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Absence of fractal quantum criticality in the quantum Newman-Moore model
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The quantum phase transition between the low-field fracton phase with type-II fracton excitations and the
high-field polarized phase is investigated in the two-dimensional self-dual quantum Newman-Moore model. We
apply perturbative and numerical linked-cluster expansions to calculate the ground-state energy per site in the
thermodynamic limit, revealing a level crossing at the self-dual point. In addition, high-order series expansions
of the relevant low-energy gaps are determined using perturbative continuous unitary transformations indicating
no gap closing. Our results therefore predict a first-order phase transition between the low-field fracton and the
high-field polarized phase at the self-dual point.
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I. INTRODUCTION

Fracton phases of matter are connected to intriguing phe-
nomena such as topological order, glassy dynamics, and spin
liquids [1]. Due to this and their potential applications in
quantum memories [2], there has been increasing interest in
models exhibiting such phases in the last years [3–6]. One of
the most important properties of systems with fracton order
is the restricted mobility of their low-energy elementary exci-
tations, dubbed fractons [1], which can be of type I or II. In
type-I fracton phases, topologically nontrivial composites of
the low-energy excitations are still mobile on the lattice, but
usually restricted to lower dimensions (submanifolds), i.e., in
three dimensions (3D) they can only move on planes or along
lines [7]. In contrast, type-II fractons are fully immobile on
the lattice.

Well-known examples for models exhibiting fracton prop-
erties in 3D are the X-cube model, as introduced in Ref. [7],
with type-I fractons, and Haah’s code [8] as an example for
a type-II fracton order. The quantum robustness of the frac-
ton order in these systems has been studied using quantum
Monte Carlo simulations [9] and perturbative linked-cluster
expansions [10]. It is found that in both models the fracton
phase breaks down by a first-order quantum phase transition
when applying an external field. The same behavior is found
when studying the competition of fracton order in the X-cube
model and intrinsic topological order in the three-dimensional
toric code [11]. The occurrence of only first-order transitions
can be traced back to the (partial) immobility of the fractons
since the low-energy excitations cannot lower their energy
sufficiently by quantum fluctuations to induce a second-order
phase transition.

Fascinatingly, the two-dimensional (2D) quantum ver-
sion of the Newman-Moore model [12], exhibiting type-II
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fracton order, has been recently suggested to display a
continuous quantum phase transition with an exotic fractal
criticality based on quantum Monte Carlo simulations and
field-theoretic arguments [13]. Here, the low-energy quan-
tum dynamics in the low-field fracton phase is intimately
linked to 2D fractal structures of Sierpinksi triangles giving
rise to glassy dynamics at finite temperature in the classical
Newman-Moore model. Furthermore, the quantum Newman-
Moore model (qNM) features an exact self-duality relating the
energy spectra of the low-field fracton and the high-field po-
larized phase. The zero-temperature phase transition between
these phases is therefore located at the self-dual point [13,14].
However, the quantum Monte Carlo simulation performed in
Ref. [13] is challenging due to the glassy dynamics as well as
finite-size effects, and in addition, earlier numerical calcula-
tions in Ref. [14] based on transition path sampling indicate
a first-order transition. In this work, we clarify this situa-
tion by applying perturbative and numerical linked-cluster
expansions to investigate this phase transition directly in the
thermodynamic limit and at zero temperature. Our results for
the ground-state energy and the relevant low-energy excitation
energies predict a first-order phase transition between the low-
field fracton and the high-field polarized phase at the self-dual
point in the qNM.

II. QUANTUM NEWMAN-MOORE MODEL

The qNM is the spin-1/2 Newman-Moore model [12] in a
transverse field,

HqNM = −J
∑
�

σ z
i σ z

j σ
z
k − �

∑
i

σ x
i . (1)

Here, the sum over � (i) runs over the downward-pointing
triangles (sites) of a triangular lattice as illustrated in Fig. 1.
The first term of the Hamiltonian is a three-spin Ising interac-
tion with J > 0 acting only on downward-pointing triangles
�, while the second term is the transverse magnetic field with
field strength � > 0. We note that the number of sites N is
equal to the number of downward-pointing triangles.
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FIG. 1. Low-field limit � = 0 [high-field limit J = 0] of the
qNM on the triangular lattice with spins-1/2 indicated as black
arrows and three-spin interactions acting on downward-pointing tri-
angles � is illustrated in (a) [in (b)]. (a) In the low-field limit � = 0
the fully polarized state with spins pointing in the z direction is one
ground state, so that all pseudospins on the centers of downward-
pointing triangles point also upward. A single spin-flip changes the
eigenvalue of the three attached pseudo-spins on downward-pointing
triangles, which is illustrated in red. The three-spin-flip excitation
on the next larger Sierpinski triangle is shown in blue. (b) In the
high-field limit J = 0 the fully polarized state with spins pointing in
the x direction is the unique ground state. Fully mobile excitations in
the high-field limit are associated with flipping the three spins on a
downward-pointing triangle (shown in red) as well as on the first and
second nontrivial Sierpinski triangle illustrated in blue and orange,
respectively.

Each three-spin Ising interaction has eigenvalues ±1. One
can therefore introduce a pseudo-spin-1/2 τμ at the center μ

of each � so that −J
∑

μ τ x
μ yields the correct energy of the

three-spin Ising interactions. The local field operator σ x
i flips

the eigenvalues of the three Ising interactions (pseudo-spins)
containing site i so that the dual qNM reads

Hdual
qNM = −J

∑
μ

τ x
μ − �

∑
�dual

τ z
μτ z

ν τ
z
κ , (2)

which is defined on the triangular lattice formed by the centers
μ of each � [see Fig. 1(a)]. The qNM is therefore self-
dual and the energy spectra of the low- and high-field phase
are isospectral. Consistently, the quantum phase transition is
found at the self-dual point J = � [13,14].

The self-duality does not hold for degeneracies and states.
In the low-field phase � < J , the qNM displays type-II
fracton order. For the limiting case � = 0 ground states
have all eigenvalues of three-spin interactions +1. This is
either realized when all spins point in the positive z direction

[see Fig. 1(a)] or when two of the three spins per triangle
are flipped. Therefore, the ground-state manifold is highly
degenerate. Within the fracton phase 0 < � < J , one finds
that the degeneracy scales subextensively with N [13], which
is one hallmark of fracton order. In contrast, in the high-field
phase with � > J , the qNM is in a featureless polarized phase
with a nondegenerate ground state. For J = 0 this ground
state is the product state where all spins point in the positive
x direction [see Fig. 1(b)].

Elementary quasiparticle (QP) excitations in the high-field
phase correspond to dressed spin-flip excitations, while the
elementary fracton excitation in the low-field phase is related
to a negative eigenvalue of a three-spin Ising interaction which
becomes dressed at finite fields (see Fig. 1 for both phases).
Due to the self-duality, it is sufficient to determine the ener-
getic properties of the trivial high-field phase. The associated
energies in the low-field fracton phase can be deduced directly
by interchanging J and �.

III. LINKED-CLUSTER EXPANSIONS

We use a variant of linked-cluster expansions [15,16]
designed for multispin interactions as perturbation [17] to cal-
culate the ground-state energy per site and relevant excitation
energies of the high-field polarized phase in the thermody-
namic limit. For this phase the three-spin interactions always
link the three sites of a �. One therefore performs a full
graph decomposition in terms of connected �s. The calcu-
lation on the linked, i.e., possibly contributing, graphs can
be done either perturbatively or numerically using exact di-
agonalization. After embedding all graph contributions into
the thermodynamic limit, one then obtains either a high-order
series expansion in J/� or a numerical data sequence for fixed
ratio J/�. While the perturbative linked-cluster expansion is
exact up to the calculated perturbative order, the numerical
linked-cluster expansion (NLCE) [18] includes all quantum
fluctuations in the thermodynamic limit up to the length scale
set by the maximally extended graph. We refer to Appendix A
for technical details about linked-cluster expansions.

Concretely, for the ground-state energy per site E0/(�N ),
we apply perturbative and numerical linked-cluster expan-
sions. We consider all 186 061 nonisomorphic connected
clusters from 1 to 13 triangles. This allows us to calculate
the perturbative series of E0/(�N ) up to order 26 in J/�
in the thermodynamic limit using matrix perturbation theory
[16]. Here, the perturbation always has to act on each � an
even number of times so that graphs up to 13 triangles are
sufficient in order 26 and only even orders contribute in the
series expansion. Within the NLCE we define the term order
to be twice the maximal number of triangles of the involved
clusters, which again yields a maximal order of 26.

To derive high-order series expansions of relevant ex-
citation gaps in the high-field phase, we use perturbative
continuous unitary transformations (pCUTs) [19,20] (see also
Appendix A). The pCUT method maps Hamiltonian (1)
perturbatively in J/� to an effective Hamiltonian, which
conserves the number of (dressed) spin-flip excitations cor-
responding to the elementary QP of the high-field phase. The
effective Hamilton is therefore block diagonal and each QP
block can be treated separately. In this work we calculated the

013191-2



ABSENCE OF FRACTAL QUANTUM CRITICALITY … PHYSICAL REVIEW RESEARCH 6, 013191 (2024)

low-energy excitation gaps of the 1QP, 2QP, and 3QP sector.
The explicit series are listed in Appendix B.

Due to the exact self-duality of the qNM, the energetic
properties of the QP are identical to the fracton excitations
in the low-field phase. As a consequence, individual QPs are
strictly local while pairs of QPs are always only linked to a
finite number of 2QP configurations so that one is left with
diagonalizing finite matrices in the 2QP sector. We denote the
lowest excitation gaps in the 1QP and 2QP sector by �1 and
�2, which we have calculated perturbatively up to order 14
and 12 in J/�, respectively. The 3QP sector contains low-
energy excitations which are fully mobile. Indeed, considering
three spin flips on the same �, this configuration can either
hop to other � or can be deformed to other 3QP configura-
tions where the three spin-flips are located at the corners of
Sierpinski triangles of arbitrary size. These 3QP configura-
tions on Sierpinski triangles can again hop. In the calculated
perturbation order 12 this part of the 3QP sector contains
three different types of Sierpinski triangle 3QP configurations
with side length one, two, and four [see Fig. 1(b)]. Exploiting
translational invariance, this infinitely large sector can then be
reduced to a 3 × 3 matrix for fixed momentum. We find that
the energy gap in the 3QP sector is located at zero momentum
and we denote the three eigenvalues as �

(n)
3 with n ∈ {1, 2, 3}.

The �
(n)
3 can then be extracted as series expansions in order

12 by diagonalizing the 3 × 3-matrix order by order.
For our analysis, we can extract information about the

behavior of the system directly from the bare perturbative
and numerical series and, additionally, from extrapolations
of the perturbative series which can increase the radius of
convergence and give access to potential critical exponents.
Here, we use Dlog Padé extrapolation techniques, which are
described in Appendix C. This includes biased Dlog Padé
extrapolations, where we incorporate that the phase transition
takes place at the self-dual point J = �.

IV. GROUND-STATE ENERGY

Results for the ground-state energy per site E0/(�N ) are
shown for both phases in Fig. 2. All displayed results are
well behaved and well converged. The low- and high-field
energies intersect by construction exactly at the self-dual point
J/� = 1 with a clearly visible kink. This kink can be quanti-
fied by the angle

β = (
lim

J/�↓1
− lim

J/�↑1

)∣∣∣∣∣ arctan

(
∂

∂ (J/�)

E0

�N

)∣∣∣∣∣, (3)

which is shown in the right inset of Fig. 2 as a function
of 1/order using the perturbative or numerical linked-cluster
expansions. One finds that both agree in high orders yielding
a finite angle β ≈ 15◦ in the infinite-order limit. A rough
lower bound for the angle at infinite order can be obtained by
performing a linear fit for the three values of highest order, re-
sulting in β ≈ 15.23(1)◦ [β ≈ 15.19(3)◦] for the perturbative
[numerical] data sequence. This finite angle corresponding
to the presence of a kink in the ground-state energy at the
self-dual point is quantitative evidence that the quantum phase
transition in the qNM between the low-field fracton phase and
the high-field polarized phase is first order.

FIG. 2. Series expansion of the ground-state energy per site
E0/(�N ) up to order 26 in J/� for the low- and high-field phase. The
individual orders of the series are shown with increasing opacity. The
highest order is further highlighted in bold as indicated in the legend.
By construction, the series intersect in all orders at the self-dual
point J/� = 1 marked by the vertical dashed line (left inset zoom
close to the self-dual point). Note that the energies from numerical
linked cluster expansions are in quantitative agreement with the ones
from the series expansions on the displayed energy resolution. The
right inset shows the angle β between the low- and high-field en-
ergy expression from the perturbative (empty circles) and numerical
linked-cluster expansions (filled circles) as a function of 1/order.

Next, we check the reliability of these considerations by
applying DLog Padé approximation to the perturbative se-
ries of the second derivative of E0/(�N ) with respect to
J/�. We bias the DLog Padé approximation to have a pole
at the self-dual point J/� = 1. This allows then to extract
the critical exponent α. A first-order phase transition implies
α = 0. Our results for the critical exponent α are shown in
Fig. 3, which are again well converged for the high-order
DLog Padé approximants. We obtain a critical exponent of
αbias ≈ 0.007(12), taking the average of the highest order
value for every family. This finding is obviously fully con-
sistent with a first-order phase transition. Note that this is
in contradiction to the scenario of fractal quantum criticality

FIG. 3. Critical exponent α from various biased DLog Padé ap-
proximants of the second derivative of E0/(�N ) with respect to J/�
displayed as a function of the order of the DLog Padé approximant.
The results are grouped in families ([L,L+C] with order 2L+C) and
shown for |C| � 5. The inset plot shows the average value for each
order with the sample standard deviation. For the lowest-order value
only a single value is available, marked by a circle.
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proposed in Ref. [13] but in accordance with the numerical
findings by Vasiloiu et al. [14].

V. EXCITATIONS GAPS

Our analysis of the ground-state energy revealed a first-
order phase transition at the self-dual point J/� = 1. As a
consequence, one expects that all low-energy excitation en-
ergies of the high-field phase remain finite for J/� � 1. This
we investigate next by analyzing the series of low-energy ex-
citation energies in the 1QP, 2QP, and 3QP sector. Due to the
restricted mobility of single and pairs of QP excitations, we do
not expect the associated gaps in these sectors to close. Indeed,
a single QP, corresponding to a dressed spin-flip excitation in
the high-field phase (or equivalently to a dressed elementary
fracton excitation in the low-field phase), is strictly local and
has no finite dispersion. It can nevertheless reduce its energy
by local fluctuations induced by the three-spin Ising interac-
tions. The same is true in the 2QP sector. If the two QPs are
far apart from each other, the QPs are not able to hop in a
given perturbative order so that the 2QP continuum is flat in
momentum space with twice the energy of a single QP. Only
certain 2QP configurations are connected to a finite number
of other 2QP configurations if the QPs are sufficiently close.
This leads to 2QP energies below the 2QP continuum but not
to a finite dispersion. In contrast, the 3QP sector is the first
low-energy sector which contains fully mobile excitations.
Considering three spin flips on a �, this bound 3QP object
can move to other triangles starting in order two perturbation
theory, leading to a finite dispersion. At the same time, the
bound object on a � can be deformed into 3QP configura-
tions where the three QPs are located on the corners of a
Sierpinski triangle. For the first five nontrivial Sierpinski tri-
angles {�2,�3,�4,�5,�6} the order of perturbation needed
to obtain it from the Sierpinski triangle before (�n−1) is given
by {�2 : 2,�3 : 6,�4 : 18,�5 : 54,�6 : 162}, i.e., the order
always increases by a factor of three. The resulting low-energy
excitations in the 3QP sector are therefore dispersive and
superpositions of Sierpinski triangle 3QP configurations. As
a consequence, one therefore expects quantum fluctuations to
be most important in the 3QP sector.

In Fig. 4, we show averaged DLog Padé approximations of
the 1QP and 2QP gaps �1 and �2 as well as the two lowest
excitation energies �

(1)
3 and �

(2)
3 with zero momentum in the

3QP sector. Note that DLog Padé approximants with poles at
values J/� < 1 are excluded in the averages. Not surprisingly,
standard deviations increase for all excitation energies when
approaching the self-dual point J/� = 1. Nevertheless, they
are small enough to conclude the absence of a gap closing in
all three QP sectors, which further confirms the presence of a
first-order phase transition.

VI. CONCLUSIONS

In this work we applied perturbative and numerical linked-
cluster expansions to investigate the quantum phase transition
in the qNM. Our results for the ground-state energy revealed
the presence of a finite kink at the self-dual point J/� = 1.
This finding is further consistent with the analysis of the sec-
ond derivative of the ground-state energy as well as with the

FIG. 4. Low-energy excitation gaps �1 of the 1QP, �2 of the
2QP, and �

(1)
3 and �

(2)
3 of the 3QP sector are shown as a function

of J/� using average and standard deviation of nondefective DLog
Padé approximants. The vertical dashed line indicates the self-dual
point.

absence of any gap closing in the 1QP, 2QP, and 3QP sector.
Our results therefore demonstrate the presence of a first-order
phase transition in the qNM, which is in contradiction to the
scenario of fractal quantum criticality proposed in Ref. [13].
In particular, their critical value α = 0.28(2) is not consistent
with our finding αbias = 0.007(12). One might speculate that
the results in Ref. [13] from quantum Monte Carlo simulations
suffer from finite-size effects or from the glassy dynamics
present at finite temperatures. Indeed, in Ref. [21] it has been
shown that boundary conditions and finite-size effects are
nontrivial in the qNM and that the approach to the thermo-
dynamic limit is different across different system sizes and
geometries. This is different in our approach using linked-
cluster expansions, which have the benefit to work directly in
the thermodynamic limit, only truncating in the length scale
of the treated quantum fluctuations. Furthermore, our results
are in accordance with the numerical results by Vasiloiu et al.
[14], who also found a first-order transition in the qNM. An-
other attractive route for a better understanding of the qNM
are experimental investigations which have been proposed for
Rydberg atom arrays in Ref. [22].

ACKNOWLEDGMENTS

We acknowledge support from the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – Project-
ID 429529648 – TRR 306 QuCoLiMa (“Quantum Cooper-
ativity of Light and Matter”). K.P.S. acknowledges support
from the Munich Quantum Valley, which is supported by
the Bavarian state government with funds from the Hightech
Agenda Bayern Plus.

APPENDIX

The Appendix contains three parts. First, we describe the
most essential aspects of perturbative and numerical linked-
cluster expansions used in this work. Second, we list the bare
series of the ground-state energy per site as well as the low-
energy excitation gaps. Third, we briefly describe Dlog Padé
extrapolations.
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APPENDIX A: LINKED-CLUSTER EXPANSIONS

General introductions to linked-cluster expansions can be
found in the literature [15,16]. Further, the variant used in this
work for multispin interactions as perturbation is detailed in
Ref. [17]. In the following we discuss the most important
aspects of linked-cluster expansions relevant to this work.
First, we consider a Hamiltonian defined on a lattice L,

H =
∑
i∈L

H0,i +
∑

b

Vb, (A1)

where the first sum runs over all sites and the second one
over the bonds (which are sets of sites in this case). The
strictly local H0,i are equivalent for all sites i, and similarly the
perturbation terms Vb are equivalent for any bond b. In HqNM

the sites i host the spin degrees of freedom and the bonds are
the � consisting of three sites. Furthermore, for simplicity,
we assume that each H0,i has a unique ground state |0〉 and a
unique excited state |1〉.

For the ground-state energy and low-energy excitation gaps
it is possible to obtain perturbative series expansions which
are valid in the thermodynamic limit up to any finite per-
turbation order from calculations on appropriately designed
finite clusters. For the extensive ground-state energy, this is a
direct consequence of the linked-cluster theorem which has
been generalized to single- and multiparticle excitation en-
ergies [19,20,23–25]. As a consequence all matrix elements
necessary to calculate the ground-state energy and low-energy
excitation gaps can be determined on a finite cluster C.

The idea behind linked-cluster expansions is to decompose
the calculation of such a matrix element on a cluster C as [15]

K (C) =
∑
c⊆C

κ (c), (A2)

where the sum runs over all connected subclusters of C and
κ (c) is the reduced contribution of the cluster c. Note that we
mean all connected subclusters of C, not structurally distinct
ones. From Eq. (A2) one finds that the reduced contribution
of a cluster C is given as

κ (C) = K (C) −
∑
c⊂C

κ (c), (A3)

where the reduced contributions of all proper subclusters of
C are subtracted from K (C). Hence, only the part of K (C)
coming from the entire cluster C is kept in the reduced con-
tribution. A key element of linked-cluster expansions is to
identify structurally equivalent clusters as Hamiltonians (re-
sulting from the restriction of H) on structurally equivalent
clusters are the same up to a renumbering of the sites [15].
Accordingly, one can identify equivalent matrix elements of
the respective effective Hamiltonians and the sum in Eq. (A2)
can be rewritten as [15,16]

K (C) =
∑
g⊆C

N (g,C)κ (g), (A4)

where g is an equivalence class of clusters and the embedding
factor N (g,C) is the number of subclusters in the lattice which
belong to this class. The sum runs over all classes of connected
subclusters of C. The clusters are assigned to classes based on
their structure and the product states considered in the matrix

element K (C), such that the contributions of the clusters in a
class g correspond to equivalent matrix elements

κ (c) = κ (g) ∀ c ∈ g. (A5)

As κ (g) is the same for any cluster in g, it is sufficient to
evaluate it once on a representative cluster for any relevant
class g. If N (g,C) is extensively large it is normalized to some
suitable unit of the lattice [15,16]. In this work we calculated
the ground-state energy per bond, normalizing N (g,C) to the
number of bonds. Consequently, also the reduced contribution
can be written in terms of these classes [15,16]:

κ (g) = K (g) −
∑
g′⊂g

N (g′, g)κ (g′), (A6)

where N (g′, g) is the number of subclusters of a cluster in g
which belong to the class g′.

Typically, the clusters c are represented by graphs, where
vertices represent the sites and edges represent the bonds.
Here, we have bonds which contain more than two sites,
so one can analogously represent clusters by hypergraphs.
Essentially, we use the König representation [26,27] of the
corresponding hypergraphs to represent the clusters by bi-
partite graphs [17]. Two clusters represented by isomorphic
graphs are structurally equivalent or isomorphic. Next, the
product states involved in a matrix element can be incor-
porated using additional vertex colors within the graphs.
The equivalence of clusters then corresponds to the (color-
preserving) isomorphism of the respective graphs with the
additional vertex colors [17].

Typically, K (g) is evaluated perturbatively on a representa-
tive cluster of the class g [15,16]. In a perturbative calculation
it is possible to replace the explicit subtraction of reduced
contributions from proper subclusters in order to obtain κ (g)
by a bookkeeping technique [28]. This technique ensures that
only the perturbative processes which act on all bonds of the
representative cluster are taken into account for κ (g). This
also implies that a cluster with k bonds can only contribute
in perturbation order k or higher. Accordingly, for an order-k
perturbative expansion, it suffices to consider clusters up to k
bonds to obtain the series expansion for K (C).

For the calculation of the ground-state energy we either
determine the expectation value of the effective Hamiltonian
with respect to the unperturbed ground state or we apply
matrix perturbation theory. In this case it is obvious that the
ground-state energies on structurally equivalent clusters agree
[15]. In order to derive hopping elements ti, j we subtract the
ground-state energy E0 from the effective Hamiltonian Heff as
suggested by Gelfand [23] and calculate the matrix elements
with respect to the product states, where one excitation is at
site i or j, respectively,

ti, j = 〈 j|Heff − E0|i〉. (A7)

Importantly, to evaluate ti, j on a cluster c one subtracts the
ground-state energy E0(c) of the cluster c from the effective
Hamiltonian on c. As a consequence, the reduced contribution
of any cluster which does not contain the sites i and j vanishes.
As the Hamiltonian on two structurally equivalent clusters is
the same up to a renumbering of the sites, their contributions
agree if they correspond to equivalent matrix elements of
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Heff − E0 on the clusters. This also generalizes to hopping
elements of n particles

ti1,...,in, j1,..., jn = 〈 j1, . . . , jn|Heff − E0|i1, . . . , in〉. (A8)

Here, the clusters with nonvanishing reduced contribution
need to contain at least one of the sites which are occu-
pied in the initial state and all sites which change their
local state [17]. From these hopping elements one can obtain
the irreducible hopping elements by appropriately subtract-
ing the lower particle hopping elements [20]. While for the
ground-state energy only linked clusters have a nonvanish-
ing reduced contribution, this does not necessarily hold in
the case of hopping elements. Indeed, some methods assign
nonvanishing reduced contributions to disconnected clus-
ters [16]. For a cluster-additive effective Hamiltonian the
reduced contributions of disconnected clusters vanish [29].
The effective Hamiltonian obtained by the pCUT method
[19,20] is guaranteed to be cluster additive as long as the
unperturbed Hamiltonian is cluster additive [30,31]. Alterna-
tively, one can deduce that the contributions of the effective
Hamiltonian from pCUT vanish on disconnected clusters by
showing that it can be written as a perturbative commutator
expansion [32].

For the ground-state energy we also evaluate the reduced
contributions of the clusters using exact diagonalization and
subtracting the reduced contributions of proper subclusters.
Evaluating the contributions of the clusters with exact
diagonalization within a linked-cluster expansion has been
dubbed exact linked cluster expansion (ELCE) [33,34] or

numerical linked cluster expansion (NLCE) [18]. For a short
introduction to NLCE see also Ref. [35]. These expansions are
typically done for extensive quantities like the ground-state
energy. However, it is possible to derive nonperturbative
results for higher particle sectors as well [29,34,36].

In our case we obtain the ground-state energy of a cluster
from the matrix representing HqNM on the given cluster in the
sector of the fully polarized state corresponding to the ground
state at J = 0. The basis for this matrix can be obtained by
repeatedly acting with the coupling term on this state until no
new basis states are generated. Then, we calculate the matrix
elements in this basis and determine the lowest eigenvalue of
the resulting matrix with the Lanczos method [37–39].

In a perturbative calculation one takes into account any
class of connected subclusters which can possibly contribute
in the desired perturbation order to obtain the perturbative
series in the thermodynamic limit. In NLCE the truncation is
done in the choice and size of the clusters and hence is nonper-
turbative [34]. Physically, the size of the considered clusters
determines the spatial extent of quantum fluctuations treated
within an NLCE calculation. Actually, schemes based on dif-
ferent choices of clusters can lead to improved results [40–42].

In summary, in this work we apply the procedure described
in Ref. [17] in order to calculate the matrix elements of the
effective Hamiltonian. First, we generate all relevant subclus-
ters for a given hopping element or the ground-state energy.
During this procedure we sort the subclusters into appropriate
equivalence classes and keep track of the embedding factors.
Afterwards, we evaluate the reduced contributions of these
classes. Finally, we sum up the properly weighed contribu-
tions in order to obtain the desired result.

APPENDIX B: BARE SERIES OF GROUND-STATE ENERGY AND EXCITATION GAPS

The series for the ground-state energy per site in units of � = 1
2 is calculated up to order 26 and reads

E0

N
= −1

2
− 1

3
J2 − 2

27
J4 − 694

8505
J6 − 87 917

714 420
J8 − 1 163 156 201

5 063 451 750
J10 − 37 554 176 289 949

76 559 390 460 000
J12

− 11 683 996 058 218 949 671

10 345 853 229 812 100 000
J14 − 61 969 629 185 820 865 703 757 811

22 369 390 019 370 530 136 000 000
J16

− 366 126 366 318 767 391 658 088 809 316 147

51 389 087 844 549 822 028 782 120 000 000
J18

− 7 180 291 157 644 353 011 347 796 827 422 626 494 913

377 778 862 591 504 266 872 355 265 169 280 000 000
J20

− 344 371 159 846 708 207 005 245 975 888 183 886 739 063 098 907

6 595 808 140 242 338 440 210 408 155 617 664 341 760 000 000
J22

− 8 458 783 982 889 010 392 413 115 078 905 896 242 564 195 637 263 595 308 619

57 579 564 833 844 486 970 612 044 494 666 792 375 213 448 960 000 000 000
J24

− 6 094 307 456 345 282 285 613 515 218 215 816 652 048 109 273 373 916 121 215 182 638 251

14 451 289 168 650 119 698 445 377 495 743 278 705 265 545 839 970 529 600 000 000 000
J26. (B1)

Since the 1QP configuration is completely immobile, the block in the effective Hamiltonian is one-dimensional and the series
obtained up to order 14 in units of � = 1

2 reads

�1 = 1 − 2J2 + 10

9
J4 − 398

45
J6 + 21 286 241

893 025
J8 − 34 989 373 088

281 302 875
J10

+ 2 125 889 739 834 149

4 253 299 470 000
J12 − 683 607 613 238 271 693 151

265 278 287 943 900 000
J14. (B2)
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The mobility of all 2QP configurations is highly restricted and the corresponding block in the effective Hamiltonian is of finite
size. In order 12 perturbation theory, the block is of size 15 × 15, therefore yielding 15 energy eigenvalues. The 2QP energy
eigenvalue decreasing strongest in leading order and therefore considered as the 2QP gap reads, in units of � = 1

2 ,

�2 = 2 − 8J2 + 1336

27
J4 − 6 264 848

8505
J6 + 427 973 156

33 075
J8 − 2 595 333 024 547 577

10 126 903 500
J10 + 1 543 912 949 140 866 037

283 553 298 000
J12.

(B3)

The series for the first eigenvalue of the 3QP sector in units of � = 1
2 for k = 0 up to order 12 reads

�
(1)
3 = 3 − 2

3
(10 +

√
82)J2 + (109 054 + 12 907

√
82)

27(82 + √
82)

J4 − 4(1 436 807 939 437 + 154 950 111 676
√

82)

8505(82 + √
82)3

J6

+ (346 835 035 620 091 968 700 + 38 457 664 526 290 637 983
√

82)

2 679 075(82 + √
82)5

J8

− (143 882 555 062 725 026 268 280 765 837 + 15 878 921 718 665 450 600 555 048 341
√

82)

5 063 451 750(82 + √
82)7

J10

+
(

63 875 776 145 970 660 095 856 118 712 991 441 467

9 569 923 807 500(82 + √
82)9

+ 7 054 556 156 002 646 215 050 241 827 786 693 722
√

82

9 569 923 807 500(82 + √
82)9

)
J12. (B4)

The series for the second eigenvalue of the 3QP sector in units of � = 1
2 for k = 0 up to order 12 reads

�
(2)
3 = 3 − 6J2 + 10

3
J4 − 398

15
J6 + 20 510 669

297 675
J8 − 170 229 112 967

337 563 450
J10 + 117 051 872 376 412 993

22 967 817 138 000
J12. (B5)

The series for the third eigenvalue of the 3QP sector in units of � = 1
2 for k = 0 up to order 12 reads

�
(3)
3 = 3 + 2

3
(−10 +

√
82)J2 + (−109 054 + 12 907

√
82)

27(−82 + √
82)

J4 − 4(−1 436 807 939 437 + 154 950 111 676
√

82)

8505(−82 + √
82)3

J6

+ (−346 835 035 620 091 968 700 + 38 457 664 526 290 637 983
√

82)

2 679 075(−82 + √
82)5

J8

− (−143 882 555 062 725 026 268 280 765 837 + 15 878 921 718 665 450 600 555 048 341
√

82)

5 063 451 750(−82 + √
82)7

J10

+
(−63 875 776 145 970 660 095 856 118 712 991 441 467

9 569 923 807 500(−82 + √
82)9

+ 7 054 556 156 002 646 215 050 241 827 786 693 722
√

82

9 569 923 807 500(−82 + √
82)9

)
J12. (B6)

APPENDIX C: DLOG PADÉ EXTRAPOLATIONS

To extract the quantum-critical point including critical ex-
ponents from the pCUT method well beyond the radius of
convergence of the pure high-order series, we use Dlog Padé
extrapolations. For a detailed description of Dlog Padés and
its application to critical phenomena we refer to Refs. [43,44].
The Padé extrapolant of a physical quantity κ given as a
perturbative series is defined as

P[L, M]κ = PL(λ)

QM (λ)
= p0 + p1λ + · · · + pLλL

1 + q1λ + · · · + qMλM
(C1)

with pi, qi ∈ R and the degrees L, M of PL(x) and QM (x) with
r ≡ L + M, i.e., the Taylor expansion of Eq. (C1) about λ = 0

up to order r must recover the quantity κ up to the same order.
For Dlog Padé extrapolants we introduce

D(λ) = d

dλ
ln(κ ) ≡ P[L, M]D, (C2)

the Padé extrapolant of the logarithmic derivative D with
r − 1 = L + M. Thus, the Dlog Padé extrapolant of κ is
given by

dP[L, M]κ = exp

(∫ λ

0
P[L, M]D dλ′

)
. (C3)

Given a dominant power-law behavior κ ∼ |λ − λc|−θ , an
estimate for the critical point λc can be determined by exclud-
ing spurious extrapolants and analyzing the physical pole of
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P[L, M]D. If λc is known, we can define biased Dlog Padés
by the Padé extrapolant

θ∗ = (λc − λ)
d

dλ
ln(κ ) ≡ P[L, M]θ∗ . (C4)

In the unbiased as well as the biased case we can extract
estimates for the critical exponent θ by calculating the residua

θunbiased = Res P[L, M]D|λ=λc ,

θbiased = Res P[L, M]θ∗ |λ=λc . (C5)
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