, and their in-

verses are queried

O

[
ngrT × max

{
V

L
,

Fmax

V

}
+ nt log

(nt

ε

)]
(32)

times, Of (0) is queried once, and

O

[
log5/2

(
ngrT

ε
× max

{
V

L
,

Fmax

V

})]
(33)

qubits are used including ancillary ones.
The proof of this theorem is given in Appendix A 2. Al-

though we postpone the details of construction of Uf (T ),ε , we
now give a rough outline. For the piecewise constant H (t ), the
solution of Eq. (25) is

|f (T )〉 = exp (−i�t Hnt −1) · · · exp (−i�t H0)|f (0)〉. (34)

We generate this state via implementing exp(−i�t Hit ) by
block encoding, which is possible with the oracles Oit

FCDM,x
, etc.

We can simplify the query complexity bound (32) by taking
into account how to set L and V in practice. To solve the
Vlasov equation precisely, we set the considered region V
in the phase space so that it contains the region where the
distribution function f takes a nonnegligible value. In other
words, noting that f reflects the neutrino motion, we set V so
that no particle escapes from it. For this purpose, it is sufficient
to set L and V , the side lengths of V , as

V T ∼ L, FmaxT ∼ V, (35)

since in the simulation time T a particle traverses at most V T
in the position coordinate and at most FmaxT in the velocity
coordinate. Conversely, much larger values of L and V than
these are too much. Thus, assuming Eq. (35), we can simplify
Eq. (32) as

Õ(ngr + nt ), (36)

as announced in Introduction. Besides, Eq. (33) becomes

O
[
log5/2

(ngr

ε

)]
, (37)

which means that the number of qubits used is only logarith-
mic.

C. Extracting the power spectra

Even though we can generate the quantum state |f (T )〉
that encodes f (T ), extracting some information of interest
from it is another issue. Here we consider how to estimate
the neutrino power spectrum from the quantum state. In the
current setting of finite volume and discrete grid points, the
power spectrum is given as [99]

Pν

(
kik

) = 〈∣∣δ̃ν
ik

∣∣2〉 (38)

for kik = 2π
L ik with ik ∈ I3. Here

δ̃ν
ik := 1

n3
gr

∑
ix∈I3

δν
ix exp

(
ikik · xix

)
= 1

n3
gr

∑
ix∈I3

δν
ix exp

(
2π iik · ix

ngr

)
(39)

is the discrete Fourier transform of

δν
ix := ρν

ix
− ρ̄ν (T )

ρ̄ν (T )
, (40)

the neutrino density perturbation at xix the grid point in the
position space.

ρν
ix :=

∑
iv∈I3

f(ix,iv )(T )�3
v (41)

is the neutrino density at the position space grid point, calcu-
lated by integrating f with respect to the velocity coordinates
in the phase space. In Eq. (41), (ix, iv ) ∈ I6 is made by con-
catenating ix, iv ∈ I3.

Leaving how to take the ensemble average in Eq. (38) to
Sec. III D, we now consider how to estimate |δ̃ν

ik
|2 from |f (T )〉.

Formally, we have the following theorem.
Theorem 2. Suppose that Assumptions 1 and 2 hold. Sup-

pose that we are given the value of

C :=
1

Ngr
( fsum(T ))2

‖f (T )‖2
. (42)

Let ε ∈ (0, 1/2), δ ∈ (0, 1), and ik ∈ I3 \ {(0, 0, 0)}. Then
there exists a quantum algorithm that, with probability at
least 1 − δ, outputs an ε-approximation of |δ̃ν

ik
|2 with f (T )

the solution of Eq. (16). In this algorithm, (controlled)
{Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
}it , arithmetic circuits, and their in-

verses are queried

O

{[
ngrT × max

{
V

L
,

Fmax

V

}
+ nt log

( nt

Cε

)] 1

Cε
log

(
1

δ

)}
(43)

times, Of (0) is queried

O

[
1

Cε
log

(
1

δ

)]
(44)

times, and

O

[
log5/2

(
ngrT

Cε
× max

{
V

L
,

Fmax

V

})]
(45)

qubits are used.
Proof. Supposing that we are given |f (T )〉 =

1
‖f (T )‖

∑
i∈I6

fi(T ) |ix〉 |iy〉 |iz〉 |iu〉 |iv〉 |iw〉 and regarding this
as the quantum state on the system of six mgr-qubit registers,
we consider the following unitary on this system:

W := Qmgr ⊗ Qmgr ⊗ Qmgr ⊗ Hmgr ⊗ Hmgr ⊗ Hmgr . (46)

Here Qmgr is the quantum Fourier transform on a mgr-qubit
system, which acts as

Qmgr | j〉 = 1√
ngr

ngr−1∑
l=0

exp

(
2π i jl

ngr

)
|l〉 (47)
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Algorithm 1. Estimation of |δ̃ν
ik
|2.

Input: Accuracy ε ∈ (0, 1/2), success probability 1 − δ ∈ (0, 1),
the value of C.

1: Construct the unitary quantum circuit Uf (T ),Cε/4 on a
(2 lg Ngr + 5)-qubit system following Theorem 1.

2: Construct W ′ := I32Ngr ⊗ W the unitary on the same
system, where I32Ngr is the identity operator on the first
lg Ngr + 5 qubits and W is the operator in Eq. (46) that
acts on the other lg Ngr qubits.

3: Estimate the squared amplitude of
|�′

ik
〉 := |0〉⊗(lg Ngr+5) |�ik 〉 in the state W ′Uf (T ),Cε/4 |0〉 by

QAE with accuracy Cε/4 and success probability 1 − δ,
and let the estimate be p̃.

4: Output p̃/C.

for any j ∈ [ngr]0, and Hmgr is the operation on the same
system that is applying the Hadamard gate to each qubit.
With mgr = lg ngr, Qmgr is implemented as a circuit consisting
of O(log2 ngr ) Hadamard gates and conditional rotation gates
with depth of the same order [87], and Hmgr is just a collection
of O(log ngr ) Hadamard gates. We thus neglect their costs in
the following discussion. We also note that the average density
ρ̄ν (T ) is related to f (T ) as

ρ̄ν (T )�3
x = 1

Ngr

∑
i∈I6

fi(T ). (48)

Using these along with Eqs. (39), (40), and (41), we obtain by
a straightforward calculation that, for ik := (ikx , iky , ikz ) ∈ I3,

|〈�ik |W |f (T )〉|2 = C
∣∣δ̃ν

ik

∣∣2, (49)

where |�ik〉 := |ikx 〉 |iky〉 |ikz〉 |0〉 |0〉 |0〉. Since the left-hand
side is the squared amplitude of the computational basis state
|�ik〉 in W |f (T )〉, we can estimate this by QAE.5

In summary, we can get an ε-approximation of |δ̃ν
ik
|2 by the

procedure shown in Algorithm 1.
The rest of the proof is on the accuracy and complexity of

Algorithm 1. We postpone it to Appendix A 3. �
To illustrate the outline of Algorithm 1, we present the

overview diagram in Fig. 1. Using the oracles Oit
FCDM,x, etc.,

that give the CDM gravity, we construct block encodings of
the time-evolution operators exp(−i�t Hit ). Combining these
block-encodings and the initial-state-encoding oracle Of (0),
we construct the unitary Uf (T ),ε to generate the state |f (T )〉
encoding the solution f (T ) at time T with accuracy ε. Then
this unitary followed by W generate the quantum state, in
which the squared amplitude of a specific computational basis
state |�′

ik〉 is equal to C|δ̃ν
ik
|2. Thus, we estimate this squared

amplitude by QAE to get |δ̃ν
ik
|2, the squared amplitude of the

specified Fourier mode of the neutrino density perturbation.
Note that in this QAE, we use Uf (T ),Cε/4, whose accuracy is
Cε/4, to guarantee the accuracy ε for the estimation of |δ̃ν

ik
|2.

5Note that for |�ik 〉 the operator V in Theorem 5, which flips
the amplitude only for |�ik 〉 and does nothing otherwise, can be
implemented by X gates and a multicontrolled Z gate.

Let us make some comments on C. In Theorem 2, we
assume that we know the value of C in advance, even though
it is defined with f (T ) the solution at the terminal time. In
fact, this assumption is plausible. This is because, as explained
above, ‖f (t )‖ is constant over time, and fsum(t ) is also almost
constant. After all, we can calculate C using the initial value
f (0) instead of f (T ). The cost for this preliminary calculation
will be discussed in Sec. III E.

Also, note that C is written as

C =
(

1
Ngr

∑
i∈I6

fi(0)
)2

1
Ngr

∑
i∈I6

( fi(0))2 , (50)

that is, the ratio of the squared average of fi(T ) over the grid
points to the average of fi(T ) squared, which we expect is of
order 1.

By using Eq. (35) and C ∼ 1, we simplify Eq. (43) to

Õ

(
ngr + nt

ε

)
, (51)

which is the query complexity bound announced in Intro-
duction. Besides, Eq. (45) becomes of order (37), the space
complexity announced in the Introduction.

D. Extensions

Equipped with Algorithm 1 as a basic one, we now
consider its extensions so that it matches complications in
practice.

1. Integrated power spectrum

Although Algorithm 1 outputs an estimate of |δ̃ν
ik
|2, this

might not be feasible, since the magnitude of |δ̃ν
ik
|2 may be

tiny. In fact, in the current discrete setting with n3
gr grid

points in the position coordinates, δν (T, x) consists of the
n3

gr Fourier components, and thus |δ̃ν
ik
|2 the amplitude of each

Fourier components is typically suppressed by a factor 1/n3
gr.

Therefore, to obtain a nonzero estimate of a value of such an
order, we need to run QAE with O(1/n3

gr ) accuracy and O(n3
gr )

query complexity. After all, the query complexity scaling like
Eq. (51) is not achieved.

However, this issue is not serious in practice. First, under
the usual assumption of isotropy, Pν (k) does not depend on the
direction of k but only its norm k = |k|. Furthermore, for the
purpose of comparing the numerical simulation with observa-
tions, it often suffices to get the integrated power spectrum,

P̄ν (k1, k2) :=
∫ k2

k1

dk4πk2Pν (k), (52)

with some interval [k1, k2], which indicates the total magni-
tude of the neutrino density perturbations of scales between
k1 and k2. In the current discrete setting, the corresponding
quantity is ∑

ik∈I3,[k1 ,k2]

∣∣δ̃ν
ik

∣∣2, (53)

where

I3,[k1,k2] := {ik ∈ I3 | k1 � ‖kik‖ � k2}. (54)

Thus, if we want a quantity like this, whose magnitude is
larger than the Fourier-component wise amplitude, then the
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FIG. 1. Overview of the quantum circuit used in Algorithm 1.

query complexity of our quantum algorithm might not blow
up.

Equation (53) can be estimated by Algorithm 1 with a
slight modification. Instead of Eq. (A23), we estimate∑

ik∈I3,[k1 ,k2]

∣∣〈�′
ik

∣∣W ′Uf (T ),Cε/4 |0〉⊗(2 lg Ngr+5)
∣∣2, (55)

that is, the probability that we obtain
|0〉⊗(lg Ngr+5) |ik〉 |0〉 |0〉 |0〉 with ik ∈ I3,[k1,k2] when we
measure W ′Uf (T ),Cε/4 |0〉⊗(2 lg Ngr+5). This probability can
be also estimated by QAE with query complexity in Eqs. (43)
and (44).

2. Ensemble average

So far, we have considered how to obtain |δ̃ν
ik
|2 for one

realization, that is, the result of solving Eq. (16) with one ini-
tial value f (0). However, what we really want is its ensemble
average in Eq. (38). In the classical Vlasov simulation, we
estimate this ensemble average as

Pν

(
kik

) � 1

nIV

nIV−1∑
iIV=0

∣∣δ̃ν,iIV
ik

∣∣2, (56)

that is, the sample average of |δ̃ν,0
ik

|2, . . . , |δ̃ν,nIV−1
ik

|2, the values
of |δ̃ν

ik
|2 in the nIV different runs of the simulation, where

we randomly take the different initial values according to the
theoretical distribution of the primordial perturbation [24–26].

Also in quantum computing, we may do the same thing by
not running the quantum algorithm many times separately but
utilizing quantum superposition. That is, we extend Assump-
tion 2 so that we can generate the superposition of the initial

values f (0)(0), . . . , f (nIV−1)(0):

O′
f (0) |0〉 |0〉 = 1√

nIV

nIV−1∑
iIV=0

|f (iIV )(0)〉 |iIV〉, (57)

where nIV = 2mIV with mIV ∈ N for convenience. Note that
the N-body simulation for CDM should be also run many
times with the initial values taken randomly, which leads to
the different FCDM(t, x) in the different runs. Thus, we also
extend Assumption 1 so that we can use the oracle to access
FCDM(t, x) in the specified run:

Õit
FCDM,x

|ix〉 |iIV〉 |0〉 = |ix〉 |iIV〉 ∣∣F it ,ix,iIV
CDM,x

〉
Õit

FCDM,y
|ix〉 |iIV〉 |0〉 = |ix〉 |iIV〉 ∣∣F it ,ix,iIV

CDM,y

〉
Õit

FCDM,z
|ix〉 |iIV〉 |0〉 = |ix〉 |iIV〉 ∣∣F it ,ix,iIV

CDM,z

〉
, (58)

where F it ,ix,iIV
CDM,x is FCDM,x(tit , xix ) in the iIVth run of the N-body

simulation for CDM, and so on. We postpone the implemen-
tation of these oracles to Sec. III E.

Equipped with these oracles, we can easily modify Algo-
rithm 1 so that it outputs Eq. (56). That is, we add mIV qubits
and replace Of (0) with O′

f (0). We also use Õit
FCDM,x

instead of

Oit
FCDM,x

, and so on. By this change, Uf (T ),Cε/4 in Algorithm 1
is modified to the operator U ′

f (T ),Cε/4 on the (2 lg Ngr + mIV +
5)-qubit system that acts as

U ′
f (T ),Cε/4 |0〉⊗(2 lg Ngr+mIV+5)

= 1√
nIV

nIV−1∑
iIV=0

|0〉⊗(lg Ngr+5) |f (iIV )(T )〉 |iIV〉 + |ξgar〉, (59)

where f (iIV )(T ) is the solution of Eq. (16) for the iIVth ini-
tial value f (iIV )(0), and |ξgar〉 is some unnormalized quantum
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state satisfying ‖ |ξgar〉 ‖ � ε. Then, we see that the following
quantity is equal to the right-hand side of Eq. (56),

nIV−1∑
iIV=0

∣∣〈�′′
ik,iIV

∣∣W ′′U ′
f (T ),Cε/4 |0〉⊗(2 lg Ngr+mIV+5)

∣∣2, (60)

where |�′′
ik,iIV

〉 := |�′
ik〉 |iIV〉 and W ′′ := W ′ ⊗ InIV .

Equation (60) is the probability that we obtain
|0〉⊗(lg Ngr+5) |ik〉 |0〉 |0〉 |0〉 |iIV〉 with any iIV ∈ [nIV]0 when we
measure W ′′U ′

f (T ),Cε/4 |0〉⊗(2 lg Ngr+mIV+5) and can be estimated
by QAE. The numbers of queries to the replaced oracles are
still of order (43) and (44).

Note that in the above discussion, we have implicitly as-
sumed that the value of C is the same for different f (iIV )(0).
This in fact holds approximately for large Ngr, since C is
written with the averages of the values of f (0, x, v) and its
square on the Ngr grid points as Eq. (50), and the realizations
of f (iIV )(0) for various iIV are generated based on the same
distribution of the primordial perturbation.

E. Implementation of the oracles

Now, let us consider the implementations of the oracles
used in our quantum algorithm.

1. Oracles to access FCDM

We first consider {Oit
FCDM,x

, Oit
FCDM,y

, Oit
FCDM,z

}it the oracles to
access FCDM(t, x), the gravitational force by CDM as Eq. (28).
Since we now assume that the N-body simulation for CDM
gives the values of this on the n3

gr grid points in the position
coordinates, it seems that we need to resort to QRAM that
stores those n3

gr real numbers. In the recent Vlasov simulations
with massive neutrino, the number of the grid points in the
position coordinates is of order 109 [25]. Because of the issues
on QRAM mentioned in Sec. II C 5, realizing a QRAM with
such a large number of entries seems challenging. Neverthe-
less, compared to the classical Vlasov simulation, in which
the O(n6

gr ) memory space is used, the QRAM size of O(n3
gr )

indicates a large improvement with respect to scaling on ngr.
We should also note that calculating {F it ,ix

CDM,x, F it ,ix
CDM,y,

F it ,ix
CDM,z}it ,ix by the N-body simulation and preparing QRAMs

that store them takes O(nt n3
gr ) time, which has the worse scal-

ing on ngr than the query complexity of our quantum algorithm
in Eq. (43). However, as mentioned in Sec. II B, in the current
classical computing, the N-body simulation for only CDM is
less heavy than the Vlasov and N-body simulations including
massive neutrino. Therefore, it is reasonable to consider only
the application of quantum computing to the Vlasov simu-
lation for neutrino, leaving the N-body simulation for CDM
classical. Also note that, once QRAMs storing F it ,ix

CDM,x and so
on are prepared, we can reuse it for the neutrino Vlasov sim-
ulations in the various settings, e.g., various neutrino masses,
which relatively diminishes the cost for the N-body simulation
for CDM.

We also comment that, the approximation that FCDM(t, x)
is piecewise constant in time reduces the size of QRAMs to be
prepared. Although we are given {F it ,ix

CDM,x, F it ,ix
CDM,y, F it ,ix

CDM,z}it ,ix ,
whose number per vector element, say, FCDM,x, is nt n3

gr, our
algorithm uses not one QRAM with nt n3

gr entries per vector

element, but nt QRAMs with n3
gr entries, which are {F it ,ix

CDM,x}ix
for one value of it ∈ [nt ]0. This is because, as explained in
Sec. III B, to get |f (T )〉, we successively apply Hamiltonian
simulations for the time intervals [t0, t1), . . . , [tnt −1, tnt ), and
in each of them we use only the constant value of FCDM(t, x)
in the interval. Dividing the QRAM into smaller ones re-
duces the difficulty of implementation. In particular, for the
circuit-based QRAM, we do not need to use nt n3

gr qubits,
but it suffices to reuse n3

gr qubits, with different QRAMs
implemented in the Hamiltonian simulation for the different
time interval. We do not enjoy this reduction if FCDM(t, x)
continuously varies in time and we use the time-dependent
Hamiltonian simulation [100], in which we use the oracle
OH

ent : |t〉 |i〉 | j〉 |0〉 	→ |t〉 |i〉 | j〉 |Hi j (t )〉 and thus the oracles
such as OFCDM,x : |t〉 |ix〉 |0〉 	→ |t〉 |ix〉 |FCDM,x(t, xix )〉 in our
case.

As the last comment, we note that when we want to
estimate Eq. (56), the average of |δ̃ν,0

ik
|2, . . . , |δ̃ν,nIV−1

ik
|2, the

number of the entries in each QRAM increases to n3
grnIV.

2. Oracle to generate the state encoding the initial value

Next, we consider the oracle Of (0) in Eq. (30), which gen-
erates the quantum state |f (0)〉 encoding the initial value f (0).

In the neutrino Vlasov simulation, the initial distribution
function is set to a Fermi-Dirac distribution [26],

f (0, x, v) ∝ [1 + δν (0, x)]FFD[v − vb(x)]. (61)

Here vb(x) is the neutrino bulk velocity at position x, and

FFD(v − vb) := 1

exp
(mν |v−vb|

kBTν

)+ 1
, (62)

where kB is the Boltzmann constant and Tν is the neutrino
temperature at the initial time. The initial density fluctuation
and bulk velocity are calculated based on the theory for the
primordial cosmological perturbation [26].

Then, our aim is generating the following quantum state
|f (0)〉 encoding Eq. (61). It is written as

|f (0)〉 = C
∑
ix∈I3

[1 + δν (0, xix )] |ix〉
∣∣FFD,vb(xix )

〉
, (63)

where ∣∣FFD,vb

〉
:= Dvb

∑
iv∈I3

FFD(viv − vb)
∣∣viv

〉
(64)

and C and Dvb are normalization constants.
We now assume that {δν (0, xix )}ix are classically computed

as a preparation of our quantum algorithm and stored in a
QRAM. Given such a QRAM, we can generate the quan-
tum state C

∑
ix∈I3

(1 + δν (0, xix )) |ix〉 querying the QRAM
O(log n3

gr ) times by the method in [101]. We also assume that
{vb(xix )}ix are precomputed and stored in a QRAM. There
are some methods to generate a quantum state encoding
a function given as an explicit formula in the amplitudes
[102–105]. By such a method, we can perform the operation
|vb〉 |0〉 → |vb〉 |FFD,vb〉, querying the quantum circuit to com-
pute FFD(v − vb) O(log n3

gr ) times. Combining these circuits
and QRAMs, we can generate |f (0)〉 with O(polylog(ngr ))
query complexity. Note that the sizes of the aforementioned
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QRAMs are O(n3
gr ), which is of the same order as QRAMs

storing FCDM. Also note that preparing those QRAMs takes
a O(n3

gr ) time and this does not increase the order of the
preparation time, which already includes the O(n3

gr ) time to
prepare the QRAMs for FCDM.

In the above discussion, we have assumed that there is only
one neutrino flavor with mass mν . This is just for simplicity,
and the extension to the more realistic multiflavor setting
is straightforward as follows. The point is that we are now
approximating the neutrino Vlasov equation as Eq. (4) and
thus the different masses of the different flavors affect the
solution only through the initial value, which depends on
the mass. Since Eq. (4) is linear with respect to f , if we set the
initial value to the linear combination of those for the various
flavors, then the solution becomes the distribution function
for the mixture of the flavors. In our quantum algorithm, the
modification is only replacing |FFD,vb〉, which encodes the
single-flavor distribution, with the quantum state encoding the
initial distribution of the mixture. Since it is still given as an
explicit formula, we can use the aforementioned methods for
function loading to the quantum state.

Last, we make a comment on the cost to calculate C, which
has been postponed. The numerator of Eq. (50) is equal to

1

64V 6
(ρ̄ν (0))2, (65)

and thus written with ρ̄ν (0), which is determined by the
normalization of f . On the other hand, the denominator of
Eq. (50) becomes

1

Ngr

∑
ix∈I3

[
1 + δν

(
0, xix

)]2 ∑
iv∈I3

{
FFD

[
viv − vb

(
xix

)]}2
(66)

for f (0, x, v) in the form of Eq. (61). The latter part of Eq. (66)
is calculated as∑

iv∈I3

{
FFD

[
viv − vb

(
xix

)]}2

� 1

�3
v

∫ V

−V
du
∫ V

−V
dv

∫ V

−V
dw
{
FFD

[
v − vb

(
xix

)]}2

� 1

�3
v

∫ ∞

−∞
du
∫ ∞

−∞
dv

∫ ∞

−∞
dw(FFD(v))2, (67)

where we replace the sum with the integral at the first ap-
proximation, and at the second approximation we neglect the
contribution to the integral from the region outside [−V,V ] ×
[−V,V ] × [−V,V ]. Equation (67) is independent of ix and
evaluated numerically. The remaining part is

∑
ix∈I3

[1 +
δν (0, xix )]2. We can calculate this at the same time as gener-
ating {δν (0, xix )}ix , keeping the order of the preparation time
O(n3

gr ).

IV. DEMONSTRATION

Last, we present an illustrative numerical model. It is
impossible to run our algorithm on a current real quantum
computer or a quantum circuit simulator. Instead, we demon-
strate a core part of our algorithm, namely, the Hamiltonian
simulation-based time evolution of the neutrino distribution
function f (t, x, v). By considering a toy problem, we find

the solution of Eq. (25), the discretized Vlasov equation, as
Eq. (34) with the matrix exponentiation exp(−i�t Hit ) calcu-
lated explicitly on a classical computer. This is what we aim
at by the quantum algorithm of Hamiltonian simulation, and
differs from common classical methods for time integration.

We consider the 1D setting with the position coordinate x
and the velocity coordinate v. We give the CDM gravity by
the following explicit function

FCDM,x(x) = A sin(Kx) (68)

with real constants A and K . Then, under the dis-
cretization described in Sec. III A, we find f (T ) =
( f (T, x0, u0), . . . , f (T, xngr−1, ungr−1)), the vector of the val-
ues of f (T, x, u) on the grid points. Since FCDM,x does not
depend on time and thus the Hamiltonian H does not either,
we can get f (T ) by applying a single operator exp(−iHT ) to
f (0):

|f (T )〉 = exp (−iHT )|f (0)〉. (69)

The initial value is set as follows: f (0, x, u) is constant in x,
and the Maxwell distribution is adopted in the u direction.
That is,

f (0, x, u) = 1√
2πσ 2

v

exp

(
− u2

2σ 2
v

)
(70)

with σv > 0.
We show the result for A = −1, K = π , and σv = 0.1

under the discretization with L = 2, V = 1, and ngr = 64.
Figure 2 shows the heatmaps of f (T, x, u) drawn with f (T )
obtained by Eq. (69) with T = 0, 0.1, and 0.2. From this f (T ),
we calculate δν

ix
, the neutrino density perturbation at each grid

point, as Eq. (40), and plot it as a function of x = ixL/ngr

in Fig. 3. Because of the functional form of FCDM,x, we ex-
pect that the density is enhanced at x = 1 and suppressed at
x = 0, 2, and Fig. 3 matches this expectation. Using this δν

ix
,

we calculate |δ̃ν
ik
|2, the squared amplitude of the Fourier mode

of the neutrino density perturbation, via Eq. (39), and plot
it as a function of k = 2π ik/L in Fig. 4. Since the neutrino
distribution evolves under the force as a single sinusoidal
function with wave number k = K , we expect that only the
Fourier mode with that wave number is enhanced. In fact, this
is observed in Fig. 4. In summary, these figures imply that our
calculation is working in this demonstration.

V. SUMMARY

In this paper, we considered the quantum algorithm for
simulations of LSS formation with massive neutrinos. The
large-scale neutrino distribution is an important issue for both
cosmology and particle physics. In order to follow the growth
of density perturbations of neutrinos with a large velocity
dispersion, it is desirable to solve directly the Vlasov equa-
tion in an efficient way rather than performing conventional
N-body simulations. However, one needs to solve the PDE in
a (6 + 1)-dimensional space, and thus it is a challenging task:
Taking ngr grid points in each of six space coordinates and
nt time grid points leads to O(nt n6

gr ) and O(n6
gr ) space com-

plexity. We thus proposed a quantum algorithm for this task.
First, by neglecting the gravity generated by the neutrinos that
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FIG. 2. f (T, x, u) at T = 0, 0.1 and 0.2.

contribute only a tiny fraction in mass, and hence by taking
into account only the gravity by CDM, we approximated
the Vlasov equation in a linear form. We showed that the
discretized Vlasov equation can be regarded as a Schrödinger
equation. Then, by calculating the distribution of CDM using
a fast N-body simulation in advance, we applied the Hamilto-
nian simulation to solve the equation. We proposed not only
how to obtain the solution-encoding quantum state but also
a way to extract the neutrino power spectrum, which is an

FIG. 3. δν
ix

at T = 0.2.

important quantity for comparisons with cosmological obser-
vations and thus is of practical interest, from the quantum
state by QAE. Our method outputs a ε-approximation of the
power spectrum with Õ[(ngr + nt )/ε] query complexity, using
O(log5/2(ngr/ε)) qubits.

Although our algorithm has some shortcomings such as the
assumption on the availability of large-sized QRAMs, it is the
first proposal of a quantum algorithm for the LSS simulation
that outputs the quantity of practical interest with guaranteed

FIG. 4. |δ̃ν
ik
|2 at T = 0.2.
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accuracy. We thus believe that our algorithm is an important
step in the application of quantum computing to the LSS
simulation or, more broadly, challenging numerical tasks in
cosmology and particle physics.

In future works, we will explore the possibility of extend-
ing our algorithm. Obviously, taking into account the neutrino
self-gravity via, e.g., Carleman linearization, is one possi-
ble way. Another possibility is incorporating higher-order
schemes for partial derivatives, for which we are now adopt-
ing the central difference as Eq. (15). Adopting higher-order
schemes has two effects. On the one hand, it makes the coeffi-
cient matrix A(t ) less sparse: If we adopt a nth-order scheme,
then the sparsity s scales as O(n). In the sparse-access set-
ting, the query complexity of Hamiltonian simulation scales
as O(s) on s and thus so does our algorithm. In total, the
query complexity of our algorithm scales as O(n) on n. On
the other hand, by adopting a higher-order scheme, we may
configure spatial grid points with larger interval, which means
smaller ngr, keeping the accuracy of the solution. Since the
query complexity of our algorithm scales as O(ngr ), in to-
tal, if an nth-order scheme leads to ngr scaling better than
ngr = O(1/n), then higher-order schemes would be beneficial.
As a previous study on the effect of higher-order schemes
in practice, we refer to Ref. [106], which performed a set of
simulations with third-, fifth-, and seventh-order schemes and
in fact observed the improvement of the accuracy. However,
in general, the extent to which higher-order schemes improve
accuracy is highly problem dependent, and thus we leave
incorporating higher-order schemes into our algorithm for
future works.
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APPENDIX A: PROOFS

1. Building-block theorems

Here we present some theorems from previous papers,
which are used to prove our main results, theorems on the
complexity of our quantum algorithm.

a. Block encoding

Mathematically, block encoding is defined as follows:
Definition 1 (Reference [91], Definition 24). Let s, a ∈ N,

α, ε ∈ R+, and A ∈ C2s×2s
. We say that a unitary U on a (s +

a)-qubit system is an (α, a, ε)-block encoding of A if

‖A − α(〈0|⊗a ⊗ I2s )U (|0〉⊗a ⊗ I2s )‖ � ε. (A1)

We can efficiently construct a block encoding of a sparse
matrix if we have access to its entries. The cost for this is
summarized as the following theorem.

Theorem 3 (Reference [91], Lemma 48 in the full version,
modified). Let A = (Ai j ) ∈ C2w×2w

be a s-sparse matrix. Sup-
pose that we have accesses to the oracles OA

row and OA
col that

act on a two register system as

OA
row |i〉 |k〉 = |i〉 |rik〉 , OA

col |k〉 |i〉 = |cki〉 |i〉 (A2)

for any i ∈ [2w]0 and k ∈ [s]0, where rik (respectively, cki) is
the index of the kth nonzero entry in the ith row (respectively,
ith column) in A, or i + 2w if there are less than k nonzero
entries. Besides, suppose that we have accesses to the oracle
OA

ent that acts on a three register system as

OA
ent|i〉| j〉|0〉 = |i〉| j〉|Ai j〉. (A3)

Then, for any ε ∈ R+, there exists a (s‖A‖max,w + 3, ε)-
block encoding of A, in which OA

row and OA
col are each queried

once, OA
ent is queried twice, additional O[w + log5/2( s2‖A‖max

ε
)]

one and two qubit gates are used, and O[log5/2( s2‖A‖max

ε
)] an-

cilla qubits are used.

b. Hamiltonian simulation

The theorem on the complexity of Hamiltonian simulation,
which was postponed in Sec. II C, is as follows.

Theorem 4 (Reference [91], Corollary 62 in the full ver-
sion). Let ε ∈ (0, 1

2 ), t ∈ R, α ∈ R+ and s, a ∈ N. Let H be
a 2s × 2s Hermitian matrix and U be a (α, a, ε/|2t |)-block
encoding of H . Then we can implement (1, a + 2, ε)-block
encoding of exp(−itH ) using U or its inverse O[6α|t | +
9 log(12/ε)] times, controlled U or its inverse 3 times, addi-
tional O{a[α|t | + log(2/ε)]} two-qubit gates, and O(1) ancilla
qubits.

c. Quantum amplitude estimation

The complexity of QAE is evaluated as the following
theorem.

Theorem 5 (Ref. [64], Theorem 12, modified). Suppose
that we are given an access to a quantum circuit A that acts on
a quantum register as A|0〉 = |
〉 := √

a|φ〉 + √
1 − a|φ⊥〉,

where |φ〉 and |φ⊥〉 are mutually orthogonal states and a ∈
(0, 1). Also, suppose that we have access to a quantum cir-
cuit V on the same system that acts as V |φ〉 = −|φ〉 and
V |φ⊥〉 = |φ⊥〉. Then, for any ε ∈ R+ and δ ∈ (0, 1), there
exists a quantum algorithm that with probability at least 1 − δ

outputs a ε-approximation of a calling A and V

O

[
1

ε
log

(
1

δ

)]
(A4)

times.
In this paper, we use QAE for the case that the target state

|φ〉 is a superposition of some set S of computational basis
states and |φ⊥〉 is a superposition of the other ones. In this
case, a is the probability that we get a bit string corresponding
to any state in S when we measure |
〉.

Note that, although the success probability in the original
theorem in Ref. [64] is a constant, it is 1 − δ in Theorem 5
with a factor log(1/δ) added in the query complexity bound.
This is due to taking the median of the results in multiple runs
of the algorithm [107], which is based on the powering lemma
in Ref. [108].

013200-14



QUANTUM ALGORITHM FOR THE VLASOV … PHYSICAL REVIEW RESEARCH 6, 013200 (2024)

We also comment on the qubit number. The original ver-
sion of QAE proposed in Ref. [64] is based on quantum
phase estimation (QPE) [109], and uses O(log(1/ε)) qubits
to output the estimate of a in addition to qubits used in A
and V . Furthermore, it requires the controlled versions of A
and V , for which we may need to use additional qubits and
gates compared to the uncontrolled ones. Fortunately, after
Ref. [64], many variants without QPE, which require neither
additional qubits nor controlled oracles, have been proposed
[110–113]. Thus, we hereafter consider that in QAE we use
only qubits needed to operate A and V .

2. Proof of Theorem 1

As a preparation, let us see that we can implement the
oracles used to construct the block encoding of H .

Lemma 1. Suppose that Assumption 1 holds. Then, for
H (t ) in Eq. (23) with any t ∈ [0, T ), we have OH (t )

row , OH (t )
col ,

and OH (t )
ent , in which {Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
}it and arithmetic

circuits are queried O(1) times.
Proof. If we have OA(t )

row , OA(t )
col , and OA(t )

ent for A(t ) in
Eq. (18), then we immediately have those for H (t ) in Eq. (23),
since the latter is just the former multiplied by i. Thus, we
hereafter consider OA(t )

row , OA(t )
col , and OA(t )

ent .
Let us start from OA(t )

row . For A(t ), whose sparsity is 12, rik is
given as6

rik = σ (σ−1(i) + dk ) (A5)

with

d1 = (−1, 0, 0, 0, 0, 0)

d2 = (1, 0, 0, 0, 0, 0)

...

d11 = (0, 0, 0, 0, 0,−1)

d12 = (0, 0, 0, 0, 0, 1). (A6)

Here σ : I6 → [Ngr]0 is the map in Eq. (14) and σ−1 is its
inverse. Note that, in the binary representation on qubits,
these are in fact doing nothing, or just changing whether we
consider that a computational basis state corresponds to i ∈ I6

or σ (i) ∈ [Ngr]0. Thus, OA(t )
row is implemented with controlled

adders, thus as a combination of arithmetic circuits. OA(t )
col is

implemented similarly.
On the implementation of OA(t )

ent , we consider each com-
ponent of A(t ) separately. Let us first consider Ax. For i, j ∈
[Ngr]0, we can perform the following operation:

|i〉| j〉|0〉|0〉|0〉
→ |i〉| j〉|1σ−1(i)−σ−1( j)=(1,0,0,0,0,0)〉

× ⊗|1σ−1(i)−σ−1( j)=(−1,0,0,0,0,0)〉|0〉

6Strictly speaking, this expression for rik holds for only i such
that none of the entries of σ−1(i) is 0 or ngr − 1, and otherwise
the expression is slightly modified. However, such a handling is
straightforward and thus we do not show the complete expression
here for conciseness.

= |i〉| j〉(1σ−1(i)−σ−1( j)�=(±1,0,0,0,0,0)|0〉|0〉
+ 1σ−1(i)−σ−1( j)=(1,0,0,0,0,0)|1〉|0〉
+ 1σ−1(i)−σ−1( j)=(−1,0,0,0,0,0)|0〉|1〉)|0〉

→ |i〉| j〉 ⊗ (
1σ−1(i)−σ−1( j)�=(±1,0,0,0,0,0)|0〉|0〉|0〉

+ 1σ−1(i)−σ−1( j)=(1,0,0,0,0,0)|1〉|0〉
∣∣∣∣V − (iu + 1)�v

2�x

〉
+ 1σ−1(i)−σ−1( j)=(−1,0,0,0,0,0)|0〉|1〉

∣∣∣∣−V + (iu + 1)�v

2�x

〉)
= |i〉| j〉

× ⊗|1i(i)−i( j)=(1,0,0,0,0,0)〉|1i(i)−i( j)=(−1,0,0,0,0,0)〉|(Ax )i j〉
→ |i〉| j〉|0〉|0〉|(Ax )i j〉. (A7)

Here the transformation at the first arrow is done by some
arithmetic circuits. At the second arrow, regarding |i〉 as
|σ−1(i)〉 = |ix〉|iy〉|iz〉|iu〉|iv〉|iw〉, we use the controlled ver-
sions of

UAx,1 : |iu〉|0〉 	→ |iu〉
∣∣∣∣V − (iu + 1)�v

2�x

〉
UAx,2 : |iu〉|0〉 	→ |iu〉

∣∣∣∣−V + (iu + 1)�v

2�x

〉
, (A8)

which are implemented with some arithmetic circuits. In the
last arrow, the operation at the first arrow is uncomputed.
The operation in Eq. (A7) is in fact OAx

ent, with some registers
regarded as ancillary. O

Ay

ent and OAz
ent are implemented similarly.

To implement OAu(t )
ent for any t ∈ [0, T ), it is sufficient to

implement OAit
u

ent for any it ∈ [nt ]0, where Ait
u := Au(tit ). This is

done as follows:

|i〉| j〉|0〉|0〉|0〉
→ |i〉| j〉(1σ−1(i)−σ−1( j)�=(±1,0,0,0,0,0)|0〉|0〉

+ 1σ−1(i)−σ−1( j)=(1,0,0,0,0,0)|1〉|0〉
+ 1σ−1(i)−σ−1( j)=(−1,0,0,0,0,0)|0〉|1〉)|0〉

→ |i〉| j〉 ⊗ (
1σ−1(i)−σ−1( j)�=(0,0,0,±1,0,0)|0〉|0〉|0〉

+ 1σ−1(i)−σ−1( j)=(0,0,0,1,0,0)|1〉|0〉
∣∣∣∣∣−F it ,ix

CDM,x

2�v

〉

+ 1σ−1(i)−σ−1( j)=(0,0,0,−1,0,0)|0〉|1〉
∣∣∣∣∣F

it ,ix
CDM,x

2�v

〉)
→ |i〉| j〉|0〉|0〉|(Ait

u )i j〉. (A9)

Here the first arrow is similar to Eq. (A7). At the second arrow,
we use the controlled versions of

UAit
u ,1 : |ix〉|0〉 	→ |ix〉

∣∣∣∣∣−F it ,ix
CDM,x

2�v

〉

UAit
u ,2 : |ix〉|0〉 	→ |ix〉

∣∣∣∣∣F
it ,ix

CDM,x

2�v

〉
, (A10)
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which are implemented with Oit
FCDM,x

and some arithmetic cir-

cuits. The last arrow is uncomputation. OAv (t )
ent and OAw (t )

ent are
implemented similarly.

Then, we can perform the following operation:

|i〉| j〉|0〉|0〉|0〉|0〉|0〉|0〉|0〉
→ |i〉| j〉|(Ax )i j〉|(Ay)i j〉|(Az )i j〉

⊗ |(Au(t ))i j〉|(Av (t ))i j〉|(Aw(t ))i j〉|0〉
→ |i〉| j〉|(Ax )i j〉|(Ay)i j〉|(Az )i j〉

⊗ |(Au(t ))i j〉|(Av (t ))i j〉|(Aw(t ))i j〉|(A(t ))i j〉
→ |i〉| j〉|0〉|0〉|0〉|0〉|0〉|0〉|(A(t ))i j〉, (A11)

where the first arrow is by OAx
ent, O

Ay

ent, OAz
ent, OAu (t )

ent , OAv (t )
ent , and

OAw (t )
ent , we use the adder to compute (A(t ))i j = (Ax )i j +

(Ay)i j + (Az )i j + (Au(t ))i j + (Av (t ))i j + (Aw(t ))i j at the sec-
ond arrow, and the last arrow is uncomputation. This is
nothing but OA(t )

ent .
To complete the proof, we note that the number of the

queries to {Oit
FCDM,x

, Oit
FCDM,y

, Oit
FCDM,z

}it and arithmetic circuits
in the operations (A7) and (A9) are O(1) and so is that
in Eq. (A11), which proves the statement on the query
number. �

Then, let us prove Theorem 1.
Proof of Theorem 1. First, let us construct the block en-

coding of exp(−i�t Hit ) for any it ∈ [nt ]0. Noting that Hit
is 12-sparse, because of Theorem 3 and Lemma 1, we have
(12‖Hit ‖max, lg Ngr + 3, ε/2T )-block encoding UHit

of Hit ,
in which Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
and arithmetic circuits are

queried O(1) times. Then, because of Theorem 4, we have
a (1, lg Ngr + 5, ε/nt )-block encoding Vit of exp(−i�t Hit ), in
which (controlled) UHit

and its inverse are queried

O
[
‖Hit ‖max�t + log

(nt

ε

)]
(A12)

times, and thus so are (controlled) Oit
FCDM,x

, Oit
FCDM,y

, Oit
FCDM,z

,
arithmetic circuits and their inverses.

Then, we generate |0〉⊗(lg Ngr+5)|f (0)〉 by using Of (0) and
apply V0 to it. This yields

|φ1〉 := |0〉⊗(lg Ngr+5) exp(−i�t H0)|f (0)〉 + |ψgar,1〉, (A13)

where |ψgar,1〉 is an unnormalized quantum state satisfying
‖|ψgar,1〉‖ � ε/nt . We further apply V1 to |φ1〉 and get

|φ2〉 := |0〉⊗(lg Ngr+5)e−i�t H1 e−i�t H0 |f (0)〉 + |ψgar,2〉. (A14)

Here

|ψgar,2〉 := e−i�t H1 |ψgar,1〉 + |ψ ′
gar,2〉, (A15)

where |ψ ′
gar,2〉 is an unnormalized state with norm at most

ε/nt . The norm of |ψgar,2〉 is bounded as

‖|ψgar,2〉‖ � ‖e−i�t H1 |ψgar,1〉‖ + ‖|ψ ′
gar,2〉‖ � 2ε

nt
. (A16)

Continuing this, we obtain

Vnt −1 · · ·V0|0〉⊗(lg Ngr+5)|f (0)〉
= |0〉⊗(lg Ngr+5)e−i�t Hnt −1 · · · e−i�t H0 |f (0)〉 + |ψgar,nt 〉,

(A17)

where the first term is nothing but

|0〉⊗(lg Ngr+5)|f (T )〉 (A18)

because of Eq. (29), the piecewise time constancy of H (t ),
and |ψgar,nt 〉 is the unnormalized state with norm at most ε

nt
×

nt = ε. This means that the above operation is Uf (T ),ε with the
stated property.

In this operation, the number of queries to (controlled)
{Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
}it , arithmetic circuits and their in-

verses are that in each Vit , which is bounded as Eq. (A12),
multiplied by nt , that is,

O
{

nt

[
‖Hit ‖max�t + log

(nt

ε

)]}
. (A19)

Replacing ‖Hit ‖max with its bound

‖Hit‖max�max

{
max

iu∈[ngr ]0

∣∣∣∣ uiu

2�x

∣∣∣∣, max
iv∈[ngr ]0

∣∣∣∣ viv

2�x

∣∣∣∣, max
iw∈[ngr ]0

∣∣∣∣ wiw

2�x

∣∣∣∣,
max
ix∈I3

∣∣∣∣∣F
it ,ix

CDM,x

2�v

∣∣∣∣∣, max
ix∈I3

∣∣∣∣∣F
it ,ix

CDM,y

2�v

∣∣∣∣∣, max
ix∈I3

∣∣∣∣∣F
it ,ix

CDM,z

2�v

∣∣∣∣∣
}

� max

{
V

L
,

Fmax

2V

}
× ngr

2
(A20)

yields Eq. (32).
Last, we prove the statement on the qubit number. Combin-

ing Theorems 3 and 4, we see that the number of the ancilla
qubits used in Vit is

O

(
log5/2

(‖Hit ‖max

ε/2T

))
. (A21)

Plugging Eq. (A20) into this, we get Eq. (33). Adding the
qubits on which the quantum state in Eq. (A17) is generated,
whose number is 2lgNgr + 5 = O(log ngr ), does not change
the order. �

3. Proof of Theorem 2

Continuation of the proof Let us see that the stated accu-
racy is achieved. By Uf (T ),Cε/4, we get the following state:

Uf (T ),Cε/4|0〉⊗(2 lg Ngr+5) = |0〉⊗(lg Ngr+5)|f (T )〉 + |φgar〉,
(A22)

where |φgar〉 is an unnormalized state with ‖|φgar〉‖ � Cε/4.
Thus, defining

p := ∣∣〈�′
ik

∣∣W ′Uf (T ),Cε/4|0〉⊗(2 lg Ngr+5)
∣∣2, (A23)

we obtain∣∣p − C
∣∣δ̃ν

ik

∣∣2∣∣
= |2�〈�ik |W |f (T )〉〈�′

ik

∣∣W ′|φgar〉 + ∣∣〈�′
ik

∣∣W ′|φgar〉
∣∣2∣∣

� 2
Cε

4
+
(

Cε

4

)2

� 3Cε

4
. (A24)

Here, at the first inequality, we use |〈�ik |W |f (T )〉| � 1 and
‖〈�′

ik |W ′|φgar〉‖ � ‖(W ′)†|�′
ik〉‖ · ‖|φgar〉‖ � Cε

4 , which fol-
lows from the Cauchy-Schwarz inequality. p̃ obtained in Step
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3 in Algorithm 1 is an Cε/4-approximation of p, and combin-
ing this with Eq. (A24) yields∣∣∣∣ p̃

C
− ∣∣δ̃ν

ik

∣∣2∣∣∣∣ � ∣∣∣∣ p̃

C
− p

C

∣∣∣∣+ ∣∣∣ p

C
− ∣∣δ̃ν

ik

∣∣2∣∣∣ � ε

4
+ 3ε

4
� ε.

(A25)

Thus, the error of the output of Algorithm 1 is bounded by ε.
Last, let us prove the statement on the query complexity. In

the QAE in Step 3 in Algorithm 1, Uf (T ),Cε/4 is queried

O

(
1

Cε
log

(
1

δ

))
(A26)

times. Because of Theorem 1, in one call to Uf (T ),Cε/4, the
number of queries to (controlled) {Oit

FCDM,x
, Oit

FCDM,y
, Oit

FCDM,z
}it ,

arithmetic circuits and their inverses is

O

[
ngrT × max

{
V

L
,

Fmax

V

}
+ nt log

(
nt

Cε

)]
, (A27)

and that to Of (0) is 1. Then, combining these, we bound the
total query number in Algorithm 1 as Eqs. (43) and (44).

On the qubit number, we note that, to operate Uf (T ),Cε/4,
we use qubits whose number if of order (45), as implied
by Theorem 1. Since operating W and QAE do not require
additional qubits, the number of qubits used in the whole of
Algorithm 1 is also of order (45).
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