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High-fidelity robust qubit control by phase-modulated pulses
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We present a set of robust and high-fidelity pulses that realize paradigmatic operations such as the transfer
of the ground state population into the excited state and arbitrary X/Y rotations on the Bloch sphere. These
pulses are based on the phase modulation of the control field. We provide an experimental proof-of-concept of
these operations by using a transmon qubit, demonstrating resilience against deviations in the drive amplitude of
more than ≈20%, and/or detuning from the qubit transition frequency in the order of 10 MHz. This modulation
scheme is straightforward to implement in practice and can be deployed to any other qubit-based experimental
platform.
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I. INTRODUCTION

Quantum control—a toolbox of techniques enabling high-
fidelity dynamical operations—is an essential tool in modern
quantum technologies. Perhaps the first example of quantum
control is the 1932 Rosen-Zener sech-function design of the
shape of the rate of rotation of the magnetic field in a double
Stern-Gerlach experiment [1]. In contrast to designing the
shape of the pulse envelope, changing its phase or frequency
is a less explored avenue. While simple forms of modulation
(linear, sinusoidal, square) have been studied experimentally
[2], this has confined the use of this concept to repetitive pas-
sages, which have the benefit that interference effects can been
observed in a straightforward way. However, recent advances
in modern electronics have enabled the precise manipulation
of the pulse phases in the time domain. This allows the for-
mulation of quantum control schemes where the phase is an
externally controlled parameter.

An outstanding problem that can be addressed by these
methods is the realization of high-fidelity gates and other op-
erations in superconducting qubits, one of the most promising
platforms for quantum computing and simulation. Compared
to other well-established experimental platforms, supercon-
ducting qubits present an additional specific set of challenges.
Since these are artificial atoms comprising several materi-
als and complex geometries, it is in general not possible to
provide a sufficiently accurate and complete mathematical
model describing the system. Losses and unaccounted-for
interactions inevitably lead to errors when using simplified
models. To combat this several concepts have been pro-
posed and applied recently: for example, error mitigation
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(extrapolation to zero-noise limit or probabilistic error can-
cellation) [3–5], Pauli and Clifford twirling [6,7], derivative
removal by adiabatic gate [8–10], dynamical decoupling
[11–13], counterdiabatic methods [14–18], composite pulses
[19–22], and more recently reinforcement learning [23–31].
There is however no universal solution, as each of these meth-
ods comes with its own disadvantages. For example, machine-
learning techniques typically require discretized forms of
multiple control parameters, which complicates their synthe-
sis by standard control systems. While this problem may be
alleviated in the future by the use of cryogenic control sys-
tems, for example Josephson arbitrary wave-form synthesiz-
ers [32], such pulses may still have a power spectrum leading
to spurious excitations in a larger, frequency-crowded device.
Composite pulses can, in general, be effective for mitigating
errors in the Rabi frequency and even protect against against
frequency shifts [33] but the concatenated series of pulses may
take a long time, allowing decoherence to take its toll.

Also, techniques that require a very precise shape opti-
mization of pulses may not be so effective, since microwave
pulses will be inevitably distorted when transmitted to the
qubit, and finding the exact transfer function requires further
extensive calibrations [34–36]. Another solution could be to
use a closed-loop approach based on randomized benchmark-
ing of a subset of gates [37], a method that can be extended
to include leakage control with tens of parameters to opti-
mize [38]. However, as the shape of the pulse becomes more
complex, a large number of parameters are needed, and the op-
timization time may increase significantly [38].An alternative
solution is to use geometrical optimization concepts, which
can result in rather low pulse areas and slow modulations of
parameters [39–41], at the expense of a more complicated
implementation.

Here we show that by chirping the frequency of the pulses
according to relatively simple and smooth functions, we can
achieve gates that are robust against both amplitude and fre-
quency errors. We restrict the power of the microwave pulse in
order to avoid exciting other modes due to frequency crowd-
ing, also to limit the effect of nonlinearities in microwave
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components (especially mixers at room temperature) and in
the on-chip circuit elements (other nearby qubits, modes, etc.)
that may lead to frequency shifts that are not accounted for
in calibration. Combined with the requirement of minimizing
the time of the operation, this inevitably leads to pulses that
are close to rectangular.

We demonstrate this by implementing two paradigmatic
operations: transfer of population from one level to another
and arbitrary rotations on the Bloch sphere. In both cases, the
experimental data are supported by simple theoretical models
and by numerical simulations that include only parameters
extracted from independent characterization measurements.

These control techniques are validated in a setup com-
prising a transmon qubit, although the methods developed
here are, in principle, hardware-agnostic. Besides robustness
and high-fidelity, which will be substantiated further, a great
advantage of our scheme is simplicity: we work with a small
number of optimization parameters: the rate of the frequency
variation for the first task and a few Fourier coefficients for
the second one, which makes the optimization very efficient
numerically.

Our results on population transfer and rotation gates
have immediate applications in a wide array of quantum-
information tasks realized with superconducting circuits or on
other quantum platforms.

First, population transfer is an important operation in
quantum information processing, as it appears in various
contexts—in quantum communication [42], thermometry pro-
tocols [43], qubit calibration, quantum engines and batteries
[44], and on-demand single-photon sources [45,46]. For
example, calibration of a large number of qubits in a supercon-
ducting quantum processor is a time-costly process, and it has
to be done frequently due to uncontrolled frequency drifts of
the qubits as well as amplitude and phase drifts of the control
electronics. Moreover, in many-qubit systems parasitic ZZ
couplings between nearby qubits may lead to fluctuations of
qubit transition frequencies. Therefore, having resilience to
small drifts in the system and/or in the control parameters
is highly beneficial for suppressing the errors due to spectator
qubits.

Second, the single-qubit gates with phase-modulated
pulses have straightforward usage in gate based quantum
computing, where the robustness can mitigate fluctuations
of control parameters, e.g. over long time scales. Previous
works on gates induced by Landau-Zener transitions have
employed flux modulation of small-gap composite qubits [47]
and modulation by electric pulses in double quantum dots
[48,49]. These methods are broadband, therefore sclalability
is challenging. In contrast, our control method has a modu-
lation bandwidth of only a few MHz, making it suitable for
operation in the spectrally crowded environments expected for
quantum processors.

Other applications could be in NMR or systems with global
control [50], where the same drive pulse acts on more than one
site: the amplitude robustness would ensure a homogeneous
drive even with variations in the drive-atom coupling strength.
Finally, these tecniques can be generalized to two-qubit popu-
lation transfer and gates; of particular relevance is the widely
used cross-resonant gate [51–54] for fixed-frequency trans-
mons, where the coupling is realized by near-resonant driving

fields. By applying a similar methodology as the one demon-
strated here, the phases of these fields could be modulated in
order to achieve the desired two-qubit operation.

The paper is organized as follows. In Sec. II, we introduce
the key concepts underlining the experiments. The transfer is
addressed in Sec. III, while a general rotation is designed and
implemented in Sec. IV. We recapitulate the main findings of
the paper in Sec. V.

II. METHODS OF PHASE-MODULATION CONTROL

The Hamiltonian of a qubit with energy level separation
h̄ω01, subjected to a driving field with (time-dependent) an-
gular frequency ωd (t ) and Rabi amplitude �(t ) reads H =
(h̄ω01/2)σz + h̄�(t ) cos(ωd (t )t )σx. We perform a frame-
rotation F = exp(−iωd (t )tσz/2) to a frame corotating with
the drive around the z axis, transforming the Hamiltonian as
H → FHF † − ih̄F (∂F †/∂t ). With the subsequent use of the
rotating wave approximation, we obtain

H = h̄

2

(
−�(t ) �(t )

�(t ) �(t )

)
, (1)

where �(t ) is the instantaneous detuning between the qubit
frequency ω01 and the drive frequency �(t ) = ωd (t ) − ω01 +
t∂ωd (t )/∂t . Here we take the Rabi coupling to be real, without
loss of generality, as any phase modulation can be rewritten
in terms of a frequency modulation though the choice of the
rotating frame. The control parameters of the drive are now the
time-dependent Rabi frequency �(t ) and the detuning �(t ).

The qubit used in our experiments is a transmon device,
which can be regarded as an anharmonic oscillator with tran-
sitions ω01, ω12, etc. The anhamonicity is provided by the
charging energy of the shunting capacitor: h̄ω01 − h̄ω12 = EC,
EC/h̄ ≈ 2π × 340 MHz. The first two levels, with transition
frequency ω01 = 2π × 7.27 GHz, are used as a qubit. The
measured relaxation and decoherence times for this sample
were obtained as T1 ≈ 7 µs, T Ramsey

2 ≈ 5 µs. The sample was
thermally anchored to the mixing chamber of a dilution re-
frigerator with 10 mK base temperature and connected to
room-temperature microwave electronics using ≈70 dB of
attenuation on the control and ≈90 dB of attenuation on the
readout lines.

Our control scheme requires modulating the frequency
of the pulses, which can be done in a straightforward way
by mixing a local oscilator (LO) tone with a modulated
intermediate-frequency (IF) signal generated by an arbitrary
waveform generator (AWG). We use a typical IQ mixer setup
employing a Marki IQ-4509 mixer, with the intermediate fre-
quency signals being generated by a Tektronix 5204 AWG
(sampling rate 5 GS/s, bandwidth ≈2 GHz) or by a Quantum
Machines OPX+ system (sampling rate 1 GS/s, bandwidth
≈350 MHz). With this setup it is straightforward to generate
a signal with a time-dependent amplitude �(t ) and frequency
ωd (t ). Starting with a local oscillator LO(t ) = exp(iωLOt ) and
setting I (t ) + iQ(t ) ∝ exp(iωIFt ), one ends up with a signal
RF(t ) = exp i[ωLO + ωIF )t]. Therefore, if the intermediate-
frequency signal is I (t ) + iQ(t ) = �(t ) exp[i(ωd (t ) − ωLO)t]
a signal RF(t ) = �(t ) exp[iωd (t )t] will be generated with the
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desired envelope �(t ). In this way, any �(t ) can be generated
by an appropriate choice of ωd (t ).

With some desired operation Utarget in mind, the pulse
parameters were optimized such that the cost func-
tion ‖Urealized − Utarget‖Fb is minimized, where ‖M‖Fb =√∑2

i, j=1 |mi j |2 =
√

Tr(M†M ) is the Frobenius norm. While
the full form is necessary for an arbitrary operation, for a
population transfer it is sufficient to have the matrix element
U10 = 〈1|Urealized|0〉 satisfy |U10| = 1, which is experimen-
tally directly accessible by applying the pulse to a qubit
initialized in the ground state and measuring the population
of the excited one.

The readout is perfomed dispersively, using a highly de-
tuned superconducting resonator coupled to the qubit,in the
averaged regime. After postprocessing of the acquired data,
we obtain a readout noise of σ (P1) ≈ 0.3%. Another source of
errors is the finite duration of the calibration pulses, which in-
evitably incorporates the effect of decoherence in the results.

In order to fully characterize the quantum gates, we
perform quantum process tomography (QPT) following the
standard procedure [55]: the qubit is initialized in the states
|0〉, |1〉, (|0〉 + |1〉)/

√
2, and(|0〉 + i|1〉)/

√
2, after which it

evolves under the driving of the microwave pulse which is
studied. Quantum state tomography of the respective final
states is then performed in each case using three opera-
tions: identity (I), (π/2)y and (π/2)x rotations, giving rise
to the expectation values of the Pauli operators σz, σx, and
σy respectively. These experimental results are then used to
reconstruct the χexp process matrix [55], subject to positivity
constraints for both the experimental density matrices as well
as the reconstructed process matrix. Finally, the fidelity of the
quantum gate is characterized by F (χexp, χth ) = Tr(χexp.χth ),
which corresponds to the average gate fidelity [56], where χth

is the theoretically expected process matrix.
Using this approach we realized two fundamental oper-

ations: population transfer and arbitrary rotations. First, we
explore control schemes leading to a population transfer of
the qubit from the ground to the excited state. Second, we
demonstrate how a similar modulation scheme can be used
to implement amplitude-robust arbitrary X/Y rotations on the
Bloch sphere.

III. ROBUST POPULATION TRANSFER

The standard way of realizing population transfer is by
a simple Rabi π pulse; however, Rabi pulses are sensi-
tive to errors both in amplitude and frequency. To find
a robust pulse, we start our construction with the ob-
servation that ideal adiabatic processes are immune to
variations in the path of the control parameters. Indeed,
the instantaneous eigenenergies of the Hamiltonian (1) are
E±(t ) = ±h̄

√
�(t )2 + �(t )2/2, corresponding to the eigen-

states |E−(t )〉 = cos[	(t )]|0〉 − sin[	(t )]|1〉 and |E+(t )〉 =
| sin[	(t )]|0〉 + cos[	(t )]|1〉, where the mixing angle 	(t ) is
defined as tan[	(t )] = (�(t ) +

√
�(t )2 + �(t )2)/�(t ) and

|0〉 = (0, 1)T and |1〉 = (1, 0)T are the ground and the ex-
cited states. We search for a process of duration T , starting
at −T/2 and ending at T/2. Suppose that at t = ±T/2 we
have |�(±T/2) 	 �(±T/2) and also that �(t ) changes sign

(negative at −T/2 and positive at T/2). Then, at the beginning
of the process the mixing angle is zero 	(−T/2) = 0, and
the lower instantaneous eigenstate |E−〉 of the Hamiltonian
(1) coincides with the ground state |0〉 of the qubit. At the end
of the process, the mixing angle is 	(T/2) = π/2 and the
lower eigenstate corresponds, up to a sign, to the excited state
|1〉 of the qubit. For an appropriate choice of parameters, the
qubit will adiabatically follow the lower eigenstate, resulting
in population transfer.

In practice however, the transfer time T is inevitably
finite—which strictly speaking breaks the adiabaticity—and,
moreover, a specific choice of trajectory in the parameter
space has to be made. While more involved modulation
schemes (see, e.g., Ref. [57]) exist, the simplest such choice
is a linear chirp of frequency, which requires only one control
parameter (the speed of the chirp). This has experimental ad-
vantages (easiness of programming the waveform) as well as
theoretical ones—since it implements the celebrated Landau-
Zener-Stückelberg-Majorana (LZSM) model, which can be
solved analytically [58]. We note that early theoretical works
[59] proposed to use ac-Stark shifts to modulate the phase
appropriately. In the present experiment, we realize this task
by implementing the phase modulation directly, leveraging
on the mixing methods described in the previous section. In
contrast to the present work, the observation of LZSM in
circuit QED typically involves direct modulation of the qubit
frequency using a strong rf field [60–62].

We parametrize the detuning as

�(t ) = �max
2t

T
, (2)

where �max is the modulation depth and T is the pulse dura-
tion, resulting from the drive frequency modulation ωd (t ) =
ω01 + �maxt/T + δ and t ∈ [−T/2, T/2]. Note that the addi-
tional factor of 2 appearing in the modulation of � in Eq. (2)
is a result of the definition of the instantaneous detuning. δ

is the detuning between the qubit transition frequency ω01

and the central/average pulse frequency 〈ωd〉T , which reduces
to the frequency error in the nonmodulated case. If δ = 0, the
crossover happens at t = 0, when the pulse is resonant with
the qubit, with a gap of �(t = 0) in the spectrum. For such a
parametrization, it is natural to measure the Rabi frequency �

and the modulation depth �max in units of �2π = 2π/T , the
Rabi frequency needed for a 2π rotation without detuning, as
the frequency scale is set by T −1.

We start the design of the phase-modulated pulse by study-
ing first a rectangular-shape pulse, see Appendix A. This
already results in robustness with respect to the pulse am-
plitude. To achieve robustness also with respect to detuning,
we show that it is sufficient to “soften” the edges of the
pulse by using a super-Gaussian shape. This shape reduces
the nonadiabatic excitations and, simultaneously, allows the
pulse to still be confined in the time-domain (thus avoiding
the effect of decoherence). The concept is similar to the rapid
adiabatic passage process [63–65], where the shape of the
pulse envelope is identified by conditions that achieve the
suppression of nonadiabatic excitations. For example, a sim-
ple idea is to just eliminate the transition points by imposing
that the gap between the instantaneous eigenstates remains
constant [66,67].
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FIG. 1. The experimentally observed population of |1〉, P1, after
applying the (�, �max) pulse with a super-Gaussian envelope (col-
ored plot), along with the theoretical prediction (contour lines).

Here we adopt a similar strategy, identifying the transi-
tions at the beginning and end of the pulse, and suppressing
them by a suitable choice smoothing the pulse edges that
keeps the transition rate below a certain threshold. To achieve
this, we opted for the super-Gaussian envelope, given by
�(t ) = �0 exp[−β(2t/T )4], with β chosen such that �(t =
±T/2) = 0.01�0. This choice meets the condition of an ap-
proximately vanishing amplitude at t = ±T/2, and has an
under-the-curve area of ≈60% compared to a rectangular
pulse of the same duration, resulting in only a moderate
increase of the peak amplitude �0 needed for the same ro-
tation. Moreover, it has been shown that Gaussian shapes are
effective in reducing the leakage outside the computational
space, even leading to less errors than some composite pulses
[68]. For such an envelope, we take the pulse amplitude as its
average value, such that we get a 2π rotation for � = �2π and
�max = 0.

The (�,�max) parameter space was explored numerically,
as well as experimentally. The pulse duration was T = 200 ns,
corresponding to a 2π Rabi frequency of �2π = 2π × 5MHz.
Figure 1 shows the experimentally measured population of the
first excited state |1〉 after applying the pulse to a qubit initial-
ized in the ground state |0〉: a continuous plateaulike region
with P1 ≈ 1 appears above �max � 4�2π and � � 1.5�2π .

Figure 2 shows experimental and theoretical evidence that
such a pulse (�max = 10.8�2π ) provides simultaneous robust-
ness in detuning (δ = ω01 − 〈ωd〉T ) and in amplitude with
a wide margin for error: based on the theory the excited
state is prepared with a fidelity P1 > 99.9% when T |δ| � 3
and � � 2.45�2π , which is reproduced experimentally, up to
the effects of decoherence and relaxation. For comparison,
the same holds true for a nonmodulated π pulse for devia-
tions of less than only ≈0.02�2π , in either the amplitude or
detuning.

In this regime, it is easy to develop an intuitive under-
standing of these effects: a small amplitude variation merely
changes the on-resonance splitting of the instantaneous
eigenstates, with no effect on the initial and final mixing
angles. As �max increases, so does the rate of change of the

FIG. 2. (Top) The amplitude robustness of the super-Gaussian
pulse (red dots), with �max = 10.8�2π , compared to the usual non-
modulated Rabi pulse (blue dots). (Bottom) The detuning robustness
of the super-Gaussian pulse (red dots) with �max = 10.8�2π and
� = 2.5�2π . The gray circles and stars correspond to a Rabi π

(� = �2π/2, �max = 0) and a 3π (� = 3�2π/2, �max = 0) pulse,
respectively. The dots are experimental data, and the solid gray
lines on both panels show the theoretical prediction with no fitting
parameters.

eigenenergies; then a larger splitting � is necessary to avoid
the Landau-Zener crossing, which gives rise to the triangular
region in the upper left corner of Fig. 1, where the population
is not transferred to the excited state. Likewise, a detuning
which is small in comparison with �max (which can be made
almost arbitrarily large) only shifts the moment at which the
pulse is resonant with the qubit. Provided that it happens close
to t = 0, where �(t ) ≈ �0, the splitting of the spectrum will
be sufficient and will lead to population transfer. Therefore the
detuning robustness grows with �max and is approximately
�-independent (provided that it is sufficiently large).

The approximate adiabaticity of this protocol is demon-
strated in Fig. 3: the left panel shows the qubit trajectory (i.e.,
the components of the density matrix as a function of time)
in the frame rotating at its frequency (in which one typically
operates) on the Bloch sphere, while the right panel shows
the trajectory in the rotating frame as defined above. The
difference between the two frames is just a rotation around
the z axis by the angle

∫ t
−T/2 �(τ ) dτ , and as �(t ) is odd with

respect to t they coincide at t = ±T/2. The realized trajectory
is close to the adiabatic one, the most prominent difference
being a small nonzero y component of the density matrix.

More detailed numerical analyses of the robustness and
the adiabaticity of the protocol are given in Appendixes B
and C, respectively. Appendix B also discusses the effects
of the presence of the second excited state: this places a
practical limit on the pulse duration T and �max. For realistic
parameters, as the ones presented above, the cross-coupling
effects are negligible. This is demonstrated in Fig. 4: even with
the large bandwidth of the pulse it is possible to selectively
drive the transition between the ground and the first excited
state, provided that the modulation depth �max is smaller
than the separation between the resonant frequency and
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FIG. 3. (Left) Measured trajectory (dots) in the frame rotating
at the qubit frequency, along with a theoretical model (solid line).
(Right) Trajectory in the frame corotating with the pulse. The theory
is given by the solid colored lines, the adiabatic trajectory by the solid
gray lines, while the experimental data are shown as dots. The pulse
parameters were � = 8�2π , �max = 40�2π and the pulse duration
was T = 400 ns.

the two-photon transition frequency ω02 = (ω01 + ω12)/2 ≈
ω01 − EC/2h̄.

IV. ARBITRARY X/Y BLOCH SPHERE ROTATIONS

While the previous pulses enable robust population trans-
fer between the ground and the excited state, they are not
general π rotations: nothing guarantees that the resulting
unitary transformation U has the proper phase factors—the
state transfer experiment only demonstrates that |U10|2 ≈ 1.
These pulses can be further characterized by performing
quantum process tomography: for a unitary propagator U =
cI I − i

∑
j={X,Y,Z} c jσ j (ci ∈ R, with

∑
j={I,X,Y,Z} c2

j = 1), the

FIG. 4. Theoretically predicted populations of the ground (blue),
first (red), and second (yellow) excited states as a function of de-
tuning with respect to the qubit frequency (δ = 0). The circles are
experimental data for � = 2.5�2π and �max = 10.8�2π and the
crosses for � = 4.5�2π and �max = 21.6�2π . The pulse duration
was T = 200 ns. The vertical dashed line marks the 2πδ = −EC/2h̄
detuning from the qubit frequency.

FIG. 5. The diagonal elements of the process matrix χ for the
super-Gaussian population transfer pulse (top) and the robust π gate
(bottom) as a function of the pulse amplitude �. The solid lines
show the theoretical prediction while the dots correspond to the
experimental χ reconstruction.

elements of the standard process matrix χ correspond to χii =
|ci|2. For a π rotation, one has cI = 0 (χI,I = 0), and if the ro-
tation is in the vertical plane (i.e., the pulse is resonant with the
transition) cZ = 0 (χZ,Z = 0), while |cX |2 + |cY |2 = 1. If the
π rotation is generated solely by σX then |cX |2 = χX,X = 1.

The top panel of Fig. 5 shows the results of QPT for the
population transfer pulse, as a function of the pulse amplitude
�. Above � ≈ 2�2π , as χI,I ≈ 0, it is indeed a π rotation.
However, the plane of rotation, while vertical (χZ,Z ≈ 0),
is amplitude dependent, as evidenced by the χX,X and χY,Y

components.
To obtain a robust set of arbitrary angle X/Y rotations

we undertake an alternative approach. A target unitary trans-
formation Utarget is specified, through the rotation angles θ

and φ on the Bloch sphere: Rn(θ ) ≡ Rφ (θ ) = exp(−iθσn/2),
where σn = cos(φ)σx + sin(φ)σy is the generator of rotation
around the axis n = (cos(φ), sin(φ)) laying in the xOy plane.
As the angle φ is experimentally controlled by the phase of the
drive pulse, and a precise calibration of the qubit frequency is
required to avoid unwanted z rotations, we focus on robustness
in the amplitude �.

We parametrize the pulses by their optimal amplitude �0

(with a rectangular envelope), as well as the time-dependent
frequency ωd (t ). With a pulse duration T , the drive frequency
is parametrized as ωd (t ) = ω01 + ∑

k∈N ak sin(2πkt/T ), in a
way similar to Ref. [69], or equivalently:

�(t ) =
∑
k∈N

ak

[
sin(kt ) + 2πkt

T
cos(kt )

]
, (3)

with the Fourier coefficients ak as free parameters. In contrast
to the population transfer, here the phase difference between
the qubit frame and the pulse frame needs to be considered,
as it effectively sets the phase of the rotation pulse. As was
shown in the previous section, by restricting the detuning to
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FIG. 6. The experimentally measured population P1 of the ex-
cited state (colored dots) after applying the pulses designed to obtain
P1 = {0.1, 0.2, . . . , 1}. The solid gray lines show the theoretical pre-
diction with no fitting parameters.

be an odd function of time this difference vanishes, hence no
cos(kt ) terms appear in the expansion. The evolution gener-
ated by Eq. (3) is fundamentally different from the linearly
chirped adiabatic trajectories studied in Sec. III; this is for-
mally shown in Appendix D 4.

The Fourier coefficients ak , as well as the optimal am-
plitude �0, were then numerically optimized using standard
gradient descent techniques, such that the resulting pulse is an
amplitude robust pulse, i.e., it minimizes the average Frobe-
nius norm 〈‖Utarget − U (�,�)‖Fb〉� for � close to �0.

A π pulse generated by σx was obtained in this man-
ner, and it was subsequently studied using quantum process
tomography. Diagonal terms of the process matrix, corre-
sponding to the decomposition of the propagator in the Pauli
basis, are shown in the lower panel of Fig. 5. The resulting
profiles clearly exhibit amplitude robustness, but unlike the
population-transfer pulse the plane of rotation is constant
(here Y Z plane) with χX,X ≈ 1 and χI,I , χY,Y , χZ,Z ≈ 0.

Pulse parameters that implement rotations for different θ ’s
can be found by this method: Fig. 6 shows a series of ampli-
tude robust pulses engineered such that P1 = [sin(θ/2)]2; for
a qubit initialized in |0〉, the values are linearly spaced from 1
to 0.1. For all angles, we observe a flat, plateaulike region,
for which the desired θ rotation is implemented. Figure 7
shows the corresponding pulses, as well as their parameters.
Moreover, the control parameter values are a smooth function
of θ , allowing for an arbitrary angle rotation by interpola-
tion of the parameter values (demonstrated in Appendix D 1).
Even though robustness against frequency errors was not an
optimization goal for these pulses they also offer better per-
formance in this regard compared to the usual Rabi pulses,
see Appendix D 2.

In order to study the efficacy and robustness against
amplitude variations, we perform QPT for amplitudes � ∈
[0, 5�2π ], and quantify the fidelity of these gates as
F (χexp, χth ) = Tr(χexp.χth ), where χth is the process matrix
for the desired operation and χexp the experimentally recon-
structed process matrix. Figure 8 shows the variation of the
fidelity versus the Rabi coupling for two arbitrarily chosen

FIG. 7. (Left) Detuning necessary to realize the pulses shown in
Fig. 6 (the traces are color-matched). (Right) Pulse parameters, as
defined in the text, as a function of the rotation angle.

(θ, φ) angles: the fidelity stays high (≈0.98) for a wide
enough range of amplitudes, while it is theoretically expected
to reach ≈1–10−6. This flat region of high fidelity corresponds
to the flat region of the populations, shown in Fig. 6. Exper-
imentally reconstructed process matrices at the center of the
plateau, also shown in Fig. 8, are in close agreement with the
theoretically expected ones.

Further, to characterize the overall performance of these
amplitude-robust pulses, we additionally performed random-
ized benchmarking. This also allows us to demonstrate that
the limiting factor for the experimentally observed fidelity is
related to the sample and not to the pulses themselves.

We consider the following sequence of operations
consisting of N + 2 gates given by S = Rπ/2+φR

(−π/2)RφR (θN) . . .RφR (θ1)Rπ/2+φR (π/2), where the axis of
rotation, set by φR ∈ [−π/2, π/2], is chosen randomly and
θi’s (i ∈ [1, N]) are randomly chosen angles of rotation. This
way the whole sequence is effectively a diagonal operator,
which corresponds to a rotation generated by σz. Therefore,
for a qubit initialized in the ground state, we should ideally
have |〈0|S|0〉|2 = 1.

However, in reality, decoherence and errors in the gate
implementation will lead to a finite population of the excited
state, which will tend to 0.5 with an increasing number of
operations (i.e., the qubit will end up in a maximally mixed
state). Therefore we take the population of the ground state as
a measure of the overall circuit fidelity.

The experimentally obtained curve, demonstrating expo-
nentially decaying fidelity with increasing number of gates,
is shown in panel (c) of Fig. 8: the loss per gate is found
to be 2.87%. For comparison we performed the same pro-
cedure with standard (nonmodulated) Rabi pulses, obtaining
the same ≈3% error per gate, set by the pulse duration (here
T = 120 ns) and the relatively short coherence times. Note
however that these Rabi pulses have to be very well calibrated
and they do not have the robustness property with respect to
amplitude [shown in panels (a) and (b) of Fig. 8] of phase-
modulated pulses.
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(a) (b) (c)

FIG. 8. (a) Real Re(χ) and imaginary Im(χ ) parts of the process matrix for a Rφ=0(θ = π/2) rotation are shown in a cityscale
representation, alongside with the variation of fidelity between the theoretical and experimental process matrices for different values of the
Rabi coupling (same horizontal scale as that of Fig. 6). (b) Real Re(χ) and imaginary Im(χ ) parts of the process matrix for an arbitrary
x, y-rotation Rn(θ ) of a single qubit, initialized in state |0〉 are shown in a cityscape representation. The angle of rotation, θ = 2π/3, is chosen
arbitrarily (and corresponds to P1 = 0.75) and the axis of rotation is taken at an angle φ = 3π/4 with respect to the x axis, where the generator
of the rotation is σn = cos(φ)σx + sin(φ)σy. The variation of fidelity between the theoretical and experimental process matrices is shown to
the right. In both cases, experimental process matrices correspond to the center of the respective flat regions. The experimentally obtained
elements of the process matrices are shown with colored opaque bars, while the black wire-frame bars correspond to the theoretically expected
process matrices. (c) Top: the pulse sequence for the randomized benchmarking, where φ′

R = φR + π/2. Bottom: experimental results from
randomized benchmarking of the amplitude-robust quantum gates (blue dots), compared to the normal Rabi pulses of the same duration (red
dots), along with an exponential decay fit (solid black line).

Therefore, even higher fidelities can be achieved in prin-
ciple with higher-quality samples, where the errors due to
instrumentation and calibration start to be comparable with
those resulting from decoherence.

V. DISCUSSION AND CONCLUSIONS

For the success of the quantum-computing research pro-
gramme with superconducting qubits, reducing the sensitivity
to imperfections and noise is of utmost importance. With
gradual improvements in the decoherence times over the last
years, errors in amplitude and frequency of the pulses used
to manipulate these systems become the dominant source of
fidelity loss.

Here we have proposed theoretically and realized experi-
mentally control protocols for robust qubit state manipulation
employing phase-modulated pulses. The control waveforms
used here are stable—meaning that errors in the operations do
not increase rapidly under small perturbations of the control
parameters. The number of optimization parameters is not
very large, which makes the numerical optimization less time
consuming.

In the first part, we demonstrated that a simple scheme,
based on a Landau-Zener-like process, can result in an op-
eration that realizes population transfer between two levels
with considerable robustness: any amplitude above a thresh-
old value leads to a complete population transfer, while the
frequency of the pulse can be detuned by several tens of
MHz from the transition frequency. In the second part, we
presented a set of pulses which realize amplitude-robust X/Y

rotations. The performance of these pulses was evaluated
using quantum process tomography as well as randomized
benchmarking, showing that they realize the desired oper-
ation with high fidelity. Furthermore, it should be possible
to generalize this approach for multistate (e.g., qutrit) and
multiqubit control. Consider for example two flux-tunable
qubits that can be brought in the avoided-crossover region
by rapid flux excursions. In this case, a Landau-Zener-like
process can be implemented between the states |10〉 and
|01〉, thus implementing an iSWAP gate. Another situation
is the cross-resonant gate, where two fixed-frequency qubits
are coupled with a constant coupling strength and they are
driven by microwave fields. In this case, in a rotating frame
similar to that used throughout this paper, the eigenener-
gies can be modulated by detunings and the qubits can
be brought into the crossover region where they exchange
energy.

In our measurements, we also found that the comparatively
small bandwidth of the arbitrary waveform generator did not
greatly affect the performance of the pulses, hence our control
scheme can be implemented with regular instruments avail-
able in most labs. However, with the relentless advances in
the quality of qubits, we expect that eventually the fidelities
and gate errors will be limited by technical specifications such
as the sampling rate and the characteristics of the mixers—
although these also improve continuously due to efforts in
microwave engineering. Finally, our methods can be readily
applied to any other experimental platform (trapped ions, NV
centers, etc.) where a two-level system is manipulated using
microwave or laser pulses.
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FIG. 9. Experimentally obtained population of |1〉, P1 by ap-
plying the (�,�max) pulse to the qubit initialized in |0〉. The red
and blue circles indicate an amplitude or detuning robust pulse
respectively.
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APPENDIX A: ROBUST POPULATION TRANSFER
WITH CONSTANT AMPLITUDE PULSES

Here we discuss the case of LZMS drive realized with
constant amplitude pulses. The scheme is principally the same
as the one in the main text, where the detuning �(t ) is a linear
function, but the pulses are rectangular.

Figure 9 shows the experimentally measured population
of the first excited state |1〉 after applying such a pulse to
a qubit initialized in the ground state |0〉. As opposed to
the plateau obtained with super-Gaussian pulses (see Fig. 1),
several nonconnected stripes with P1 = 1 are observed for
rectangular-envelope pulses, appearing at successively higher
Rabi and detuning frequencies. Still, we can identify two
points on the first lobe of this pattern, which realize pulses
robust to amplitude offsets (red circle in Fig. 9), and to de-
tuning offsets (blue circle in Fig. 9) respectively. While the
higher order lobes shown in Fig. 9 can in principle offer
greater amplitude/frequency robustness at the expense of a
larger Rabi and modulation frequencies, they are not of great
interest due to the higher levels of power required.

The top panel of Fig. 10 highlights the amplitude robust-
ness in comparison with a resonant Rabi pulse: theoretically

FIG. 10. (Top) The amplitude robust pulse (red circle on Fig. 9,
�max = 1.64�2π , � = �2π ) compared to the resonant Rabi drive.
(Bottom) The detuning robustness of the amplitude robust pulse and
the detuning robust one (blue circle in Fig. 9, �max = 1.54�2π � =
1.16�2π ). The gray circles and stars correspond to a Rabi π and a
3π pulses, respectively. The solid gray lines on both panels show
theoretical predictions with no fitting parameters.

P1 > 99.9% is achieved for the range of amplitudes � ∈
[0.82�2π , 1.12�2π ], which is reproduced experimentally, up
to the effects of decoherence and relaxation. At the same
time, this pulse is not robust against detuning from the qubit
frequency (δ = ω01 − ωd ), as shown in in the bottom panel of
Fig. 10. A pulse with slightly different parameters (blue circle
in Fig. 9), on the other hand, results in a population transfer
with P1 > 99.9% when it is detuned from the qubit frequency
by less than T δ � 0.5.

The performance of these rectangular pulses is quite sim-
ilar to those found in Refs. [30,31], as the detuning profile
obtained there is almost linear, with the added benefit of a
simpler implementation.

Next, we focus on deepening the theoretical understanding
of the pattern of fringes observed experimentally.

The Hamiltonian given by Eq. (1) with � time-independent
has two instantaneous eigenstates |E+(t )〉 and |E−(t )〉
with energies E±(t ) = ±h̄

√
�2 + �(t )2/2. The eigenstates

can be parametrized as |E−(t )〉 = (− sin(	), cos(	))T

and |E+(t )〉 = (cos(	), sin(	))T, where the mixing
angle is given by tan[	(t )] = (�(t ) +

√
�2 + �2(t ))/�.

For �(t ) = 2�maxt/T , we have �(±T/2) = ∓�max,
and as a consequence the mixing angles then satisfy
	(−T/2) + 	(T/2) = π/2.

If we denote the mixing angle at t = −T/2 by 	0, then
the eigenstates in the beginning and the end of the process
read |E−(−T/2)〉 = (− sin(	0), cos(	0))T, |E+(−T/2)〉 =
(cos(	0), sin(	0))T, |E−(T/2〉 = (− cos(	0), sin(	0))T,
and |E+(T/2)〉 = (sin(	0), cos(	0))T.
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FIG. 11. (Top left) Simulation of the population transfer as a
function of � and �max. Other panels: the time evolution, given by
the population of the excited state P1 (colored), coefficients |c±|2
(black, solid and dashed respectively) and their relative phase ϕ

(purple, right scale) for the three points highlighted in the top-left
panel (the colors of the dots and P1 traces are matched).

Any state |ψ〉 can be decomposed into |E±(t )〉 as
|ψ〉 = c−(t )|E−(t )〉 + c+(t )|E+(t )〉 and the time evolution
is given by the time dependence of c±(t ). For a qubit
initialized in the ground state |0〉 = (0, 1)T, we have
c−(−T/2) = cos(	0) and c+(−T/2) = sin(	0), and Rabi
flopping will occur. For an adiabatic trajectory, we have
|c±(t )| = const, with the state only acquiring a time-
dependent phase c±(t ) = c±(−T/2)e±iϕ(t )/2, where ϕ(t ) =∫ t
−T/2

√
�2 + �2(t ) dt . Only if ϕ(T/2) = (2k + 1)π (k ∈ Z)

will the qubit end up in the excited state |1〉 = (1, 0)T .
Even if the trajectory is not adiabatic the same holds

true: the final state |1〉 is obtained only when |c±(−T/2)| =
|c±(T/2))| with a relative phase factor of eiϕ = −1. This con-
dition leads to the interferencelike pattern seen in Fig. 9, re-
produced here numerically in Fig. 11. The same figure shows
several trajectories, for different parameter values, demon-
strating this interference effect: in all cases the trajectory is
approximately adiabatic (|c±(t )| ≈ const) and |c±(−T/2)| =
|c±(T/2)| is satisfied, only the accumulated phase ϕ is differ-
ent: ϕ(T/2) = 3π and ϕ(T/2) = 5π leads to P1(T/2) = 1,
while for ϕ(T/2) = 2π , we have P1(T/2) ≈ 0.5.

Unlike with a constant amplitude pulse, the super-Gaussian
envelope ensures that the mixing angle at t = ±T/2 is ≈0 and
≈ π/2, respectively. Therefore there will be no Rabi flopping,
and the relative phase of the two eigenstates does not matter,
leading to the plateau observed in Fig. 1 of the main text and
Fig. 12.

APPENDIX B: ROBUSTNESS OF LINEARLY MODULATED
SUPER-GAUSSIAN PULSES

In the rotating wave approximation, the Hamiltonian of a
three-level system subject to a drive can be written as

H = h̄

⎛
⎜⎝−�01(t ) �01(t )/2 0

�01(t )/2 0 �12(t )/2
0 �12(t )/2 �12(t )

⎞
⎟⎠, (B1)

FIG. 12. Contour plot of P1 as a function of (�,�max) with a
super-Gaussian envelope, simulated using Eq. (B1).

where �01 and �12 are the detunings between the drive fre-
quency and the f01 and f12 transition frequencies. �01 and �12

are the Rabi frequencies that drive the 01 and 12 transitions,
differing only by the ratio of the transition dipole moments
�12/�01 = g12/g01 = λ. We assume that the 02 dipole mo-
ment g02 = 0. The model presented here can reproduce the
two-photon (i.e., Raman) transitions as well, and should de-
scribe well all of the effects that one typically observes with
short duration pulses and/or high amplitudes.

For a transmon, we have EJ/EC → ∞ then λ → √
2 and

ω12 ≈ ω01 − EC/h̄. Here we assume λ = √
2, as it represents

the worst-case scenario for the effects of the cross-coupling.
We take the experimental value of EC/h̄ = 2π × 340 MHz.

A T = 60 ns pulse with a super-Gaussian envelope was
simulated using Eq. (B1). Figure 12 shows the population
of the first excited state P1 as a function of (�,�max), and
is comparable to Fig. 1 of the main text. While the general
structure is the same now it is clear that the protocol breaks
down for large values of �max, by driving either the 12 or 02
transitions. The model presented in the main text is invariant
under �max → −�max, as it just changes whether the qubit
follows the lower or higher eigenstate of the Hamiltonian.
Here, however, the presence of the second level breaks this
symmetry and gives rise to the behavior seen in Fig. 12.

The detuning robustness can be studied in the same way;
(δ,�) maps are shown in Fig. 13. The results are in accor-
dance with the statements made about the detuning robustness
in the main text: generally it grows with �max and is ap-
proximately independent of �, above a threshold value. The
existence of the second excited state shows up as in Fig. 12: it
breaks the �max → −�max and δ → −δ symmetries.

For longer pulses (ECT/h̄ � 1), the detuning robustness,
as well as the pulse bandwidth, is determined primarily by
the modulation depth �max: if it is sufficiently smaller than
the anharmonicity one is still able to selectively drive the
transition from the ground to the first excited state, without
populating the second excited state. Figure 4 in the main
text demonstrates this theoretically, as well as experimentally:
for a T = 200 ns pulse one can find parameters (�,�max)
that robustly drive the transmon to the first excited state; the
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FIG. 13. Contour plot of P1, showing the detuning robustness of
the protocol as a function of �, for several values of �max.

second excited state is only populated if the pulse is detuned
by δ ≈ EC/2h̄.

Overall, one can conclude that for moderate values of �max

(i.e., �max � ECT/h̄) the protocol is unaffected by the exis-
tence of the second excited state. Additionally if one considers
longer pulse durations higher order states can be disregarded,
while still providing a considerable degree of robustness.

APPENDIX C: SUPER-GAUSSIAN VERSUS
OTHER ENVELOPES

In the main text several criteria for the envelope were laid
out, most important of which is the vanishing amplitude at the
end of the pulse. The super-Gaussian envlope was chosen as
a balance between the spectral width of the pulse and a lower
peak amplitude compared to, e.g., a Gaussian pulse. An added
benefit is that the flatness of the envelope near t = 0 leads to
an increased detuning robustness, which was not extensively
studied for other RAP-like pulses. For a pulse detuned by δ

from the transition frequency, the eigenenergy spectrum will
attain its minimum value at t = T δ

2δmax
�= 0.

The rapid-adiabatic-passage family of pulses offers a lot of
possibilities, without a clear winner in terms of performance.
Many of the used envelopes (e.g., a Gaussian, sech(t/τ ,...)
have the same qualitative shape: a peak at t = 0 with a
relatively rapid drop-off. Here we make a comparison with
a Gaussian envelope (�(t ) = �0 exp[−β(2t/T )2], with β =
− ln(0.01), such that �(t = ±T/2) = 0.01�0), and the find-
ings should carry over to other envelopes.

For a Gaussian envelope, the amplitude will be suppressed
more compared to its peak value �(t = 0) than for the super-
Gaussian envelope. However, due to the envelope shape the
Gaussian pulse has a higher peak amplitude. These are two
competing effects, and it is not possible to immediately say
which one is dominant. To investigate this, we performed
a numerical study of the detuning robustness: Figs. 14 and
15 show that regardless of the amplitude and the modulation
depth �max the super-Gaussian pulse offers a higher degree of
robustness.

Additionally, one can study the adiabaticity of the pulses
according to the criterion η = ‖�̇�−��̇‖

(�2+�2 )3/2 , for an adiabatic

FIG. 14. The detuning robustness of the Gaussian (dashed lines)
and super-Gaussian (solid lines) as a function of the pulse amplitude,
normalized to the same area-under-the-curve, for �max = 20�2π .

trajectory η � 1 [64]. Figure 16 shows the maximum value
maxt(η) as a function of (�,�max) for the Gaussian and
super-Gaussian envelope. The super-Gaussian pulse has a
similar average value of η (not shown), but a lower peak value,
which implies an adiabatic trajectory, as was claimed in the
main text.

More generally, the detuning robustness can be studied as
a function of the envelope order n. While the specifics depend
on the amplitude � and the modulation depth �max, in general
a transfer with high efficiency (i.e., P1 ≈ 1) is realized for
relatively smooth envelopes (n � 10). This can qualitatively
be understood in the following way: for large values of n the
strength of the drive field changes abruptly close to the pulse
edges, leading to a nonadiabatic trajectory. These effects are
demonstrated in Fig. 17.

FIG. 15. The detuning robustness of the Gaussian (dashed lines)
and super-Gaussian (solid lines) as a function of the modulation
depth �max. The envelopes were normalized to the same area, with
� = 3.5�2π .
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FIG. 16. The maximum value of η for a pulse with a super-
Gaussian (left) and a Gaussian envelope (right).

APPENDIX D: ARBITRARY X/Y BLOCH
SPHERE ROTATIONS

1. Arbitrary rotations based on the modulated pulses

Without losses, the time evolution operator U fully de-
scribes the effect of a gate on a qubit. In order to analyze
the gate based on a frequency/phase modulated drive, here
it is more convenient to work in the frame corotating with
the qubit (and not the pulse, as presented in the main
text). Then the Hamiltonian is given by H = |e〉〈g|�ei�(t ) +
h.c., where �(t ) = (ωd (t ) − ω01)t . With the initial condition
U (−T/2) = I the equation of motion for U̇ = −iHU can be
integrated to obtain U (T/2).

Any U can be decomposed into linear combinations of
σ0 = I , σx, σy, and σz: U = c0σ0 − i

∑3
j=1 c jσ j . For a rota-

tion by angle θ generated by σx, the corresponding evolution
operator is given by U = ( cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2) ) = cos(θ/2)σ0 +
i sin(θ/2)σx. If the plane of rotation is off, i.e., the generator
of rotation is a linear combination of σx andσy, there will be a
nonzero σy component in U .

The goal of the second part of this work was to create
a frequency-modulated pulse which is effectively a rotation
generated by σx, while simultaneously achieving insensitivity
to amplitude deviations.

In the main text, this was demonstrated using quantum
process tomography. Here we present a diagram which com-
pletely characterizes our pulses as a function of the rotation
angle θ and their amplitude �. The evolution operator is cal-
culated; Fig. 18 shows the σx and σy components of U , along
with the population of the excited state P1, and its deviation
from the desired value P1(θ ) = [sin(θ/2)]2. We see that in
the amplitude-robust region (i.e. where P1 ≈ [sin(θ/2)]2) the

FIG. 17. Contour plot of the excited state probability P1, as a
function of the detuning δ as well as the pulse envelope order n, for
select values of � and �max.

FIG. 18. The σx (top left) and σy (top-right) components of U , the
population of the excited state (bottom left) and the deviation from
the desired value P1(θ ) = sin(θ/2)2 (bottom right) as a function of θ

and �.

σy component is negligible and the σx component is what
generates the rotation. Additionally, this map was computed
by interpolating pulse parameters between the ten optimized
ones (for Pi = i/10, where i ∈ 1, . . . , 10) and shows that an
amplitude robust arbitrary rotation can be obtained this way.

2. Detuning robustness of arbitrary rotations

Here we study the effect of finite detuning, i.e., an error in
the pulse frequency, of the pulses presented in Sec. IV of the
main text. We present the results in the same manner as Fig. 2
of the main text as well as Appendix C. Figure 19 compares
the modulated and the usual Rabi pulses for target angles
θ = π and θ = π/2: although both deviate from the desired
value at nonzero detunings, the Rabi ones are more affected
by it. It is worth reiterating that detuning robustness was not
a design goal for these pulses, as for δ �= 0 the qubit phase
evolves at a rate of δ, and the (vertical) plane of rotation is not
easily controllable. Nevertheless, the results presented here
show that the modulated pulses are more resilient to frequency
errors than the usual Rabi ones.

FIG. 19. The population of the excited state after applying the
robust (blue) and Rabi (red) π/2 (dashed line) and π (solid line)
pulses, to a qubit initialized in the ground state, as a function of
detuning δ.
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FIG. 20. The expansion of the propagator U = ∑
i σici, i ∈

{I, X,Y, Z} as a function of the relative amplitude ε = �/�0 for our
modulated pulse (solid lines) and a three-pulse composite (dashed).
Two θ ’s are shown: π on the top panel and π/2 on the bottom one.

3. Comparison with composite pulses

Here we perform a comparison of our pulses to a short
composite pulse presented in Ref. [70], engineered to provide
amplitude robustness. As the sequence consists of only three
consecutive pulses, the total duration of the composite pulse
should be comparable to the pulses presented in this work.
Figure 20 shows the expansion of the propagator U , in terms
of the Pauli matrices, as a function of the relative amplitude
ε = �/�0 (�0 is the optimal amplitude). Our pulses outper-
form the composite one, the working range is wider and flatter.
This is especially evident in the case of a π/2 pulse, where the
composite pulse deviates approximately quadratically (ε −
1)2 from the target operation, while the modulated one is
plateaulike around ε = 1. Longer pulse sequences might offer
more robustness, at the expense of a longer duration. Finding
such sequences is also not trivial: in the same work [70] it
was also shown that the three-pulse sequence outperforms a
six-pulse one.

4. Nonequivalence with a linear chirp

The Hamiltonian used for realizing the robust X/Y gate
reads H (t ) = h̄�(t )σz/2 + h̄�0σx/2, where �(t ) is given
by equation Eq. (3) realizes some trajectory U (t ) for
the evolution operator. The question of interest here is
whether there is an alternative parametrization that makes
the system evolve along the same trajectory, at a differ-
ent rate, such that the driving Hamiltonian is a linear
chirp. Provided that it exists, such a trajectory can be
written as U (t (τ )), where the implicit t (τ ) dependence
encodes the mapping. The equation of motion then be-
comes dU/dτ = −iH (τ )U (τ ). On the other hand dU/dτ =
(dU/dt )(dt/dτ ) = −iH (t (τ ))U (t (τ ))dt/dτ . Equating the
two and acting with U † from the right gives H (τ ) =
H (t (τ ))dt/dτ .

With the desired form H (τ ) = h̄�(τ )σx/2 + h̄τασz/2,
where �(τ ) is the time-dependent amplitude and α the
chirp rate, the previous equation can be solved compo-
nentwise. By multiplying both sides by σx and taking
the trace one gets �(t ) = �0dt/dτ . Similarly the σz

component reads ατ = �(t )dt/dτ , which can be solved
by separation of variables. The left-hand side is triv-
ially integrated, while for the right-hand side, one can
use integration by parts, along with �(t ) = ωd (t ) − ω01 +
t∂ωd (t )/∂t , to obtain ατ 2/2 = (ωd (t ) − ω01)t (the integra-
tion was performed from 0 to τ on the left-hand side and
from 0 to t on the right-hand side along with an im-
plicit change of variables, and the integration constant was
set such that t = 0 corresponds to τ = 0). If the pulses
are to have the same duration, substituting τ = t = T/2
gives α.

For the mapping t (τ ) to be valid, it needs to be a bijection.
However, for the form of ωd (t ) used in Sec. IV, that is not the
case: from Fig. 7, one can deduce that (ωd (t ) − ω01)t is non
monotonic and it changes sign, and a valid solution cannot be
found. Thus one can conclude that the trajectory realized by
such a modulation belongs to a different class of equivalence
compared to the ones generated by a linear chirp, with any
envelope.

Even if a mapping could be found, nothing guarantees that
the resulting pulse would have the same robustness feature,
as H (t (τ )) does not commute with the “error” term εσx at all
times.
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