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Average correlation as an indicator for inseparability
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Inseparability of quantum states is one of the most crucial aspects of quantum physics, as it often provides the
key ingredient for obtaining a quantum advantage. Quantifying inseparability is thus an important objective to
better understand quantum physics and to improve quantum applications. So far, many measures for inseparabil-
ity exist, however, most of them are based on abstract mathematical procedures and are not defined operationally
which can easily be realized in an experiment. Recently we introduced average correlation [Tschaffon et al.,
Phys. Rev. Res. 5, 023063 (2023)] as a reference frame independent indicator for nonclassicality in the Bell
sense based on randomized measurements. It is defined as the average absolute value of the two-qubit correlation
function and allows one to formulate a necessary and sufficient condition for the ability to violate the CHSH
inequality. Experimentally it can be realized by randomized measurements which can approximate its value
arbitrarily closely. This makes it independent of a shared reference frame between the two measuring parties,
which can be useful in scenarios where it is impossible to find one. In this second article, we show that average
correlation also serves as an indicator for inseparability by deriving a necessary and sufficient condition. From
there, we prove the remaining open conjectures of the first article. Due to the operational definition of average
correlation, it offers a first step toward finding a new operationally defined inseparability measure.
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I. INTRODUCTION

Entanglement, that is, inseparability of quantum states, is
one of the defining features of quantum physics which sets it
apart from classical physics. Over the last decades, insepara-
bility has become the basis for many quantum technologies
[1] such as quantum communication [2], quantum computing
[3] and quantum sensing [4]. While inseparability is defined
in terms of the structure of quantum states in Hilbert space,
in practice we observe it by nonclassical correlations in an
experiment, which manifest themselves by the violation of
Bell inequalities [5–11].

One of the most prominent examples of these
inequalities is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [6,12]

S(a, a′; b, b′) ≡ |E (a, b) + E (a′, b) + E (a, b′) − E (a′, b′)|
� 2, (1)

which is based on four different correlation functions

E (a, b) ≡ tr(ρ̂ a · σ̂A ⊗ b · σ̂B), (2)

with the density operator of the two-qubit state ρ̂, as well
as the vectors of the Pauli operators σ̂A = (σ̂1 A, σ̂2 A, σ̂3 A)
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and σ̂B = (σ̂1 B, σ̂2 B, σ̂3 B) for two distant observers A and B
measured along the measurement axes a and a′ for observer A
and b and b′ for observer B. Finding the optimal measurement
settings which allow for a violation of the CHSH inequality
requires accurate measurements and a shared reference frame
with which both observers A and B can align their measure-
ments [13]. In practice, however, coordinating measurements
and especially finding a shared reference frame can become
challenging.

One way of circumventing this problem is to use reference
frame independent quantities [14], especially using random-
ized measurements [15–26], that is, measuring quantities,
such as correlation functions with randomized measurement
settings. The advantage of such measurements is that the
outcome does then not depend on the measurements, but is
now only state-dependent.

In the last few years, many quantities based on randomized
measurements have been proposed and tested experimen-
tally [26]. Such quantities often allow testing inseparability.
Whether and how often a Bell inequality is violated in par-
ticular is however more challenging. One way is to evaluate
CHSH inequalities for many randomly chosen measurements
and check how often the CHSH inequality is violated [15–17].

While this method avoids a shared reference frame, it still
requires both parties to coordinate their measurements and
to revisit earlier measurements, as each party has to perform
every measurement twice; see Eq. (1). As such, it does not
allow for a completely randomized approach, nor can both
parties randomize independently.

This problem can be addressed by using average correla-
tion [27], which is also reference frame independent but based
on fully and independently randomized measurements, and
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serves as an indicator for nonclassicality in the Bell sense
[28]. We have shown that a necessary and sufficient condition
based on the value of average correlation exist, that allow us
to predict, whether the state can violate the CHSH inequality.

Beyond the derivation of a necessary and sufficient con-
dition for a violation of the CHSH inequality, we have
demonstrated numerically that for each value of average
correlation � a minimal and maximal value for the Bell pa-
rameter s, that is, the maximum of the CHSH inequality,

s ≡ max S(a, a′; b, b′), (3)

can be reached, allowing us to map out all states in a � − s
map. While the minimal value and thus the lower boundary
in the map could be shown to be defined by Werner states,
the maximal value or upper boundary could only be derived
for values � � 1/4. For values � > 1/4 it could only be con-
jectured that pure states deliver the maximal Bell parameter.
Furthermore, while numerical simulations suggest that many
states could be found between these fundamental boundaries,
it was not shown whether the � − s map could be filled
completely, that is, whether there exist states for every pair
of values of � and s between the upper and lower boundary.

In this article, we show that average correlation provides
not only an indicator for nonclassicality of states, but even
directly indicates inseparability of the state. To do so, we ad-
dress the two open problems described above, one by one. In
particular, we first summarize the essential results with regard
to average correlation and formulate the open questions in de-
tail in Sec. II. We then address these questions by first showing
in Sec. III that the positivity condition presents restrictions
on the different correlation matrices. In Sec. IV, we then use
these criteria to derive a necessary and sufficient condition
for inseparability. Moreover, in Sec. V, we demonstrate that
pure states indeed possess the maximal Bell parameter for
� > 1/4. Finally, in Sec. VI we prove that every point in the
� − s map corresponds to a physical state. To keep our arti-
cle self-contained but focused on the main ideas, we present
detailed calculations in two appendices. In Appendix A we
prove the inseparability conditions, while in Appendix B we
show in detail that the � − s map can be filled completely.

II. AVERAGE CORRELATION

In this article we primarily study the nonclassicality indi-
cator average correlation [27]

� ≡ 1

(4π )2

∫
d�a

∫
d�b|E (a, b)|, (4)

which is defined as the modulus of the correlation function,
Eq. (2), averaged over all possible measurement directions a
and b. To evaluate this quantity we note that any bipartite qubit
state can be written in the Fano form [29]

ρ̂ = 1

4

(
1̂ + q · σ̂A ⊗ 1̂B + 1̂A ⊗ r · σ̂B +

∑
i j

Ki j σ̂i A ⊗ σ̂ j B

)
,

(5)
containing the local Bloch vectors q and r as well as the
correlation matrix K with real elements

Ki j = tr(ρ̂ σ̂i A ⊗ σ̂ j B). (6)

For the correlation matrix we can perform a singular value
decomposition [13]

K = UκV T , (7)

with orthogonal matrices U and V and a diagonal matrix κ

which only contains the singular values α, β and γ with 1 �
α � β � γ � 0.

Since we average over all measurement directions a and b,
average correlation � only depends on the singular values α,
β and γ or likewise on α, γ and the Bell parameter

s = 2
√

α2 + β2. (8)

We define a state to be nonclassical if there exists at least one
way of constructing a CHSH inequality, Eq. (1), such that the
inequality is violated. In other words, a state is nonclassical
if its maximal value of the CHSH inequality, that is, the Bell
parameter s, is greater than 2.

As we have laid out in Ref. [27], average correlation is
a suitable indicator for nonclassicality, as defined above, for
three reasons. For one, it is only state dependent since we
average over all measurement directions and therefore only
depends on the correlation matrix of a state. In addition, it in-
dicates nonclassicality as there is both a necessary, � > 1/4,
and a sufficient condition, � > 1/(2

√
2), for nonclassicality.

In other words, if a state has a value of average correlation
higher than � = 1/4, then it can be nonclassical while a
value higher than � = 1/(2

√
2) guarantees that the state is

nonclassical. Last, it is defined operationally, which enables
an experimental translation. To theoretically study � and s, it
suffices to study the singular values of the correlation matrix.

However, finding the singular values for a general correla-
tion matrix K is not always straight forward. Thus, as a next
step to simplify calculations for the following sections, we
perform a basis change. We choose our computational basis
in a way such that K becomes diagonal. For this purpose,
we recall [30] that for every unitary matrix Û exists a unique
rotation O such that Û (r · σ̂)Û† = (O r) · σ̂ for all Euclidean
vectors r. If we choose two such unitary transformations ÛA

and ÛB for our basis change for subsystems A and B, that is, we
define |0′〉A/B = ÛA/B|0〉A/B and |1′〉A/B = ÛA/B|1〉A/B, in such
a way that the resulting rotations O1 and O2 diagonalize the
correlation matrix according to

K ′ = O1 K O†
2, (9)

then we can rewrite the corresponding quantum state ρ̂ in the
new basis as

ρ̂ = 1

4

(
1̂ + q′ · σ̂ ′

A ⊗ 1̂B + 1̂A ⊗ r′ · σ̂ ′
B +

∑
i

K ′
i σ̂

′
i A ⊗ σ̂ ′

i B

)
,

(10)
where q′ = O1q and r′ = O2r, and K ′

i = K ′
ii are the diagonal

and thus only nonzero elements of K ′. The diagonal elements
of K ′ are, up to a sign, identical to the singular values α, β

and γ , as O1 and O2 are rotations, that is, det O = 1, and not
general orthogonal matrices as needed in the singular value
decomposition. As a consequence, the sign of the determinant
of K is preserved and the diagonal elements of K ′ are not
necessarily all positive, as it is the case with κ in the singular
value decomposition, Eq. (7). For simplicity, we drop the
primes for the remainder of this article.
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FIG. 1. Bell parameter s as a function of average correlation �

for pure states |�〉 (solid line), Werner states ρ̂W (dotted line) and
ξ states ρ̂ξ (dashed line). All physical states are conjectured to be
within these three classes of states. For � < 1/4, colored in yellow,
we only find classical states, i.e., s � 2, while for � > 1/(2

√
2), col-

ored in blue, we only find nonclassical states, i.e., s > 2. In between
these two values for �, colored in green, we find both classical and
nonclassical states.

To better understand how the Bell parameter s and average
correlation � relate, we study all two-qubit states in a � − s
map, as shown in Fig. 1. There we have plotted analytically
three classes of states: Pure states |�〉, Werner states ρ̂W [31],
and ξ states [27,32]

ρ̂ξ = 1 + ξ

2
|1〉〈1|A ⊗ |0〉〈0|B + 1 − ξ

2
|0〉〈0|A ⊗ |0〉〈0|B.

(11)
A numerical [33] simulation of randomly generated states

shows that all the states are found inside these three classes
of states in the � − s map [27]. Thus, we have conjectured
that they define the boundaries in this map. Indeed, the lower
boundary, that is, the Werner states, as well as the upper
boundary in the nonclassical regime, i.e., the ξ states have
been shown [27]. As depicted in the plot, all states in between
these two boundaries are classical, i.e., they have a Bell pa-
rameter s < 2, if they do not satisfy the necessary condition
for nonclassicality, � > 1/4, colored in yellow, while they
are nonclassical if they satisfy the sufficient condition � >

1/(2
√

2), colored in blue. All states in between these two val-
ues, colored in green, can be either classical or nonclassical.

Despite all of these findings, there are still a number of
limitations. Even though we can make many exact theoreti-
cal statements about average correlation, experimentally, the
value of average correlation can only be approximated by
measuring randomly very often and thus practically evaluating
the integral in Eq. (4). While the accuracy increases with the
number of measurements, we are still dealing with a finite
number of measurements and not with infinitely many as it
would theoretically be required. As such, the value of average
correlation can fundamentally never be measured, but only a
quantity approximating it. On top of this, randomization in
theory has to occur for the measurement direction uniformly,

that is, evenly over the surface of the Bloch sphere. In the
experiment, however, this could be challenging, as a random-
ization over the involved parameters does not necessarily give
one an even distribution of the measurement directions in
which case it would have to be adjusted and thus not com-
pletely randomized anymore.

Aside from the experimental limitations, we still have
many unaddressed challenges with regard to generalizing av-
erage correlation, that is, when we go beyond two-qubit states.
If we try to define average correlation with respect to more
than two parties, then nonclassicality cannot be defined in
terms of the CHSH inequality anymore, as it strictly deals with
bipartite correlations. Hence, a different definition would have
to be found. If we employ states other than qubit states, then
we cannot construct the CHSH inequality in a straightforward
manner as it requires a dichotomic observable, so one would
have to be artificially introduced, e. g. a quantity of a subspace
of the larger Hilbert space like a pseudo spin.

However, apart from the aforementioned challenges which
are inherently part of the nature of average correlation, two
unsolved questions stand out most. First, as already raised
above, the upper boundary in the nonclassical regime has not
been proven but only been motivated numerically. This means
it is not clear if pure states are truly the upper boundary.
Second, even though states in all regions of the � − s map
have been found, it has not been proven that there is a state for
every point in the map within the boundaries. In other words,
it has to be shown, that physical states completely fill the map.

The first problem, that is, the fact that we cannot get above
pure states in the � − s map, is in fact related to positivity of
the states, as states above this boundary would not be positive.
This will be examined in more detail in the next section.

III. POSITIVITY

Positivity of the state ρ̂ requires that the inequalities [30]

1 + K3 ± (K1 − K2) � 0 (12)

and

1 − K3 ± (K1 + K2) � 0 (13)

containing the diagonal elements K1, K2 and K3 of the di-
agonalized correlation matrix K hold. When we take into
consideration the different signs that the diagonal elements
can have, we can distinguish two cases. For one, if the di-
agonalized correlation matrix K has three negative diagonal
elements, then Eqs. (12) and (13) are rewritten as

1 − |K3| ± (|K2| − |K1|) � 0 (14)

and

1 + |K3| ± (|K2| + |K1|) � 0. (15)

Furthermore, one negative sign, no matter for which diagonal
element, and two positive signs yield the same four inequali-
ties as just derived, albeit in a different order. As pointed out
in the last section, up to a sign the diagonal elements of K are
identical to the singular values α, β, and γ of K . If in the first
equation we either set |K1| or |K2| equal to γ or in the second
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equation |K3| equal to γ , then we arrive at

γ � α + β − 1, (16)

along with inequalities which are trivially satisfied.
If, however, we have three positive diagonal elements, then

we instead arrive at the inequalities

1 + |K3| ± (|K1| − |K2|) � 0 (17)

and

1 − |K3| ± (|K1| + |K2|) � 0, (18)

which also result from one positive and two negative diagonal
elements. No matter which diagonal element corresponds to
which singular value, the last two inequalities yield the only
nontrivial condition

1 � α + β + γ , (19)

which is an even stricter inequality than Eq. (16). While the
inequality above only has to be fulfilled for certain signs,
Eq. (16) is always valid and is thus the only nontrivial in-
equality which has to be satisfied due to positivity. Hence, we
refer to this condition as the positivity condition. Note that the
positivity condition gives us a minimal value for γ other than
zero.

We emphasize that for one negative or three negative signs
we arrived at an even tighter condition, Eq. (19), which is in
fact along with the minimal value of γ related to inseparabil-
ity, as we will explore in the next section.

IV. INSEPARABILITY

A bipartite state is defined as separable if it can be written
as a convex sum [31]

ρ̂ =
∑

k

pk 
̂k A ⊗ 
̂′
k B (20)

of tensor products of one particle states 
̂k A and 
̂′
k B with

probabilities pk . A two-qubit state is separable if and only if
its partial transpose is nonnegative [34]. It was shown [35]
that this is precisely the case when the trace norm ||K|| of the
correlation matrix of the state is less than or equal to one, that
is,

||K|| = α + β + γ � 1. (21)

As we have seen in the last section, positivity leads to a con-
dition, Eq. (19), identical to the separability condition above,
if we have two negative or three positive diagonal elements
in the diagonalized correlation matrix. This makes two neg-
ative or three positive diagonal elements of the diagonalized
correlation matrix K a sufficient condition for separability.

Further, we note that if a state is separable, that is, the
above inequality is satisfied, Eq. (16) is automatically satis-
fied. Consequently, γ can be arbitrarily small and the minimal
value of γ is given by zero while for inseparable states it is
given by

γ � α + β − 1 (22)

and thus greater than zero.
Now that we know how the minimal value for γ is related

to inseparability, we will as a final point address the question

for what values of � we find separable and for what values
inseparable states. It is already known that inseparability is
a necessary condition for nonclassicality. Further, we know
that for � > 1/4 states can be nonclassical. As we show in
Appendix A, � = 1/4 is not only the necessary condition for
nonclassicality but also the sufficient condition for insepa-
rability. But what about a necessary condition? For that we
require the smallest possible value of � for which the sepa-
rability condition, Eq. (19), barely holds, i.e., α + β + γ = 1.
In Appendix A, we show that this value is given by � = 1/6,
making � > 1/6 a necessary condition for inseparability.

In fact, � = 1/6 is the value for which Werner states be-
come inseparable, which makes it the class of states which
are inseparable for the lowest possible value of average cor-
relation �. However, at the same time, they are also the class
of states which are nonclassical for the highest possible value
of � = 1/2

√
2. Pure states behave exactly opposite to this.

They are nonclassical for the lowest possible value but also
inseparable for the highest possible value, both at � = 1/4
[27]. This again emphasizes our view that Werner states are
the most classical states as the difference between their values
of � for which they are inseparable and nonclassical is maxi-
mal, while pure states are the most nonclassical states as there
is no difference.

Now that we have derived a minimal value for γ as a result
of the positivity of the underlying state and demonstrated how
it is related to inseparability, we apply this knowledge in the
next section to derive an upper boundary in the inseparable
regime, that is, � > 1/4. As we will see in the next section, it
is inseparability which makes the upper boundary a different
class of states for the separable and inseparable regime.

V. UPPER BOUNDARY

To derive the upper boundary in the � − s map, we have
to minimize average correlation � = �(α, s, γ ) as a function
of the Bell parameter s with respect to the singular values α

and γ . In Ref. [27] it was shown that for a given value of
the Bell parameter s, average correlation � is monotonically
decreasing in α and monotonically increasing in γ and thus
minimal for a minimal value of γ and a maximal value of α.
Thus, the minimal value of γ plays a crucial role in the upper
boundary. However, as shown in the last section, this minimal
value depends on whether the underlying state is separable or
inseparable. Thus, we will distinguish these two cases.

For a separable state, that is, α + β + γ � 1, γ can be as
small as zero. So, to minimize �, we set γ = 0. As for α, we
note from Eq. (8) that it can maximally be half of the Bell
parameter s but other than for s = 2 cannot be equal to one,
as this would make the state inseparable. Hence, using the
definition of the Bell parameter Eq. (8), we get a minimal
average correlation for the singular values α = s/2, β = 0
and γ = 0. This condition corresponds to ξ states ρ̂ξ with
ξ = s/2, which was already derived in Ref. [27].

In the inseparable regime � > 1/4, the lowest value for
γ is, due to the positivity condition Eq. (16), given by γ =
α + β − 1. However, for nonclassical states, s > 2, α can be
as large as one. To minimize �, we set α = 1 which then
immediately gives us γ = β. Using Eq. (8) once again, we
then obtain β =

√
(s/2)2 − α2 =

√
(s/2)2 − 1. Hence, in the
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inseparable regime, that is, for � > 1/4, average correlation
� becomes minimal for a given value of the Bell parameter
s, and thus corresponds to the upper boundary in the � − s
map, for singular values α = 1, β = γ =

√
(s/2)2 − 1. This

corresponds to pure states as conjectured before [27].
We note that it is precisely the fact that the smallest pos-

sible value of γ is different in the different regimes, which
gives rise to the kink in Fig. 1 where product states are found.
If we move along the boundary corresponding to the smallest
values for γ , i.e., the upper boundary, then positivity requires
that there is a kink once the states are inseparable, which is
why it is exactly the product states which are found at the
kink.

However, there is one last question that needs to be
answered. Even if all states are found between the three fun-
damental boundaries in the � − s map, can we assign every
pair of � and s values a physical state, that is, is the area
between the boundaries completely filled? We investigate this
final open question in the next section.

VI. QUANTUM CHANNELS

If we want to obtain values for average correlation and the
Bell parameter for all states, then it is sufficient to consider
all possible singular values of a correlation matrix, as average
correlation and the Bell parameter only depend on them.

To do so, we consider a model where we start with the
maximally entangled Bell state |� (−)〉 and subject it to a
quantum channel consisting of three fundamental errors on
each subsystem: a bit flip, a bit-phase flip, and a phase flip,
represented by the three Pauli operators σ̂1, σ̂2, and σ̂3, re-
spectively. We mathematically describe this quantum channel
using the Kraus operators [36–38]

M̂ j = c j σ̂ j A ⊗ 1̂B (23)

with complex coefficients c j and σ̂0 A ≡ 1̂A satisfying the
completeness relation

3∑
j=0

M̂†
j M̂ j = 1̂. (24)

As a result of this quantum channel, the Bell state |� (−)〉 is
mapped to a mixture

ρ̂ =
3∑

j=0

M̂ j |� (−)〉〈� (−)|M̂†
j =

∑
k∈{� (±),�(±)}

pk (λ, p)|k〉〈k|

(25)
of the four Bell states

|� (±)〉 ≡ 1√
2
(|01〉 ± |10〉) (26)

and

|�(±)〉 ≡ 1√
2
(|00〉 ± |11〉), (27)

with probabilities pk which are identical to the absolute value
square of the complex coefficients c j in the definition of the
Kraus operators, Eq. (23), that is p� (−) = |c0|2 and so on.
This model is useful, as the four Bell states all have diagonal
correlation matrices in the computational basis, with absolute
values of the diagonal elements equal to one but with different

signs; see Appendix B. As such, this approach allows us to
construct a state with specific singular values depending on
our choice of the probabilities pk . But what does the action of
the individual errors physically mean, and how does it relate
to the boundaries? To better understand this, we consider two
extreme cases.

In the first case, we initially let only one error act on the
Bell state, that is, we have p� (±) = (1 ∓ p)/2 and p�(±) = 0.
As a consequence, the Bell state is then mapped to

ρ̂ = 1 + p

2
|� (−)〉〈� (−)| + 1 − p

2
|� (+)〉〈� (+)|, (28)

i.e., a decohering Bell state which has the same singular values
and consequently the same value for average correlation as a
pure state. In fact, here, the channel is a dephasing channel for
decreasing values of p [36]. Then, as a second step we subject
the completely decohered Bell state, p = 0, to a different
error, now with p� (−) = (1 + λ)/2 and p�(−) = (1 − λ)/2, and
end up with a state

ρ̂ = λ

2
(|01〉〈01| + |10〉〈10|) + 1 − λ

4
1, (29)

which for λ = 1 is equivalent to the product state but then for
decreasing values of λ finally reaches the completely mixed
state, equivalent to ξ states ρ̂ξ [27,32].

Alternatively, in the other case, we set p� (−) = (1 + 3λ)/4
and p� (+) = p�(+) = p�(−) = (1 − λ)/4, that is all three fun-
damental errors equally large, and let λ ∈ [0, 1] decrease,
giving us a Werner state [31]

ρ̂ = λ|� (−)〉〈� (−)| + 1 − λ

4
1 = ρ̂W(λ). (30)

This makes our channel a depolarizing channel [36] which for
λ approaching zero directly maps the state to the completely
mixed state.

The difference between these two situations is that in the
former case we have first acted with one error, the phase flip,
giving us a specific channel, the dephasing channel, which
initially leaves the state nonclassical, i.e., s > 2. Only by
applying the other error, the bit flip, in a second step, the
state becomes nonclassical, corresponding to first pure states
and then ξ states and thus moving along the upper boundary
of the � − s map. In contrast, in the latter case, the state
experienced all three errors at once, i.e., the depolarizing
channel, mapping it to Werner states and as such moving
along the lower boundary from the Bell state all the way to
the completely mixed state, too. So, with the quantum channel
model described above, the upper and lower boundary obtain a
physical meaning. They correspond to different ways of a Bell
state decohering to the completely mixed state. Both situations
are depicted in Fig. 2.

For every other state in between the two boundaries, we
note that we can reach any point in the map if we make the
choice

p� (±) = 1 + λ(1 ∓ 2p)

4
, (31)

and

p�(±) = 1 − λ

4
(32)
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FIG. 2. Difference between the Bell parameter s and the Bell
parameter for Werner states sW as a function of average correlation
�. One of the Bell states |� (−)〉, one of the product states |01〉 and the
completely mixed state 1̂/4 are marked by large dots. Every state on
the upper boundary can be represented by a Bell state experiencing
first one error, here σ̂i, and then experiencing a different error, here σ̂ j

with i, j ∈ {1, 2, 3}. States on the lower boundary can be represented
by a Bell state experiencing all three errors at once, i.e., σ̂1, σ̂2, and
σ̂3. Bell states that have experienced the error σ̂3 with a probabil-
ity [1 + λ(1 − 2p)]/4 and the other two errors with a probability
(1 − λ)/4 for different values of λ ∈ [0, 1] are colored in yellow for
p ∈ [1, 0.75), in green for p ∈ [0.75, 0.5), in blue for p ∈ [0.5, 0.25)
and in red for p ∈ [0.25, 0]. For a fixed value of p, states are situated
along a straight line connecting the completely mixed state (λ = 0)
to a pure state (λ = 1) with concurrence p, where the gradient of the
line is fixed by the parameter p and the proximity to the pure states is
closer for larger values of λ. The smaller the value for p is the closer
the straight line is to the upper boundary between the product state
and the completely mixed state corresponding to ξ states, which have
the value p = 0, while p = 1 corresponds to the lower boundary, that
is, Werner states.

with the two visibilities λ ∈ [0, 1] and p ∈ [0, 1], as we show
in Appendix B. In this parametrization, the former route
along the upper boundary corresponds to first setting λ = 1
and decreasing p, and then setting p = 0 and decreasing λ

[39], while the latter route corresponds to setting p = 1 and
decreasing λ. Any different combination of λ and p values
gives rise to a state in between the boundaries, completely
filling the map, as depicted in Fig. 2. As we show in detail in
Appendix B, this is because for a fixed value of p we start at
the completely mixed state in the map for λ = 0 and then for
increasing values of λ move along a straight line to a pure state
with concurrence [40] p for λ = 1. The gradient of the straight
line is determined by p such that for p = 1 the straight line
corresponds to Werner states and then for decreasing values
of p approaches the line for ξ states for p = 0. In this way, the
� − s map can be filled completely, as seen in Fig. 2, where
areas with different values of p are shaded in different colors.

Accordingly, any state in between the upper and lower
boundary can be viewed as a quantum channel which is
somewhere in between these two different scenarios, with
some having a more dominant error making them closer to
the upper boundary, while others have more similarly large

TABLE I. Necessary and sufficient conditions for inseparability
and nonclassicality with respect to the value of average correlation
� for two-qubit states.

Condition Value of �

Necessary condition for inseparability � > 1/6
Sufficient condition for inseparability � > 1/4
Necessary condition for nonclassicality � > 1/4
Sufficient condition for nonclassicality � > 1/(2

√
2)

errors making them closer to the lower boundary, depending
on the exact choice of the parameters λ and p.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have derived two new inequalities for
average correlation with regard to inseparability. Namely, for
� > 1/6 we can have inseparable states while for � > 1/4
we must have inseparable states, making these two values a
necessary and a sufficient condition for inseparability and as
such average correlation an indicator for inseparability. The
necessary and sufficient conditions for inseparability, derived
in this article, and nonclassicality, derived in Ref. [27], are
summarized in Table I.

We have used these results to finally show that indeed in
the inseparable regime, i.e., � > 1/4, the upper boundary of
the � − s map is given by pure states, that is we find no class
of states with a higher Bell parameter s for a given value of
average correlation. Last, we were able to show that the � − s
map can be filled completely with states, that is for every pair
of values of � and s between the three fundamental boundary
states, at least one state can be found.

Despite these results, there are still open questions. For
one, it will be interesting to explore whether and how average
correlation can be generalized to states other than two-qubit
states and if we can find similar results regarding nonclassical-
ity and inseparability. Further, comparing average correlation
to other measures based on randomized measurements and
checking whether additional information can be obtained by
using the combined information of average correlation and
these measures could yield more insights.
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APPENDIX A: CONDITIONS FOR INSEPARABILITY

In this Appendix, we derive a necessary and sufficient con-
dition for inseparability of two-qubit states based on average
correlation.

To do so, we will first derive the extreme of average cor-
relation for fixed values of α + β + γ = c, then derive the
minimum and maximum and show how the minimum and
maximum give rise to the necessary and sufficient condition
for inseparability.
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1. Stationary points

We need to find stationary points, that is, extreme values
of average correlation �(α, β, γ ) under the constraint α +
β + γ = c. This problem can be addressed using Lagrange
multipliers. We start out by defining the Lagrangian function

�(α, β, γ , χ ) = �(α, β, γ ) + χ (c − α − β − γ ) (A1)

involving average correlation, which is to be minimized or
maximized, and a term that has to vanish under the above-
mentioned constraint multiplied by a Lagrange multiplier χ .
An extreme value under this constraint appears if the gradient
of the Lagrangian function with respect to all variables van-
ishes. This is precisely the case if all derivatives

∂�

∂α
= ∂�

∂β
= ∂�

∂γ
= χ, (A2)

with respect to all variables evaluated at the stationary point
equate to the multiplier χ . As such, we need to find points
for which the derivatives with respect to the singular values
become equal.

To find these points, we rewrite average correlation [27]

�(α, β, γ ) = α

4

{
1 + 1

2π

∫ 2π

0
dφ g[ f (φ)]

}
, (A3)

with the functions

g[ f (φ)] = f (φ)√
1 − f (φ)

Arsinh

⎛
⎝
√

1 − f (φ)

f (φ)

⎞
⎠ (A4)

and

f (φ) =
(

β

α

)2

sin2 φ +
(γ

α

)2
cos2 φ. (A5)

The derivatives with respect to the singular values then
evaluate to

∂�

∂α
= 1

4
+ 1

8π

∫ 2π

0
dφ

{
g[ f (φ)] + αg′[ f (φ)]

∂ f

∂α

}

= 1

4
+ 1

8π

∫ 2π

0
dφ
{
g[ f (φ)] − 2g′[ f (φ)] f (φ)

}
, (A6)

∂�

∂β
= α

8π

∫ 2π

0
dφ g′[ f (φ)]

∂ f

∂β

= 1

4π

∫ 2π

0
dφ g′[ f (φ)]

β

α
sin2 φ, (A7)

and

∂�

∂γ
= α

8π

∫ 2π

0
dφ g′[ f (φ)]

∂ f

∂γ

= 1

4π

∫ 2π

0
dφ g′[ f (φ)]

γ

α
cos2 φ

= 1

4π

∫ 2π

0
dφ g′[(γ /α)2 sin2 φ + (β/α)2 cos2 φ]

× γ

α
sin2 φ, (A8)

where in the last step we have performed the substitution φ →
φ + π/2 and rearranged integration domains and g′ denotes
the derivative of g with respect to f . The last two derivatives
are identical, except that the roles of β and γ are interchanged.
These two derivatives are then obviously equal if we choose
β = γ , which then yields a constant function

f =
(

β

α

)2

, (A9)

making g independent of φ and enabling us to evaluate the
integrals resulting in the derivatives

∂�

∂β

∣∣∣
β=γ

= ∂�

∂γ

∣∣∣
β=γ

= 1

4π

β

α
g′
∫ 2π

0
dφ sin2 φ = 1

4

√
f g′

(A10)
and

∂�

∂α

∣∣∣
β=γ

= 1

4
(1 + g − 2 f g′). (A11)

Finally, if we want all derivatives to be equal, then we have
to equate the two equations above and arrive at the differential
equation

1

4

√
f g′ = 1

4
(1 + g − 2 f g′), (A12)

which is in general not solved by g( f ) and thus only satisfied
by certain values of f . To find these values, we rewrite the
derivative of g( f ) [27]

g′ = 2 − f

2
√

1 − f
3 Arsinh

⎛
⎝
√

1 − f

f

⎞
⎠− 1

2(1 − f )

= 1

2(1 − f )

[(
2

f
− 1

)
g − 1

]
, (A13)

as a function of g( f ) itself. By inserting Eq. (A13) into
Eq. (A12) and solving the resulting equation for g, we arrive
at the condition

g( f ) = f + 2
√

f

2
√

f + 2 − f
≡ h( f ), (A14)

in which the functions g( f ) and h( f ) must be equal for a given
value of f ∈ (0, 1). The values one and zero, however, have to
be treated in the limit, as f and f − 1 appear in denominators
in Eqs. (A12) and (A13).

To find solutions to the above equation, we note that the
second-order derivative of h( f ) given by

h′′( f ) = 2 − 2
√

f
3 − 3 f 2 − 3 f + 6

√
f

√
f

3(
f − 2

√
f − 2

)3 (A15)

is clearly negative and h( f ) thus concave on the interval. For
g we find for the second-order derivative

g′′ = 1

4(1 − f )2

{
2

[(
2

f
− 1

)
g − 1

]

+ 2(1 − f )

[(
2

f
− 1

)
g′ − 2

f 2
g

]}
. (A16)
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Inserting Eq. (A13) into this equation and rearranging terms,
we see that the second-order derivative of g is negative if

( f − 4)g > −( f + 2) (A17)

holds. From Ref. [27] we recall that g( f ) � f (5 + f )/6.
Thus, the inequality above is true if we have

f

6
(5 + f )( f − 4) > −( f + 2), (A18)

which is indeed satisfied on the interval (−1 − √
13, 1) and

thus for f ∈ (0, 1). Hence, both functions h( f ) and g( f ) are
concave for f ∈ (0, 1) and are therefore equal for two values
of f at most. These two values are given by f = 0 and f = 1
as it can be seen immediately that we have h(0) = 0 and
h(1) = 1 which agrees with the limit g → 0 for f → 0 and
g → 1 for f → 1, respectively [27]. However, as we have
noted before, Eq. (A14) is only valid on the open interval
f ∈ (0, 1) and therefore a solution on this interval does not
exist. For the remaining values of one and zero, we have to
check whether Eq. (A12) is satisfied in the limit f → 0 and
f → 1, respectively.

For f → 0 we get

lim
f →0

f g′ = lim
f →0

f

2(1 − f )

[(
2

f
− 1

)
g − 1

]
= 0, (A19)

which when inserted into Eq. (A12) together with the limit
g → 0 for f → 0 requires the limit of

√
f g′ to approach

one in order for both sides of the equation to become equal.
However, using l’Hospital’s rule, we see that this limit

lim
f →0

√
f g′ = lim

f →0

√
f

2(1 − f )

[(
2

f
− 1

)
g − 1

]

= lim
f →0

(2 − f )g

2
√

f (1 − f )
= lim

f →0

(2 − f )g′ − g

(1 − f )/
√

f − 2
√

f

= 2lim
f →0

√
f g′ (A20)

is identical to twice itself and thus cannot be equal to one [41].
This means that Eq. (A12) is not solved in the limit f → 0.

In the limit f → 1 we find using l’Hospital’s rule and the
fact that we have g → 1 for f → 1 [27] that the derivative of
g given by Eq. (A13) approaches

lim
f →1

g′ = lim
f →1

[
g

f 2
+
(

1

2
− 1

f

)
g′
]

= 1 − 1

2
lim
f →1

g′, (A21)

and we thus solve it algebraically by

lim
f →1

g′ = 2
3 . (A22)

By inserting this limit, as well as the limit g → 1 into
Eq. (A12), we see that both sides of the equation approach the
same value 1/6 and it is therefore solved in the limit f → 1
making it the unique solution of Eq. (A12).

Consequently, for β = γ the Lagrangian function becomes
stationary only in the limit f → 1, that is, for α = β, and
thus for three equally large singular values α = β = γ = c/3.
Since this is the only local extreme, this means that due to the
monotony of the function this has to be a global extreme as
well. However, which type of global extreme it is, is yet to be
determined, which we will do in the next subsection.

2. Minimum

To find out what type of extreme we have, we have to
examine the signs of the third and fourth principal minor of
the bordered Hessian [42]

H (α, β, γ ) =
(

0 ∂2�
∂α j∂χ

∂2�
∂αi∂χ

∂2�
∂αi∂α j

)
, (A23)

with αi, α j ∈ {α, β, γ }, that is, the Hessian of the Lagrangian
function �(α, β, γ , χ ), evaluated at the stationary point α =
β = γ = c/3 and as such in the limit f → 1.

To do so, using Eq. (A1), we first compute the derivatives

∂2�

∂α∂χ
= ∂2�

∂β∂χ
= ∂2�

∂γ ∂χ
= −1, (A24)

with respect to the singular values and the Lagrange multiplier
χ , which are all equal and independent of f . As a next step,
we evaluate the second-order derivatives

∂2�

∂α2

∣∣∣
β=γ

= 1

2α
[ f g′( f ) + 2 f 2 g′′( f )], (A25)

∂2�

∂α∂β

∣∣∣
β=γ

= − 1

4α
[2 g′′( f )

√
f f + g′( f )

√
f ] = ∂2�

∂α∂γ

∣∣∣
β=γ

,

(A26)

∂2�

∂β2

∣∣∣
β=γ

= 1

4α

[
g′( f ) + 3

2
f g′′( f )

]
= ∂2�

∂γ 2

∣∣∣
β=γ

, (A27)

and

∂2�

∂β∂γ

∣∣∣
β=γ

= 1

8α
f g′′( f ), (A28)

with respect to the singular values at the stationary point,
which, using α = c/3, gives us the final contribution

(
∂2�

∂αi∂α j

)
= 3

4c
g′( f )

⎛
⎜⎝

2 f −√
f −√

f

−√
f 1 0

−√
f 0 1

⎞
⎟⎠

+ 3

8c
f g′′( f )

⎛
⎜⎝

8 f −4
√

f −4
√

f

−4
√

f 3 1

−4
√

f 1 3

⎞
⎟⎠

(A29)

to the bordered Hessian, involving the first-order and second-
order derivatives of g with respect to f .

Finally, to perform the limit f → 1, we have to find the
limit of the second-order derivative g′′. To do so, we apply
l’Hospital’s rule in Eq. (A16) and make use of g → 1 and
g′ → 2/3, see Eq. (A22), for f → 1. The limit then becomes

lim
f →1

g′′ = −1

4
lim
f →1

[(
2

f
− 1

)
g′′ − 4

f 2
g′ + 4

f 3
g

]

= −1

4
lim
f →1

g′′ − 1

3
(A30)

and can be algebraically solved, equating to −4/15.
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We are now in a position to evaluate the bordered Hessian
at the stationary point. For α = c/3 and in the limit f → 1,
the bordered Hessian approaches

lim
f →1

H (α = c/3, β, γ )

= 1

10c

⎛
⎜⎜⎝

0 −10c −10c −10c
−10c 2 −1 −1
−10c −1 2 −1
−10c −1 −1 2

⎞
⎟⎟⎠, (A31)

which has the third principal minor

det

⎡
⎣ 1

10c

⎛
⎝ 0 −10c −10c

−10c 2 −1
−10c −1 2

⎞
⎠
⎤
⎦ = − 3

5c
(A32)

and the fourth principal minor

det

⎡
⎢⎢⎣ 1

10c

⎛
⎜⎜⎝

0 −10c −10c −10c
−10c 2 −1 −1
−10c −1 2 −1
−10c −1 −1 2

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = − 27

100c2
,

(A33)
which are both negative. This makes the point α = β = γ =
c/3 a local and, as discussed before, the global minimum
of the Lagrangian function [42]. This point corresponds to
Werner states, which makes the average correlation

� = c

6
(A34)

of the lower boundary of the � − s map the minimal value
of average correlation for which c = α + β + γ is satisfied.
In particular, this makes the value � = 1/6 the lowest pos-
sible value to barely satisfy the separability condition c � 1,
making

� > 1
6 (A35)

a necessary condition for inseparability.
So far, using Lagrange multipliers, we have found a mini-

mum. Since this minimum is the only local extreme, the global
maximum has to be found at the boundary of the parameter
space. Finding the maximum will be the task of the next
subsection.

3. Maximum

The boundary of the parameter space is reached by either
setting α equal to one or γ equal to zero. In the following, we
distinguish between the inseparable, i.e., c > 1, and separable
regime, i.e., c � 1.

When we are in the inseparable regime, we cannot set γ

equal to zero and thus need to set α equal to one. Then due to
the positivity condition, Eq. (16), γ has to be equal to β. This
corresponds to pure states with β = γ = (c − 1)/2.

In the separable regime, α cannot be one, and we thus need
to set γ equal to zero. The resulting average correlation then
reads [27]

�(α, β, γ = 0) = α

4
E (k =

√
1 − β2/α2), (A36)

where E (k) is the complete elliptic integral of the second
kind. The above equation is identical to the sixteenth of the

FIG. 3. Ellipse with semimajor axis α and semiminor axis β

enclosed by a rectangle with side lengths 2α and 2β. The perimeter
of the ellipse is always less than the perimeter of the rectangle except
for β = 0, for which they become equal.

perimeter of an ellipse with semimajor axis α and semiminor
axis β [43]. To find the maximum, we note that an ellipse
with semiaxes α and β is enclosed by a rectangle with side
lengths 2α and 2β, see Fig. 3, that is, its perimeter is never
greater than the perimeter of the enclosing rectangle given by
4α + 4β. The maximal value of average correlation for γ = 0
is thus found by finding the ratio of semiaxes of an ellipse
whose perimeter is closest to that of the enclosing rectangle
with fixed perimeter.

We note that the perimeter of the ellipse becomes identical
to its enclosing rectangle, and is thus maximal, for β = 0, that
is, the ellipse and the rectangle both degenerate to twice a line
with length 2α = 2c; see Fig. 3.

Hence, in the separable regime for α + β + γ = c, aver-
age correlation becomes maximal for α = c and β = γ = 0,
which is precisely the value of average correlation for ξ states

� = c

4
(A37)

with ξ = c.
So, both in the separable and inseparable regime, the

maximal value of average correlation for a fixed value of
c = α + β + γ is found by setting α maximal and β and γ

minimal. This corresponds to ξ states in the separable and to
pure states in the inseparable regime, and thus to the upper
boundary in the � − s map.

The maximal value for which we can still find separable
states, that is, c = 1, is thus given by

� = 1
4 , (A38)

making � > 1/4 a sufficient condition for inseparability.

APPENDIX B: FILLING THE � − s MAP

In this Appendix, we show that the � − s map can be
filled completely, that is, for each pair of values of average
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correlation � and Bell parameter s between the upper and
lower boundary we can find a state. For this purpose, we
consider the λ − p states

ρ̂λp(λ, p) =
∑

k∈{� (±),�(±)}
pk (λ, p)|k〉〈k|

= λ

(
1 + p

2
|� (−)〉〈� (−)| + 1 − p

2
|� (+)〉〈� (+)|

)

+ 1 − λ

4
1̂, (B1)

with the Bell states

|� (±)〉 ≡ 1√
2

(|01〉 ± |10〉) (B2)

and

|�(±)〉 ≡ 1√
2

(|00〉 ± |11〉), (B3)

as well as the probabilities

p� (±) (λ, p) = 1 + λ(1 ∓ 2p)

4
(B4)

and

p�(±) (λ, p) = 1 − λ

4
. (B5)

To examine the behavior of this class of states in the � − s
map, we need to find the singular values of its correlation
matrix Kλp, Eq. (6). For this purpose, we make use of the
linearity of the correlation matrix

(Kλp)i j = tr

⎡
⎣
⎛
⎝ ∑

k∈{� (±),�(±)}
pk|k〉〈k|

⎞
⎠σ̂iA ⊗ σ̂ jB

⎤
⎦

=
∑

k∈{� (±),�(±)}
pktr(|k〉〈k|σ̂iA ⊗ σ̂ jB)

=
∑

k∈{� (±),�(±)}
pk (Kk )i j (B6)

and the correlation matrices of the Bell states

K� (±) = diag(±1,±1,−1) (B7)

and

K�(±) = diag(±1,∓1, 1) (B8)

to derive the correlation matrix

Kλp = 1 + λ(1 + 2p)

4
K� (−) + 1 − λ

4
K�(−)

+ 1 + λ(1 − 2p)

4
K� (+) + 1 − λ

4
K�(+)

= −diag(λp, λp, λ) (B9)

of the λ − p states with singular values α = λ, β = λp, and
γ = λp. The Bell parameter for this class of states is thus
given by

s = 2
√

α2 + β2 = 2λ
√

1 + p2. (B10)
As a final step, we need to compute average correlation

[27]

� = α

4

⎡
⎣1 + 1

2π

∫ 2π

0
dφ

f (φ)√
1 − f (φ)

Arsinh

⎛
⎝
√

1 − f (φ)

f (φ)

⎞
⎠
⎤
⎦.

(B11)

With the help of the singular values, we find that the function

f (φ) = p2, (B12)

Eq. (A5), is independent of φ. As a consequence, average
correlation of λ − p states immediately evaluates to

�λp = λ

4

[
1 + p2√

1 − p2
Arsinh

(√
1 − p2

p

)]
. (B13)

We note that if we set λ = 1, we end up with the average
correlation of pure states [27] with a concurrence p, while if
we fix p and use the Bell parameter given by Eq. (B10), we
can rewrite it to

�λp = s

8
√

1 + p2

[
1 + p2√

1 − p2
Arsinh

(√
1 − p2

p

)]
,

(B14)

making it linear in the Bell parameter s with a gradient that
is larger for increasing values of p. For p = 0, average cor-
relation then becomes �λp = s/8 and thus equal to ξ states,
while for p = 1 it evaluates to �λp = s/(4

√
2) and hence

equal to Werner states [27]. For a general value of p ∈ [0, 1],
its average correlation is a line extending from the completely
mixed state, that is, � = 0 and s = 0, to the upper boundary
given by pure states with concurrence p, that is, Eq. (B13)
with λ = 1.

Since the value for p can be chosen arbitrarily in the inter-
val p ∈ [0, 1], the λ − p states completely fill the � − s map.
Hence, for each pair of values of average correlation � and
Bell parameter s between the upper and lower boundary, we
find at least one state.
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