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Growing extended Laughlin states in a quantum gas microscope: A patchwork construction
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The study of fractional Chern insulators and their exotic anyonic excitations poses a major challenge in
current experimental and theoretical research. Quantum simulators, in particular ultracold atoms in optical
lattices, provide a promising platform to realize, manipulate, and understand such systems with a high degree of
controllability. Recently, an atomic ν = 1/2 Laughlin state has been realized experimentally for a small system
of two particles on 4 × 4 sites [Léonard et al., Nature (London) 619, 495 (2023)]. The next challenge concerns
the preparation of Laughlin states in extended systems, ultimately giving access to anyonic braiding statistics or
gapless chiral edge-states in systems with open boundaries. Here, we propose and analyze an experimentally
feasible scheme to grow larger Laughlin states by connecting multiple copies of the already-existing 4 × 4
system. First, we present a minimal setting obtained by coupling two of such patches, producing an extended
8 × 4 system with four particles. Then, we analyze different preparation schemes, setting the focus on two
shapes for the extended system, and discuss their respective advantages: While growing striplike lattices could
give experimental access to the central charge, squarelike geometries are advantageous for creating quasihole
excitations in view of braiding protocols. We highlight the robust quantization of the fractional quasihole charge
upon using our preparation protocol. We benchmark the performance of our patchwork preparation scheme by
comparing it to a protocol based on coupling one-dimensional chains. We find that the patchwork approach
consistently gives higher target-state fidelities, especially for elongated systems. The results presented here pave
the way towards near-term implementations of extended Laughlin states in quantum gas microscopes and the
subsequent exploration of exotic properties of topologically ordered systems in experiments.
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I. INTRODUCTION

Interacting topological states of matter constitute an ex-
otic class of quantum phases with potential applications in
topological quantum computation. Fractional quantum Hall
states [1] are a paradigmatic family of such states, exhibiting
properties like quantum number fractionalization, manifesting
in fractionally charged quasiparticles with anyonic braiding
statistics [2–4]. In recent years, quantum simulation platforms
utilizing cold atoms in optical lattices subject to artificial mag-
netic fields have proved useful to realize topological phases in
a controlled and tunable setup [5–12].

Despite recent advances, quantum simulation of Laughlin
states has so far been limited to systems of two photons [13]
or, very recently, two bosonic atoms forming a fractional
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Chern insulator (FCI) in an optical lattice [14]. Realizing
fractional quantum Hall states of many particles is desirable,
in view of their further exploration in quantum simulators,
however this task remains extremely challenging. Specifi-
cally, in the thermodynamic limit topologically ordered states
are separated from trivial ones by a gap closing and there-
fore adiabatic preparation schemes are hardly available in
large systems. In contrast, small systems exhibit a significant
finite-size gap, allowing for the adiabatic preparation of topo-
logically ordered states from trivial states [15–21].

Experiments ultimately aim for genuine many-body states
in large systems. Among the main goals of cold atom ex-
periments on FCIs is the direct observation of (non-Abelian)
anyon braiding, which necessarily requires enough particles
to realize quasiparticle or quasihole states as well as large
enough systems to move the particles around each other in
real space [22,23]. Alternative proposals to extract the braid-
ing statistics from density measurements also require large
systems compared to those available in existing experiments
[24,25], as well as proposals to directly measure the central
charge in elongated systems [26]. Recently, it was proposed to
perform edge mode spectroscopy on FCIs, where sufficiently
large particle numbers and system sizes even allow for the
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FIG. 1. (a) Schematic of the proposed patchwork scheme to grow extended Laughlin states for the case of five patches coupled in a
super-chain. (b) Visualization of the setup pinning a fractionally charged quasihole as obtained by coupling four patches in a large square
geometry. (c) Full counting statistics of the pinned charge, defined using a smooth envelope function described later in this paper, clearly
shows the quantization of the fractional charge to qqh = −1/2.

resolution of the magneto-roton mode along with improved
resolution of the chiral edge mode [27]. Therefore, it is of
prime importance to develop protocols that take the existing
experiments to their full potential by growing large systems.

In general, there exist various approaches to prepare topo-
logically ordered states: Some proposals suggested to directly
cross a continuous phase transition between a trivial and
a topological state [15–20], or to utilize a coupled-wire
paradigm [28,29] and exploit the close similarity between
weakly coupled Luttinger liquids and fractional quantum Hall
states [21]. In contrast, step-wise growing schemes—like the
one proposed in this work—start from a topological few-
particle state to which particles are added step-by-step at the
edge [30–32]. Recently, a novel protocol using a reservoir
approach has been proposed to grow interacting topological
states in optical box potentials [33]. Finally, dissipative state
preparation is especially promising in the context of supercon-
ducting qubits [34,35] and photonic systems [36].

Here, we propose to couple existing Laughlin state patches
of two bosons on 4 × 4 sites [14] to grow extended FCIs. We
perform proof-of-principle simulations to first connect two
patches employing different protocols, varying local hopping
amplitudes or potential barriers. Afterwards, we extend our
protocol to grow extended chains of up to five patches hosting
ten particles in total, thus ending up with a total system size
of 20 × 4 sites; see Fig. 1(a). Such elongated systems were
found to exhibit gapless chiral edge modes despite their finite
size along the short direction [26]. We compare different pro-
tocols for coupling the patches and provide evidence for the
scalability of our approach. Finally, we connect four patches
in a square geometry of 9 × 9 sites hosting eight bosons, al-
lowing for the direct preparation of a large Laughlin state in a
geometry which is promising for future braiding experiments.
Furthermore, we create a quasihole state by adding a local
potential [Fig. 1(b)] and for the first time directly confirm
the fractionalization of the quasihole charge using the full

counting statistics of the pinned charge; see Fig. 1(c). We
demonstrate that this state can also be prepared using a similar
growing scheme starting from initially decoupled patches and
find that despite the finite fidelity in preparing the quasihole
state the fractional charge remains robustly quantized and
hence provides a clear indicator of the topological nature of
the prepared state. We benchmark our results by comparing
with a more conventional protocol based on coupling one-
dimensional chains [21].

II. MODEL

We study the Hofstadter-Bose-Hubbard model on a square
lattice of size Lx × Ly, which reads in Landau gauge

ĤLx×Ly = −J
∑
x,y

(
â†

x+1,yâx,y + e2π iαxâ†
x,y+1âx,y + H.c.

)

+ U

2

∑
x,y

n̂x,y(n̂x,y − 1). (1)

Here, â(†)
x,y annihilates (creates) a boson at site (x, y) and

n̂x,y = â†
x,yâx,y is the particle number operator. In this work,

we consider strong but finite Hubbard repulsion of strength
U/J = 8, realistic for cold atom experiments, but also infinitely
strong Hubbard repulsion, U/J = ∞ (hard-core).

In our simulations, we make use of exact diagonaliza-
tion (ED) for small systems and tensor network methods for
larger systems. In particular, we use the SYTEN toolkit [37] to
perform density-matrix renormalization group (DMRG)
[38–40] simulations to explore static properties and its imple-
mentation of the time-dependent variational principle (TDVP)
[41,42] for dynamical calculations. In all our simulations we
exploit the U(1)-symmetry associated with particle number
conservation and consider bond dimensions up to χ = 1024.
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FIG. 2. Hopping protocol: Coupling two 4 × 4 Hofstadter-Bose-
Hubbard patches with initially N = 2 particles in each half of the
system, indicated by the blue and red shading, respectively. The
parameter Jcoupling is dynamically adjusted to connect the initially
decoupled patches into one extended system.

III. COUPLING TWO 4 × 4 PATCHES

We begin our discussion of patchwork growing schemes
with proof-of-principle simulations of the minimal system
consisting of two initially decoupled patches. We envision two
experimentally relevant approaches to grow extended FCIs.
On the one hand, we consider completely decoupled patches,
which are then connected by turning on a local hopping
Jcoupling between the two patches, Fig. 2. On the other hand,
we study a system of 9 × 4 sites with a strong potential barrier
Vbarrier on the center column, splitting the system into two
4 × 4 patches, Fig. 7. Upon turning off the potential barrier,
we can grow an extended FCI state in the enlarged system.

For the small systems studied in this section, we exactly
diagonalize the Hamiltonian and also treat the subsequent
time-evolution simulation in this manner. Only later on we
will use the matrix product state (MPS) representation, when
discussing the entanglement growth upon time-evolution.

A. Hopping protocol: Turning on local hoppings

We first discuss the “hopping protocol” which takes two
4 × 4 patches and couples them by a local hopping across
the edge connecting the patches; see Fig. 2. This system is
described by the Hamiltonian

Ĥ2p(Jcoupling) = Ĥ(1)
4×4 + Ĥ(2)

4×4 − Jcoupling

4∑
y=1

(â†
5,yâ4,y + H.c.),

(2)

where the first two terms describe the independent patches and
the last term describes the coupling between the two patches.

1. Static properties

Before performing time-evolution simulations of the cou-
pling process, we consider the many-body gap � between
the ground state and the first excited state to find suitable
parameters for the adiabatic protocol. Furthermore, we con-
firm the topological nature of the target-state by extracting the
many-body Chern number of the ground state. To this end,
we diagonalize the Hamiltonian for varying coupling strength
Jcoupling and flux α.

Figure 3 reveals a finite many-body gap around α ≈ 0.3,
which adiabatically connects the decoupled (Jcoupling/J = 0) to
the homogeneously coupled system (Jcoupling/J = 1). This in-
dicates the possibility to grow a larger Laughlin state from
two decoupled Laughlin states. In particular, we find that this
behavior persists for both hard-core bosons (U/J = ∞) and for
finite Hubbard repulsion (U/J = 8).

To confirm the topological nature of the ground state, we
extract the many-body Chern number using Středa’s formula
[14,43–45],

CStreda = 2π
∂ n̄

∂ϕ
= ∂ n̄

∂α
, (3)

where n̄ is the bulk density of the system. We consider the
central 4 × 2 sites in the fully coupled (Jcoupling = J) 8 × 4
system to evaluate the bulk density n̄, and we find the Chern
number in the gapped phase around α ≈ 0.3 to be CStreda ≈
1/2; see Fig. 3. This agrees with the expected value for the
continuum ν = 1/2 Laughlin state, so that we conclude that the
homogeneously coupled system at Jcoupling = J indeed hosts a
lattice analog of this topologically ordered target state.

2. Time-evolution

Motivated by these findings, we consider a simple prepara-
tion protocol, where the hopping amplitude between the two
patches is increased linearly over a finite preparation time T ,

Jcoupling(t ) = t

T
J, (4)

while the magnetic flux per plaquette is kept fixed, α = 0.3.
Integrating the time-dependent Schrödinger equation, we cal-
culate the time-evolution of the initial product state

|	initial〉 = |	(t = 0)〉 = ∣∣	 (1)
0

〉 ⊗ ∣∣	 (2)
0

〉
, (5)

where |	 (k)
0 〉 is the ground state in the initially decoupled 4 ×

4 patches labeled by k. Our target-state |	target〉 is the ground
state of the large 8 × 4 system. We determine the target-state
fidelity of the time-evolved state |	(t )〉, which is defined as

F (t ) = |〈	target|	(t )〉|2. (6)

Already, without any further optimization of the prepara-
tion path, we find a final fidelity F (T ) > 0.9 for preparation
times T/τ � 6, see Fig. 4, where τ = 2π h̄

J is the character-
istic tunneling time and we use natural units where h̄ =
1. In our simulations, we considered different preparation
times T/τ = 1.59, 3.18, 6.37, 15.9 (corresponding to T J =
10, 20, 40, 100, respectively) and a path along which the min-
imal many-body gap is �min ≈ 0.09J . Note however, that for
most of the ramp the many-body gap is significantly larger, so
that an improved, potentially nonlinear, ramp of the coupling
is expected to result in substantially shorter preparation times
with comparable target-state overlap.

We confirm the topological nature of the prepared state
at the end of the time-evolution by performing similar
calculations for different values of the flux per plaquette
α and extracting the Chern number CStreda using Středa’s
formula; see Fig. 5. For a sufficiently slow ramp, T/τ = 15.9,
we find a value of CStreda consistent with the 1/2-Laughlin state
expected close to α = 0.3. We attribute the deviation from
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FIG. 3. Hopping protocol: (a–c) Many-body gap � obtained from the exact diagonalization of a system of two coupled 4 × 4 patches
for (a) U/J = ∞ and (b, c) U/J = 8. We tune both the flux per plaquette α and the coupling strength Jcoupling between the two patches. Panel
(c) is a zoom-in of (b) focusing on the regime relevant to the ν = 1/2 Laughlin state, characterized by the opening of the many-body gap in
the decoupled patches at α ≈ 0.25. Note that in this regime the gap remains open for all Jcoupling and therefore provides a promising path for
adiabatic state preparation. (d–f) Many-body Chern number CStreda in the fully coupled system obtained using Středa’s formula. In the gapped
region discussed before we find CStreda = 1/2 as expected for the ν = 1/2 Laughlin state. Grayed out regions are not expected to host the Laughlin
state at Jcoupling/J ≈ 1. The inset in panel (e) visualizes the bulk region used for Středa’s formula.

FIG. 4. Hopping protocol: Target-state fidelity of the time-
evolved state |	(t )〉 for various preparation times T , in units of
τ = 2π h̄

J , upon linearly coupling two patches.

the ground state value to the finite population of excited state
upon time-evolution. The slight discrepancy between the
ground state’s value and the expected value C = 1/2 can be
attributed to finite-size effects.

3. Entanglement growth and adiabaticity

While the initial state is a product state for which the entan-
glement entropy between the patches vanishes, S(t = 0) = 0,
the target-state is clearly an entangled state, S(t = T ) > 0. We
will now probe this behavior using MPS simulations, allowing
for a particularly simple extraction of the bipartite entangle-
ment entropy between spatial subsystems. To this end, we
perform time-evolution simulations using the time-dependent
variational principle (TDVP) method for MPS and track the
entanglement entropy S(t ) between the two 4 × 4 subsystems.
We perform a Trotterization of the time-evolution operator,

Û = T e−i
∫ T

0 dt Ĥ2p(t ) ≈
NTrotter∏
n=0

e−iδtĤ2p(tn ), (7)

where T is the time-ordering operator, δt = T/NTrotter , tn = nδt ,
and

Ĥ2p(t ) = Ĥ2p[Jcoupling(t )], (8)
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FIG. 5. Hopping protocol: Bulk density n̄ as a function of flux per plaquette α for the ground state (black) and the final state of the
time-evolution simulations for different times (colored). Using a linear fit according to Středa’s formula, we obtain estimates for the Chern
number consistent with the 1/2-Laughlin state for a sufficiently slow ramp. Data is given for U/J = ∞.

and consider a preparation time of T/τ = 6.36, for which we
achieve convergence in the Trotter step size for NTrotter = 40,
which also manifests in excellent agreement of the target-state
fidelity for the ED and TDVP time-evolution simulations; see
Fig. 6.

In our time-evolution simulation, we find the expected
growth of entanglement as the patches are connected; see
Fig. 6. In particular, the final entanglement entropy is slightly
larger than in the instantaneous ground state of the 8 × 4
system, S0(Jcoupling); see also the inset in Fig. 6. We attribute
this to a slight deviation from a perfectly adiabatic protocol,
resulting in a population of excited states as we connect the
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FIG. 6. Hopping protocol: In the upper panel, the squared over-
laps of the state obtained by performing the time-evolution via TDVP
for an MPS (green dotted line) and exact diagonalization (light green
line) are in excellent agreement. We find a large overlap of the time-
evolved state with the instantaneous ground state at all times (gray
line). Furthermore, we observe the expected entanglement growth
(lower panel) as the two patches are coupled both for the time-
evolved state (green) and the instantaneous ground state (gray). Inset:
The excess entropy in the time-evolved state at t/T = 1 is attributed
to a small population of excited states. Data is given for U/J = ∞,
T/τ = 6.37, and NTrotter = 40.

patches, which is also visible in the slight decrease of the
overlap with the instantaneous ground state towards the end
of the preparation protocol. Slowing down the ramp in this
regime (while speeding it up at early times) might give access
to more accurate and, more importantly, faster preparation
protocols.

B. Barrier protocol: Turning off a barrier

Reassured by this proof-of-principle, we next turn to an
alternative preparation protocol where we propose to start
from a system of size 9 × 4, initially split into two halves by a
tunable potential barrier. The Hamiltonian for such a system,
realizing what we call the “barrier protocol,” reads

Ĥ2p(Vbarrier ) = Ĥ9×4 + Vbarrier

4∑
y=1

n̂5,y, (9)

where Vbarrier/J is the height of the potential barrier; see Fig. 7.
Such an approach is experimentally most realistic in quantum
gas microscopes, where digital micromirror devices (DMDs)
[46] or spatial light modulators (SLMs) [47] can be used to
create such barriers.

FIG. 7. Barrier protocol: Coupling two 4 × 4 Hofstadter-Bose-
Hubbard patches with N = 2 particles in each half of the system,
indicated by the blue and red shading, respectively. The patches
are separated by a local potential barrier (green region), which is
dynamically lowered to connect the patches into one extended 9 × 4
system.
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FIG. 8. Barrier protocol: (a–c) Many-body gap � obtained from the exact diagonalization of a system of two coupled 4 × 4 patches for
(a) U/J = ∞ and (b, c) U/J = 8. We tune both the flux per plaquette α and the height of the potential barrier Vbarrier between the two patches.
Panel (c) is a zoom-in of panel (b), focusing on the regime relevant to the ν = 1/2 Laughlin state, characterized by the opening of the many-body
gap in the decoupled patches at α ≈ 0.25. Note that in this regime the gap remains open for all Vbarrier and therefore provides a promising path
for adiabatic state preparation. (d-f) Many-body Chern number CStreda of the target-state (Vbarrier = 0) obtained using Středa’s formula. In the
gapped region discussed before we find CStreda ≈ 1/2 as expected for the ν = 1/2 Laughlin state. Grayed out regions are not expected to host the
Laughlin state at Vbarrier/J ≈ 0. The inset in panel (e) visualizes the bulk region used for Středa’s formula.

1. Static properties

Again, we diagonalize the Hamiltonian for hard-core
bosons (U/J = ∞) and finite Hubbard repulsion (U/J = 8) and
find a path with a finite excitation gap from the decoupled
regime to the fully coupled system without any barrier; see
Fig. 8. In particular, we note that already relatively weak local
potentials, Vbarrier/J ≈ 1, provide a sufficient barrier to split the
system into two parts. Note however, that while the excitation
gap is almost constant above Vbarrier/J = 0.5, the microscopic
structure might still differ slightly from the completely de-
coupled limit. We will encounter this behavior below in the
analysis of our time-evolution simulations.

Calculating the many-body Chern number of the target-
state using Středa’s formula as above, we again find evidence
for a topologically nontrivial state in the gapped regime of the
9 × 4 system; see Fig. 8. Furthermore, the extracted Chern
number CStreda ≈ 1/2 is consistent with the expectation for
the 1/2-Laughlin state, despite significant deviations from the
exactly quantized value attributed to the small size (5 × 2) of
the central bulk region used.

2. Time-evolution: Linear ramp

Performing a similar time-evolution protocol as above, we
again calculate the overlap of the time-evolved state with the
target-state for a time-dependent potential barrier of height

Vbarrier (t ) = V0

(
1 − t

T

)
, (10)

where we fix the initial potential barrier V0 = 5J and the flux
per plaquette α = 0.3 in our simulations. The initial state is
taken to be a product state of two 4 × 4 patches, correspond-
ing to the ground state in the limit Vbarrier → ∞.

As for the hopping protocol, we find that the target-state
fidelity is already substantial [F (T ) ≈ 0.6] for relatively short
ramp times (T/τ ≈ 3); see Fig. 9. However, the simple linear
ramp of the barrier does in general not give as good target-
state overlap as a direct coupling of the two patches discussed
in Sec. III A.

Furthermore, we observe an oscillatory behavior of the
target-state fidelity especially for slow ramps. We attribute this

013198-6



GROWING EXTENDED LAUGHLIN STATES IN A QUANTUM … PHYSICAL REVIEW RESEARCH 6, 013198 (2024)

FIG. 9. Barrier protocol: Target-state fidelity of the time-evolved
state |	(t )〉 for varying preparation times T , in units of τ =
2π h̄

J , upon linearly turning off the potential barrier, starting from
Vbarrier (t = 0) = V0 = 5J . The target-state overlaps are significantly
smaller than for the hopping protocol discussed above.

to the fact that while the initial product state is an approximate
eigenstate of the Hamiltonian in the presence of a barrier of
finite height V0, this approximation becomes exact only in the
limit V0 → ∞. That is, there is always a small occupation of
excited states present.

Moreover, we conclude that quickly ramping down the
barrier early on during the time-evolution, where the initial
state is still an approximate eigenstate of the time-dependent
Hamiltonian, might not decrease the intermediate fidelity sig-
nificantly. In contrast, spending more time on the later part of
the evolution, where the excitation gap is small and adiabatic-
ity is more difficult to reach, might prove useful in reaching
higher overall target-state fidelities.

3. Time-evolution: Two-step ramp

Based on this observation, we modify the protocol by
splitting up the turn-off of the potential barrier into two parts.
Specifically, we linearly reduce the barrier from Vbarrier (0) =
V0 = 5J to Vbarrier (T1) = J over a time T1 < T . Then, we
slowly turn off the barrier completely during the remaining
time T − T1. We can write this piecewise linear function as

Vbarrier (t ) =
{

T1−t
T1

V0 + t
T1

J for t � T1,

T −t
T −T1

J for t � T1.
(11)

The two parts of the modified ramp can be intuitively
understood as follows: The first part, t � T1, relatively quickly
takes the system from the essentially decoupled regime to
a point closer to the coupled case. The nontrivial evolution
from an (approximate) product state of decoupled patches to
the entangled state in the fully coupled limit is performed
in the second part, t � T1. Instead of performing the entire
time-evolution at the same ramp speed, the region of smaller
many-body gaps (i.e., small Vbarrier/J) is traversed slower com-
pared to the simple linear ramp.

As expected, the modified ramp performs better at reaching
high fidelity with the target-state at fixed total ramp time if

FIG. 10. Two-step barrier protocol: Target-state fidelity of the
time-evolved state for varying preparation times T , in units of τ =
2π h̄

J , upon turning off the potential barrier in two linear steps, starting
from Vbarrier (t = 0) = V0 = 5J . We vary the intermediate time T1

at which the piecewise linear ramp passes through Vbarrier (T1) = J
(indicated by vertical lines).

the time T1 is chosen sufficiently large; see Fig. 10. Here, we
only perform some exemplifying time-evolution simulations
to show the general advantage of piecewise linear ramps over
a simple linear ramp, varying the ratio T1/T between 0.1 and
0.5, which could be optimized for different total ramp times
individually in the future. We believe further improvement to
be possible by using more complicated ramp profiles which
can be optimized using, for example, machine learning tech-
niques.

C. Intermediate conclusions

By successfully growing an extended Laughlin state from
two patches with high fidelity, we provided a numerical
proof-of-principle of simple patchwork preparation schemes.
Specifically, we conclude that it is in principle possible to
prepare an extended Laughlin state in cold atom experiments
by connecting two originally independent patches of two par-
ticles on 4 × 4 sites.

In our simulations we considered two different protocols
called the “hopping protocol” and the “barrier protocol,” re-
spectively, both allowing for target-state fidelities of F (T ) �
0.85 for preparation times on the order T/τ � 6; see Fig. 11.
In general, the hopping protocol achieved the highest target-
state fidelity for a given ramp time T , however the two-step
barrier protocol yields comparable results for T/τ � 6. Fur-
ther optimization of the ramp parameters as well as more
sophisticated, potentially nonlinear, ramps might allow for
even higher fidelities for short preparation times.

IV. SUPER-CHAINS: COUPLING MORE PATCHES

Elongated systems provide interesting new insights involv-
ing the edge theory of FCI states allowing, for example, for
measurements of the central charge [26]. Despite their finite
size in the short direction, they were found to exhibit gapless
chiral edge modes for sufficiently long systems. Here, we
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FIG. 11. Fidelity of the final time-evolved state |	(t = T )〉 for the preparation protocols discussed above. We find good performance of
all protocols for sufficiently slow ramps with the hopping protocol out-performing both the one- and two-step barrier protocols.

propose to couple more than two patches—hosting two par-
ticles each—to realize such elongated systems; see Fig. 1(a).
We call a collection of patches in a chainlike structure a
“super-chain,” which is described by the Hamiltonian

Ĥchain
({

J (k)
coupling

})

=
Npatches∑

k=1

Ĥ(k)
4×4 −

Npatches−1∑
k=1

J (k)
coupling

4∑
y=1

(â†
4k+1,yâ4k,y + H.c.),

(12)

where the couplings J (k)
coupling between the different patches

may be adjusted independently. As systems of Npatches =
3, 4, 5 patches become too large to be treated with exact
diagonalization, we turn to simulations based on MPS to first
find the low-lying states of the system and afterwards perform
time-evolution.

A. Static properties

We start with a system of homogeneous inter-patch cou-
plings, J (1)

coupling = . . . = J
(Npatches−1)
coupling = Jcoupling, and restrict our

analysis to the case U/J = ∞ for numerical convenience.
Given our earlier findings we do not expect qualitative
changes in the case of finite Hubbard repulsion. Using DMRG
searches for the ground state and the first excited state, we
calculate the many-body gap �. Furthermore, we extract the
entanglement entropy S(1) between the first patch and the rest
of the system from the ground state MPS.

Irrespective of the number of patches, we find a gapped
state at α ≈ 0.3 connected to the Laughlin state on a single
patch; see Fig. 12. The gap around α ≈ 0.3 persists for all
values of the coupling between the patches, so that we believe
an adiabatic preparation of elongated systems from smaller
patches to be realistic. At the same time, the entanglement
between the first patch and the remaining system remains
relatively small compared to the gapless states at larger and

smaller flux per plaquette α. We interpret this as additional
indication for the Laughlin state extending to large systems,
as the Laughlin state is gapped, exhibiting only area-law en-
tanglement [48,49].

B. Time-evolution

As for the two-patch systems above, we perform time-
evolution simulations starting from a product state

|	initial〉 =
Npatches⊗

k=1

∣∣	 (k)
0

〉
. (13)

We employ the TDVP method to evolve the MPS representing
the initial state. We evolve the state with the time-dependent
form of the Hamiltonian in Eq. 12, where the time-dependence
enters via the hopping amplitudes J (k)

coupling(t ). In all our simu-
lations we keep the flux per plaquette fixed to α = 0.3.

1. Coupling all patches at once

In a first attempt to grow extended super-chains, we couple
all patches simultaneously. We find that this simple protocol
provides target-state fidelities of F (T ) � 0.4 (0.8) for T/τ =
6.37 (15.9); see Fig. 13. As before, we find that the most
significant build-up of target-state fidelity as well as entangle-
ment between the patches occurs during the second half of the
preparation time, so that improving the ramp might increase
the overall target-state fidelity.

As expected, we find the target-state fidelity at the end
of the ramp to decrease as more patches are added. We ad-
dress this decrease and its connection to the scaling of the
many-body gap in the Appendix. While the decrease limits the
scalability beyond a certain system size, we are confident that
extended systems relevant for studies of edge properties like
the central charge are within reach. Nevertheless, below we
will discuss alternative protocols to grow extended systems
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FIG. 12. Super-chains: Coupling Npatches = 3, 4, or 5 patches into a super-chain results in essentially unchanged behavior for the many-body
gap �/J (a–c) and the entanglement entropy between the first patch and the remaining system (d–f). While the gaps are quantitatively smaller
than for the case of Npatches = 2 (see Fig. 3), the relatively large gap related to the Laughlin state on a single patch (Jcoupling/J = 0) remains
clearly visible in all cases, see also Fig. 21 in the Appendix, and allows for an adiabatic state preparation.

from originally decoupled patches to see whether we can
reach even higher target-state fidelities in large systems.

2. Iteratively coupling pairs of patches

For an even number of patches it might be favorable to
first couple them in pairs of two patches before coupling

the pairs among each other to optimally exploit the
finite-size gaps. Here, we investigate this concept for a
set of Npatches = 4 patches. We split the preparation time
T in equal intervals, such that we first couple two patches
each to form two pairs (t � T/2) and then connect the pairs
(t > T/2).

FIG. 13. Super-chains: Target-state fidelity F (top) and entanglement entropy S(1) (bottom) of the first patch upon linearly coupling all
patches simultaneously.
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FIG. 14. Super-chains: Target-state fidelity F and entanglement
entropy S(1) of the first patch upon first growing two pairs of patches
(t/T < 0.5) and afterwards connecting the pairs (t/T � 0.5). The gray
lines in the upper panel indicate the overlap achieved when all hop-
pings are ramped up simultaneously. The inset in the lower panel
visualizes the different intra- (J (1) = J (3)) and inter-pair (J (2)) cou-
pling strengths.

For T/τ = 6.37 and 15.9 we find that this protocol yields
target-state fidelities which are significantly lower than those
from a simultaneous coupling of all patches; see Fig. 14.
Furthermore, the time-evolved state exhibits larger entan-
glement entropy than the target-state, clearly showing the
enhanced population of excited states. We attribute this to
the relatively fast ramp in the first half of the preparation,
when connecting pairs of two patches, recalling that prepara-
tion times T/τ � 6 were needed to reach target-state fidelities
above 90% there; see Fig. 4. Optimizing the relative length of
both intervals might result in higher overlaps at the end of the
complete ramp.

3. Attaching one patch at a time

We conclude our analysis of the super-chain setup by
studying a protocol where the patches are attached consecu-
tively. In particular, we linearly ramp up the couplings J (k)

coupling,
k = 1, . . . , Npatches − 1, between the patches one after the
other:

J (k)
coupling(t )

J
=

⎧⎪⎪⎨
⎪⎪⎩

0 for t
T < k−1

Npatches−1 ,

t
T (Npatches − 1) − (k − 1) for k−1

Npatches−1 � t
T � k

Npatches−1 ,

1 for t
T > k

Npatches−1 .

(14)

As before, we calculate the target-state fidelity as a func-
tion of time as well as the entanglement entropy between the
first patch and the rest of the system. While we find large
target-state overlaps for the slowest ramps considered here
(T/τ = 15.9), we do not find as good overlaps for a faster

ramp; see Fig. 15. Furthermore, we find a significant increase
in the entanglement entropy compared to that of the target-
state. Increasing the system size, i.e., the number of patches,
further enhances these effects. We attribute the enhanced exci-
tation to higher energy states to the reduced time available for

FIG. 15. Super-chains: Target-state fidelity F (top) and entanglement entropy S(1) (bottom) of the first patch upon consecutively connecting
the patches. The gray lines in the upper row indicate the overlap achieved when all hoppings are ramped up simultaneously.
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FIG. 16. Large square: Many-body gap � obtained using DMRG simulations of a system of four coupled 4 × 4 patches (sketched on the
left). Panels in the lower row show a zoomed-in version of data in the upper row. We tune both the flux per plaquette α and the barrier height
Vbarrier between the patches. The gap of the Laughlin state at α ≈ 0.25 remains finite in all cases, even though it significantly decreases as the
system gets larger.

attaching each individual patch. Adjusting the couplings and
in particular the time spent on each connection, one might end
up with better target-state overlaps, especially when optimized
on a case-by-case basis.

C. Intermediate conclusions

Based on these results, we conclude that it is in principle
possible to grow extended Laughlin states in long chains. In
particular, we believe this approach to be scalable to system
sizes relevant for experimental measurements of the central
charge. In our analysis it turned out most promising to si-
multaneously couple all patches, as this allows for relatively
short overall preparation times while still changing the local
couplings sufficiently slowly. For such a protocol we achieved
target-state fidelities of F � 0.8 for up to five patches and
T/τ = 15.9.

In contrast, first coupling pairs of patches and afterwards
connecting the pairs did not reach similar fidelities in our anal-
ysis. Similarly, we did not find it advantageous to couple the
patches consecutively. We note, however, that such protocols
might show their full potential only once even longer systems
are considered and the coupling parameters are optimized for
the specific case at hand.

V. LARGE SQUARE: COUPLING FOUR PATCHES

As a last case study, we address the question whether it is
possible to grow large squares by coupling more patches. To
this end, we focus on a barrier protocol, where a 9 × 9-system
of eight particles is split into four 4 × 4 patches by a cross-
shaped potential; see Fig. 16. This system is described by the

Hamiltonian

Ĥsquare(Vbarrier )

= Ĥ9×9 + Vbarrier

⎛
⎝ 9∑

y=1

n̂5,y +
9∑

x=1

n̂x,5 − n̂5,5

⎞
⎠. (15)

We remark in passing that it is also possible to add an addi-
tional local potential to directly imprint a quasihole during the
preparation of the state, as discussed later in this section.

A. Static properties

Once again, we perform DMRG simulations to determine
the ground state and the lowest excited state, and deter-
mine the many-body gap for the case of hard-core bosons
(U/J = ∞) and finite Hubbard repulsion (U/J = 8), where in
the latter case we truncate the local Hilbert space to at most
four bosons per site (Nmax = 4). We again find an adiabatic
connection from a product state of four Laughlin states to a
large Laughlin state in the homogeneously coupled system;
see Fig. 16. Note, however, that close to the homogeneously
coupled limit, Vbarrier = 0, the many-body gap is reduced as a
result of the extended system size. Nevertheless, we expect an
adiabatic growing scheme for the Laughlin state in the bulk
to be applicable as the low-energy excitations are believed to
reside at the edge.
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FIG. 17. Large square: Target-state fidelity F and entanglement
entropy S(left) of the left two patches for a linearly decreasing bar-
rier height Vbarrier/J = 1 − t/T at constant flux per plaquette α = 0.25.
Similar to the barrier protocol for only two patches (Fig. 9) we find
some oscillatory behavior. The target-state fidelity reached at the end
of the preparation protocol might be improved further by modifying
the ramp similar to the barrier protocol discussed above.

B. Time-evolution

For our time-evolution simulations, we again start from a
product state of four two-particle Laughlin states,

|	initial〉 =
4⊗

k=1

∣∣	 (k)
0

〉
, (16)

and use the TDVP method to simulate a preparation protocol
where we linearly reduce the height of the potential barrier,

Vbarrier (t ) = V0

(
1 − t

T

)
. (17)

In particular, we consider the case V0/J = 1, α = 0.25, and
T/τ = 6.37 and 15.9. We restrict our time-evolution simula-
tions to the hard-core bosonic case, U/J = ∞.

During our simulations, we monitor the target-state fidelity
F (t ) along the preparation path as well as the entanglement
entropy between the left two patches and the rest of the sys-
tem; see Fig. 17. For a sufficiently slow ramp (T/τ = 15.9),
we find a target-state fidelity of F (T ) = 0.35 at the end of
the ramp. Furthermore, we find a oscillatory behavior of the
fidelity as for the two-patch barrier protocol discussed above.
Based on these results, it might be favorable to perform the
slow ramp-down of the barrier only up to the point where the
target-state fidelity is maximized, and to quickly turn off the
barrier afterwards to reach the target Hamiltonian.

In conclusion, we are confident that it is possible to grow
extended Laughlin states in the square geometry with suffi-
ciently high fidelity.

C. Growing a Quasihole State

As mentioned before, a cross-shaped repulsive potential
at the center of the system can be used to pin a quasihole
emerging from the ν = 1/2 Laughlin state [25,50,51]. Next, we

will first confirm that this quasihole in fact carries fractional
charge qqh = −1/2 as expected [2] and propose to use the full
counting statistics of the charge to confirm this in experiments.
Afterwards, we provide numerical evidence that it is indeed
possible to prepare this quasihole state using a patchwork
approach as before and confirm the robustness of the charge
fractionalization.

1. Static properties

We start our analysis by performing DMRG ground state
searches for the Hamiltonian Ĥsquare(Vbarrier = 0) introduced
above with an additional cross-shaped potential of strength
Vpin added on the five center sites; see Fig. 18(a). Such a
pinning potential exploits the patchwork structure proposed
before and seems natural when trying to quasiadiabatically
grow a quasihole state in large squares.

We evaluate the ground state density 〈n̂x,y〉 for different
strengths of the pinning potential Vpin/J and define the charge
operator [52,53]

Q̂ =
∑
x,y

e−(r−r0 )2/ξ 2(
n̂r − n(0)

r

)
, (18)

where r0 = (5, 5) denotes the central site of the pinning
potential and n(0) is the density for Vpin = 0. Furthermore,
we introduced the width ξ/a = 2.5 of the Gaussian envelope
function, which has to be larger than the correlation length
(ξcorr ≈ B for the Laughlin state) and significantly smaller
than the system size [52,53]. Our choice of ξ is such that
it clearly encircles most of the density depletion but still
remains sufficiently far away from the edge of the system; see
Fig. 18(b).

Using Fock-basis snapshots of the system obtained via a
perfect sampling scheme for MPS [54], we investigate the
possibility to observe the fractional charge in quantum gas mi-
croscopy experiments. To this end, we generate Nshots = 2000
snapshots and calculate the pinned charge Q̂ for each snapshot
separately. In this way, we obtain the full counting statistics
for the charge, which provides additional information beyond
the average 〈Q̂〉 that is required to confirm the quantization of
the quasihole charge.

We find that for a pinning potential Vpin/J ≈ 2 the distribu-
tion of the pinned charge is peaked around qqh ≈ −1/2, see
Fig. 18(c), consistent with the pinning of a quasihole, where
we attribute the deviations from the exact value −1/2 to finite-
size effects. In contrast, we find that while the distribution is
clearly peaked around qqh = 0 for weak pinning potentials,
indicating the incompressibility of the Laughlin state, suffi-
ciently strong pinning potentials, Vpin/J � 5, lead to more than
one quasihole being pinned, or possibly higer-Landau level
effects.

We remark that our approach directly probes the frac-
tionalization of the quasihole charge, while earlier studies
relied on a plateau of the mean pinned charge [indicated
by white dots in Fig. 18(b)] for a finite range of pinning
strengths [25,50,51]. We find that finite-size effects tend to
destroy this plateau, while the full counting statistics still
allows for a conclusive extraction of the quasihole charge.
While strictly speaking it is necessary to confirm that the peak
in the full counting statistics becomes sharper as Lx, Ly →

013198-12



GROWING EXTENDED LAUGHLIN STATES IN A QUANTUM … PHYSICAL REVIEW RESEARCH 6, 013198 (2024)

FIG. 18. Large square: (a) Pinning a quasihole is possible using for example a cross-shaped pinning potential of strength Vpin at the center of
a system of four coupled 4 × 4 patches, resulting in density patterns visualized in panel (b). (c) Taking Nshots = 2000 snapshots and evaluating
the pinned charge Eq. (18), we can determine the full counting statistics of the charge operator. We find that for pinning potentials Vpin/J ≈ 2
a fractional charge qqh = −1/2 is pinned, whereas weaker (stronger) pinning potentials result in no (more than one) quasihole being pinned.
While the mean value of the charge operator (white dots) is not sufficient to conclusively reveal this distinction, the full counting statistics
provides clear evidence. On the right, we exemplify this behavior for two values of the pinning potential indicated by the correspondingly
colored vertical lines in the left panel. Data is given for U/J = ∞ and ξ/a = 2.5 [visualized by the dotted circles in panel (b)].

∞ to unambiguously prove the fractionalized nature of the
pinned charge, already relatively small systems like those
studied here—and, more importantly, available to near-term
quantum simulators—show strong signatures of the fractional
quasihole charge. Accordingly, we conclude that the direct
observation of a quantized fractional charge is now within
reach.

2. Time-evolution

Having established the ground state in the presence of
the cross-shaped pinning potential Vpin/J = 2 as a quasihole
state of the Laughlin state, we now turn to its quasiadia-
batic preparation. As before, we start from a product state
of four two-particle Laughlin states and ramp down the po-
tential barrier on almost all sites except those forming the
pinning potential. In particular, we fix the strength of the pin-
ning potential to Vpin/J = 2 independently of the barrier height
Vbarrier (t )/J.

We again calculate the target-state fidelity along the ramp
and find a final fidelity of F (T ) = 0.18 (0.47) for ramp time
T/τ = 6.37 (15.9); see Fig. 19. Note, in particular, that these
fidelities are significantly higher than those obtained for the
preparation of the Laughlin state itself; see Fig. 17. This
is likely to be a result of the spatial structure of the initial
state favoring the quasihole state as is also visible from the

increased overlap of the initial state |	(t = 0)〉 with the quasi-
hole state, see Fig. 19, compared to the Laughlin state; see
Fig. 17.

To further confirm the successful preparation of the quasi-
hole state, we again determine the full counting statistics of
the charge Q̂ defined in Eq. (18) for the final state of our
preparation protocol. We find the distribution to be clearly
peaked around qqh = −1/2 and to agree well with the one
extracted from the target-state obtained in our earlier DMRG
simulations. Therefore, we conclude that the reduced fidelity
F (T ) < 1 of the time-evolved state does not affect the quan-
tization of the quasihole charge significantly, so that it is a
promising candidate to identify the quasihole in cold atom
experiments.

In summary, we find that it is possible to grow both a
Laughlin state of N = 8 atoms as well as a quasihole state
with fractional charge qqh = −1/2 using a simple preparation
protocol starting from four 4 × 4 patches.

VI. BENCHMARK: COUPLING CHAINS

To benchmark the efficiency of our patchwork growing
schemes, we compare the results to a preparation protocol
where initially decoupled one-dimensional chains are slowly
coupled [21]. To this end, we study anisotropically coupled
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FIG. 19. Large square: (a) Target-state fidelity F for a linearly decreasing barrier height in the presence of a cross-shaped repulsive pinning
potential of strength Vpin/J = 2 in the center. We find significant overlap of the time-evolved state with the quasihole target-state for both
preparation times. (b) Full counting statistics of the pinned charge Q obtained from Nshots = 2000 snapshots clearly shows the quantization of
the quasihole charge to qqh = −1/2 both for the time-evolved state (filled red bars, T/τ = 15.9) and the target-state obtained via DMRG (purple
dashed line). Data is given for U/J = ∞ and ξ/a = 2.5.

systems described by the Hamiltonian

Ĥ = −
∑
x,y

(Jxâ†
x+1,yâx,y + Jye2π iαxâ†

x,y+1âx,y + H.c.)

+ U

2

∑
x,y

n̂x,y(n̂x,y − 1), (19)

which resembles the Hamiltonian studied above for
Jy = Jx = J .

We determine the ground state of the system in the com-
pletely decoupled limit, Jy/Jx = 0. Afterwards, we linearly turn

FIG. 20. Comparison of our proposed patchwork growing
schemes (empty symbols) to a scheme coupling chains (faded filled
symbols) for different ramp times T and system sizes (Lx × Ly )
discussed above, where we always show the best preparation protocol
identified before. For larger systems our patchwork approach yields
higher target-state fidelities at the end of the ramp. In particular, the
advantage of this approach becomes clearly visible for longer sys-
tems, Lx � Ly, which clearly shows the scalability of our protocol.
All data is given for U/J = ∞.

on the hopping in the y direction, i.e.,

Jy(t ) = t

T
Jx. (20)

Performing time-evolution simulations using ED [for
(Lx × Ly) = (8, 4), (9, 4)] and TDVP [for (Lx × Ly) =
(12, 4), (16, 4), (9, 9)] as before, we calculate the target-state
fidelity for different ramp times; see Fig. 20. Using the same
parameters as before, we compare these results to our earlier
findings and conclude that our patchwork approach is clearly
favorable. In particular, for elongated systems, Lx � Ly,
we find a significant advantage of the patchwork approach,
clearly showing the scalability of our protocol.

We note that the qualitatively different initial states make a
one-to-one comparison of the final fidelities challenging. Ex-
perimental advantages in the preparation of one-dimensional
superfluids in decoupled chains makes the simple preparation
protocol used as benchmark here appealing, despite the sub-
stantially lower fidelities in a perfect numerical environment.

VII. CONCLUSION AND OUTLOOK

Performing static and time-evolution simulations, we
found evidence that various different preparation protocols are
well-suited to prepare extended Laughlin states by connecting
together copies of the recently realized two-particle state on
4 × 4 sites. In particular, time-evolution simulations found
target-state fidelities above 80% for connecting two patches
for preparation times T/τ � 6. Extended chains of up to 20 × 4
sites could be grown with similar fidelities by simultaneously
turning on couplings between neighboring patches over a time
T/τ = 15.9. Alternative protocols investigated here did not
yield higher fidelity, but we believe further optimization of
the ramp to be worthwhile in the future.

Finally, we successfully investigated the possibility to cou-
ple four patches in a square geometry by linearly turning off
an initial potential barrier and prepared a Laughlin state as
well as a quasihole state. In particular, we find a fractionally
charged quasihole around the applied pinning potential both
in ground state simulations as well as the time-evolved state.
We emphasize the robustness of the quantized charge despite
a target-state fidelity of 47%, so that it is experimentally
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realistic to employ our preparation protocol in the prepara-
tion and detection of emergent anyons. We compared our
patchwork approach to an approach of coupling chains and
found that the patchwork approach in general gives higher
target-state fidelities.

While our results demonstrate the scalability of a patch-
work approach, further questions remain. In particular, it is
always desirable to reach even higher fidelities at shorter ramp
times to reduce heating and avoid the loss of coherence. Espe-
cially in the case of many patches we believe an optimization
of the different couplings to be profitable in the future. Here,
state-of-the-art machine learning techniques might be useful
to find particularly efficient paths in parameter space [55–58].
Such an approach might even take into account experimental
details which are difficult to investigate on an abstract level.

In light of potential applications, new opportunities unique
to cold atom quantum simulators become available as larger
systems are now within reach. For example, growing long
chains will allow for direct measurements of the central
charge, thus providing direct evidence of the topological na-
ture of the state. Furthermore, access to large systems in a
square geometry might give the opportunity to directly probe
braiding properties of quasiparticles and quasiholes of the
Laughlin state. In conclusion, building on the latest milestone
of realizing a two-atom Laughlin state, exciting new direc-
tions are just opening up based on patchwork state preparation
approaches.
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APPENDIX: SCALING OF THE MANY-BODY GAP IN
SUPER-CHAINS

As discussed in the main text, for fixed preparation times
the target-state fidelity in extended super-chains decreases
with an increasing number of patches Npatches; see Fig. 21(a).
While from our simulations we conclude that the overlaps
decay exponentially with the number of patches, the data indi-
cates a sufficiently slow decay especially for long preparation
times.

Inspired by the adiabatic theorem, the question arises how
this relates to the many-body gap along the preparation path.
For fixed flux per plaquette α = 0.3 the minimal value of the
many-body gap � decreases as more patches are added [see
Fig. 21(b)], as is expected for the ultimately gapless edge
mode in an infinite system. In particular, we find an expo-
nential decay of the minimal gap as a function of the number
of patches Npatches, which clearly indicates the exponential
scaling of the finite-size edge gap.

In contrast, taking into account the entire prepara-
tion path it seems meaningful to average the gap along
the linear ramps discussed in the main text, i.e., �avg =∫ J

0 �(Jcoupling) dJcoupling. For the averaged gap we find a slow
algebraic decay as number of patches. As ultimately this
averaged gap is expected to limit the ramp speed according
to the adiabatic theorem, it seems realistic to grow extended
super-chains, especially when further optimizing the ramp
speed according to the instantaneous many-body gap.

FIG. 21. (a) Target-state fidelity at the end of the ramp as a function of the number of patches Npatches for a scheme linearly coupling all
patches simultaneously as discussed in the main text. We find that the fidelity decays exponentially as more patches are added, where the
decay is significantly suppressed for sufficiently long preparation times. (b) Minimal many-body gap along the preparation path also shows
an exponential decay as function of Npatches, in agreement with the existence of gapless edge modes in the thermodynamic limit. In contrast,
the average gap along the preparation path only decays with algebraically with a small exponent, hence resulting in a favorable scaling of the
target-state fidelity for a fixed preparation time. Data is given for U/J = ∞ and α = 0.3 in all cases.
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