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Fast elementary gates for universal quantum computation with Kerr parametric oscillator qubits
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Kerr parametric oscillators (KPOs) can stabilize the superpositions of coherent states, which can be utilized as
qubits, and are promising candidates for realizing hardware-efficient quantum computers. Although elementary
gates for universal quantum computation with KPO qubits have been proposed, these gates are usually based on
adiabatic operations and thus need long gate times, which result in errors caused by photon loss in KPOs realized
by, e.g., superconducting circuits. In this work we accelerate the elementary gates by experimentally feasible
control methods, which are based on numerical optimization of pulse shapes for shortcuts to adiabaticity. By
numerical simulations, we show that the proposed methods can achieve speedups compared to adiabatic ones
by up to six times with high gate fidelities of 99.9%. These methods are thus expected to be useful for quantum

computers with KPOs.
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I. INTRODUCTION

Towards hardware-efficient quantum computing, qubits
with stabilized coherent states have been proposed [1,2]. Co-
herent states with opposite phases and their superposition,
the so-called Schrodinger cat state [3,4], can be stabilized in
a parametric oscillator with engineered two-photon dissipa-
tion [2,5] or Kerr nonlinearity [1,6—10], which are referred
to as a dissipative-cat qubit or a Kerr-cat qubit, respectively.
The latter is also called a Kerr parametric oscillator (KPO)
qubit [7,11-16]. In these qubits, when the two coherent states
are used as the computational basis, bit-flip errors can be
suppressed, because a coherent state is robust against pho-
ton loss [1,2,9]. The stabilization of the coherent states and
the suppression of bit-flip errors have been experimentally
realized in superconducting circuits for the dissipative-cat
qubit [17,18] and the KPO qubit [12,19].

A KPO does not rely on dissipation and can be described
by a simple Hamiltonian. Despite the simplicity, KPOs yield
rich nonlinear dynamics such as quantum bifurcation [1,7,9]
and chaos [20-22]. The quantum bifurcation can be applied to
quantum annealing [7] and a number of its implementations
have been proposed [11,23-29]. By regarding two branches
of the bifurcation as up- and down-spin states, a KPO lattice
can behave like an Ising model, and its physics, such as phase
transitions, has been studied [30-36]. Other theoretical results
on KPOs have been reported, such as exact solutions [37,38],
state generations [39-43], measurements and outputs [44—47],
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excited-state quantum phase transitions [48,49], controls un-
der a strong pump field [50], engineered dissipation [51-53],
a four-photon KPO [16], symmetries [54], and Floquet
theory [55].

Applications of KPOs to fault-tolerant quantum com-
puting [56] have also been studied [57]. Quantum gates
preserving the bias of errors mentioned above have been pro-
posed [58], which can be utilized for hardware-efficient quan-
tum error correction [59]. Analytically engineered control
methods for shortening the gate times of the bias-preserving
gates have recently been proposed [13]. Furthermore, for
noisy intermediate-scale quantum (NISQ) applications [60],
variational quantum algorithms [61,62] for KPOs have been
proposed, such as quantum supervised machine learning [63]
and a quantum approximate optimization algorithm [64].

For implementing a KPO with a superconducting circuit,
a Josephson parametric oscillator [65-67] with low photon
loss has been suggested [7,9] and demonstrated experimen-
tally [12]. Then, by using a KPO in a three-dimensional cavity,
single-qubit gates have been performed [19]. Also, tunable
coupling between two KPOs has been realized [68]. Other ex-
periments with KPOs have been reported, such as a crossover
from a Duffing oscillator to a KPO [14], degenerate excited
states [69,70], single-qubit operations and characterizations
with an ancillary transmon [71], and reflection coefficient
measurements [72].

For KPO qubits, elementary gates for universal quantum
computation have been proposed [8,9], which are based on
adiabatic evolution and consist of Z, X, and ZZ rotations
denoted by R., R,, and R, respectively. Experimentally, a
study [19] has demonstrated adiabatic R, and nonadiabatic
R., and another study [71] has adiabatically performed both
R, and R,. Theoretically, other kinds of gate implementations
have been proposed [15,73-77].

Shorter gate times are desirable, because they can re-
duce errors caused by photon loss in KPOs and also enable
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faster computation. However, the previous adiabatic elemen-
tary gates [8,9] need long gate times and otherwise diabatic
transitions out of a qubit space cause leakage errors. To reduce
leakage errors, in this work we focus on control methods
called shortcuts to adiabaticity (STAs) [78]. For KPOs, STAs
have been proposed for cat-state generation [9,40] and R,
with a phase rotation of a parametric drive [15]. Also, a
variant of the derivative removal by adiabatic gate (DRAG)
technique, which is related to STAs, has been proposed for
the bias-preserving gates [13].

To accelerate the elementary gates for universal quan-
tum computation with KPO qubits, our approach is based
on an STA called counterdiabatic terms (or counterterms for
short) [79,80], but does not use the exact counterterms, which
are often experimentally infeasible. Instead, we first approxi-
mate the counterterms by experimentally feasible terms [81]
and then numerically optimize the pulse shapes for the gate
operations. As a result, we successfully shorten gate times,
keeping high gate fidelities. By this approach, the gate opera-
tions become faster by 2.6 times for R_, 6.0 times for R,;, and
2.6 times or higher for R, than the previous adiabatic ones [8].
Interestingly, the states of KPOs during the optimized gate
operations for the shortest gate times are not necessarily in-
stantaneous eigenstates, which indicates that the numerical
optimization explores gate operations beyond the STA. We
also numerically show that the optimized gate operations are
robust against systematic errors in the amplitudes of gate
pulses and the shortened gate times can suppress errors caused
by single-photon loss. We expect that these optimized elemen-
tary gates for KPO qubits will be useful for NISQ applications
in the near term and fault-tolerant quantum computation in the
long term.

II. APPROXIMATE STA

A. Elementary gates for KPO qubits

We first introduce the model of the KPO and elemen-
tary gates for universal quantum computation with the KPO
qubits [7,9]. In a rotating frame and within the rotating-wave
approximation, the Hamiltonian for a KPO is given by [6]

Hieo = — 5 + L(a + a*), (1
2 2

where a, K, and p are the annihilation operator, the Kerr coef-

ficient, and the amplitude of a parametric drive, respectively.

In this study the reduced Planck constant 7 is set to 1. The

two degenerate eigenstates of the Hamiltonian corresponding

to effective ground states of the KPO [73] are written as

1
ICs) = ———(j) £ | — ), 2)
V2(1 £ e72%)
where | & «) are coherent states with an amplitude o =
Jp/K. In this work we use the computational basis
states [58,73]

3 1
0) = —(ICy) + IC_)), 3
|0) ﬁ(|+>+| ) 3
3 1

Iy = —(Cy) — |C)), 4
1) ﬁ(|+> IC-)) 4)

which are exactly orthogonal. Equations (3) and (4) are ap-
proximately equal to | & «), respectively, for p/K = 4 used
in this study.

For the KPO qubits, elementary gates for universal com-
putation can consist of Z, X, and ZZ rotations, which are
expressed as [56]

e~i0/2 0
R(¢) = ( 0 oit/2 ) (5)
cos % —isin %
R(6) = —isin?  cos? ) ©)
2 2

2 0 0 0

0 ei(—)/Z 0 0
R:(®) = 0 0 Or o | @D

0 0 0 e~10/2

respectively, where ¢, 6, and ® are the respective rotation
angles. For universal computation, arbitrary ¢, 6 = 7 /2, and
® = /2 are enough [8,9,56]. For KPOs, these elementary
gates can be implemented based on adiabatic control with a
single-photon drive, a detuning, and a linear coupling, respec-
tively. The Hamiltonians corresponding to the single-qubit
gates are

Hy(t) = Hgpo + go(t)Ao, (8)
Ap=a' +a for R, )
Ap=a'a forR,, (10)

where go(¢) is the amplitude of a gate pulse. A linear cou-
pling necessary for R,, can be realized with beam-splitter
coupling [8,9] or two-mode squeezing [13], described by

Hy(t) = Hgpo1 + Hgpoz + go(t)Ao, (11)
Ay = aiaz + a;;al for beam-splitter coupling, (12)

Ag = a}Lag + aja, for two-mode squeezing,  (13)

where a; and Hgpo; are the annihilation operator and the
Hamiltonian in Eq. (1) for the ith KPO.

B. Approximate counterterms for STAs

An ideal counterterm H;(¢) for STAs exactly reproduces
adiabatic evolution with Hy(¢) by finite-time evolution with
Hy(t) + H,(t) [78-80], but is often experimentally infeasible.
In this work we approximate H(¢) by the terms that can be
realized in experiments as

o
Hl(t):%(a‘—a) for R, (14)
o
Hl(t):%(am—az) for Ry, (15)
igo(t)
Hl(t):%(aIaZ—alaz) for R,,, (16)

where the overdots denote the time derivative (see Ap-
pendix A for the details of the assumptions and deriva-
tions). These H;(¢) correspond to the following experimental
operations.
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(i) The Hy(¢) for R, in Eq. (14) can be implemented with
a single-photon drive with its phase shifted by /2 from the
original single-photon drive in Eq. (9).

(ii) The H,(¢) for R, in Eq. (15) can be realized by a two-
photon drive with its phase shifted by 7 /2 from the original
parametric drive.

(iii) The H,(¢) for R, in Eq. (16) is another two-mode
squeezing in addition to the original one in Eq. (13), which can
be realized in a previously proposed superconducting circuit
for R, [74].

Note that the counterterm in Eq. (16) can be derived from
both R, by the beam-splitter coupling in Eq. (12) and R, by
the two-mode squeezing in Eq. (13). However, we numerically
find that the two-mode squeezing in Eq. (13) gives better
results with the counterterm in Eq. (16), because this countert-
erm is a two-mode squeezing and can better cancel unwanted
transitions caused by the two-mode squeezing in Eq. (13) than
the beam-splitter coupling in Eq. (12) [see Appendix B 1 for
an explanation using the matrix elements of Ay and H (¢)]. We
thus use the two-mode squeezing in Eq. (13) in the following.

Here we also comment on another candidate of a countert-
erm for R,

Hi(t) o i(alay — alay). a7

We numerically found that this term does not work as a
counterterm (a similar result was mentioned in Ref. [13]).
Equation (17) does not cancel unwanted transitions out of the
qubit space, because H;(¢) in Eq. (17) and Ay in Egs. (12)
and (13) have different permutation symmetry, namely, sym-
metry with respect to the interchange of KPO1 and KPO?2 (see
Appendix B 1 for details).

C. Numerical optimization

To go beyond the analytic approximate H;(¢) in Egs. (14)—
(16), our proposed approach uses arbitrary waveforms for the
amplitudes of the counterpulses g; () as

H(t) = g1(1)Ay, (18)

A =i(d —a) forR., (19)
A =i(a? —d?) forR,, (20)
Ay = i(ala} — ajay) for R, (1)

and numerically optimizes g;(¢) as well as go(¢) in Eqgs. (8)
and (11). Total Hamiltonians are then given by, for the single-
and two-qubit gates, respectively,

H(t) = Hypo + go(t)Ao + g1(H)Ay, (22)
H(t) = Hgpo1 + Hkpo2 + go(t)Ao + g1(H)A1,  (23)

where Ay are given in Egs. (9), (10), and (13). Here the two-
mode squeezing Hamiltonian in Eq. (13) is used as mentioned
above. We expect that this approach, which numerically op-
timizes pulse shapes for STAs, will be useful for other qubit
systems.

To optimize go(¢) and g;(¢) numerically, we express the
waveforms of the pulse amplitudes as [82]

Ny
: C @n— Dt
go(t) = ; |:g(),2n—l sin ————
80.2n 2mnt
S0 (g , 24
+ > < c0s —7 )} (24)
Ny
2 nt
t) = S , 25
g10) = Y giasin = (25)

n=1

where T is a gate time and Ny determines the number of
frequency components. Equations (24) and (25) give experi-
mentally realistic waveforms, because the highest frequencies
in g;() are limited to Ny/T, and g;(t) are zero at initial and
final times (r = 0, T). We choose the symmetric go(¢) and
antisymmetric g;(t) with respect to time reversal t — T — 1,
because an exact counterterm is antisymmetric when the other
term is symmetric (see Appendix B 2). In go(#) we include the
sine terms to allow for nonzero go(¢) att =0, T [8].

We numerically optimize g;, in Egs. (24) and (25) to
maximize an average gate fidelity F [83,84] given in Eq. (C1)
in Appendix C, using the quasi-Newton method with the
Broyden-Fletcher-Goldfarb-Shanno formula (a nonlinear pro-
gramming solver FMINUNC in MATLAB). We set the initial
values of g;, for the optimization to the ones corresponding
to analytic waveforms for adiabatic elementary gates without
and with the counterterms in Egs. (14)—(16) (see Appendix D).

Here we summarize the proposed method in Sec. II. The
method uses the Hamiltonians in Egs. (22) and (23) with the
operators Ay in Egs. (9), (10), and (13) and A; in Egs. (19)—
(21) and numerically optimizes the waveforms for go(¢) and
g1(t). The proposed method is expected to be experimentally
feasible, because the operations corresponding to Ay and A
can be implemented with the microwave drives mentioned
above and their amplitudes go(¢) and g;(¢) have the realistic
waveforms in Egs. (24) and (25), respectively.

III. NUMERICAL SIMULATIONS

In the present simulation, we regard the Kerr coefficient K
as the unit of frequency and set the amplitude of the paramet-
ric drive to p = 4K, which corresponds to the mean photon
number of 4. This p is chosen for the following reasons. First,
a smaller p causes non-negligible overlap between the two co-
herent states («|—a), which cannot be used as a well-defined
qubit. Second, a larger p would increase unwanted effects
such as the violation of the rotating-wave approximation [50]
and errors caused by photon loss in realistic KPOs. We thus
choose a typical intermediate value, p = 4K [8].

We express states and operators in the photon-number basis
with the largest photon number of 40, which is large enough.
We simulate the time evolution of states by numerically solv-
ing the Schrodinger equation

i) =H®lY), (26)

unless stated otherwise. We use the fourth-order Runge-Kutta
method with the step size of 1074/K.

We compare the following four cases depending on the
waveforms and the counterterms: (i) analytic waveforms
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without the counterterms, (ii) analytic waveforms with the
counterterms in Eqs. (14)—(16), (iii) numerically optimized
waveforms in Eq. (24) without the counterterms, and (iv)
numerically optimized waveforms in Eqgs. (24) and (25) with
the counterterms in Eq. (18). For the analytic waveforms, we
choose the same ones as the previous study [8]. The ana-
lytic waveforms and initial values of g;, for the numerical
optimization are given in Appendix D. The Ny in Eqgs. (24)
and (25) is set to 10.

A. Simulation results for R,

Figure 1(a) shows the average infidelities 1 — F for R. ()
plotted as a function of the dimensionless gate time K7'. The
infidelities decrease with increasing gate time, indicating the
adiabaticity of the gate, where the errors are mainly due to
the leakage of population to the states outside the qubit space.
We define a minimum gate time 7, by minimal 7" satisfying
l1—F <1073 and compare T, for the above four cases.
With analytic waveforms, the KTy, are 1.3 and 1.2 without
and with the counterterm, respectively. By the numerical opti-
mization, the K Ty, are shortened to 0.9 and 0.5, respectively.
Thus the numerically optimized R, with the counterterm is 2.6
times faster than the original analytic R, without the countert-
erm. These results show that the counterterm is effective and
the improvement is enhanced by the numerical optimization.

We examine the optimized gate operation with the coun-
terterm at K7, = 0.5. The optimized waveforms of g;(¢)
are shown in Fig. 1(b). Figure 1(c) shows the resulting time
evolutions of the mean photon number and population in the
qubit space with the initial state |C), where P is a projector
onto the computational basis states

P = [0)(0] + [T)(1J. 27)

It is notable that despite the large amplitudes of g;(¢), the
mean photon number and the population in the qubit space
are almost unchanged.

To see the state in more detail, we use the Wigner func-
tion W (x, y), which is a quasiprobability distribution for (x =
(a+a"/2,y=(a— aT)/2i) [85] and is calculated by the
technique in Ref. [7]. Figure 2 shows W (x,y) during the
gate operation with the optimized g;(¢) in Fig. 1(b). The gate
operation retains the two peaks around (x = £2,y = 0) and
the interference fringe between them, which indicate that the
state is in the superposition of the coherent states. Only the
interference fringe changes with the time, corresponding to
the relative phase rotations of |0) and |1). These dynamics
are possible because the single-photon drives used for R, can
preserve the coherent states when the effective potential of
the KPO is well approximated by the double well [12,57].
Interestingly, we numerically found that the cat states in Fig. 2
are not instantaneous eigenstates of Hy(z), which indicates
that our proposed approach is beyond STAs.

We next show that the optimized g;(¢) with the countert-
erm for R () can be used for R,(¢) with arbitrary ¢ by
introducing only one time-independent scaling parameter A.
The pulse amplitudes are set to Ago(¢) and Ag;(z). The re-
sulting ¢ is determined by maximizing F. Figure 3(a) shows
1 — F as a function of ¢ at K Ty, = 0.5, which demonstrates
that this method gives high-fidelity R,(¢) for arbitrary ¢ in

a Analytic, H, A Optimized, H,
o Analytic, H, + H, ® Optimized, H, + H,

-1
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X A
-2 * Q?°03AA
10°F o A 0,4 4
A

T
N—

Pulse amplitude

—
(¢)
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3 L p
e}
©
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()
o
AR —
(Y|P |P)
. |
0 0.1 0.2 0.3 0.4 0.5
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FIG. 1. (a) Plot of average infidelities for R (;r) as a function
of gate time for an analytic waveform of a pulse amplitude with-
out a counterterm (Analytic, H;) and with it (Analytic, H, + H;)
and for numerically optimized waveforms without the counterterm
(Optimized, H;) and with it (Optimized, H; + H,). The line indicates
1 — F = 1073. (b) Waveforms of the amplitudes of a gate pulse go(t)
and a counterpulse g (¢) for R, (), which are numerically optimized
for KT, = 0.5. (c) Mean photon number and population in the qubit
space during R (7) with g;(¢) in (b). The initial state is |[C, ).

0 < ¢ < 7. An exact counterterm suggests that this contin-
uous gate by the one parameter A is possible because the
changes in the states are small during the gate operation as
shown in Fig. 2 (see Appendix B 3 for details). On the other
hand, this continuous gate does not hold for R,(6), as also
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FIG. 2. Wigner functions during R.(;r) with the optimized g;()
in Fig. 1(b). (a) Kt = 0.1, (b) Kt = 0.25, and (c) Kt = 0.4. The
initial state is |C,.).

mentioned later in Sec. III C, where the states largely change
during the gate operation.

To examine the optimality and robustness of the optimized
g;(t), we evaluate R, () with (1 + §;)g;(¢) for given relative
errors §;, which can model systematic errors in the pulse
amplitudes [15]. Figure 3(b) shows 1 — F as a function of
8;. First, at §y = §; = 0, the gradient of 1 — F with respect
to §; vanishes, implying that 6o = §; = 0 is an optimal point.
Second, the ellipse in Fig. 3(b) shows the contour correspond-
ing to 1 — F = 1073, indicating that such high-fidelity gate
operation can be achieved even for the relative errors as large
as |8p| = 0.01 or |§;| = 0.05. In particular, this gate operation
is robust for the error 81, namely, the error in the counterpulse.

B. Simulation results for R,

For R,, we obtain results that are qualitatively similar to
those of R,, which may be because for one KPO the other
acts like a single-photon drive as in R,. Figure 4 shows that,
with analytic waveforms, the minimum gate time satisfying

x 1073
@ | :
08}
Itz
I 0.6 [
—
04t
02t
0
0 0.2 04 0.6 0.8 1
o/
x 1073
(b) 6
0.04
5
0.02 4
Iz,
S0 3 |
—
-0.02 2
’
-0.04
0
-0.04 -0.02 O 0.02 0.04
8o

FIG. 3. (a) Average infidelity for R.(¢) obtained by Ag;(¢) with
g;(t) shown in Fig. 1(b), which are optimized to R,(rr), and a time-
independent scaling parameter 0 < A < 1. (b) Average infidelity for
R, (i) obtained by (1 + §;)g;(¢) with the optimized g;(¢) and relative
errors §;. The line indicates 1 — F = 1073,

1—F <1073 is KTy, = 1.2 and 0.6 without and with the
counterterm, respectively. With the numerical optimization,
the corresponding KT, are 0.8 and 0.2. Thus, the numeri-
cally optimized gate operation with the counterterm provides
a speedup by 6.0 times compared with the original analytic
waveform without the counterterm. [See Appendix E for the
optimized waveforms of g;(¢), the continuous R.,(®), and the
optimality.]

C. Simulation results for R,

Although R, differs from R, and R,; in that R, transfers a
part of population between the two computational basis states
while R, and R_, do not, the proposed method is also effective
for R,. Figure 5 shows 1 — F for R,(/2) as a function of
KT. With analytic waveforms, the K T,,;, are 2.6 both with and
without the counterterm. With the numerical optimization,
the KTy, are 1.7 and 0.6 without and with the counterterm,
respectively, which means that our approach can achieve a 4.3
times faster gate operation than that with the original analytic
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FIG. 4. Plot of average infidelities for R, (7 /2) as a function of
gate time.

waveform without the counterterm. However, we find that for
KT < 0.9, the maximum value of |g;(z)|/K can be larger
than 50, which might be infeasible because the rotating-wave
approximation would no longer be valid [50]. Thus, in the
following, we examine optimized g;(¢) at KT = 1, which
is an acceleration by 2.6 times compared with the analytic
waveform without the counterterm. Then the pulse amplitudes
with |g;(#)|/K < 20 are obtained as shown in Fig. 6(a).

We find that the states largely change during the optimized
R, as follows. Figures 6(b) and 6(c) show the time evolutions
of the mean photon numbers (v/|a’a|y) and the populations
in the qubit space (y|P|y), respectively. The mean photon
numbers become small during the operation, because the large
detuning suppresses the oscillation of the KPO. Also, the
populations in the qubit space decrease from 1, indicating
that the state is altered from the superposition of the coherent
states. (See Appendix F for the Wigner function during the op-
timized R,.) Since the populations outside the qubit space can
eventually become leakage errors, the errors in this R, might

a Analytic, H, 4 Optimized, H,
, © Analytic, H, + H,; ® Optimized, H, + H;

10 ° -IAA °°68A
oA
102 } A °s S
® AA é A O
i, 10° o
| AAo
— 104 | ° e o ]
10° | ® ‘
) [ J d A‘
10—6 L 1 [ ] 1 1
0.5 1 1.5 2 2.5 3
KT

FIG. 5. Plot of average infidelities for R, (7 /2) as a function of
gate time.
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0 0.2 0.4 0.6 0.8 1
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FIG. 6. (a) Waveforms of the amplitudes of g;(r) for R (/2)
with a counterterm, optimized numerically for KT = 1. (b) Mean
photon number and (c) population in the qubit space during the
optimized R, (7 /2).

o

be more sensitive to the gate times and optimized waveforms
than in R, and R_., causing the irregular dependence of 1 — F
on KT in Fig. 5.

As mentioned in Sec. IIT A, we find that R,(f) for con-
tinuous 6 is not obtained by Ag;(t) with the optimized g;()
for & = 7 /2. This might be because the states largely change
from the two coherent states during the optimized R, (7 /2) as
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FIG. 7. Average infidelity for R, (7 /2) obtained by (1 + §;)g;(?)
with the optimized g;(¢) in Fig. 6(a). The line indicates 1 — F =
1073,

indicated above [Figs. 6(b) and 6(c)], unlike R, and R,; (see
Appendix B 3).

The optimality and robustness of the optimized g;(t)
are again evaluated by the gate operation by (1 + §;)g;(?).
Figure 7 shows the average infidelity as a function of §;,
indicating that the optimality and robustness hold. Compared
with R, and R, the average infidelity for R, shows larger
correlation between §y and &1, that is, the optimized R, is more
robust against the relative errors with 8y >~ §;. This result
suggests that the counterpulse g;(¢) plays a more important
role in R, than in the others.

D. Effect of single-photon loss

Finally, we evaluate errors in the presence of single-photon
loss, which we choose as a representative of decoherence
sources in KPOs. We solve the master equation for a density
operator p,

p = —ilH(®), p] + L[p], (28)

Llp] = %(Za,ocf —d'ap — pa‘a) for R.,R,, (29)

Llp] = g Z(Zaipaf — a:fa,-p — ,oaja,-) forR,,, (30)
i=1,2

where [0, 0;] = 0,0, — 0,0, is the commutation relation
for operators and « is the loss rate. The H(¢) are given in
Eqgs. (22) and (23) and the optimized g;(¢) are used. Here
we evaluate an average gate fidelity calculated with a finite
number of initial states Fjoss, which is defined by Eq. (C3) in
Appendix C.

Figure 8 shows 1 — F as a function of the loss rate. For
all of R,, R,;, and R,, the errors can be suppressed below
1 — Foss < 1073 for a loss rate as large as k /K < 3 x 1074,
except for R, with KT = 0.5, R,, with KT = 0.2, and R,
with KT = 2. These results are explained as follows. When

108 10° 10* 10® 102 107

FIG. 8. Plot of average infidelities as a function of the loss rate
for (a) R,(7), (b) R..(r/2), and (c) R(7r /2), where optimized g;(¢)
are used. No gate means g;(r) =0 and its ideal operation is no
rotation. The horizontal line indicates 1 — Fjois = 1073,

the gate times K7 are too short, the leakage errors are large,
which dominate the errors for the small loss rate ¥ /K. When
the KT are too long, the single-photon loss causes large de-
phasing errors [9] [cf. Eq. (C5)]. The dephasing errors are the
main causes of the errors for large « /K. Indeed, the 1 — Fjo
with and without the gate operations overlap for the same KT,
especially for R, and R, in Figs. 8(a) and 8(b). For these
reasons, at k /K = 3 X 1074, the 1 — Fjoss are the smallest at
intermediate KT, achieving 1 — Foes < 1073 as above.
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In Fig. 8(c), for large «/K, R, gives smaller 1 — F
than no gate operation, because the mean photon number is
decreased during R, as shown in Fig. 6(b) and the effect of
single-photon loss becomes smaller [cf. Eq. (C5)].

IV. SUMMARY

We have shown that adiabatic elementary gates for univer-
sal quantum computation with KPO qubits can be accelerated
by utilizing counterterms derived from STAs and numeri-
cally optimizing the pulse shapes for them. The optimized
gate operations are feasible in experiments with, specifically,
superconducting circuits. We thus expect that the proposed
methods are useful for quantum computers with KPOs.

The resulting counterterms for R, and R,, are a single-
photon drive and a two-mode squeezing, respectively. Related
results have been reached with the DRAG technique in
Ref. [13], where R, and R;, are studied as a part of the bias-
preserving gates. However, the pulse shapes are analytically
determined in Ref. [13]. In our work the pulse shapes are fully
optimized numerically.

In this work we have clarified a counterterm for R,. We
have found that the counterterm can be approximated by a
two-photon drive. Using this counterterm, we obtained a gate
time for R, (7w /2) as short as KT = 1. This gate time is better
than that of the fastest R, (v /2) reported, KT = 7 /2, which
was experimentally implemented with sharply turning off the
parametric drive for this time interval [19,86].

In this work we have fixed the amplitude of the parametric
drive p to 4K for the reasons mentioned in Sec. III. However,
the proposed methods can be applied to other p in principle,
and then p can be further optimized as follows. Rotations R,
and R,; will become faster with a larger p, because the larger
p stabilizes the two coherent states more and thus larger-
amplitude pulses can be used for the gate operations [13].
Rotation R, will be the fastest at some intermediate p, because
a too large p makes the population transfer between the two
coherent states difficult [73]. Furthermore, a time-dependent p
can be utilized for nonadiabatic R,, as mentioned above [19].

Although we have assumed the realistic pulse shapes and
optimized them, the pulse shapes could be determined with
other methods such as quantum optimal controls [87,88]. Such
optimizations, including p, are left for future work.
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APPENDIX A: APPROXIMATE COUNTERTERMS

We start from an exact counterterm H, (¢) given by [78,80]
Hi(t) =iy [EO)NEQ)]
k

— (Ex (O Ex(O) [ Ex() (Ex ()], (AD)

where |Ey(2)) is the kth eigenstate of Hy(¢) with its eigenvalue
Ey (1),

Ho(O|Ex (1)) = Ex(1)|Ex(1)).

The first term on the right-hand side of Eq. (Al) cancels
transitions between different |Ey(¢)), while the second term
corrects phase factors. We ignore the second term because we
find that (E} (t)|Ek (t)) vanishes in the approximation below.
We then express H;(¢) in an explicitly Hermitian form using
the time derivative of ), |Ex(t))(Ex(t)| = I (I is the identity
operator) as

(A2)

Hi(1) = %ZnEk(r)MEk(m — |EcO)EI]. (A3)
k

To cancel transitions from a qubit space, we restrict the sum-
mation to k for computational basis states.

From Eq. (A3) we derive approximate counterterms for
KPOs. We approximate |E(¢)) corresponding to the qubit
states by a variational method using a coherent state |§) as
a trial state [28]. Its amplitude B is determined by seeking an
extremum with

0

0B (BlHo(1)|B) = 0.

(A4)

1. Approximate counterterm for R,

For R,, we approximately solve Eq. (A4) by assuming
lgo(t)/2Ka?| <« 1 and obtain the expression for the qubit
states

8o(?)
|Eo(1)) = ‘a + 2Ka2>, (A5)
~_ 8o(r)

|E1(1)) =~ ‘ o+ 2Ka2>’ (A6)

where @ = /p/K. For real B(¢),
IB1)) = B(®)la" — BWONIB®)) (A7)

holds. Equation (A3) can then give Eq. (14) as

igo(t)
Hy(1) ~ 4127[51?1)0) — P(t)al (A8)

igo(t) 4
~ 413052 (a' —a), (A9)

where P(t) = |Eo(t))(Eo(t)| + |E1(¢))(E1(¢)] is a projector
onto the qubit space. In Eq. (A9) P(t) is ignored because
the difference between Egs. (A8) and (A9) is proportional
to af[l — P(t)] — [I — P(t)]a, which has matrix elements
mainly between states outside the qubit space and therefore
is negligible. As mentioned above, (Ek(t)|Ek(t)) vanishes,
because a real B(t) gives (B®)]|a" = (B()|B(t) and then
Eq. (A7) leads to (B®|B1)) = 0.

2. Approximate counterterm for R,
The following derivation is valid for both the beam-splitter
coupling in Eq. (12) and the two-mode squeezing in Eq. (13).
From Eq. (A4), when |go(t)/ 2Ko?| « 1, the qubit states are
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approximately given by

s180(t)
2Ka

==+1 fori =1, 2. Equa-

Iy (1) = ’sla + szg(’(’)>'s2a

where the states are labeled with s;
tion (A3) then becomes

igo(r)
H (1) ~
Ko ,=i§=i1

[(s2a] + 51G5)|Es 5, (1)) (Eygy5, (8)]

- |ES|SQ (t)) (Exlsz (t)|(52a1 + Slaz)]-

Using 3, 8ilEgy, (D) (Eop, (0] = P(1)a;P(t) /et = P(t)a]
P(t)/a with P(1) =Y, |Ey s, ()(Ey, ()| and ignoring
P(t) in a similar manner to R,, we obtain approximate H, (¢)
as

(Al1)

igo(t) 4 4
2Ka? (@4,
which is a two-mode squeezing Hamiltonian. Note that
Eq. (A11) does not yield beam-splitter coupling, because if we
choose the appr0x1mat10n of Y s, SilEsys, (1)) (Es,5,(2)] such

Hl(t):

—aay), (A12)

that a! (a2 and a2a1 appear, then H; (t) becomes zero.

3. Approximate counterterm for R,

For R,, Eq. (A4) gives B(t) = +/Ip + go(¢)]/K and the

eigenstates can be approximated by

|Eo (1)) ~ %[Iﬂ(ﬂ) + [ = BM)]

|E1 (1)) ~ T[Iﬂ(t» — =Bl

where |(B(t)] — B(t))] <« 1 is assumed. The counterterm in
Eq. (A3) becomes

(A13)

(A14)

~ igO(t) T _

H(t) ~ —4Kﬂ([)[a Z(t) — Z(t)al,
where Z(1) = |B@))(B@E)| — |=B@))(=B@)| is a Z oper-
ator in the qubit space. Using Z(t) = P(t)aP(t)/B(t) =
P(t)a"P(t) /B(t), ignoring P(t) similarly to R,;, and assuming
lgo(t)/p| < 1, we obtain nonzero Hermitian H, (¢) as follows:

igo(?)
4Ka?

(A15)

Hi(t) ~ ——(a" — d*). (A16)

APPENDIX B: PROPERTIES OF COUNTERTERMS

The exact counterterm in Eq. (Al) can be rewritten by
using time derivative of the eigenvalue equation in Eq. (A2)
as [78,80]

|k (1)) (Ec ()| Ao | En (1)) (Enm ()]

Hl(f)_lgo(f)z E(t) — Ex(1)

k#m

. (BD

where the Hy(?) in Egs. (8) and (11) have been assumed.

1. Matrix elements

The matrix elements for k # m are

o AE(DIAEy (1))
(Ex(H(D)IE, (1)) = lgo(l)m~ (B2)

Equation (B2) means that to cancel unwanted transitions,
when the matrix elements of Ay [and g((¢)] are nonzero, the
corresponding matrix elements of a counterterm H(¢) must
also be nonzero. Thus, an approximate H;(¢) may be more
effective when its matrix elements are more similar to those
of Ag. As mentioned in Sec. II B, we think that for the above
reason, H (t) with the two-mode squeezing in Eq. (16) works
better for Ay with the two-mode squeezing in Eq. (13) than Ay
with the beam-splitter coupling in Eq. (12).

Also, to have nonzero matrix elements in common, H;(¢)
must have the same symmetries as Ag. On the other hand, as
mentioned in Sec. II B, the counterterm with the beam-splitter
coupling in Eq. (17) has permutation symmetry different from
Ap in Egs. (12) and (13), that is, the interchange of KPO1 and
KPO?2 leads to a sign change in Eq. (17) but not in Ag. Thus,
the counterterm in Eq. (17) may not be effective.

2. Time-reversal symmetry

Based on Eq. (B1), here we consider the symmetry of
H,(t) with respect to a time reversal t — T —¢. When
go(t) and hence Hy(t) are symmetric, namely, Hy(T —¢t) =
Hy(t), the eigenvalue equation (A2) indicates that Ej(t)
and |Ei(t)) are also symmetric, that is, they can be cho-
sen to be Ex(T —t) = Ex(¢t) and |Ex (T —t)) = |Ex(t)). Also,
when gy () is symmetric, go(?) is antisymmetric, go(T —t) =
—go(t). Equation (B1) then indicates that symmetric go(¢)
yields antisymmetric H(z). We thus use antisymmetric g (¢)
in Eq. (25) for numerical optimization.

3. One-parameter continuous gate with a counterterm

Equation (B1) indicates that a scaled Agy(¢) does not nec-
essary scale H;(t) to AH|(t), because H|(t) depends on go(t)
through |E;(¢)) and E(¢). If the dependence of |E(¢)) and
Ei(t) on go(¢t) is negligible, such a scaling holds. We think
that this property is related to the one-parameter continuous
gates with the counterterms for R, and R, shown in Figs. 3(a)
and 9(b). Also, as mentioned in Sec. IIIC, since R, largely
changes the state during the gate operation, the one-parameter
continuous gate would not work.

APPENDIX C: AVERAGE GATE FIDELITIES

When dissipation is not included, we calculate a gate fi-
delity averaged over all initial states in a qubit space by [84]

1 T
F= g nUUP +wwuh (Cn

where d = 2,4 is the dimension of the qubit space for a
single- and a two-qubit gate, respectively, Uy = R,, R,, R is
an ideal gate operation, and U is a time-evolution operator
projected onto the qubit space. For a single-qubit gate, U can
be given by

U — <<9ll/f()) ©)

(()II/fl))
{11¥o) ’

(Tly)
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where |) and |y)) are states after time evolution for the gate
time 7T calculated with the Schrodinger equation (26) with the
initial states |0) and |1), respectively. For a two-qubit gate U
can be calculated similarly with the initial states |00), |01),
|10), and |11).

When the single-photon loss is included, we calculate the
average gate fidelity

Ninit

Z (\[’i(éi)t | UJ o1Uo | I//i(nli)t)’ (€3)

=1

1

Foss =

init

where |1,Di<rfi)t) is an initial state and p; is the density operator

of a final state calculated from the initial state |¢i(rf]-)t) with the
master equation (28). Here Ny is the number of initial states.
For a single-qubit gate, we choose the following six initial

statesfor/ =1,2,...,6:
woy= (5, (0), (1), (!
init 0/’ 1) ﬁ 1)’ ﬁ 1)’

AOBIS) ©
V2\i)7 2\~

For a two-qubit gate, we use the 36 initial states given by
[y Dy with 1,1 = 1,2, ..., 6. We numerically find that

Y init init -
Fioss 18 in good agreement with F in the absence of the single-
photon loss. The average infidelity due to the single-photon

loss alone can be approximated well by [9,75]
1 — Fogs = (1 — 72T, (C5)
per KPO for the large mean photon number a? > 1.
APPENDIX D: WAVEFORMS OF PULSE AMPLITUDES

1. Waveforms for R,

For R, we use the following waveforms: (a) analytic wave-
forms [8] without the counterterm

_ Ty . mt DI
go(t) = 8T_(xsm T (D1)
g1t) =0; (D2)

(b) analytic waveforms with the counterterm in Eq. (14),

_ Ty . mt D3

go(t)—msm?, (D3)
&) |

g1 = S22 (D4)

(c) numerically optimized waveforms in Eq. (24) without the
counterterm, where the initial g; , are

802 = (D5)

2T’

gjn =0 for the others; (Do)

and (d) numerically optimized waveforms in Egs. (24)
and (25) with the counterterm, where the initial g;, are [cf.
Eq. (D4)]

_ ¢ D7

80,2 Ta (D7)
80,2

=552 D8

81T 4K T o

gjn =0 for the others. D9)

2. Waveforms for R,

For R,, we use the following waveforms: (a) analytic wave-

forms [8] without the counterterm,

T .t
sin —,

8T o2 T

g1t) =0;

go(t) = (D10)
(D11)

(b) analytic waveforms with the counterterm in Eq. (16),

0 | 7t
g0(t) = o sin 7 (D12)
go(t)
a) =07 (D13)

(c) numerically optimized waveforms in Eq. (24) without the
counterterm, where the initial g;, are

__® (D14)
go2 = 2T a2’
gjn = 0 for the others; (D15)

and (d) numerically optimized waveforms in Egs. (24)
and (25) with the counterterm, where the initial g;, are [cf.
Eq. (D13)]

G

-9 D16

802 =572 (b16)
80,2

_ 802 D17

8L = Sk Ta? 1D

gjn =0 for the others. (D18)

3. Waveforms for R,

For R, we use the following waveforms: (a) analytic wave-
forms [8] without the counterterm, where the A is determined
by maximizing F,

® A ! 2t
= —(1—-cos— ),
80 2 T

g1t) =0;

(D19)

(D20)

(b) analytic waveforms with the counterterm in Eq. (15),
where A oun: 18 determined as above,

(1) = Dcount <1 cos 2’”) (D21)
go(t) = ——| 1 —cos — |,
2 T
a = 20, (D22)
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FIG. 9. (a) Waveforms of g;(¢) for R,;(7/2) with a counterterm,
optimized numerically for KT, = 0.2. (b) Average infidelity for
R.(®) obtained by Ag; () with the optimized g;(¢) in (a). (c) Average
infidelity for R, ( /2) obtained by (1 + §;)g;(¢) with the optimized
g;(t). The line indicates 1 — F = 1073.

(c) numerically optimized waveforms in Eq. (24) without the
counterterm, where A is determined for the analytic wave-
forms in Eq. (D19) and the initial g; , are

802 = A, (D23)

gjn =0 for the others; (D24)

[Yinit) = 1C4) [Yinit) = 1C-)
a d
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FIG. 10. Wigner functions during R,(7/2) with the optimized
g;(t) in Fig. 6(a). (a), (d) Kt = 0.2, (b), (¢) Kr = 0.5, and (c), (f)
Kt = 0.8. The initial states are [(a)—(c)] |C,) and [(d)—(f)] |C_).

and (d) numerically optimized waveforms in Egs. (24)
and (25) with the counterterm, where Aoy 18 determined for
the analytic waveforms in Eq. (D21) and the initial g; , are [cf.
Eq. (D22)]

802 = Acounts (D25)
80,2

_ T2 D26

8117 4K T2 (020

gjn =0 for the others. (D27)

APPENDIX E: SIMULATION RESULTS FOR R,

Optimized waveforms g;(t) with the counterterm at
KT.in = 0.2 are shown in Fig. 9(a). Figure 9(b) shows that
these optimized g;(¢) can be used for continuous R..(®) by
Ag;j(t) with the time-independent scaling parameter A as in
the case of R.(¢). Also, the optimality and robustness of
R (7 /2) are evaluated with (1 + §;)g;(¢). Figure 9(c) shows
that the gradient of 1 — F is zero at §p = §; = 0, indicating its
optimality.

APPENDIX F: WIGNER FUNCTION DURING R,

Figure 10 shows the Wigner function during the optimized
R, in Fig. 6(a). Figure 10(b) shows that for |, ) = |Cy) the
intermediate state looks like a vacuum state, which agrees
with the small mean photon number in Fig. 6(b). The vacuum
state may be realized because the large |go(¢)|/K suppresses
the oscillation of the KPO. On the other hand, Fig. 10(e)
shows that for |, ) = |C—) the intermediate state resembles
|C_), which is consistent with the large population in the qubit
space for K¢ = 0.5 in Fig. 6(c).
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