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Turbulent spot formation in stably stratified three-dimensional Yukawa liquids
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A plane-Couette flow (PCF) is considered in a stably stratified three-dimensional (3D) Yukawa liquid, per-
turbed initially with a finite amplitude 3D perturbation. Stable stratification in density is achieved by subjecting
the medium to external gravity. We demonstrate turbulent spot formation in a stably stratified PCF. The dynamics
of the system is shown to depend upon the value of κ , which is associated with the range of interaction. We have
performed “first principles” classical 3D molecular dynamics (MD) simulations for “hypergravity” (1.3g0, g0

is Earth’s gravitational force for unit mass in our normalized unit) and “milligravity” (9×10−3g0) cases for κ ,
1.0 and 4.0, respectively. We extract relevant fluid quantities from MD data. For the hypergravity case, when
the system is evolved in time under stable stratification, the kinetic energy is observed to deposit in the lower
wave vectors (Kx , Kz), leading to “inverse cascade” in the plane perpendicular to the direction of stratification.
As a result, we observe large-scale structure formation in velocity and streamwise vorticity fields. Nucleation
of velocity streak is observed for the first time in the stably stratified case in our simulation. The coherent
structures in the velocity and streamwise vorticity fields are found to sustain for longer period of time for the
stably stratified cases as compared to the unstratified case. For the milligravity case, the large-scale dynamics
is observed to enhance. Unlike unstratified PCF, a background flow in Y-averaged streamwise fluid velocity
field is observed for the stably stratified case. We believe that our results using “first principles” classical MD
simulations on subcritical turbulence in stably stratified Yukawa liquid, may have ramifications to wider class
turbulence problems.
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I. INTRODUCTION

Fluid turbulence, though deterministic, is not fully un-
derstood. A fluid becomes unstable, when its equilibrium is
perturbed, provided that free energy is available to the sys-
tem leading to instabilities, as a result of which, the system
becomes turbulent with time. In a turbulent system, when
energy is injected at a certain length scale or wave-vector
value, the energy is transferred to a length scale smaller or
larger than the energy injection length scale due to nonlinear
coupling between modes. When energy transfers to smaller
length scales as compared to the energy injection length scale,
“forward energy cascade” ensues and when energy transfers to
higher length scales, one observes “inverse energy cascade.”
For example, in three-dimensional (3D) homogeneous and
isotropic turbulence, the forward energy cascade is known to
occur, in which energy cascades towards the smaller length
scales or to higher wave-vector values while in quasi-two-
dimensional (2D) case, inverse energy cascade is observed,
where energy cascades towards larger length scales or smaller
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wave-vector (K) values as compared to the injection length
scale.

According to Kolmogorov theory given in 1941 for a 3D
homogeneous and isotropic turbulence [1,2], the energy and
helicity cascade in the forward direction (towards lower length
scales or higher K) with a power law of K−5/3. In the case
of 2D turbulence, energy cascades in the reverse or inverse
direction with a power law of K−5/3 and enstrophy in the
forward direction with a power law of K−3 [3]. In general,
two forms of cascades are known to exist: dual cascade and
split energy or bidirectional cascade. In dual cascade, two
invariants, such as energy and enstrophy cascade in the oppo-
site directions for 2D turbulence whereas, energy and helicity
cascade in the same direction for 3D turbulence [4]. In split
energy or bidirectional cascade, energy cascades in the for-
ward and backward directions [5]. In Ref. [5], cascading of
energy both in forward and backward directions in presence of
rotation and stratification is demonstrated, which is observed
in oceanic turbulence. It has been shown [6] that in general,
flows in nature exhibit both 2D and 3D behavior. For example,
Jupiter’s and Earth’s atmospheres exhibit both 2D and 3D
behavior at different scale lengths. In Jupiter [7], at a length
scale of 3500 to 40 000 KM (kilometer), enstrophy is observed
to cascade in forward direction or downscale and the energy
is observed to go upscale or in inverse direction. However,
at a length scale lesser than 3500 KM, which is called the
“deformation radius,” the energy is observed to go downscale.
In the case of Earth’s atmosphere [4], energy mostly cascades
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in forward direction, but in the troposphere, at a length scale
of 1000 to 5000 KM, energy and enstropy is observed to
cascade in reverse and forward directions respectively. Earth
and Jupiter’s atmospheres set an example of both split energy
and dual energy cascades, respectively. However, for inverse
energy cascade to occur, two-dimensionality is not a necessary
criterion. By changing the nature of the nonlinear terms in the
Navier-Stokes equation, it was shown that energy cascades in
the reverse direction with a power law of K−5/3 and helicity
cascades with a power law of K−7/3 in the forward direction
in 3D turbulence [8].

The cascade direction for transfer of energy depends upon
various factors, such as, thickness of the fluid layer or confine-
ment, rotation, stratification in density and, combined effect of
rotation and stratification. In a fluid layer of finite thickness
d (d is the vertical length of the fluid layer), the energy
injection length scale l of the flow primarily controls the 3D
and 2D behavior of the system. When d > l , the system be-
haves as a three-dimensional system. When l > d , the vertical
wave number of the system, Kv = 2π/d becomes very large
and the system effectively becomes two-dimensional (2D)
or quasi-2D. In such quasi-2D system, the energy cascades
towards larger length scales with a power law of K−5/3 and
the enstrophy, which is along the vertical direction, cascades
in the forward direction with a power law of K−3. In other
words, by keeping l constant, when d is gradually reduced,
at some particular thickness, split energy cascade is observed
and further reducing the thickness, when the thickness reaches
a critical value, unidirectional inverse cascade of energy is
observed [9].

In the presence of a strong rotation as well, the system
becomes quasi-2D, which can change the direction of energy
cascade. In such rotation dominated system, the power law
for inverse cascade is found to be K−2 [10] and K−3 [11],
which is different from the conventional power law, K−5/3,
for inverse energy cascade in a quasi-2D system and forward
energy cascade in a 3D isotropic and homogeneous turbulent
system.

A stratification in density can also make a system quasi-2D
by suppressing the motion along the stratification direction.
In this context, in a stably stratified system, in which density
reduces with the increase in height, a fully helical ABC flow
have been investigated, at a high Froude number and moderate
Reynolds number [12]. Due to the presence of stratification,
large-scale structures are generated and, due to the combined
effect of stratification and large-scale structures, helicity is
found to decay slower than that of the unstratified case. Com-
bining stable stratification with PCF, it was shown that fluid
flow becomes more localized in space with an increase in
stratification [13]. In forced stably stratified systems, forward
cascade is observed in the past [14–17]. Detailed investigation
of freely decaying stably stratified turbulence also have been
studied in the past [18–20]. Various scale lengths associated
with the stratified turbulence is discussed in Ref. [21]. Study
of mixing efficiency using LES [22] and effect of eddy vis-
cosity [23] is studied in details for stably stratified turbulence.

Presence of both rotation and stratification gives rise to “in-
verse cascade” in a system and create large-scale structures. In
most of the planetary atmospheres, both rotation and stratifi-
cation acts together and reverses the direction of energy flow

at various length scales. The atmospheres of Earth, Jupiter,
and Saturn are good examples of the combined effect of ro-
tation and stratification [4,7]. The rate of an inverse cascade
of energy depends upon the interplay between rotation and
stratification, and when stratification dominates the rotation,
the rate of inverse cascade of energy reduces [24].

In our present work, we have considered a stably stratified
3D Yukawa liquid in the presence of an external gravity. Us-
ing “first principles” classical 3D molecular dynamics (MD)
simulation, we address the following questions: (1) starting
from a PCF, is the formation of turbulent spot possible in a
stably stratified 3D Yukawa liquid at all values of Reynolds
number and in relatively small aspect ratio? (2) Is it possible
to observe inverse cascade of kinetic energy and formation of
large-scale structures in the presence of a stable stratification
in a 3D Yukawa liquid, where the viscosity, ν and Reynolds
number, Re is a function of time? (3) Does the stable stratifi-
cation facilitate the coherent structures to survive for a longer
period of time as compared to a unstratified case? (4) Does
the range of interaction or the value of κ affect the turbulent
dynamics of a stably stratified system? As our calculations
are based on “first principles” classical MD simulation and as
the “fluid” variables are constructed out of the instantaneous
particle velocities and positions, our results are independent
of the mathematical structure of conventional fluid dynamical
systems such as Navier-Stokes equations.

Previously, many studies have been carried out in 2D
Yukawa liquids, in the presence of an external gravity using
MD simulation. For example, observation of Rayleigh-Bénard
convection cells [25], observation of negative entropy pro-
duction rate in a small subsystem of a 2D Yukawa liquid
upto a finite observation time [26], transition from convective
cells to shear/sheraless flow or zonal flow when a velocity
perturbation [27] and, mass and charge inhomogeneity [28]
is introduced to the system. In the above cases, density strati-
fication was unstable in the presence of temperature gradient
in the system. In contrast, we shall address the effect of stable
density stratification in the spot formation process and cascade
dynamics using fluid quantities extracted from MD data.

The rest of the paper is organized in the following way:
In Sec. II, simulation details are given. In Sec. III, the results
obtained from the MD simulation is discussed. In Sec. IV, we
shall conclude and discuss our work.

II. SIMULATION DETAILS

To study the dynamics of turbulent spots in a stratified
Yukawa liquid, we have upgraded an already reported 2D code
[29] to MPMD-3D [30] with a “gravity module” incorporated
in the solver. The MPMD-3D is parallelized in both CPUs and
GPUs using MPI and open-ACC, respectively. Both versions
of the code show good scaling with the increasing number
of CPU cores or GPU cards. A schematic diagram of the
system is shown in Fig. 1. The x̂ and ẑ directions are periodic
while ŷ direction is bounded. The dimension of the system
along x̂, ŷ, and ẑ directions are Lx = 493.77a, Ly = 50.02a,
and Lz = 224.29a. The equation of motion is normalized with
“a”—the Wigner-Seitz radius for length scales and inverse of
grain-plasma frequency, ωpd =

√
Q2n̄/ε0ma3 for timescales.

Here, n̄ = 3/4π is the normalized grain density, m = mass of
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FIG. 1. In this schematic diagram, x̂ and ẑ directions are peri-
odic while ŷ direction is bounded. The system size is as follows:
Lx×Ly×Lz is 493.77×50.02×224.29; h = Ly/2, is the half channel
height. The external gravitational force on the system is acting along
−ŷ direction. The top and bottom walls translate opposite to each
other with a velocity, Vwall = 2.0. As a result of the translation of
the walls, a flow is generated in the system and the flow direction is
shown by the arrows in the figure. When external gravity is nonzero,
it induces stable stratification in density. This kind of flow is called—
“plane Couette flow” (PCF) in a stratified medium. The streamwise,
spanwise, and wall-normal directions are respectively x̂, ẑ, and ŷ.

the grains, Q = charge of each grain. The aspect ratio of the
system with respect to Ly, along x̂ and ẑ directions are Ax =
Lx/Ly = 9.87 and Az = Lz/Ly = 4.48. In this system, we have
considered equal mass and charge for all the grains. The total
energy (E ) and temperature (T ) of the system are normal-
ized by Q2/4πε0a. Consequently, the coupling strength �,
which is the ratio of potential energy per grain to its kinetic
energy, becomes � = 1/T , where T = T/(Q2/4πε0a) is the
normalized grain temperature. The total potential energy in
normalized unit is, Up(�ri) = ∑N

j �=i exp(−κri j )/ri j + ∫ yi

−Ly
gdy,

N is the total number of grains. The first term represents the
Yukawa interaction energy and the second term represents the
potential energy due to the externally applied gravity. Thus the
force on ith grain is

�fi =
N∑
j �=i

ri j (1/(ri j )
3 + κ/(ri j )

2) exp(−κri j )r̂i j − gŷ. (1)

The above Eq. (1) is a normalized equation. Here, κ = r/λD

and λD is the screening length, which, for example, is gov-
erned by background ion temperature in a complex plasma
[30,31]. As, κ = r/λD, lesser value of κ stands for weak
shielding of the charge and the range of interaction is rela-
tively higher as compared to higher value of κ .

To begin with the simulations, a Gaussian thermostat is
used to thermalize the grains at a desired temperature, based
on the “Gaussian principle of least constraint” [32]. After
thermalizing the grains at a desired temperature, the grains
are subjected to an external gravity in two steps [26,33]. The
gravitational force is applied along −ŷ direction. The grains
are equilibrated under the gravitational force in two steps. In
the first step, the grains are evolved under external gravity
with a Gaussian thermostat upto 15 000 ω−1

pd and in the second

step, from 15 001 ω−1
pd to 20 000 ω−1

pd , the grains are evolved
microcanonically, without any thermostat. In a typical labo-
ratory conditions, the grain plasma frequency (ωpd ) is of the
order of 10–100 Hz [34] and the Wigner-Seitz radius (a) is
around 0.40–0.58 mm [35]. Hence, the external gravity or the
earth’s gravity in the normalized unit is, g0 = g/aω2

pd = 0.063.
For a given value of κ , which decides the range of interaction
between grains, the value of “g” is chosen in such a way that
the external gravitational force roughly balances interparticle
interaction force. A stronger gravity (higher value of “g”) will
result in a compression of the liquid, near the bottom plate
and a feeble gravity (smaller value of “g”) will produce weak
stratification in the density of the system. Here, the value of
“g” is chosen in such a way that for a given value of κ , a
stable stratification in density is achieved as well as there is
minimal compression of the fluid. In this work, we have used
two values of κ , viz. κ = 1 and κ = 4, as used in our previous
work [30]. The range of interaction for κ = 4.0 is less as com-
pared to κ = 1.0. Hence, the Yukawa liquid at κ = 4.0 is easy
to compress as compared to κ = 1.0. Therefore, to produce a
stable density stratification, a smaller value of g = 0.009g0 is
chosen for κ = 4.0 and a relatively higher value of g = 1.3g0

is chosen for κ = 1.0.
After obtaining a stably stratified fluid at a desired average

grain temperature; T = 0.00067 (� = 1500) for κ = 1.0, 4.0;
a plane Couette flow (PCF) is superposed on each thermalized
grain as follows: vxi = vxi + 2Vwall/Ly; Vwall = 2.0; is the top
and bottom wall speed. As the both top and bottom walls
move with equal and opposite velocities (Fig. 1), the fluid in
between the two moving walls attains a linear velocity profile.
The details of imposing a PCF at the initial time is described
in Ref. [30].

The characteristic velocity profile for PCF is linearly stable
at all the values of Reynolds number (Re) [36]. To investigate
the turbulent dynamics of PCF, the flow must be subjected
to a finite amplitude, three-dimensional (3D), nonlinear per-
turbation. However, the turbulent dynamics of such flows
also depend upon the aspect ratio of the system, where, for
example, a 3D nonlinear or noisy initial perturbations gener-
ate turbulent structures (turbulent spots or streaks, turbulent
bands) [37–39]. However, both kinds of initial perturbations
mentioned above make the flow turbulent [39,40]. To study the
turbulent dynamics of PCF in a stably stratified 3D Yukawa
liquid, we consider Lundbladh-like [39] 3D nonlinear pertur-
bation. The form of perturbation is given as follows:

vpert
yi = yi

(
h2 − y2

i

)2 xi

δx
e−

[(
xi
δx

)2
+
(

zi
δz

)2] 1

δz

(
1 − 2

(
zi

δz

))2

,

(2)

vpert
zi = −

(
xi

δx

)(
zi

δz

)(
h2 − y2

i

)
e−

[(
xi
δx

)2
+
(

zi
δz

)2](
h2 − 5y2

i

)
.

(3)

The perturbations applied at the particle level on the ith grain
is given as follows:

vyi = vyi + Avpert
yi , (4)

vzi = vzi + Avpert
zi . (5)
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Here, there is no perturbation along the streamwise direction
velocity (vxi). In the above equations, the perturbations are ap-
plied to the particles, which are in the range −30a � x � 30a
and −30a � z � 30a. In Eq. (2), δx = δz = 12a, is the fall-
distance of the applied perturbations along x̂ and ẑ directions.
The perturbation strength A is chosen in such a way that the
maximum fluid Vy does not exceed 75 % of the Vwall. More
details regarding the perturbations is given in Ref. [30].

As our simulations are at the particle level, we have all
the information at the particle level. To construct the fluid
variables or the macroscopic quantities from the instantaneous
particle level data obtained from our 3D classical MD simu-
lations, we implement the method of “fluidization” [30,41].
An Eulerian grid in 3D having 3D cells along x̂, ŷ, ẑ is
Nx, Nz, Nz, such that Nx×Ny×Nz is 46×19×28, which is
superimposed onto the system containing the particles. Total
number of particles in the system is 1.318554 × 106 and after
fluidization, particles per 3D cell is around 53. We find that
this many number of particles per cell is sufficient to capture
the essential fluid characteristics of the system. All the results
presented below are given in-terms of the fluid variables.

We have demonstrated earlier [30] that a PCF becomes
unstable when perturbed with a finite amplitude 3D nonlinear
perturbation, which leads to turbulence via spot formation in
a very small aspect ratio system (Ax ≈ 10), when the applied
perturbation amplitude is above a critical value. This class
of turbulence is shown to be subcritical [30,42]. In addition
to this, we have demonstrated that the results tend to be
more fluid like, when the range of interaction is increased,
or the value of κ is decreased from 4.0 to 1.0 [30]. We found
that for smaller range of interaction (κ = 4.0), the system is
dominated by large-scale flow while for larger range of inter-
action (κ = 1.0), the system is dominated by both large and
small scales. However, at late times, the dynamics is largely
dominated by small scales. Figure 16 in Ref. [30] shows the
spot formation for two different κ values. For κ = 1.0, the Vx

fluid velocity field is filled with velocity streaks surrounded by
large-scale structures or flow while for κ = 4.0, we observe
only large-scale flow.

In our present work, we have incorporated an external
gravity in the system to study the spot formation dynamics
in a stratified environment. As an initial condition, we have
perturbed the system as shown in Eqs. (4) and (5). As a bound-
ary condition, we have implemented “moving wall boundary
condition” to translate the top and bottom walls opposite to
each other and the details of its implementation is given in
Ref. [30]. Using “first principles” classical MD simulation,
we solve Eq. (1), with initial and boundary condition men-
tioned above. For all the numerical experiments, we have used
g = 1.3g0 for κ = 1.0 and g = 0.009g0 for κ = 4.0.

III. RESULTS

After preparing the initial state for different cases, we
evolve the initial state using the MPMD-3D [29,30]. For the
gravitated case we simply turn on the gravity module embed-
ded into the code. After the perturbation is added, the system
is evolved up to 250 or 300 ω−1

pd , we analyze the results and
the results are presented below.

FIG. 2. The density (ρtot) of the system as a function of “Y ” is
shown. According to the “a” normalization, the ideal unstratified
density is 3/4π or 0.238. The computed density for the unstratified
case is nearby 0.238, except few deviations near the wall location.
For the stratified and κ = 1.0 case, the density near the top wall
is 0.043 and near the bottom wall is 0.64. For the κ = 4.0 case,
density near the top wall is 0.063 and near the bottom wall is 0.45.
The variation in density for both the cases is found to be around the
base density, 0.238. A nearly linear variation of density is observed
for both the stratified cases. This near linear variation of density
is playing a key role in controlling the dynamics of the gravitated
system.

A. Results for κ = 1.0

We shall first discuss the results for κ = 1.0 with stratified
and unstratified cases. The instantaneous density profile for
the stratified and unstratified cases at t = 0 is shown in Fig. 2
After averaging over the x̂ and ẑ directions, as a function of
Y . It is to be noted that the instantaneous density profile for
stratified case is not exactly a straight line and for unstratified
case, the instantaneous density profile is not a straight line
with zero slope. There are some nonuniformities at the bound-
ary along −ŷ direction for the stratified case. The reason for
having such nonuniformity at the boundary is because we have
“free reflective boundary condition” in the ŷ direction and the
external gravity acts in the −ŷ direction, due to which slightly
more number of particles gather at the boundary along −ŷ
direction. Despite having such nonuniformity in the density
profile at y boundaries, our simulation is able to bring out
the important effects that arise due to the presence of stable
density stratification in a system.

1. Fluid velocity

Figures 3–6 show the fluid Vx, Vy velocities [43–47] for
the stratified case at κ = 1.0. In Fig. 3, a spot structure for
the stratified case in Vx velocity fields is observed, which
elongates in space (x̂, ẑ directions) with time. We observe
three velocity streak formations in the system. Velocity streaks
are regarded as small scale structures in a turbulent spot and
surrounding the velocity streaks, large-scale flow structure
from 65 to 85 ω−1

pd is observed. There is a continuous growth
in the size of the velocity streaks with time along x̂ and ẑ
directions. At time 235 to 250 ω−1

pd , the central velocity streak
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FIG. 3. Time evolution of the streamwise fluid velocity Vx for the stratified case in Y = 0 plane as a function of X and Z is shown. At time
t = 65, 85 ω−1

pd , we observe large-scale flow surrounding the turbulent streaks. We observe three velocity streaks for this case. The velocity
streaks grow in size continuously and after 150 ω−1

pd , the central velocity streak is observed to fill the entire X region around Z = 0.

is observed to re-appear in the positive x̂ direction in the XZ
plane at Y = 0 due to periodic boundaries.

We compare our stratified results shown in Fig. 3 to the
results obtained for the unstratified case for identical param-
eters and the comparison is shown in Fig. 4. In Fig. 4, fully
developed velocity streaks at around t = 45 − 50 ω−1

pd for the
unstratified case are observed while for the stratified case the
streaks generate at late times and becomes well-defined from
t = 85–90 ω−1

pd . In the presence of stratification, the symmetry
along x̂ direction of the velocity streaks is broken, as the
streaks have shifted more towards left from t = 45 to 120 ω−1

pd .
An increase in the length scale is obvious for the stratified
case, as the number of velocity streaks have reduced to 3, from

5, as shown in unstratified case. Overall, the spatial spread
of the velocity streaks for the stratified case has increased
significantly as compared to the unstratified case. More de-
tails regarding the spatial spread of the spot is discussed in
“Spatiotemporal Analysis” section.

Let us now consider the Vy fluid velocity field as shown
in Fig. 5 in Y = 0 plane as a function of X and Z . At the
initial time (t = 10), the spot structure is symmetric along x̂
and ẑ directions. As the time evolves, the spot structure moves
more towards the −x̂ direction. The velocity streaks start to
generate or develop at t = 60 ω−1

pd and becomes well-defined

at t = 95 ω−1
pd . At this time, three velocity streaks (two nega-

tive and one positive) are observed. With further evolution in

FIG. 4. Comparison of streamwise fluid Vx velocity between the stratified and unstratified cases at Y = 0 plane as a function of XZ is
shown. At t = 5 ω−1

pd , the spot structures look similar. After that, streaks start to develop for both the cases. At t = 85 ω−1
pd , three velocity streaks

are observed for the stratified case and for the unstratified case, numerous such streaks are observed, which end up having five well-defined
velocity streaks at t = 120 ω−1

pd , which remains stable with further evolution of time. The reduction in the number of velocity streaks from 5 to
3 at the same location at t = 120 ω−1

pd , implies the dominance of large-scale flow in the system for the stratified case.
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FIG. 5. Time evolution of the wall-normal fluid velocity Vy at Y = 0, as a function of XZ is shown. The spot structure appears at t = 10 ω−1
pd .

From t = 60 ω−1
pd , the velocity streaks start to develop, and at t = 95 ω−1

pd , we observe three velocity streaks. The splitting and generation of
streaks is observed from t = 120 to 250 ω−1

pd . As the streaks tend to cover the entire simulation domain, a large-scale flow is dominant in the
system.

time, the central positive velocity streak splits into two seg-
ments at time, t = 120–130 ω−1

pd . At time, t = 150 ω−1
pd , a new

negative velocity streak of very small magnitude is nucleated
in between the two positive velocity streaks that split earlier.
From 165 to 250 ω−1

pd , we observe five velocity streaks in Vy

fluid velocity field, three negative and two positive. It is to
be noted that the central negative velocity streak nucleated at
around 145–150 ω−1

pd have very small magnitude, but at later
times the magnitude of the central velocity streak increases
and becomes visible clearly from 235 ω−1

pd . In addition to
this, the velocity streaks tend to cover the entire simulation
domain (XZ plane at Y = 0) up to 250 ω−1

pd (maximum sim-
ulation time). There is a generation of small-scale structure
in Vy velocity field. However, the velocity streaks continue to

extend in space with time. Hence, the system is dominated by
large-scale dynamics, suppressing the small-scale ones.

We compare the Vy fluid velocity fields for the stratified
case with that of the unstratified case, which is shown in
Fig. 6. At the initial time, t = 10 ω−1

pd , both the spot structures
are symmetric along x̂ and ẑ directions. In both cases, the
velocity streaks evolve in the same timescale. However, the
width of the velocity streaks for the stratified case is larger
as compared to the unstratified case. At t = 105 ω−1

pd , three
velocity streaks are observed for the stratified case and five
velocity streaks for the unstratified case (three negative, two
positive). As the time evolves, the spot structure in Vy velocity
fields for the unstratified case ceases to exist after 150 ω−1

pd due
to increased heating in the system [30,41]. On the other hand,

FIG. 6. Comparison of the wall-normal fluid velocity Vy for the stratified and unstratified cases at Y = 0 plane, as a function of XZ is
shown. At the initial time, the spot structure looks similar for both cases. Here also, we get five velocity streaks for the unstratified case and
three for the stratified case, which later becomes 5. Looking at t = 170 ω−1

pd , we can say that the structures retain for a longer period of time
for the stratified case.
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FIG. 7. One-dimensional Fourier transform of X kinetic energy in the mid Y Z plane ( ˆKEx) as a function of Kx/Kxmin is shown. For the
stratified case, the energy continuously deposits into the lower Kx/Kxmin values. Therefore the energy at the lowest Kx/Kxmin increases with
time. For the unstratified case, the energy at the lowest Kx/Kxmin increases up to 50 ω−1

pd . Then, over time, it gets smaller and becomes equal to
the energy, which was at t = 10 ω−1

pd . This is consistent with the fact that the dynamics of the system is governed by the small-scale structures
at later times.

new velocity streaks are nucleated for the stratified case and
at the end of the simulation we observe five velocity streaks.
One important point to be noted here is that the spot structure
survives for a longer period of time for the stratified case, as
compared to the unstratified case, despite having the same
initial perturbation strength. Moreover, the velocity streaks
for both Vx and Vy velocity fields are found to be oblique
with respect to the streamwise direction (x̂) [37,38,44]. The
Vy velocity contours shown in Figs. 5 and 6 are not very well-
defined as the Vx velocity contours, as there is no zeroth-order
flow along ŷ direction [30].

The size of the spot structure in both velocity fields (Vx,
Vy) observed to increase spatially with time; we therefore
perform a Fourier analysis of the velocity fields to identify
whether there is any dominant large-scale mode present in the
system. As the velocity streaks for Vx are more well-defined
as compared to Vy velocity streaks. Therefore we shall analyze
the Vx velocity field in the Fourier space.

2. Analysis in Fourier space

At first, we perform the one-dimensional Fourier trans-
form (1d FFT) of the fluid X kinetic energy, KE = 0.5 ∗ V 2

x ,
in the mid plane Y = 0 as a function of X (Z = 0) and
Z (X = 0). The Fourier transform of KE is determined by
constructing 0.5(V̂x.V̂x

∗
). Here, ∗ denotes complex conjugate

and ˆ represents Fourier transform. Figures 7 and 8 show
the Fourier transform of KE in the mid Y Z and XY plane,
as a function of Kx/Kxmin and Kz/Kzmin . Also Kxmin = 2π/Lx,

Kzmin = 2π/Lz. Therefore Kx = Kxmin (nx − 1), nx <= Nx/2;
Kxmin (−nx + Nx + 1), nx > Nx/2. The definition of Kz is the
same as Kx.

Let us consider the plot of 1d Fourier transform of the X
kinetic energy, K̂Ex versus Kx/Kxmin in Fig. 7. We observe
that the energy gets continuously deposited into decreas-
ing Kx/Kxmin values. At t = 10, the energy at the smaller
Kx/Kxmin (� 0.0) is around 0.004301; with the evolution of
time, there is an increase in the energy stored at the low-
est Kx/Kxmin value and at the end of the simulation, at t =
250 ω−1

pd , the peak value is 0.364808. There is an increase of

8381.93% or 84.81 times in the value of K̂Ex at t = 250ω−1
pd

from t = 10ω−1
pd . From the time evolution of the K̂Ex(kx )

graph, it is clear that energy at the higher value of wave
vectors decreases while the energy at the smaller wave vectors
increases with time. After comparing the stratified results
with that of the unstratified one (Fig. 7), we find that for the
unstratified case, the energy grows at the smallest Kx value
up to t = 50 ω−1

pd . After t = 50 ω−1
pd , the energy decreases

up to t = 130 ω−1
pd and become nearly equal to the energy,

which was at t = 10 ω−1
pd . It is already well known from our

previous work that for unstratified case at κ = 1.0, the system
is both governed by large and small scales [30]. At later times,
the large-scale flow amplitude decreases and small-scale flow
amplitude increases.

In Fig. 8, we consider the 1d Fourier transform of the
X kinetic energy, K̂Ez versus Kz/Kzmin . The general trend of
energy deposition at the lower wave vectors is not the same
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FIG. 8. The variation of one-dimensional Fourier transform of X kinetic energy in the mid XY plane ( ˆKEz) as a function of Kz is shown.
For the unstratified case, energy continuously deposits into the Kz/Kzmin > 5 or 6, up to t = 50 ω−1

pd and then it starts to fall over time. This is
also consistent with the fact that the system later governed mostly by the small-scale dynamics.

as that of the earlier case, as shown in Fig. 7. Here, the
energy is observed to deposit continuously in Kz/Kzmin = 2.
At t = 10ω−1

pd , the energy at Kz/Kzmin = 2 is 0.000323 for the

stratified case and at t = 250ω−1
pd it becomes 0.060447. So,

the energy increases by 18614.24% or 187.14 times for the
stratified case. However, the energy tends to decrease from
t = 210ω−1

pd , as there is no zeroth-order flow along ẑ direc-
tion. On the other hand, for the unstratified case, the energy
increases up-to time t = 50ω−1

pd at Kz/Kzmin > 5 or 6 and then
decays with time. The modal distribution of energy indicates
the fluid becoming homogeneous or laminar with time. From
Figs. 7 and 8, we observe that energy is increasing in the
lower modes(Kx/Kxmin = 0, Kz/Kzmin = 2, respectively), which
in accordance with the formation of large-scale structures
shown in Figs. 3 and 4, where the spot structure starting from
a very small in size, grows in size and almost occupies the
entire space in XZ plane with time. We call this event as the
occurrence of “inverse cascade” in the system.

Apart from the 1d FFT diagnostics of kinetic energy, we
have constructed the two-dimensional (2D) scale-weighted
power spectra or Pre-multiplied power spectra [30,48,49] at
Y = 0 plane as a function of X and Z . More details can be
found in Ref. [30]. This is an interesting diagnostics that
determines whether there is only large-scale flow or both large
and small scale flows present in the system. The construction
of the 2D premultiplied power spectra is obtained by mul-
tiplying the wave vector K =

√
(Kx )2 + (Kz )2 with the 2D

Fourier transform of X or Z kinetic energies. Here, KÊx and
KÊz are the instantaneous premultiplied power spectra for X
and Z kinetic energies. In KÊx/z, K is the wave vector men-
tioned above and Êx/z is |V̂x/z|2, where V̂x/z is the 2D fourier

transform of Vx/z(X, Z ). The Fourier transformed quantity Êx/z

is calculated in the same way as we calculated K̂E above.
Figure 9 shows the instantaneous KÊx for stratified and

unstratified cases. From our previous work [30] one finds
that for unstratified case we have both large and small scales
present in the system. With time, both large and small scale
amplitudes rise from t = 50 to 100 ω−1

pd (at λ/h = 6.16,
1.47 respectively). However, as time evolves, the large-scale
flow amplitude tends to decrease with time from t = 100 to
150 ω−1

pd while the small-scale flow amplitude increases from

t = 100 to 150 ω−1
pd . Hence, one can surmise that both large

and small scales are present in the system. At later times,
small-scale dynamics dominate over the large-scale dynamics
in the unstratified case. For the stratified case, the energy at
the higher wavelength is greater than that at the shorter wave-
lengths. The energy at the higher wavelength (λ/h = 4.133) is
observed to increase from the order of 101 to above the order
of 102 (in the logarithmic scale), at times, t = 50 to 150 ω−1

pd .
Therefore dynamics of the stratified case is largely governed
by the large-scale flow dynamics.

We further consider the time averaged plot of the Pre-
multiplied power spectra along x̂, which is 〈KÊx〉 [30,49].
The averaging is performed from 80 to 125 ω−1

pd , over nine
samples, when the turbulent spot becomes well-defined. The
time averaged Pre-multiplied power spectra 〈KÊx〉 is shown
in Fig. 10. For the unstratified case, we observe two dis-
tinct peaks for large and small scale flow. The large-scale
flow peaks at λm/h = 6.1620 and small-scale follow peaks
at λm/h = 1.4710. Here, λm corresponds to the two distinct
peaks. We now calculate the large and small scale flow ampli-
tude by the following formula, Als f

x = 〈KÊx〉(λ = λm)/V 2
wall
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FIG. 9. Instantaneous scale-weighted or premultiplied power spectra (KÊx) at Y = 0 plane, as a function of λ = 2π/K is shown. For the
stratified case, The spectral energy increases with time at the higher values of λ. This implies the dominance of large-scale flow in the system.
For the unstratified case, there is a scale separation in the system, which implies that there is a presence of both large and small scales in the
system.

FIG. 10. Time averaged scale-weighted or premultiplied power spectra for the stratified and unstratified case is shown. In order to explain
the diagram better, we have indicated the dominant “Large” and “Small” scale flow (λ = λm) values to be 4.13390h, 1.4710h and 6.1620h,
1.4710h for the stratified and unstratified cases respectively.
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FIG. 11. In (a) and (b), we have shown the large-scale (Als f
x ) and

small-scale flow amplitude (Ass f
x ) for the unstratified and stratified

cases respectively. For the unstratified case, the Als f
x takes a mod-

erate value while for the stratified case, the value of Als f
x increases

monotonically with time. (a) Unstratified case. (b) Stratified case.

and Ass f
x = 〈KÊx〉(λ = λm)/V 2

wall. For the stratified case, the
large-scale flow peaks at λm/h = 4.1339. It is challenging
task to determine the dominant wavelength for the small-scale
flow, as the system is mostly dominated by large-scale flow.
However, taking analogy from the unstratified case, let us
consider the dominant wavelength (λm) for the small-scale
flow to be 1.4710h. The comparison between the small-scale
flow (Ass f

x ) and large-scale flow amplitude (Als f
x ) for stratified

and unstratified cases are shown in Fig. 11 and it shows that
Als f

x decreases and Ass f
x increases with time for the unstrati-

fied case. On the other hand, for the stratified case the Als f
x

increases significantly with time as compared to Ass f
x . The

results shown in Fig. 11, is consistent with the earlier diagnos-
tics, which shows that the small-scale flow dominates over the
large-scale flow for the unstratified case at later times while
for the stratified case, the large-scale flow overwhelmingly

dominates over the small scale flow in the system. Again,
comparing the magnitude of Als f

x for the stratified and unstrat-
ified cases from Fig. 11, we find that the large-scale flow is
highly dominant for the stratified case. The maximum value
of Als f

x for the unstratified case is just 4.44% of the maximum
Als f

x , for the stratified case.
From the above analysis, it is clearly observed that the

large-scale flow dominates over the small scale-flow for the
stratified case. Consequently, there is an up-scale energy trans-
fer in the system, provided there is a density stratification due
to an external gravity. Hence, there is an “inverse cascade” in
the system, which generates large-scale structures in the strat-
ified system at lower value of κ , which is 1.0. To know more
about the growth of the spot structure or level of intermittency
in the system, we investigate the spatiotemporal properties of
the system.

3. Spatiotemporal analysis

The spatiotemporal diagram for the stratified and unstrati-
fied case is shown in Fig. 12. The plot is shown in mid X plane,
at Y = 0 and we have shown the fluid Vx velocity as a function
of Z and t . More details regarding construction of spatiotem-
poral plot can be found in Ref. [30]. For the unstratified case,
we find that the spot structure spreads spatially very quickly
at around 5 ω−1

pd . However, at later times the spread almost
becomes zero. As, the large-scale flow amplitude decreases
with time and the system is mostly dominated by the small-
scale flow. For the stratified case, the spread of the turbulent
spot looks similar to the unstratified case up to 50 ω−1

pd . How-

ever, after 50 ω−1
pd , the turbulent spot structure tends to spread

though out the entire Z locations. The datum corresponding to
tracking the edge of the turbulent spot as shown in the Fig. 12
and the tracked boundary is shown in Fig. 13. From Fig. 13,
we find that the spread for the stratified case is higher as
compared to the unstratified case. Therefore one may surmise
that the intermittency for the stratified case has increased
due to the presence of the density stratification created by
the external gravity. The number of streaks observed for the
unstratified case is large as compared to the stratified case. In
both the cases the number streaks remain constant. No new
streaks found to nucleate for Vx velocity fields as a function
of time. From this diagnostics, it is very clear that the length
scale for the stratified case has increased. Therefore large-
scale flow is dominant in the system and the spot structure
continuous to grow with time for the stratified case.

Apart from the spatiotemporal diagram, another method
to determine the intermittency or anisotropy in the system
is to construct probability distribution function (PDF) of
velocity fields or their gradients. Following Ref. [21], we
have constructed the PDF of ∂Vy/∂x and it is shown in
Fig. 14 at various times. We have chosen ∂Vy/∂x for the
construction of PDF because ∂Vy/∂x is highly influenced
by the presence of density stratification [21]. We have used
55 bins to construct the PDF. The skewness and kurto-
sis at time, t = 50, 100, 140, and 180 ω−1

pd are (0.269595,
1.837707); (−0.108580, 1.782782); (−0.716172, 2.041251);
and (−0.915989, 2.120084), respectively, as against a
Gaussian whose skewness and kurtosis are (0, 0.25), (0, 0.36),
(0, 0.40) and (0, 0.35) respectively. As the stratification in-
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FIG. 12. Spatiotemporal plot for the stratified and unstratified case is shown. This diagram simply shows the spread of the turbulent spot
and intermittency of the system. Increase in the length scale for the stratified case is evident from this diagram. Here, the zero velocity regions
are considered as laminar while nonzero regions are considered as turbulent.

creases (as Froude number and Buoyancy Reynolds number
decreases), the peak near zero of velocity gradient distribution
increases due to increase in anisotropy or intermittency in the
system (Ref. [21]). In our simulation as well, the height of
the distributions near zero increase with time, which shows
the presence of anisotropy or intermittency in the system. The
height of the distributions at t = 50, 100, 140, and 180 ω−1

pd
are 59 613, 71 551, 86 818, and 102 348, respectively. As the
height of the distributions increase with time, we normalize
each distribution by its maximum height for the purpose of
comparison (Fig. 14). Furthermore, the strong deviation of the
probability distribution from the Gaussian also confirms the
presence of intermittency or anisotropy present in the system.

FIG. 13. The extent of the spot in the Z-t plane is shown. This
diagram is plotted after tracking the edge of the spot, shown in
Fig. 12. From this diagram, it is clear that the spread of the spot
structure, along both side of Z is higher for the stratified case as
compared to the unstratified case.

4. Streamwise vorticity

The velocity streak generation in a turbulent PCF pri-
marily depends upon the streamwise vortices. The streaks
are generated by the streamwise vortices through a lift-up
mechanism, and the instability of streaks in turn re-energizes
the streamwise vortices [50,51]. To calculate the streamwise
vorticity, we have chosen the Y Z plane at X = 0. In Fig. 15,
we have shown the streamwise vortices for the stratified
and unstratified cases. For the unstratified case, we observe
well developed velocity streaks from t = 40–45 ω−1

pd (Fig. 4)
and at the same time two counter-rotating vortices also start
to develop from t = 45 ω−1

pd in Fig. 15. The two vortex
structures are found to be symmetric about ẑ direction. The
vortex with positive vorticity is found to rotate clockwise
and the other one with negative vorticity is found to rotate
counter-clockwise. The vortex structures completely annihi-
late at around 165 ω−1

pd . For the stratified case, the velocity

streaks start to develop at around t = 60–65 ω−1
pd and the two

counter rotating vortices are also observed to develop from
t = 65 ω−1

pd . The vortex structures are observed to sustain for a
longer period of time. The separation between the two vortices
are found to increase with time and the symmetry of the two
vortices along ẑ direction is also observed for this case. It is to
be noted that the velocity streaks for the unstratified case sus-
tain (Fig. 4) even when the two oppositely signed streamwise
vortex structures get destroyed beyond 150 ω−1

pd , due to the
presence of shear heating in the system [41]. It is well known
that the velocity streaks are generated by streamwise vortices,
and when the streaks split, it leads to the re-generation of
streamwise vortices [50]. As for the unstratified case, there
is no splitting of streaks observed earlier in the fluid velocity
fields (Figs. 4 and 6), the feedback cycle from streaks to
vortices and vice-versa may not be followed at late times.
However, for stratified case, the cycle may be present, as
vortices survive for longer duration (upto 250 ω−1

pd ) of time. It
is interesting to see the vortices to survive for longer period of
time for the stratified case, as compared to the unstratified case
(shown in Fig. 15). Because, for both stratified and unstratified
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FIG. 14. The probability distribution function of ∂Vy/∂x for stably stratified turbulent (perturbed) case is shown in a log-linear plane. The
number of bins considered to construct the distribution function is 55. Distribution strength below 1e − 3 are not shown. For the stably stratified
turbulent cases, the Gaussian does not fit well. The height of the distribution is found to increase with time. The unnormalized height of the
distributions at t = 50, 100, 140, and 180 ω−1

pd are 59 613, 71 551, 86 818, and 102 348, respectively. In all the cases shown, the height of the
distribution is normalized by the maximum height of each distribution.

cases, the initial perturbation strength is same (see Sec. II),
the variation of � or the temperature is identical (Fig. 16) and
the Reynolds number variation is also same for both the cases
apart from a minute difference at the later times (Fig. 17)
[30,52]. Despite having the parameters same for both the

cases, the vortex structure for the stratified case survives for
a longer period of time. Therefore, from the above results, we
see that the ability of a stratified 3D Yukawa liquid to retain
coherent structures for a longer period of time in a dissipative
medium is remarkable and this needs further investigation.

FIG. 15. The streamwise vortices for the stratified and unstratified cases at X = 0 as a function of Y Z is shown. The streamwise counter-
rotating vortices play an importaant role in the generation of the velocity streaks. The vortices survive for longer period of time for the stratified
case and for the unstratified case, the structures are observed to diminish from 165 ω−1

pd . Therefore, from the observation, one can surmise that
a stratified 3D Yukawa liquid can preserve any coherent structure for a longer period of time as compared to that of a unstratified case.
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FIG. 16. Variation of � for the stratified and unstratified cases is
shown. Despite the presence of an external gravity, � variation for
the both the cases are same.

As we have already discussed about the upscale energy
transfer and origin of velocity streaks, let us investigate the
growth dynamics of the turbulent spot in terms of vertically
averaged streamwise fluid velocity, which is also dubbed as
“quadrupolar flow” diagnostics [37,53,54] in conventional
hydrodynamics.

5. Quadrupolar flow

One of the important characteristics of a turbulent PCF in
a 3D Yukawa liquid is that we observe Quadrupolar like flow
around the turbulent spot at lower κ (= 1.0) value [30,37,53].
The flow is obtained and visualized by averaging the stream-
wise fluid velocity along the vertical direction (ŷ). The basic
flow pattern is as follows: in the spanwise direction (ẑ), the
flow is in the outward direction, and in the streamwise di-
rection (x̂), the flow is in the inward direction, as shown in
Fig. 18. The quadrupolar flow starts to develop at 50 ω−1

pd

FIG. 17. Variation of Re with time for the two cases is shown.
The time variation is the same for both cases, except there is a tiny
variation after 150 ω−1

pd .

for the unstratified case and becomes well-defined at around
100–110 ω−1

pd . The quadrupolar flow has been observed to per-
sist over time. For the stratified case, quadrupolar flow never
observed to form. We observe a strong flow from positive x̂
direction to negative ŷ direction around Y = 0 from t = 100
to 200 ω−1

pd . Moreover, the width of the central streak has
increased with time. One of the main reasons for not observing
the quadrupolar flow for the stratified case, is the presence of
large-scale flow in the system. For the unstratified case, we
observe a scale separation between relatively large and small
wavelengths. However, such scale separation is not observed
for the stratified case. It is because, the energy in the system is
continuously storing in the larger wavelengths or larger scales.

B. Results for κ = 4.0

We have studied the system at κ = 1.0; we now study the
system at κ = 4.0, in which the range of interaction is smaller
as compared to the former cases. In our previous work [30],
we have described that at higher range of interaction or at
smaller κ values, our MD results tend to be more similar to
the results obtained in conventional hydrodynamics. Here, we
are considering a relatively higher value of κ (4.0), or smaller
range of interaction. Consequently, the results for this case is
unique and differs from that of the conventional hydrodynam-
ics cases.

The spot formation process is studied at κ = 4.0, along
with a weak external gravity (g = 0.009g0) applied to it. The
total density variation for κ = 4.0 is shown in Fig. 2, after
averaging over the vertically bounded ŷ direction. The results
for this particular case are presented below by comparing with
the results obtained for the corresponding unstratified case.

1. Vx fluid velocity

The time evolution of the Vx fluid velocity field for the strat-
ified case is shown in Fig. 19, along with the unstratified case,
which is well known from our previous work [30]. For both
the cases, we observe two velocity patches or the large scale
structure or spot structure, one with positive velocity and the
other with negative velocity. At the initial time, t = 50 ω−1

pd ,
or before, the spot structure looks similar for both the cases.
The structures are symmetric along x̂ direction. At later times,
t = 150 ω−1

pd , the negative velocity patch is observed to shrink
while the positive velocity patch is enlarged. For the unstrat-
ified case, the two velocity patches share almost the same
area in the XZ plane. The symmetry along x̂ direction of the
overall spot structure is also broken. At around 175–180 ω−1

pd ,
part of the negative velocity patch reappears on the right hand
side of the simulation domain with a very small magnitude.
On the other hand, the symmetry along x̂ direction is still
maintained for the unstratified case and the spot structure be-
comes more diffused. At around t = 200–210 ω−1

pd , a portion
of the negative velocity patch on the right hand side splits the
positive part of the spot structure into two parts while for the
unstratified case, the two velocity patches still survive and
maintain the symmetry along x̂ direction. It is well known
from our previous work that the spot dynamics at κ = 4.0, is
largely dominated by large-scale flow [30]. For the stratified
case, the shrinking of the negative velocity patch of the spot
structure at t = 150 ω−1

pd and reappearance of the negative
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FIG. 18. Y averaged Vx fluid velocity field as a function of X and Z is shown. For the unstratified case, we observe the quadrupolar flow to
form at t = 50 ω−1

pd . For the stratified case, we do not observe the formation of quadrupolar flow and instead of that we observe a strong flow
flowing from positive x̂ to negative x̂ direction at around Z = 0. We suspect that the absence of scale separation in the stratified case, is one of
the main reasons for not forming the quadrupolar flow.

velocity patch on the right hand side of the simulation domain
at t = 175–180 ω−1

pd , may imply both decrease and increase of
length scale of the system with time. This will be more clear
when we perform Fourier analysis of the velocity data. As the
large-scale structures persists through out the simulation time,
a large-scale flow seems to be dominant for the stratified case.
To know more about the dominant length scale or wave vector
in the system, we perform Fourier analysis.

2. Analysis in Fourier space

We perform the 2D Fourier analysis (2D FFT) of the X
kinetic energy, as we performed earlier. The instantaneous

scale-weighted or premultiplied power spectra for the strati-
fied and unstratified cases are shown in Fig. 20. To perform
Fourier analysis, we follow the same procedure as we used
for κ = 1.0. As the large-scale flow is dominant for this case,
most of the energy is deposited in the higher wavelengths. Let
us compare the scale-weighted energy (KÊx) at the highest
wavelength (λ = 8.1648) shown in Figs. 20(a) and 20(b). At
the initial time (t = 5 ω−1

pd ), energy at larger wavelengths is
very small and hence there is no large-scale flow present
in the system. As the time evolves, large-scale flow start to
develop in the system. From t = 100–180 ω−1

pd , the energies

are comparable. However, at t = 100, 150 ω−1
pd , the energy for

FIG. 19. Time variation of the spot structure in Vx fluid velocity field at Y = 0, as a function of X , Z for the stratified and unstratified cases
is shown. For the unstratified case, the spot structure develops by maintaining the symmetry along x̂ direction. At the initial time, the spot
structures are almost identical, for both cases. For the stratified case, at t = 150 ω−1

pd , the size of the two velocity patches vary. At t = 180 ω−1
pd ,

a small part of the negative velocity patch re-appear on the right hand side of the domain. At t = 210 ω−1
pd , the negative velocity patch on the

right hand side breaks the positive part of the spot into two parts.
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FIG. 20. Instantaneous 2D scale-weighted or premultiplied
power spectra for the stratified and unstratified case is shown. Both
figures are in log-scale. As both the systems are dominated by
large-scale flow, most of the energy is deposited in the highest
wavelength(λ = 8.16h). The energy at λ = 8.16h is of the same
order for both the cases, except few differences at the intermediate
and late times. These few differences in the value of KÊx is playing a
key role in governing the peculiar dynamics of the stratified system.
(a) Stratified case. (b) Unstratified case.

the unstratified case (69.62, 36.88) is higher than the stratified
case (49.14, 27.48). However, at t = 180 ω−1

pd , the energy
for the stratified case (8.51) is higher as compared to the
unstratified (2.08) one. Although, for both the cases the energy
starts to decrease at the highest wavelength, the stratified case
is observed to have smaller energy at the intermediate time
(t = 50–150 ω−1

pd ), when the spot becomes well-defined; and

higher energy at the late times (t = 175 ω−1
pd and more), as

compared to the corresponding unstratified cases.
We perform the time averaging of the instantaneous scale-

weighted spectra (KÊx) to find the dominant wavelength (λm),
in the same way as we performed earlier for κ = 1.0 case. We

FIG. 21. Large-scale flow amplitude, Als f
x vs time for the strat-

ified and unstraified cases is shown. The magnitude of Als f
x

decreases for the stratified case at the intermediate time from around
70–160 ω−1

pd . Beyond 170–175 ω−1
pd , the magnitude of Als f

x is observed
to increase. So, both decreasing and increasing behavior is observed
for the stratified case, unlike the strongly growing nature, which is
observed in Fig. 11(b), for κ = 1.0.

find λm to be 8.16 and the large-scale flow amplitude (Als f
x )

for both the cases is shown in Fig. 21. The value of Als f
x is

the same initially. At around t = 55 − 60 ω−1
pd , the magnitude

decreases for the stratified case. This might be due to the
shrinking in size of the negative velocity patch as observed at
t = 150 ω−1

pd in Fig. 19. Later, at t = 175 ω−1
pd and beyond, the

magnitude of Als f
x for the stratified case increases. In the same

time, part of the negative velocity patch re-appears on the right
hand side of the simulation domain, as shown in Fig. 19 at
t = 180 ω−1

pd . Which implies that there is an increase in the
length scale of the system. In other words, the external gravity
refrains further decrease in the magnitude of Als f

x . From the
above results we have observed that the magnitude of Als f

x

decreases and increases with time under the influence of an
applied external milligravity at κ = 4.0 or small interaction
range.

After performing the Fourier analysis, we study the growth
dynamics of the spot structure with the help of Y -averaged Vx

velocity diagnostics

3. Y -averaged streamwise fluid velocity

The Y -averaged streamwise fluid velocity is shown in
Fig. 22. At t = 5 ω−1

pd , the spot structures look similar for

both the cases. At t = 50 ω−1
pd , a radially outward flow at zero

velocity background is observed for the unstratified case. For
the stratified case also, a radially outward flow is observed,
but the flow along positive x̂ direction becomes weak while
the flow along negative x̂ direction is much more stronger. At
the same time, a flow from negative x̂ direction to positive
x̂ direction is generated in the background for the stratified
case. At t = 100 ω−1

pd , a fully developed radially outward
flow is observed for the unstratified case. For the stratified
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FIG. 22. Y averaged streamwise fluid velocity field for the stratified and unstratified case is shown. For the unstratified case, a uniform
radially outward flow is observed in both parts of the spot in a zero velocity background. At t = 5 ω−1

pd , the spot structure is nearly the same,
except the magnitude, for both the cases. For the stratified case, at t = 50 ω−1

pd , a background velocity is generated and observed to flow in
negative x̂ direction. The positive velocity patch becomes smaller than the negative one. At t = 100 ω−1

pd , the background flow fully develops
and tend to cover the entire XZ plane. The size of the positive velocity patch also becomes comparable with the negative one. At t = 210, the
positive part of the spot structure becomes larger than the negative one and the entire spot structure observed to shift slightly towards negative
x̂ direction, which shows the increase in the length scale of the system due to the presence of the external milligravity. For the unstratified case,
no background flow is generated and the spot structure evolves both symmetrically and equally with time.

case, a flow from negative x̂ to positive x̂ direction becomes
fully developed in the background. The positive velocity patch
hinder the background flow and only manages to change the
flow direction a little bit. At t = 150 ω−1

pd , the spot structure
shifts towards left a little bit, breaking the symmetry along
x̂ direction for the stratified case. The positive velocity patch
becomes larger in size as compared to the negative velocity
patch. But the background velocity along negative x̂ direction
is so strong that the positive part of the spot structure only
manages to change the direction of the background flow a little
bit in the spanwise direction, which later takes the streamwise
direction. For the unstratified case, the spot or velocity patches
continue to grow symmetrically with strong radially outward
flow and zero background velocity.

IV. CONCLUSION AND DISCUSSION

In this work, we have investigated the dynamics of a per-
turbed PCF in a stably stratified Yukawa liquid using 3D
molecular-dynamics simulation. Upon applying a nonlinear
3D perturbations to the system, the system exhibits subcrit-
ical turbulence via spot formation. We have observed an
upscale energy transfer or inverse cascading. The upscale
energy transfer is first realized in fluid velocity diagnostics
and then, it is verified by performing Fourier analysis. In fluid
velocity fields Vx and Vy (Figs. 3–6), we find that both length
and width of the spot structure has increased as compared
to the unstratified case. Consequently, large-scale structure
formation becomes evident. In Fourier space, we obtain re-
sults in support of the presence of large-scale structures in
the system. From one dimensional Fourier transform analysis
(Figs. 7 and 8), we observe that the energy continuously con-

denses at the smaller wave vectors (Kx/Kxmin � 0, Kz/Kzmin �
2.0), which implies that energy keeps on depositing at larger
length scales. From two-dimensional Fourier transform anal-
ysis (Figs. 9 and 10), we observe that most of the energy has
deposited in the higher wave-lengths (or lower wave vectors),
confirming to the fact that the energy is continuously deposit-
ing at the highest length scale. Figure 11 shows the value of
Als f

x for the stratified case is significantly higher as compared
to the Als f

x for the unstratified case. Therefore large-scale flow
appears to be more dominant in the stratified case as compared
to the unstratified case.

Nucleation of a turbulent streak for κ = 1.0 in Vy fluid ve-
locity fields is observed and it is shown in Fig. 5. It is a direct
evidence of reinforcement of large-scale flow in the system.
In conventional hydrodynamics, there are two known mech-
anisms, which are responsible for splitting and nucleation of
new streaks [43,55]. The first mechanism is associated with
the instability produced due to modified laminar flow or due
to some stochastic behavior of the system, which leads to new
streak generation. The second mechanism is associated with
the growing spot, which is due to the presence of large-scale
flow in the system. In our case, the second mechanism seems
to be more probable, as due to the presence of external gravity,
the magnitude of Als f

x has enhanced significantly (Fig. 11).
It is also to be noted that the two mechanisms, which are
mentioned above, is observed in a unstratified higher aspect
ratio system (Ax > 100, Az > 50) [43,55]. In addition to this,
the Reynolds number of the above mentioned systems remain
fixed with time. Hence, there is no dissipation due to viscosity,
as we have in our case [30]. As a result of higher aspect ratios
and fixed constant Reynolds number, the spot grows due to the
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presence of the large-scale flow. The spot structure, which is
a combination of large-scale flow + velocity streaks, grows in
time and due to this growth, the streaks widen and finally split.
In between the gap of the two split streaks, a new velocity
streak is nucleated.

Coming back to our case, the aspect ratio is Ax � 10.
Moreover the Reynolds number decays with time in both
cases—unstratified as well as stratified (see Fig. 17). Despite
the presence of large-scale flow and growing turbulent spot,
splitting and nucleation of streaks is not observed for the
unstratified case [30]. However, as the magnitude of Als f

x

enhances in the stratified case, splitting and nucleation of new
streak is observed in Fig. 5. The splitting and generation of a
new streak is a direct evidence of enhancement of large-scale
flow or upscale energy transfer in the system. Such process
involves “wavelength instability” [55], which we shall try to
quantify more rigorously in our future work. However, we
need to keep in mind that the large-scale flow in a system not
only spreads the spot structure spatially but also suppresses
the small scale structures. In Fig. 4, the reduction of velocity
streaks from 5 to 3 for the stratified case is one example of it.
In this case, there is a spanwise restriction in the generation of
number of velocity streaks in Vx fluid velocity field. The same
is expected for the Vy fluid velocity fields. However, it does
not take place. At later times, the number of streaks become
equal to that of the unstratified case (shown in Fig. 6). There
seem to have a competition between the large and small scale
flow in the system, which needs further investigation.

One more important property of a stratified Yukawa liquid,
which is observed is that it can retain coherent structures for
a longer period of time as compared to that of a unstratified
case (Figs. 6, 15). The coherent structures in a dissipative sys-
tem like Yukawa liquid, die out very quickly, because of the
presence of shear heating in the system [30,56,57]. However,
in the presence of an external gravity, the system retains the
coherent structures for a longer period of time as compared
to a unstratified case. Although, the � variation (Fig. 16) and
Reynolds number (Fig. 17) variation with time is almost the
same for both the cases. It is remarkable to observe such
property of a stratified system in retaining coherent structures
for a long period of time in a highly dissipative system like
Yukawa liquid. However, life span of the coherent structures
has enhanced, as result of increase in the length scale of the

system. A further investigation of such property of a stratified
Yukawa liquid will be performed in future.

The stratified dynamics is also studied at higher value of
κ (4.0). We have observed from Figs. 19 and 21 that the
presence of an external gravity reduces the large-scale flow
at the intermediate times, but enhances at later times. For this
case (at higher κ), the presence of an external gravity results in
the decreasing and increasing behavior of large-scale flow in
the system. Hence, the system behaves differently at different
values of κ for the stratified case. The same phenomena was
observed in our previous work [30] for a unstratified case.
Such anomalous behavior at different κ will be investigated
in future, more rigorously.

In Fig. 22, we have observed an unidirectional background
flow from right to left for the stratified case for κ = 4.0. This
indicates that there is an inhomogeneity in the base velocity
profile (PCF), which may be introduced by the stable strati-
fication present in the system. The inhomogeneity in velocity
profile will be further investigated in future.

As we are using MD simulation to study hydrodynamic
problems, it is natural to ask, is our simulation technique is
better than DNS/LES? In MD, we have all the information
at particle level and all the fluid variables are extracted from
the instantaneous particle level information. Hence it is free
from any “model” such as Navier-Stokes. The results obtained
from MD simulations are thus based on “first principles”
calculations.

We have discovered inverse cascade in a stably stratified
PCF for the first time in a 3D Yukawa liquid. Experimental
verification of some of the findings reported here—in both
hydrodynamics and 3D Complex plasma system—will further
strengthen these findings. For example, for experiments in
hydrodynamics with stable stratification, one could use saline
water to introduce stable stratification to the system. In a
Complex plasma system, for both κ = 1.0 and 4.0, exper-
iments could be performed in a parabolic flight, in which
hypergravity and milligravity conditions become possible to
execute [58].
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