
PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

DISCOVER: Deep identification of symbolically concise open-form partial
differential equations via enhanced reinforcement learning

Mengge Du ,1 Yuntian Chen ,2,* and Dongxiao Zhang 2,3,†

1College of Engineering, Peking University, Beijing 100871, People’s Republic of China
2Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, Zhejiang 315200, People’s Republic of China

3National Center for Applied Mathematics Shenzhen (NCAMS), Southern University of Science and Technology,
Shenzhen, Guangdong 518000, People’s Republic of China

(Received 24 July 2023; accepted 12 January 2024; published 20 February 2024)

The working mechanisms of complex natural systems tend to abide by concise partial differential equa-
tions (PDEs). Methods that directly mine equations from data are called PDE discovery, which reveals
consistent physical laws and facilitates our interactions with the natural world. In this paper, an enhanced deep
reinforcement-learning framework is proposed to uncover symbolically concise open-form PDEs with little prior
knowledge. Particularly, based on a symbol library of basic operators and operands, a PDE can be represented by
a tree structure. A structure-aware recurrent neural network agent is designed to capture structured information,
and is seamlessly combined with the sparse regression method to generate open-form PDE expressions. All of
the generated PDEs are evaluated by a meticulously designed reward function by balancing fitness to data and
parsimony, and updated by the model-based reinforcement learning. Customized constraints and regulations are
formulated to guarantee the rationality of PDEs in terms of physics and mathematics. Numerical experiments
demonstrate that our framework is capable of mining open-form governing equations of several dynamic
systems, even with compound equation terms, fractional structure, and high-order derivatives. This method is
also applied to a real-world problem of the oceanographic system and demonstrates great potential for knowledge
discovery in more complicated circumstances with exceptional efficiency and scalability.

DOI: 10.1103/PhysRevResearch.6.013182

I. INTRODUCTION

Many phenomena in dynamic natural systems can be de-
scribed by concise and elegant governing equations. There are
two primary methods for exploring these equations: (1) in-
duction, which involves deriving equations directly from data
(e.g., Kepler’s laws were built upon Brahe’s observations [1]);
and (2) deduction, which involves deriving equations with
rigorous mathematics from general rules and principles. How-
ever, as the system’s complexity and nonlinearity increase
and the amount of data multiplies, it becomes increasingly
challenging to derive governing equations for such a system.
Rapid advancements in computer science have enabled artifi-
cial intelligence (AI) to assist scientists in uncovering physical
laws. AI aids and stimulates scientific research by using its
powerful processing capacity to detect patterns and prove con-
jectures [2], although human scientists are still needed for this
process. A salient question is whether AI can autonomously

*ychen@eitech.edu.cn
†zhangdx@sustech.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

mine the governing equations from data without the need for
prior knowledge.

The essence of mining natural laws in dynamic systems
is to identify the relationship between the state variables
and their derivatives in space and time through observations,
so as to extract the governing equations that can satisfy
the laws of physics (e.g., conservation laws) [3]. Sparse
regression is an essential and commonly used method to
accomplish the differential equation discovery task. Sparse
identification of nonlinear dynamical systems (SINDy) [1]
first utilized the sparsity-promoting technique to identify
the most important function terms in the preset library that
conform to the data, in order to obtain an accurate and con-
cise equation representation of dynamic systems of ordinary
differential equations (ODEs). After that, SINDy’s variants
have extended this method to more challenging scenes.
PDE-FIND [4] further explored other more complex and high-
dimensional dynamic systems described by PDEs, such as
the Navier-Stokes equation, using the method of sequential
threshold ridge regression (STRidge). Indeed, state-of-the-art
(SOTA) performance was achieved on various problems, such
as boundary value problems [5], and low-data and high-noise
problems [6–9]. Despite the remarkable success achieved, this
series of methods is limited to a closed and overcomplete
candidate library. On the one hand, the selection of candi-
date functions requires strong prior knowledge; otherwise,
the computational burden will be dramatically increased. On
the other hand, while sparse regression can determine the

2643-1564/2024/6(1)/013182(25) 013182-1 Published by the American Physical Society

https://orcid.org/0000-0003-3987-9254
https://orcid.org/0000-0003-4566-8197
https://orcid.org/0000-0001-6930-5994
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013182&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevResearch.6.013182
https://creativecommons.org/licenses/by/4.0/

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

potential function terms and their coefficients simultaneously,
it is limited to generating linear combinations of these candi-
dates, and the expressive ability is highly restricted.

To address this issue, methods involving an expandable
library and symbolic representation were proposed. PDE-Net
series [10,11] generated new interaction terms based on the
topology of the proposed symbolic neural network. Genetic
algorithms (GA) expanded the original candidate set through
the recombination of gene fragments (i.e., basis function
terms) [12]. Compared to SINDy, expandable-library methods
were capable of generating interactive function terms with
multiplication and addition operations incorporated. However,
it remained deficient in producing the division operations
and compound derivatives, much less discovering open-form
equations. Symbolic genetic algorithm (SGA) [13] further
adopted symbolic representations and represented each func-
tion term with a tree structure. PDEs can be formulated by
the interaction and combination of function terms, and opti-
mized by GA. However, the poor iterative stability caused by
crossover and mutation operations may lead to a significant
increase in computation time.

Uncovering physical laws through the free combinations
of operators and symbols has achieved great progress in
symbolic regression due to its great flexibility and few re-
quirements for prior knowledge. The core of this method
primarily comprises two parts: representation and optimiza-
tion [14]. First, equations are reasonably represented by the
predefined symbols. Second, the generated equations are iter-
atively updated by the optimization algorithms until a desired
level of accuracy is reached. Due to the advantages of the
evolutionary methods in solving optimization problems, many
symbolic regression algorithms based on GA and tree-like
representation of structures were put forward [15–19]. GA
greatly expand the flexibility of representation; however, they
are simultaneously hindered by inefficient optimization and
noise interference. With the progress and development of
deep learning, neural networks have gradually been lever-
aged to reveal common laws in nonlinear dynamic systems.
Their application can be divided into two categories. One
approach is to embed the operations and state variables into
the construction process of the neural network (e.g., replac-
ing activation functions with basic operators), and optimize
the topology by constructing a supervised learning task in
an end-to-end manner [11,20,21]. One representative work,
named the equation learner (EQL) [22], is capable of discov-
ering interpretable mathematical expressions from unknown
dynamic systems with good extrapolation ability. The other is
based on the idea of reinforcement learning (RL). The initial
mathematical expressions are generated by the agent, and
only expressions with larger rewards are retained to update
the agent, which in turn promotes better expressions [23,24].
Compared with GA, gradient-based methods in deep learning
show great superiority in searching efficiency, but are also
insufficient in the diversity of representation. Recently, some
attempts to combine GA and RL also indicate excellent po-
tential in solving real-world regression problems [25,26]. Few
studies, however, focus on the PDE discovery task. Based on
the structure of EQL, Lu et al. [27] extended it to systems
governed by ODEs or PDEs when only partial state obser-
vations are available. Zhang et al. [28] further proposed two

variants of stacked EQL (SEQL) and hyper EQL (HEQL)
to discover PDEs with varying coefficients. However, these
methods are gradient-based methods with backpropagation
and are only applicable to find differential symbolic models.
Methods designed for the symbolic regression task, such as
deep symbolic regression (DSR) [24], focus on identifying
a single regression target, and cannot be used to discover
governing equations containing abundant physical informa-
tion (including complex partial differential terms). Due to the
focus on fitting the expressions to the measurements, rele-
vant algorithms are liable to suffer from overfitting problems
caused by noisy data and generate redundant terms.

To ameliorate the limitations of fixed candidate libraries
and accelerate the search process, we propose a framework,
Deep Identification of Symbolically Concise Open-form
PDEs Via Enhanced Reinforcement-learning (DISCOVER),
which enables the efficient discovery of quantitatively accu-
rate governing equations from complex nonlinear systems,
while including the minimal possible number of function
terms. Specifically, we design a structure-aware long short-
term memory (LSTM) agent to generate symbolic PDE
expressions. It combines structured input and monotonic
attention to make full use of historical and structural infor-
mation. Compared to random generation, equations generated
in an autoregressive manner are more consistent with physical
laws and easier to optimize with higher efficiency. STRidge
is also well combined to determine the coefficients of func-
tion terms. To avoid generating unreasonable expressions,
customized constraints and regulations are designed as priors
based on the domain knowledge of physical and mathematical
laws. During the evaluation stage, a new reward function is
introduced to simultaneously ensure the parsimony and fitness
to observations of discovered equations. Enhanced by struc-
tural information and physical priors, the proposed framework
improves the quality of the samples generated by the agent.
Simultaneously, it considerably improves the optimization ef-
ficiency of reinforcement learning in discrete symbol spaces.

Conceptually, this framework seamlessly combines the
flexibility of symbolic mathematical representation with the
efficiency of reinforcement-learning optimization. Experi-
ments on multiple canonical dynamic systems and nonlinear
systems in the phase separation field demonstrate that the
proposed framework is capable of discovering concise PDEs
in open form. Its flexibility and computational efficiency have
also been significantly improved compared to sparse regres-
sion methods and GA-based methods, respectively. PDEs
even with fractional structure and compound high-order func-
tion terms can be accurately identified. Finally, our framework
is tested on real-world oceanographic data for the discovery of
subgrid forcing, which is an unsolved problem with practical
applications.

II. METHODOLOGY

A nonlinear dynamic system can usually be represented by
a parameterized PDE given by

ut = F (u, ux, uxx, . . . , x, ξ) (1)

where u is the observations of interest collected from experi-
ments or nature; ut is the first-order time-derivative term; and

013182-2

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 1. Overview of the DISCOVER framework. (a) The main working process includes generation and evaluation. The symbol library is
composed of operators (� = {+, −, ×,÷, ∧2, ∧3, ∂, ∂2, ∂3, sin, cos, log} and operands (E = {u, x, t, const}). The generated PDE traversal
sequence can be represented by a unique corresponding PDE tree. Rε is the (1 − ε) quantile of the reward in a batch, and R∗ is the predefined
reward threshold to terminate the search process. T refers to the generated PDE expression set that conforms to the laws of physics and
mathematics, while T ′ represents the PDE expressions whose rewards are greater than the threshold Rε , which are also the final training samples
utilized to update the agent. (b) Smoothing procedures (the preprocessing part), in which the fully connected neural network is utilized to fit the
noisy and sparse observations, so as to smooth data and generate metadata on the rest of the spatial-temporal domain. Numerical differentiation
or automatic differentiation is incorporated to evaluate the open-form derivatives.

F is a nonlinear function on the right-hand side, composed
of u and its spatial derivatives with different orders (e.g., ux

and uxx). The coefficients of those candidate terms in F can
be represented by ξ .

Uncovering PDEs from data by DISCOVER is composed
of two parts: generation and evaluation [Fig. 1(a)]. The main
purpose of the generation process is to first establish a rea-
sonable symbol library and a set of rules for representing
PDEs, and then generate diverse PDE expressions through the
agent. A complete PDE expression includes two components,
which are the PDE traversals with a tree structure and coef-
ficients of function terms. The PDE traversals are produced
autoregressively by sampling the probability distribution of
the agent’s output, which is constrained to ensure compliance
with physical and mathematical laws. Function terms are iso-
lated from the PDE tree and, subsequently, their coefficients
are determined through the sparsity-promoting method. Dur-
ing the evaluation stage, the meticulously designed reward
function is utilized to evaluate the generated PDE candidates
that comply with the customized regulations. Then, the PDE
candidates with higher rewards are selected as the training
samples. The agent is iteratively updated with the risk-seeking
policy gradient method to generate better-fitting expressions
until the termination condition is met.

Note that observations collected from experiments may
be sparse and noisy in real application scenarios. The fully
connected neural networks are built to fit and smooth the
available data, and the metadata are generated to assist the

evaluation of derivatives [29] and noise resistance [Fig. 1(c)].
In essence, the neural network (NN) in DISCOVER is built as
a surrogate model to learn the mapping relationship between
spatial-temporal inputs and states of interest. The implicit
relationship is then analyzed for interpretability and converted
into a human-readable format (PDE).

In aggregate, DISCOVER can identify open-form govern-
ing equations directly from the data, while also possessing
high efficiency and scalability. The high efficiency is due to
three innovations of our framework: (1) DISCOVER utilizes
a structure-aware agent to produce PDE expressions with a
tree structure; (2) the coefficients of PDEs are determined by
deconstructing the equation tree and combining the sparsity-
promoting method to avoid multiple constant optimization
processes; and (3) the whole optimization process of gen-
erating PDE expressions is neural-guided and parallelizable.
In terms of scalability, the symbol library can be easily ex-
panded, and customized constraints and regulations can be
incorporated to accelerate the search process according to
prior knowledge. Additional details are discussed below.

A. Generating the preorder traversals
of the PDE expression trees

PDE expression tree. A PDE can be represented by a binary
tree via symbolic representation, and all of the tokens on the
nodes are selected from a predefined library L [Fig. 2(a)]. The
library consists of two categories of symbols: operators (the

013182-3

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 2. Example of generating a candidate expression ut = uxx − u + 0.1250(u + u)3 for the Chafee-Infante equation. (a) Procedures of
generating preorder traversal of PDE expression trees by the structure-aware LSTM agent based on symbolic representation. The predefined
symbol library consists of all of the operators and operands to generate the open-form PDEs. Local information and global information are both
incorporated during the generation process. The former serves as inputs to the agent explicitly, and the latter is utilized by means of monotonic
attention in the form of latent variables of aggregated historical information. The output of the LSTM at each time step is the probability
distribution of all tokens in the library, and then one of the tokens is sampled based on it. The preorder traversal sequence is produced
aggressively until the terminal condition is satisfied. (b) The evolution process of local information and global information is utilized during
the generation process. Local information includes the parent node and sibling node of the current token in the corresponding expression tree.
Global information takes historical information in the past into account. (c) The PDE expression tree is reconstructed from the corresponding
preorder traversal. (d) Split the expression tree into subtrees according to (+, −) operators at the top of the tree, and traverse to calculate each
term’s value. (e) Calculate the coefficients of the function terms based on STRidge.

first two rows) and operands (the bottom row). Compared with
the symbolic regression problem, our library also introduces a
differential operator with different orders to calculate the time
and space derivatives of state variables. Note that since the
LSTM agent is adopted in DISCOVER, which only produces
sequential data step by step, preorder traversal sequences of
PDE expression trees are generated in the generation part.

For a PDE expression tree, the interior nodes are all op-
erators, the leaf nodes are all operands, and their arities are
known. For example, the partial derivative ∂ is a binary opera-
tor with two children, and the space input x is an operand with
zero children. This property ensures that each expression tree
has a unique preorder traversal sequence corresponding to it.
As a consequence, we can conveniently generate batches of
preorder traversal sequences by means of the LSTM agent,
instead of the expression trees. An expression tree and its
preorder traversal can be represented as τ . The ith token in the

traversal can be represented as τi and corresponds to an action
under the current policy in reinforcement learning. When gen-
erating τi at the ith generation step, the output of the LSTM
will be normalized to generate a probability distribution of
all tokens in L. The probability distribution is conditioned
on the preceding generated tokens and can be represented as
p(τi|τ1:i−1; θ), where θ refers to the parameters of the agent.
τi is then sampled based on this distribution. A full binary tree
is constructed when all leaf nodes in the expression tree are
operands, and the generation process is terminated.

Structure-aware LSTM agent. The common LSTM treats
the generation of PDE expressions as a sequence generation
problem, which leads to two significant challenges. Firstly,
the common LSTM fuses and couples historical information
in a memory cell, with the weights of this cell shared through-
out the sequential generation process. This mechanism
induces a memory compression problem, which hinders the

013182-4

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

preservation of structured information. Secondly, the common
LSTM uses the output of the previous step as the input for the
subsequent prediction. However, the structured information
that can be conveyed by this input is limited for the PDE
expressions with a tree structure. Consequently, the informa-
tion transfer and storage mechanism of the common LSTM
restricts its ability to handle long sequences and structured
information.

To address these issues and effectively generate PDE ex-
pression trees that have strong structural information, we
propose a structure-aware architecture for the LSTM agent.
Specifically:

(1) During the generation of the current node’s token, we
take its parent node and sibling node into the LSTM as inputs
to convey the local information [24]. Figure 2(b) provides the
entire evolution process of generating a candidate expression
represented by a PDE tree. Taking the eighth time step as
an example, the inputs are the parent node (+) and sibling
node (−), instead of the previously sampled token u. It can
be seen from the corresponding PDE tree that the token u is
far away from the output of the current position, thereby not
providing effective structural information. In contrast, the par-
ent and sibling nodes indeed offer effective local information.
Particularly, when the parent node or sibling node does not
exist [as in step 1 in Fig. 2(b)], an empty token is assigned to
the corresponding position.

(2) The monotonic attention mechanism is employed to
enhance the agent’s ability to capture global dependencies and
avoid the loss of long-distance information during the step-
by-step transmission process. Essentially, the structure-aware
LSTM uses the attention mechanism to aggregate historical
information (hidden states at each timestep) directly, rather
than retrieving the context from the memory cell. The details
of the monotonic attention layer are provided in Appendix
A 2. As shown in Fig. 2(a), the output of the monotonic atten-
tion layer is further normalized to obtain the output probability
of each element in the library, and the final output at the
current time step is obtained after sampling.

Constraints and regulations. Generating PDE expression
sequences in an autoregressive manner without restrictions
tends to produce unreasonable samples. To reduce the search
space and time consumption, we design a series of constraints
and regulations based on mathematical rules and physical
laws.

Constraints are imposed on the agent during the generation
of preorder traversal sequences [24,26] and can be divided
into two categories, including: (1) complexity limits of PDE
expressions (e.g., the total length of the sequence shall not
exceed the maximum length); and (2) relationship limits be-
tween operators and operands, e.g., the right child node of
partial differential operators (e.g., ∂) must be space variables
(e.g., x), and the left child node of ∂ cannot be space variables.
In the specific implementation process, these constraints are
applied by directly adjusting the categorical distribution over
the symbol library prior to the sampling process. For example,
the probability of tokens that violate the physical laws is
directly set to zero. As the length of the generated sequence
approaches the preassigned maximum length constraint, the
probability of generating operands is increased to accelerate
the construction of a complete PDE tree.

In addition to imposing restrictions during the generation
phase, we also establish a series of regulations to double
check the generated equations and withdraw the unreasonable
expressions, e.g., the coefficient of the function term is too
small or there are overflow errors. Note that regulations are
aimed at removing unreasonable function terms, which is
conducive to the rationality and simplicity of uncovered equa-
tions. This operation is similar to the replacement operations
in genetic algorithms (i.e., the function term is set as 0), which
to a certain extent increases diversity of generated equations.
Applying these constraints and regulations is convenient and
extensible, and can also be incorporated with other domain
knowledge for new problems. More detailed descriptions can
be found in Appendix A 3.

B. Determine coefficients of the PDE expression

Reconstruct and split the expression tree. After obtaining
the preorder traversal sequence of the PDE, we first need to
reconstruct the sequence into the corresponding tree structure
according to the arities of operators and operands. Then, we
can split the PDE tree into subtrees (i.e., function terms),
based on the plus and minus operators at the top of the ex-
pression tree [Figs. 2(d) and 2(e)]. Subsequently, we solve
for the value of each function term over the entire spatiotem-
poral domain. (u + u)3 in Fig. 2(b) is taken as an instance.
We traverse the subtree from bottom to top in a postorder
traversal manner (1©-> 2©-> 3©), and then perform operations
at each parent node (operators). At this time, the values of its
corresponding child nodes have already been calculated.

STRidge. STRidge is a widely used method in sparse re-
gression, which can effectively determine nontrivial function
terms and identify a concise equation by using the linear fit
to observations. It can be utilized to solve for the coefficients
of each function term based on the results in the previous step
[Fig. 2(e)]. Note that the constant 1 is incorporated as a default
constant term,

ξ = arg min
ξ

∣∣�(u, x) · ξ − ut

∣∣2

2 + λ
∣∣ξ ∣∣2

2 (2)

where λ measures the importance of the regularization term.
In order to prevent overfitting, we also set a threshold tol , and
function terms with coefficients less than tol will be directly
ignored. Note that our method aims to solve the coefficients
of function terms, and the possible constants in the function
terms are not taken into consideration, which is also rare in
PDEs. This setting is more efficient and conducive to solv-
ing the PDE discovery task. For extremely special situations,
learnable constants can also be seamlessly incorporated into
our framework.

C. Training the agent with the risk-seeking
policy gradient method

Reward function. A complete representation of the gener-
ated PDEs, including function terms and their coefficients,
has been obtained through the above procedures. In order
to effectively evaluate the generated PDE candidates, we de-
sign a reward function for the PDE discovery problem that
comprehensively considers the fitness of observations and the

013182-5

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

parsimony of the equation. Assuming that the generated PDE
expression is g, it is formulated as follows:

R = 1 − ζ1 × n − ζ2 × d

1 + RMSE
(3)

RMSE =
√√√√ 1

N

N∑
i=1

(uti − g(ui, xi))2 (4)

where n is the number of function terms in the governing
equation; d is the depth of the generated PDE expression tree;
and ζ1 and ζ2 are penalty factors for parsimony, which are
generally set to small numbers without fine tuning. In the
default hyperparameter setting, the two penalty factors are
fixed at 0.01 and 0.0001, respectively, and remain consistent
across all of the numerical experiments. Even in special cases
in which the impact of noise is significant, only a minor ad-
justment in magnitude is necessary; and N denotes the number
of observations. It can be seen that the root mean squared error
(RMSE) in the denominator evaluates the fitness of the PDE
candidates to the data. 1/(1 + RMSE) enables normalization
of the reward value to a range of 0 to 1. When the reward is
equal to 1, the values on both sides of the equation exhibit
precise equivalence, thereby resulting in minimized error.
Such a design avoids the agent falling into exploring diffi-
culties caused by sparse reward distribution and is widely
used in symbolic regression tasks [23,24]. The numerator
is an evaluation of the parsimony. The former is designed
to avoid overfitting caused by redundant terms, especially
when noisy observations are available. The latter is primarily
to prevent unnecessary structures. The free combinations of
symbols lead to many representations that, while numerically
equivalent, exhibit different levels of complexity, such as ux

and (u2/u)x.
Risk-seeking policy gradient method. In the task of PDE

discovery, the search space inherently comprises a discrete set
of various mathematical expression combinations. Moreover,
the nondifferentiable relationship between the rewards and
the agent’s parameters renders traditional optimization meth-
ods based on gradient descent inapplicable. Consequently,
the deep reinforcement-learning training strategy is adopted.
Specifically, the generated PDE expression sequences are
equivalent to the episodes in RL, and the generation process of
each token corresponds to the selection of actions. It is worth
noting that the total reward is not the sum of each action with
a discount factor, but is instead based on the evaluation of the
final sequence. The policy πθ refers to the distribution over
the PDE expression sequences p(τ |θ). The standard policy
gradient is a risk-neutral method, with the goal of maximizing
the expected return of the generated policy.

However, for PDE discovery, our intention is to ensure that
the best-case sample is adequate for the problems, which is
similar to symbolic regression [30,31] and neural architecture
search (NAS) [32]. By referring to the risk-seeking policy
gradient method in DSR [24], we train agents to improve the
best-case performance rather than the average performance, to
alleviate the mismatch between the objective and performance
evaluation. The idea of this method comes from a well-known
risk measure, conditional value at risk (CVaR), defined as
CVaRε(R) = E[R | R � qε(R)], where qε is the ε quantile of

the rewards. It is designed to improve the worst samples in
the current policy and avoid risks, and is usually applied in
vehicle driving or finance [33–35]. In contrast, the optimiza-
tion objective of risk seeking is the expectation of the (1 − ε)
quantile of the rewards q̃ε(R). Its return is given by

Jrisk(θ ; ε)
.= Eτ∼p(τ |θ)[R(τ) | R(τ) � q̃ε(R)]. (5)

The gradient of the risk-seeking policy gradient can be esti-
mated by

∇θJrisk (θ ; ε) ≈ λpg

εN

N∑
i=1

[R(τ (i)) − q̃ε(R)]

· 1R(τ (i))�q̃ε (R)∇θ log p(τ (i) | θ) (6)

where N denotes the total number of samples in a mini batch;
λpg measures the importance of rewards; and 1x represents a
conditional judgment, which yields a return of 1 when the
condition denoted by x is met, and 0 when it is not. Note
that q̃ε is also chosen as the baseline reward and varies by
the samples at each iteration. In addition, based on maximum
entropy reinforcement learning [36], the entropy value of each
output action under the current policy is also required to be
maximized to prevent generating a certain action continu-
ously. The gradient of entropy can be expressed by

∇θJentropy (θ ; ε) ≈ 1

εN

N∑
i=1

(λHH(τ (i) | θ)) (7)

where λH is the temperature parameter that controls the rel-
ative importance of the entropy term against the reward. By
combining these two parts, the agent can be optimized to it-
eratively improve the best-case performance, while increasing
the exploration ability to avoid getting stuck in local optima.

To sum up, the steps of DISCOVER mining PDEs mainly
consist of three steps: (1) we first build a symbol library and
define that a PDE can be represented as a tree structure. A
structure-aware recurrent neural network agent is designed to
generate the preorder traversal of PDE expression trees. It
combines structured inputs and monotonic attention to capture
the structural information; (2) the expression trees are then
reconstructed and split into function terms, and their coeffi-
cients can be calculated by the sparse regression method; and
(3) all of the generated PDE candidates are filtered by physi-
cal and mathematical constraints, and subsequently evaluated
by a meticulously designed reward function considering the
fitness to data and the parsimony of the equation. We adopt
the risk-seeking policy gradient to iteratively update the agent
to improve the better-fitting expressions until the best-case
expression meets the accuracy and parsimony requirements
that we set in advance. The first two steps correspond to the
generation part, and the third step introduces the evaluation
part (Fig. 1). In the next section, we will demonstrate the
superiority of DISCOVER through some canonical problems.

III. EXPERIMENTS

A. Discovering open-form PDEs of canonical dynamic systems

We verified the accuracy and efficiency of DISCOVER in
mining open-form PDEs containing strong nonlinearities with
little prior knowledge. Specifically, we utilized the study cases

013182-6

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

TABLE I. Summary of discovered results for different PDEs of mathematical physics. The subscripts m and n denote the number of
discretizations. For noisy measurements, 10% noise is added for the KdV, Burgers’, and Chafee-Infante equations, and 1% noise is added for
PDE_divide and PDE_compound.

PDE systems PDE discovered (clean data) Error (clean, noisy) Data discretization

KdV ut = −0.5001(u × u)x − 0.0025uxxx 0.01 ± 0.01%, 1.0 ± 1.41% x ∈ [−1, 1)m=512, t ∈ [0, 1]n=201

Burgers ut = −1.0010uux + 0.1024uxx 1.25 ± 1.63%, 1.59 ± 0.41% x ∈ [−8, 8)m=256, t ∈ [0, 10]n=201

Chafee-Infante ut = 1.0002uxx − 1.0008u + 1.0004u3 0.05 ± 0.03%, 1.88 ± 0.54% x ∈ [0, 3]m=301, t ∈ [0, 0.5]n=200

PDE_compound ut = 0.5002(u2)xx 0.04 ± 0%, 0.05 ± 10% x ∈ [1, 2)m=301, t ∈ [0, 0.5]n=251

PDE_divide ut = −0.9979ux/x + 0.2498uxx 0.15 ± 0.09%, 0.22 ± 0.25% x ∈ [1, 2)m=100, t ∈ [0, 1]n=251

from previous studies [4,8,13,37], including Burgers’ equa-
tion with nonlinear interaction terms, the KdV equation which
has high-order derivatives, the Chafee-Infante equation with
exponential terms, and the viscous gravity current equa-
tion (PDE_compound) with compound function terms and the
equation including a fractional structure (PDE_divide). We
use these equations to test the performance of DISCOVER and
compare it against SGA [13], which is the latest PDE discov-
ery model to handle complex open-form equations based on
GA. The results show that our framework is not only accurate,
but also computationally efficient and stable.

Study cases. Five canonical models of mathematical
physics include: (1) The KdV equation: It was jointly dis-
covered by Dutch mathematicians Korteweg and De Vries to
describe the one-way wave on shallow water [38]. It takes
the form of ut = auux + buxxx, where a is set to −1, and
b is set to −0.0025. (2) Burgers’ equation: As a nonlinear
partial differential equation that simulates the propagation
and reflection of shock waves, Burgers’ equation is widely
used in numerous fields, such as fluid mechanics, nonlinear
acoustics, gas dynamics, etc. [39]. We consider a 1D vis-
cous Burgers’ equation ut = −uux + vuxx, where v is equal
to 0.1. (3) The Chafee-Infante equation: Another 1D nonlin-
ear system is ut = uxx + a(u − u3) with a = −1, which was
developed by Chafee and Infante [40]. It has been broadly
employed in fluid mechanics [41], high-energy physical pro-
cesses [42], electronics [43], and environmental research
[44]. (4) PDE_compound and PDE_divide: These two equa-
tions are initially put forward in SGA and used to demonstrate
that our framework is capable of mining open-form PDEs.
PDE_compound with equation form ut = (uux)x is proposed
to describe viscous gravity currents with a compound function
[45]. PDE_divide with equation form ut = −ux/x + 0.25uxx

contains the fractional structure that conventional closed-
library-based methods cannot handle.

The default hyperparameters used to mine the above PDEs
are provided in Appendix C. Table I shows that under the
premise of little prior knowledge, DISCOVER can uncover
the analytic representation of the various physical dynamics
mentioned above, and the discovered equation form is accu-
rate and concise even with Gaussian noise added. Figure 3
presents the performance of DISCOVER in the mining equa-
tion under the condition of noisy and sparse data. For complex
equations, there will be redundant or incorrect terms in the
generated expressions during iteration [e.g., function term u
in Burgers and PDE_divide; Figs. 3(b) and 3(e)]. However,
since model-based optimization is directional, more accurate
expressions will be generated as rewards of better cases in-
crease, and fewer redundant terms appear [Figs. 3(a)–3(e)].
Furthermore, a risk-seeking policy gradient is utilized, and
DISCOVER is able to find the optimal result with only the
best-case performance considered. Meanwhile, more avail-
able data collected contribute to a more accurate surrogate
model, and then it is more likely to uncover the correct equa-
tion [Fig. 3(f)]. More discussion on noise and data sparsity
can be found in Appendix G 1. Note that the KdV equation,
Burgers’ equation, and the Chafee-Infante equation can be
discovered correctly by conventional sparse regression meth-
ods and genetic algorithms, but not for the PDE_compound
and PDE_divide equations. This is primarily because these
methods rely on a limited set of candidates, and cannot handle
equations that contain compound terms or fractional struc-
tures. The result demonstrates that our proposed method can
directly mine open-form equations from data, which offers
wider application scenarios and practicability.

B. Comparisons to the GA-based method

At the expense of flexibility and representation ability,
common PDE discovery methods, such as SINDy, utilize

013182-7

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 3. Discovery process of some canonical physical problems with noisy and sparse measurements. [(a)–(e)] The evolution of re-
wards and function terms of the best-case expression of (a) the Chafee-Infante equation, (b) Burgers’ equation, (c) the KdV equation,
(d) PDE_compound, and (e) PDE_divide. Ten percent noise in the first three equations is used, and 1% noise is used in the last two equations.
The figure on the left denotes the evolution of the best reward so far and the reward of the top ε expressions (training samples). The figure on
the right denotes the evolution of function terms of the best case in the current iteration. Function terms that occur the most are individually
marked with colored dots. The gray dashed-line marks the iteration where the expression with maximum reward appears. (f) Relative error
of different physical systems with different volumes of data. Squares marked with a solid black line indicate that the correct form of the
equation could not be found.

a closed library and sparse regression to uncover physical
laws. Since the closed library cannot cover or generate all
of the complex structures, methods based on a closed library
are deficient in identifying complex equation forms, such as
PDEs with fractional structures. For fairness of comparison,
the latest symbolic PDE discovery method SGA is taken as
an example, which is also capable of uncovering the equa-
tion representations of these five physical dynamics correctly.
Specifically, we will compare the specific performance (time
consumption and accuracy) of DISCOVER based on RL and
SGA based on GA. Note that all of the experiments were
replicated with five different random seeds for each PDE.
As shown in Table II, the left column represents the error
of coefficients when all of the function terms are correctly

identified. Under the condition of noise-free data, both SGA
and DISCOVER can mine the correct equation with a small
error. In DISCOVER, the result of the equation term is
truncated at the boundary. Consequently, the corresponding
coefficients are relatively more accurate since the boundary er-
ror caused by numerical differentiation is further reduced. The
right column of Table II presents the time consumed by the
two methods to identify the optimal equation. It can be seen
that, in addition to the Chafee-Infante equation, our method
uses only approximately 40% of the time cost by SGA(fast)
(a more efficient version) on average, which has higher com-
putational efficiency. This is mainly because our method is
model based, and the entire optimization process is directional
with a positive gain. As the iteration proceeds, the generated

013182-8

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

TABLE II. Comparison of the coefficient error of discovered results and running time for DISCOVER and SGA.

Coefficient error Running time (s)

DISCOVER SGA DISCOVER SGA SGA(fast)a SGA(w/o u)b

KdV 0.01 ± 0.01% 0.02 ± 0.03% 243.66 1464.80 890.50
Burgers 1.25 ± 1.63% 1.26 ± 1.62% 206.76 495.18 423.8
Chafee-Infante 0.05 ± 0.03% 0.05 ± 0.03% 67.23 27.70 20.12 >1000
PDE_compound 0.04 ± 0% 1.94 ± 0% 13.31 604.10 557.20
PDE_divide 0.15 ± 0.09% 0.15 ± 0.09% 1259.53 2046.24 1466.51

aSGA(fast) is an optimized version of the original article code, with a faster computation speed.
bSGA(w/o u) represents the SGA(fast) version without prior knowledge u provided in advance.

equations become increasingly reminiscent of the authentic
expression. Additional details of the optimization process can
be found in Appendix F. In contrast, SGA expands the di-
versity of the generated equation representations primarily
through crossover and mutation of gene fragments, which is
more stochastic and uncontrollable. Although it facilitates the
search for more complex equations, more computational time
is also required.

In the process of uncovering the Chafee-Infante equation,
SGA takes u as a default function term (this information
itself is known and easily accessible). By introducing this
prior knowledge, the optimal form of the equation can always
be easily found in the first round of iterations. Without this
knowledge, however, SGA is unable to identify the correct
form of the equation within 300 iterations (>1000 s). The
main reason for this problem is that SGA is modeled based on
function terms that are randomly generated, and each function
term is represented by a multilayer tree structure, while the
term u is represented as a one-layer root node. In other words,
the way that function terms are defined makes SGA prone
to produce complex tree structures. However, DISCOVER
models the equation as a whole with a preorder traversal
sequence and then partitions it according to the operators (“+”
or “–”). The symbol sequence is autoregressively generated
and, consequently, both simple and complex function terms
can be handled easily.

The above analysis reveals that the proposed method ex-
hibits an obvious improvement in methodology compared
to SGA, which equips DISCOVER with the capacity to ad-
dress practical applications. This is principally manifested in
the following aspects: (1) Our framework proposes a more
reasonable way of generating PDE samples. The sequence
generation with a structure-aware LSTM agent is more effi-
cient than constructing PDE trees separately. Meanwhile, our
framework can seamlessly incorporate potential physical pri-
ors as constraints in the generation process, thereby reducing
the search space. (2) Neural-guided reinforcement learning is
adapted for the PDE discovery task to effectively learn from
high-quality expressions during the iterative process, promot-
ing the generation of better-fitting samples. Conversely, the
optimization process of SGA exhibits greater randomness
and instability. (3) Owing to its efficiency and flexibility,
DISCOVER is more adept at mining governing equations in
complex real-world scenarios, such as high-dimensional and
multi-variable nonlinear systems with large amounts of data.
A real-world discovery example in an oceanographic system
will be further demonstrated in subsequent experiments.

C. Discovering complex open-form PDEs of phase separation

To demonstrate that the proposed DISCOVER frame-
work is capable of mining the high-dimensional PDEs with
high-order derivatives, we introduce the Allen-Cahn and
Cahn-Hilliard equations, which are firmly nonlinear gradient
flow systems and frequently used to describe phase separation
processes in fluid dynamics [46–48] and material sciences
[49,50].

The Allen-Cahn equation. The 2D reaction-diffusion sys-
tems considered here can be represented by ut = ε2u −
f (u), where ε is a small constant value representing the
interfacial thickness, and ε2 is set to 0.001; u denotes the dif-
fusion term; and f (u) = u3 − u represents the reaction term.
For this example, Laplace operators appear in the equation in
addition to the increase in spatial dimensionality. To ensure
that the PDEs mined by DISCOVER conform to the physi-
cal laws, we set a constraint on the spatial symmetry of the
generated equations. It requires that the order of the partial
derivatives with respect to the spatial inputs x and y must
be the same for the right-hand side (RHS) of the equation,
i.e., the number of occurrences of x and y in the traversal
sequence must be the same. According to the visualization of
the trend of best-case reward and top ε rewards, the best-case
reward soon reaches 0.95, and as the iteration proceeds, the
reward makes four large jumps in total [Fig. 4(a)]. It can
also be observed that better-fitting expressions increase as the
training progresses, and their discovered equation gradually
approaches the ground truth [Fig. 4(b)]. Specifically, the dis-
tribution of the RHS of the equations approaches the true
distribution, and the gap between the left-hand side (LHS)
term ut and the RHS term (i.e., the residual) decreases and
finally approaches zero [Fig. 4(d)]. Figure 4(c) illustrates the
evolution of the equation terms of the best-case expression
during the iterations. As the optimization process proceeds,
the gradual increase in the number of equation terms included
in the correct equation form proves that the expressions gen-
erated by the agent are becoming increasingly accurate, while
other incorrect function terms gradually disappear.

The Cahn-Hilliard equation. With the fourth order of
derivatives and more complicated compound terms, we con-
sider a specific form of Cahn-Hilliard equation ut = (u3 −
u − κu), where κ = 0.5 and denotes the surface tension
at the interface. The internal term u3 − u − κu within the
Laplace operator denotes the chemical potential and mani-
fests a complex form when fully expanded. For this reason,
while retaining the symmetric constraint, we introduce a new
Laplace operator in the symbol library and compare it with

013182-9

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 4. The optimization process and intermediate results at the 40th time step of discovering the Allen-Cahn equation. (a) The distribution
of the best-case reward and top ε fraction of rewards. 1©– 4© represent the positions where the reward goes through a sharp jump. (b) The
Gaussian kernel density estimate of the top ε fraction of rewards at 1©– 4©. (c) Evolution of the function terms of the best expression. The Y
axis corresponds to the 90 most frequent equation terms with decreasing occurrences from the top to the bottom. Each point represents the
corresponding function term appearing in the best-case expression produced by the agent at the current iteration step. The four most-frequently
occurring equation terms are u, uxx , uyy, and u3, respectively, which are taken out separately and correspond to function terms of the correct
equation form. (d) The change of the RHS of the mined PDE and the difference between the RHS and LHS (ut), which is the residual of the
equation.

the default library configuration. Results show that the reward
with the Laplace operator grows faster and can uncover the
true equation form in 194th iterative steps [Fig. 5(a)]. How-
ever, by the default configuration, the correct equation form
can be identified in 903rd iterative steps, which takes more
than four times as many iterative steps. With the updating
of the agent, the proportion of expressions with higher re-
wards gradually increases [Fig. 5(b)], and generated function
terms gradually approach the true equation [Fig. 5(c)]. Note
that equation term u mainly appears in the beginning stage
of training, and its occurrence gradually decreases with bet-
ter expressions learned. The transformations can be further
observed through the evolution process of RHS terms and
the residual [Fig. 5(d)]. Results demonstrate that our frame-
work can seamlessly incorporate possible prior knowledge by
expanding constraint and regulation systems or the symbol

library to facilitate the searching process and uncover the
underlying physical laws in dynamic systems with strong
nonlinearity.

These two examples illustrate that DISCOVER can han-
dle high-dimensional and high-order dynamical systems and
conveniently introduce new constraints and operators to ac-
celerate the discovery process with great scalability.

D. Comparisons with other PDE discovery methods

As shown in Table III, we have presented whether other
methods can identify the equations from data mentioned in
this article and summarized the boundaries of different meth-
ods. Closed library methods, including PDE-FIND [4] and
PDE-NET [10], and expandable library methods, including
PDE-NET 2.0 [11], EPDE [37], and DLGA [12], can find

013182-10

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 5. The optimization process and intermediate results at the 250th time step of discovering the Cahn-Hilliard equation. (a) The
distribution of the best-case reward and top ε fraction of rewards. 1©– 4© represent the positions where the reward goes through a sharp jump.
(b) The Gaussian kernel density estimate of the top ε fraction of rewards with the Laplace operator at 1©– 4©. (c) Evolution of the function terms
of the best expression. The Y axis corresponds to the 100 most frequent equation terms with decreasing occurrences from the top to the bottom.
The four most frequently occurring equation terms are (u), u, u, and (u3), respectively. (d) The change of the RHS of the mined PDE
and the difference between the RHS and LHS (ut), which is the residual of the equation.

the linear combination of possible candidate function terms
in the library and are capable of handling the KdV, Burgers’,
Chafee-Infante, and Allen-Cahn equations. The difference is
that the closed library depends more on prior knowledge
to ensure that all of the function terms that may appear in
the equation are included in the library. Weak-form meth-
ods [7,51] typically employ space-time integration by parts
to substitute the evaluation of pointwise derivatives. These
methods possess inherent advantages in discovering equa-
tions that contain compound terms, especially when handling
noisy data. Essentially, weak-form methods are still built on a
complete candidate library and sparse regression, which leads
to two problems when dealing with equations that may contain
complex terms: (1) Prior knowledge is often required to preset
the effective trial functions and the number of integrals in
advance. Or function terms, such as (ux)2, cannot be covered.
Meanwhile, a sufficiently large library could result in an un-
affordable computational burden. (2) Weak-form methods are
inadequate for handling equations with compound terms that

have nested structures or multiple complex terms within them.
Therefore, the ability of weak-form methods to mine com-
plex governing equations is limited, especially in real-world
applications without prior knowledge. Ensemble-SINDy (E-
SINDy) employs statistical techniques, such as bootstrapping
to achieve robust identification of both ODE and PDE systems
and facilitates further uncertainty quantification [8]. While
library bagging allows for the use of a larger candidate library,
this method still cannot eliminate the dependence on prior
knowledge. The integration of these methods with symbolic
representation holds great potential and requires further in-
vestigation in future research.

The methods with symbolic representation, including SGA
[13], DSR [24,26], and DISCOVER, cannot only uncover
the conventional equations, such as the KdV equation, but
also the complex PDEs with compound terms and fractional
structures, and symbolic regression tasks. Among them, SGA
utilizes GA to expand the search space, but is less efficient and
currently confined to 1D dynamics and clean data. DSR and

013182-11

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

TABLE III. Comparisons of DISCOVER and different methods on PDE discovery and symbolic regression tasks.

Correct PDE-FIND PDE-NET Weak EPDE DLGA E-SINDy SGA DSR
Equations expressions [4] [10,11] form [7,51] [37] [12] [8] [13] [24,26] DISCOVER

KdV ut = −uux − 0.0025uxxx
√a √ √ √ √ √ √ √–b √

Burgers ut = −uux + 0.1uxx
√ √ √ √ √ √ √ √– √

Chafee-Infante ut = uxx + u − u3 √ √ √ √ √ √– √ √
PDE_compound ut = (uux)x

√ √ √ √– √
PDE_divide ut = −ux/x + 0.25uxx

√ √– √
Allen-Cahn ut = 0.001u − u + u3 √ √ √ √ √ √ √ √– √
Cahn-Hilliard ut = (u3 − u − 0.5u)

√– √– √ √– √
Nguyen benchmarks [52] Nguyen-(1-12)

√– √ √–

a√ indicates that the corresponding equation can be found without requiring extra prior knowledge.
b√– indicates that the equation can only be found if specific conditions are satisfied or if necessary prior knowledge is available. When multiple
datasets are considered, such as the Nguyen benchmarks [52], it implies that only a fraction of the true equations within the datasets can be
discovered.

DISCOVER are both based on deep reinforcement-learning
methods; whereas, DSR is designed for symbolic regression
tasks whose optimization objective is not consistent with PDE
discovery tasks. Specifically, the current DSR neither incorpo-
rates the computation of partial differential operators nor is it
able to handle sparse and noisy data. The coefficients also can-
not be determined efficiently, which may lead to prohibitive
computational costs for high-dimensional nonlinear dynamic
systems with large data volumes. A detailed description can
be found in Appendix E. DISCOVER performs better for PDE
discovery tasks, as it balances diversity and efficiency in the
mining equation process with better scalability. Although not
specifically for regression tasks, it can solve most of the sym-
bolic tasks in Nguyen benchmarks [52] under the condition
that the appropriate library is defined.

E. Real-world discovery in the oceanographic system

In ocean modeling, high-resolution simulations tend to
encounter computational resource limitations, while coarse-
resolution simulations usually fail to describe small-scale
features. Subgrid parametrization is a common way of ac-
counting for the impact of unresolved processes in large eddy
simulation (LES). By incorporating a reasonable forcing term
to parametrize the subgrid-scale process, it is expected to im-
prove the performance of low-resolution models and increase
computational efficiency. In this experiment, a benchmark
problem in a two-layer oceanic model [53] is taken as an
example, and we utilize DISCOVER to reveal interpretable
and generalized equations for the subgrid forcing without
excessive human intervention.

The optimization goal is to maximize the correlation be-
tween the discovered result and the output of filtering and
coarse-grained high-resolution simulations. The basic op-
erators include differential operators (∂x, ∂y,∇2, u · ∇) and
arithmetic operator (+,×). Basic operands include q̄, ū, and
v̄. We adopt the iterative residual-fitting method to handle
potentially lengthy equations, as proposed in [53], in which
the difference between the original model output and the in-
termediate result is used as the target value for the subsequent
iteration. The original benchmark employs a human-in-the-
loop strategy to manually judge whether the terms found in
the current iteration can be incorporated into the residual

calculation. Unfortunately, this strategy interrupts the train-
ing process and hinders the reproducibility of the results. In
DISCOVER, the searching process is totally automatic. First,
extra constraints are set during the generation stage to limit
the occurrence of unreasonable or uncommon combinations in
turbulence, such as terms that include constants or instances
where (∇2q̄) appears in (u · ∇). Moreover, DISCOVER at-
tempts to uncover the current optimal terms before computing
the residual in each iteration. We further perform feature
importance evaluation on each generated term based on the
validation set’s performance. Figure 6(a) illustrates the evolu-
tion of reward and discovered terms. The searching process
terminated at iteration 6 when the newly discovered term
resulted in a decrease in the overall reward of the validation
set, especially for layer 2. The final discovered equation is
shown below:

Ŝq = (w1∇2 + w2∇4 + w3∇6)(u · ∇)q̄

+ (w4∇4 + w5∇6)q̄ + w6∇6v̄. (8)

The first five terms uncovered can be explained by previ-
ous theoretic studies of parametrizing subgrid-scale processes
[54–56], and the expression is more concise compared with
results in [53]. Figures 6(b) and 6(c) illustrate the online
and off-line metrics on held-out data. It can be seen that
incorporating the discovered equation combination into the
low-resolution model effectively improves the description of
small-scale features. Further experimental details and analysis
of the discovered equation can be found in Appendix G 4.

Note that subgrid parametrization is still a challenging
and unresolved problem. This example demonstrates that
DISCOVER is capable of uncovering a reasonable equa-
tion representation with minimal human intervention and
shows great potential in solving practical applications.

DISCUSSION

We propose a framework, named DISCOVER, for explor-
ing open-form PDEs based on enhanced deep reinforcement-
learning and symbolic representations. It reduces the demand
for prior knowledge and is capable of dealing with compound
terms and fractional structures that conventional library-based
methods cannot handle. The structure-aware architecture

013182-12

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

1×10−11

FIG. 6. Discovery of equations for unresolved subgrid-scale processes in ocean modeling. (a) Evolution of reward and terms discovered
during the searching process. Terms underlined in green are removed after feature importance selection. (b) Off-line performance is measured
by Pearson correlation and the coefficient of determination (R2) between discovered expressions and target subgrid forcing. (c) On-line
performance of energy budgets between high-resolution simulations, low-resolution simulations, and low-resolution simulations with the
discovered forcing expression incorporated.

proposed is capable of learning the PDE expressions more
effectively and can be applied to other problems with struc-
tured inputs. Furthermore, this framework achieves more
efficient and stable performance by means of the neural-
guided approach and sparsity-promoting methods compared
to GA-based methods (e.g., SGA). In addition to some
nonlinear canonical 1D problems (Burgers’ equation with in-
teraction terms, the KdV equation with high-order derivatives,
the Chafee-Infante equation with derivative and exponential
terms, and PDE_compound and PDE_divide with com-
pound terms and fractional structure, respectively), we also
demonstrate this framework on high-dimensional systems
with high-order derivatives in the governing equations. The
equation discovery for subgrid parametrization further cor-
roborates its significant utility in real-world applications.
Experiments show that the proposed framework is capable of
uncovering the true equation form from noisy and sparse data,
and can be applied to solving new tasks efficiently without
extra physical knowledge incorporated.

Results demonstrate that the proposed framework can as-
sist researchers in different fields to comprehend data and

further uncover the underlying physical laws effectively. To
extend the boundary of knowledge and serve a broader range
of applications, three potential improvements should be con-
sidered in future work. Firstly, despite the greatly improved
optimization efficiency of model-based methods, DISCOVER
still requires considerably more time, often taking orders of
magnitude longer to identify the correct equation compared
to closed-library methods [1,4]. Efforts should be made to
more effectively embed potential prior knowledge into the
generation process of the model, thereby further reducing the
search space. Secondly, if the model consistently produces
bad expressions at the beginning, these inadequate PDE candi-
dates will in turn cause the model to be updated in a direction
further away from generating the true PDE expression. We
still need to preserve the diversity of the generated equa-
tion forms in a reasonable manner to address the potential
dilemma of exploration and exploitation. More importantly,
this framework is data driven and is not applicable to scenarios
with high noise and sparse data. To address this issue, the
incorporation of weak-form methods [7,51] can be consid-
ered to mitigate the impact of noise on the evaluation of

013182-13

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

function terms, especially for higher-order derivative terms.
The robustness may be further strengthened with discovered
physical knowledge incorporated. Combining the methods of
automatic machine learning [57,58] may have the potential
to enhance DISCOVER to further identify open-form PDEs
from high-noise and sparse data.

The implementation details of the whole process and rele-
vant data are available on GitHub [59].

ACKNOWLEDGMENTS

This work was supported and partially funded by the Na-
tional Center for Applied Mathematics Shenzhen (NCAMS),
the Shenzhen Key Laboratory of Natural Gas Hydrates (Grant
No. ZDSYS20200421111201738), the SUSTech – Qingdao
New Energy Technology Research Institute, the China Mete-
orological Administration Climate Change Special Program
(CMA-CCSP) (Grant No. QBZ202316), and the National
Natural Science Foundation of China (Grant No. 62106116).

APPENDIX A: METHOD

In this part, we provide a detailed description of the pro-
posed framework in terms of relevant methods, which include
following four aspects: (1) the introduction of algorithms in
DISCOVER; (2) the mechanism of the monotonic attention;
(3) details of customized constraints and regulations; and (4)
the risk-seeking gradient method.

1. Algorithm

Herein, we provide the algorithm details of DISCOVER. In
the implementation process, a priority queue Q is introduced
to store the fixed number of K PDE expressions with the
best reward. It can be dynamically updated at each iteration.
Whenever there are rewards higher than the internal expres-
sions, the new expressions enter the queue, and expressions
with lower rewards are omitted. Users can choose the best
expressions by balancing accuracy and parsimony.

As shown in Algorithm 2, when PDE expression traversals
are generated by the structure-aware agent, it is necessary to
first reconstruct it into a tree and return the root node of it.
After that, we parse the tree further and decompose it into
subtrees according to the predefined addition and subtraction
operators, as shown in Algorithm 3. Based on these two algo-
rithms, we can obtain the representation of all of the function
terms and then remove the function terms and PDE candidates
that violate the regulations. Finally, coefficients of legal terms
can be identified by STRidge [4].

2. Monotonic attention

It is well known that the LSTM recurrent neural network
is effective at dealing with sequence problems, such as ma-
chine translation [60] and text generation [61]. The history
information is recursive-compressed and stored in a memory
cell. Three gates, including an input gate, an output gate,
and a forget gate, control the flow of the information and
decision-making. However, the constraint of this architecture
is obvious. Prediction of the current time step largely depends

Algorithm 1. Identifying the open-form PDE from data with
DISCOVER.

Input: symbol library: L; time derivatives: Ut ; total
generated expressions at each iteration: N ;
reward threshold: R∗; learning rate: α;
α; number of retained expressions in priority
queue: K .

Output: The best PDE expression τ ∗.
Initialize: The structure-aware LSTM agent with

parameters θ ; priority queue Q.
repeat
1. Generate N PDE expression traversals T = {τi}i=1

N .
2. Restore T into the tree structure and split PDE
traversals into function terms �.

3. Calculate the coefficients of the function terms ξ̂ .
ξ̂ = argminξ ‖�ξ − Ut‖2

2 + λ‖ξ‖2
2

4. Tval ← T . �Filtering the PDE expression traversals
with predefined regulations.

5. Compute rewards R and the 1 − ε quantile of rewards Rε .
6. Tε ← {τi ∈ Tval : R(τi) � Rε}. �Select the

traversals whose rewards are larger than Rε .
7. θ ← θ + α(∇θ Jrisk + ∇θ Jentropy). �Update the

agent with the gradient ascent method.
8. Update Q and keep K PDE expressions with maximum rewards.
until The maximum reward of Q is larger than R∗.

Algorithm 2. Rebuilding the tree structure from the pre-order
traversal.

013182-14

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

Algorithm 3. Splitting the PDE expression tree into function
terms.

on the adjacent units, and recursively updating the information
destroys the structural information of the input. Furthermore,
the limited storage capacity of memory cells can result in
escalating information loss as the length of the sequence being
processed increases. Some attempts have been made to incor-
porate soft attention to comprehend internal structures and
directly select useful information from the previous tokens
[62–64].

In order to capture the long-distance dependencies and
structural information, we wrapped the original LSTM with
a monotonic attention layer (MAL), which mainly draws on
the architecture and configuration of the “long short-term
memory-network” (LSTMN) proposed for machine reading
[64]. Attention memory is utilized here to simulate the hu-
man brain to read historical information and discern the
relationships within it. The architecture of MAL is illustrated

in Fig. 7. Compared with the standard LSTM, an extra hidden
vector h̃t is introduced to store the relations between tokens.
At time step t , the attention function can be calculated by

[ht , ct] = LSTM (xt , [ht−1, ct−1]), (A1)

at
i = W T

v tanh(Wq[ht , ct] + WkOi), (A2)

st
i = softmax

(
at

i

)
, (A3)

where Wq, Wk , and Wv are the parameter matrices used to lin-
early project queries, keys, and their output, respectively; and
the state vector st denotes a probability distribution over the
previous inputs to measure the degree of attention to historical
information. st is used to calculate our new hidden vector.
By combining h̃t containing the relation information and the
original hidden vector ht , the final output can be represented
as follows:

h̃t =
t−1∑

i

st
i Oi, (A4)

Ot = Wo[ht , h̃t]. (A5)

The specific implementation refers to the source code
in TensorFlow [65], with two modifications to more effec-
tively integrate structured inputs. First, the structured inputs,
namely, the parent and sibling nodes of the current timestep,
are merged and fed into the LSTM cell. Second, to preserve
the completeness of the input, the aggregated historical infor-
mation h̃t is solely employed in computing the final output
and is not recycled as input for the prediction of the next step.

FIG. 7. The architecture of monotonic attention. Only the information of the past three time steps is integrated here. In fact, the time-span
can be set longer, so that it can focus on further historical information.

013182-15

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 8. Illustration of imposing constraints during the generation
process.

Specific implementation details can be found in the provided
code.

3. Constraints and regulations

The main purpose of constraints and regulations is to pre-
vent the framework from generating equations that violate the
laws of mathematics and physical laws, and reduce the search
space. Among them, constraints are directly applied to the
probability distribution of the symbol library at the regressive
generation process, which is shown in Fig. 8. Specifically, we
use hard constraints to prevent the generation of unreasonable
symbols. For any unreasonable symbol, its logit (unnormal-
ized probability) is set to negative infinity, resulting in a
final output probability of zero. Moreover, soft constraints
are applied to regulate the length of the generated traversal
[66]. This is accomplished by making the probability of non-
terminal symbols adjustable during the generation process.
The logits of nonterminal symbols are determined using the
formula below:

logit = Lout − (t − L)2

2s
· 1t>L (A6)

where Lout denotes the output from LSTM, and it is added by
a penalized term when the current generation step t exceeds
the preset length L (whose default value is 10); and s is a hy-
perparameter to control the penalty’s intensity with a default
value of 5. As the length of the generated traversal increases,
the generation probability of non-terminal nodes decreases,
which speeds up the generation of a complete PDE tree. When
the maximum length limit is reached, the hard constraint is
applied, and the output probability of non-terminal nodes is
set to 0.

Constraints in the framework include:
(1) Total length of the sequence is less than 64.
(2) Number of plus and minus operators is less than 10.
(3) Relationship limits between differential operators and

spatial inputs: the right child node of partial differential op-
erators (e.g., ∂) must be space variables (e.g., x); the left
child node of ∂ cannot be space variables; and the plus and
the minus operator cannot appear in the descendants of ∂

(optional).
Regulations are applied to both function terms and the

whole PDE expression, including:
(1) Descendants of partial differential operators do not

contain state variables (e.g., u).
(2) Arithmetic underflow and overflow.
(3) Numerical errors during conducting sparsity-

promoting methods.

(4) Coefficient of the corresponding function term is less
than a default number (e.g., 1 × 10−5).

APPENDIX B: DATA DESCRIPTION

The data used in this paper are mainly divided into two
categories: 1D and 2D systems. The data descriptions of the
1D canonical systems can be found in SGA [13]. To verify the
effectiveness of our framework in mining high-dimensional
and high-order nonlinear systems, we introduce the Allen-
Cahn and Cahn-Hilliard equations in 2D dynamic systems.
They are originally introduced to describe the nonconserva-
tive and conservative phase variables in the phase separation
process, respectively. Both models are recognized as gradient
flow systems. Assume that the Ginzburg–Landau free energy
functional takes the following form:

F =
∫

ω

γ1

2
|∇u|2 + γ2

4
(u2 − 1)dx. (B1)

The Allen-Cahn equation can be obtained as an L2 gradient
flow with the following form:

ut = γ1u + γ2(u − u3) (B2)

where γ1 = 0.001; and γ2 = 1. The Cahn-Hilliard equa-
tion can be obtained as a H−1 gradient flow, as shown below:

ut = (− γ1u + γ2(u − u3)) (B3)

where γ1 = 0.5; and γ2 = −1. The specific discretization de-
tails of the two equations are given below:

(1) Allen-Cahn equation: The spatial domain is taken as
x ∈ [0, 1]2 with 64 points along each axis. The temporal do-
main is taken as t ∈ (0, 5] with 100 points for discretization
in time-scale. The initial condition is set as u(0, x1, x2) =
sin(4πx1)cos(4πx2), where (x1, x2) are discrete points in the
spatial domain. The periodic boundary conditions are imposed
with ud (t,−1) = ud (t, 1), for d = 0, 1.

(2) Cahn-Hilliard equation: The spatial domain is taken as
x ∈ [0, 64]2 with 64 points along each axis. The temporal do-
main is taken as t ∈ (0, 10] with 500 points for discretization
in the time-scale. The random noisy initial condition is set as
u(0, x1, x2) = rand() − 0.5, where (x1, x2) are discrete points
in the spatial domain. The periodic boundary conditions ap-
plied are identical to those used in the Allen-Cahn equation.

APPENDIX C: HYPERPARAMETERS

The default hyperparameters used to mine the above PDEs
are shown in Table IV. As mentioned above, we use the plus
or minus operator that appears at the top level of the tree as the
identifier to split the equation into several function terms. We
require that the number of their occurrences should not exceed
five, which means that the generated expressions can only be
spliced into at most six function terms. The parsimony penalty
factor which guarantees the simplicity of the equation is set
to 0.01. In each iteration, the agent will generate a total of
N = 500 PDE expressions. Finally, after filtering the illegal
expressions and low rewards, only 2% (ε = 0.02) of the total
expressions, i.e., 10 equations with the highest reward, are se-
lected for the update of the agent. In the optimization process,

013182-16

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

TABLE IV. Default hyperparameter settings for discovering open-form PDEs.

Hyperparameter Default value Definition

Nsubtree 6 Maximum number of function terms
Dsubtree 8 Maximum depth of subtrees
ζ1 0.01 Parsimony penalty factor for redundant function terms
ζ2 0.0001 Parsimony penalty factor for unnecessary structures
N 500 Total generated expressions at each iteration
ε 0.02 Threshold of reserved expressions
λ 0 Weight of the STRidge regularization term
tol 1 × 10−4 Threshold of weights for reserved function terms
λH 0.03 Coefficients of entropy loss
λpg 1 Coefficients of policy gradient loss
T 20 Time span of the monotonic attention

the coefficients of entropy loss and policy gradient loss are set
to 0.03 and 1, respectively.

Note that the majority of the hyperparameters remain
constant across all experiments, with the exception of two
parameters: the total number of expressions generated at each
iteration (N), and the threshold for reserved expressions (ε).
These two parameters are adjusted in the two-dimensional
experiments and the subsequent real-world application. Dur-
ing the process of uncovering the Allen-Cahn equation, the
Cahn-Hilliard equation, and the subgrid force, we adjust the
value of N to 2500, 4000, and 1000, respectively, and adjust
ε correspondingly to 0.004, 0.003, and 0.005. This adjust-
ment is primarily necessitated by the increased complexity
and difficulty of the discovery tasks. These three experiments
are associated with mining equations from high-dimensional
nonlinear systems that involve multiple state variables. The
potential combinations of different operators and operands
become more diverse, thereby substantially expanding the
search space. As a result, it becomes essential to augment
the number of generated expressions in order to maximize the
probability of yielding high-quality samples, whilst avoiding
being stuck in the local optima. The impact of these two
hyperparameters is further discussed and analyzed in the sen-
sitivity analysis section.

APPENDIX D: RESULTS BY THE CLOSED-LIBRARY
METHOD

In this section, we further present the computational ef-
ficiency of closed-library methods for the identification of
canonical dynamical systems, excluding the PDE_divide.
PySINDy [67], in which the STRidge algorithm [4] is imple-
mented, is utilized for the equation identification. We set the
upper bounds for both the power and derivative order of the
state variable at five, creating a closed library with 30 basis
function terms.

Table V demonstrates the coefficient error of discovered
results and the running times by PySINDy. It can be seen that
in noise-free scenarios, the closed-library method is capable
of accurately identifying the corresponding equations, while
exhibiting a substantial reduction in computational time. This
efficiency gain is primarily attributable to the strong assump-
tion, which posits that all of the components in the governing
equation are monomials of state variables and their partial

derivatives. Consequently, closed-library methods are more
suitable for experienced experts to rapidly uncover governing
equations within well-understood domains. The deficiency in
expressive power makes closed-library methods unable to find
complex equations, as shown in Table III.

In contrast, DISCOVER diminishes reliance on prior
knowledge and enables the discovery of open-form PDEs at
the expense of a larger search space and more execution time.
Further improvements in computational efficiency are needed
in future research for a broader range of applications.

APPENDIX E: COMPARISON TO DSR

DSR [24] is a powerful framework designed for sym-
bolic regression tasks based on deep reinforcement-learning
methods. However, compared with our framework, it is in-
sufficient for identifying the governing equations of dynamic
systems, especially when identifying PDEs. First, the cur-
rent DSR neither incorporates the computation of partial
differential operators, nor is it able to handle sparse and
noisy data. Furthermore, even if DSR is modified to be
compatible with PDE discovery tasks by including library
expansion, and the introduction of regulations and constraints,
it is still less efficient and effective to deal with relatively
simple dynamic systems. As shown in Figs. 9(a) and 9(b),
the optimization speed of the modified DSR (DSR_new) is
significantly slower than DISCOVER. After 100 iterations,
the maximum reward is still at a low level. This is mainly
because the DSR represents coefficients through the constant
operator, which significantly enlarges the search space, and
thus proves to be inefficient for determining the structure of
PDEs. In addition, DSR determines the constants through an
iterative optimization process that aims to maximize the total
reward. This method incurs prohibitive computational costs,

TABLE V. Discovery results and running time of PySINDy.

Coefficient error Running time (s)

KdV 0.04 ± 0.0% 6.03
Burgers 1.25 ± 1.61% 5.88
Chafee-Infante 0.06 ± 0.04% 7.02
PDE_compound 0.04 ± 0.0% 5.52

013182-17

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 9. Maximum reward distribution of DISCOVER and the
modified DSR (DSR_new). (a) the KdV equation. (b) Burgers’
equation.

particularly for high-dimensional nonlinear dynamic systems
with large data volumes. Taking Burgers’ equation as an
example, DISCOVER completes 100 time-step iterations in
less than one-tenth the time required by DSR. This contrast
in efficiency highlights DISCOVER’s superior efficiency and
scalability, making it particularly well-suited for PDE discov-
ery tasks.

APPENDIX F: THE OPTIMIZATION PROCESS
OF DISCOVER

To demonstrate the concrete details of the optimization
process, we provide the reward distribution of the best per-
forming, top ε, and the mean of the top ε in each batch during
the training process for different systems. It can be seen from
Figs. 10 and 11 that as the iteration progresses, the best-case
reward increases in a stepwise manner, and there is a sudden
spike for the Burgers’ equation and the KdV equation. The
risk-seeking policy gradient method is aimed at improving the
better-case performance, and thus it is not necessary for all of
the generated equations to have high rewards. Note that the
PDE_compound equation is relatively simple, and the correct
equation form can be identified in the first few rounds of
iterations. The PDE_divide is taken as an example to show
the evolution process of the generated equation expressions
during the iteration process, as shown in Fig. 11(b). It can be
seen that from the 1st to the 99th iteration, the composition
of the equation terms gradually approaches the correct one.
The increase in reward gradually benefits from the increase
in accuracy. From the 99th iteration to the 136th iteration,
in addition to a further gain of accuracy, the parsimony of

the expressions is also considered. Therefore, in the process
of revealing equations from the data, when the accuracy of
the generated terms is similar, the expressions with fewer
terms have greater rewards. This also ensures that the final
equation form is both accurate and parsimonious. Figure 12
illustrates the reward distribution of the 2D systems. For the
Cahn-Hilliard equation, the inclusion of the Laplace operator
in the library allows the agent to identify the correct equa-
tion within 200 iterations, which can be seen in Fig. 12(b).
When only the first- and second-order differential operators
are used, high-dimensional operations can only be represented
by the nested structures from these operators. The numerically
equivalent equation form is verbose, and it takes more than
four times the number of iterations of the former one. The
identified equation is shown below:

ut = 0.999(u3)xx + 0.999(u3)yy − 0.999uxx

− 1.000uyy − 0.499(uxx)xx − 0.500(uxx)yy. (F1)

APPENDIX G: SUPPLEMENTARY EXPERIMENTS

In the experiment parts, we first discuss the structure-aware
agent designed in DISCOVER, and further compare it with
the standard LSTM agent. The results demonstrate that the
structure-aware agent exhibits great superiority in capturing
local information and long-distance information. We also dis-
cuss the effect of the number and utilization rate of generated
samples on the efficiency of mining equations. Finally, a more
detailed explanation of how our framework makes contribu-
tions to subgrid parametrization is provided.

1. Effect of noise levels and measurement points

Since observations obtained from real scenes are often
sparse and noisy, it is necessary to test whether DISCOVER
can mine the correct form of equations under different vol-
umes of data and noise levels. During the evaluation stage,
the finite difference method is utilized to calculate derivatives,
which are sensitive to noise [29]. Therefore, we built a fully
connected neural network to serve as a surrogate model, which
not only smoothens available noisy data, but also facilitates
the generation of metadata across different spatial-temporal
locations. It is worth noting that PDE-FIND [4] utilizes poly-
nomial interpolation to deal with noisy data, which is effective

FIG. 10. Rewards distribution of the best case of all time, top ε, and mean of top ε of the samples. (a) Burgers’ equation. (b) The Chafee-
Infante equation. (c) The KdV equation.

013182-18

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 11. The optimization process of PDE_divide. (a) Reward distribution. (b) Evolution of the function terms.

but limited to scenarios with a complete basis function li-
brary. All of the derivatives can be obtained by a one-time
calculation. However, this approach is not feasible for our
framework due to the excessive computational load associated
with repeated derivatives evaluation. Additionally, polynomial
interpolation struggles with processing boundary points. The
metadata method is relatively simple and only involves the
pre-processing part [29]. Once the noisy data are smoothed,
we can seamlessly integrate automatic differentiation to eval-
uate derivatives.

To preprocess measurements, a fully connected feedfor-
ward neural network (FNN) is constructed to map the system
inputs (i.e., spatial coordinate x and time t) to the state of
interest u. The architecture of FNN is standardized across
different systems, consisting of an input layer, three hidden
layers with 64 neurons each, and an output layer. The Sine
function is utilized as the activation function. We employ
the mean square error (MSE) loss function to quantify the
discrepancy between the measured data and the model’s pre-
dictions. To ensure generalizability and prevent overfitting,
the dataset is split into training and validation sets with a
ratio of 8:2, and an early stopping mechanism is implemented.
The predicted outputs are utilized for the final derivative
evaluation.

The relative l2 error defined as ||ξ̂ − ξtrue||1/||ξtrue||1 is
utilized to assess the accuracy of identified coefficients of
function terms. The identified equations and error rates across
different systems under different noise levels are shown in
Table VI. Only 80% of the total measurements were randomly
sampled and utilized to train the surrogate model. It can be
seen that DISCOVER is able to identify the correct equa-
tion form of the KdV and Burgers’ equations with a relatively
small error even when the data are subjected to noise levels as
high as 5%. For the other three equations, satisfactory results
can be obtained only when the noise level is restricted to 1%.
Notably, in two-dimensional cases, although the correct equa-
tion structure of the Allen-Cahn equation can be identified at
1% noise, a significant increase is observed in the error of co-
efficients. For the Cahn-Hilliard equation, due to the existence
of the fourth-order derivative and compound structure, the
correct equation form cannot be found with current settings
when the data are noisy.

It is worth noting that our method is far from perfect. The
metadata method is still unable to handle high-noise cases.
Automatic differentiation can alleviate this problem to a large
extent; however, evaluating function terms of arbitrary form
remains a challenge that necessitates the incorporation of au-
tomatic machine learning [57]. Meanwhile, available physical

FIG. 12. Rewards distribution of the best case of all time, top ε, and mean of top ε of the samples. (a) The Allen-Cahn equation. (b) The
Cahn-Hilliard equation (with Laplace operator). (c) The Cahn-Hilliard equation (without Laplace operator).

013182-19

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

TABLE VI. Summary of discovered results for different PDEs of mathematical physics under different noise levels.

Correct PDE: ut = −u × ux − 0.0025uxxx

Noise level Identified PDE Error (%)

KdV Clean data ut = −0.5001(u × u)x − 0.0025uxxx 0.09 ± 0.07
1% noise ut = −0.4983(u × u)x − 0.0025uxxx 0.31 ± 0.04
10% noise ut = −0.9748u × ux − 0.0024uxxx 2.50 ± 0.028

Correct PDE: ut = −uux + 0.1uxx

Noise level Identified PDE Error (%)

Burgers Clean data ut = −1.0010uux + 0.1024uxx 1.25 ± 1.61
1% noise ut = −0.4992(u × u)x + 0.0982uxx 0.95 ± 1.12

10% noise ut = −0.4886(u × u)x + 0.0943uxx 3.94 ± 2.35

Correct PDE: ut = uxx + u − u3

Noise level Identified PDE Error (%)

Chafee-Infante Clean data ut = 1.0002uxx − 1.0008u + 1.0004u3 0.04 ± 0.03
1% noise ut = 0.9866uxx − 0.9862u + 0.9877u3 1.32 ± 0.08
10% noise ut = 0.9777uxx − 0.9766u + 0.9869u3 1.96 ± 0.56

Correct PDE: ut = (uux)x

Noise level Identified PDE Error (%)

PDE_compound Clean data ut = 0.5002(u2)xx 0.04
1% noise ut = 0.5003(u2)xx 0.05

Correct PDE: ut = −ux/x + 0.25uxx

Noise level Identified PDE Error (%)

PDE_divide Clean data ut = −0.9979ux/x + 0.2498uxx 0.14 ± 0.10
1% noise ut = −0.9803ux/x + 0.2478uxx 1.42 ± 0.78

Correct PDE: ut = 0.001u − u3 + u

Noise level Identified PDE Error (%)

Allen-Cahn Clean data ut = 0.001(uxx + uyy) − 0.999u3 + 1.000u 0.025 ± 0.05
1% noise ut = 0.0007(uxx + uyy) − 0.884u3 + 0.870u 21.72 ± 10.94

constraints need to be incorporated in FNN in order to en-
hance the robustness of the model to noise and minimize the
reliance on extensive datasets.

2. Comparison between structure-aware LSTM
and standard LSTM

Our model introduces structured information in the agent,
which allows LSTM to attend to the previously generated
tokens and equation structure when predicting the current
output. However, the standard LSTM agent can only obtain
the information from the last token and the composite history
information stored in the memory cell. To demonstrate the
rationality and superiority of our model, we compare the per-
formance of the two different types of LSTM agents on four
equations while maintaining consistent hyperparameters. The
relatively simple PDE_compound equation is not considered
here. Figures 13(a)–13(d) show the distribution of the rewards
under each agent setting during the training process. Owing

to the enhanced ability to capture structural and long-range
information within equations, our model produces expressions
that more closely approximate the true forms, thereby yield-
ing greater rewards in each iteration. Figure 13(e) illustrates
the iterations required to identify the optimal equation form.
Notably, the structure-aware LSTM achieves this with fewer
iterations and maintains almost the same computational
load.

3. Sensitivity analysis

Based on the theory of risk-seeking policy gradient, only ε

fraction of the best expressions is selected to update the agent
during the training process to improve the best-case perfor-
mance. The training effect and calculation time are directly
impacted by the quality and number of the expressions at
each iteration. Two relevant hyperparameters are considered,
including the total number of generated expressions at each
iteration N , and the quantile ε of the rewards used to filter

013182-20

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 13. Maximum reward distribution for four PDEs. (a) Burgers’ equation. (b) The KdV equation. (c) The Chafee-Infante equation.
(d) PDE_divide. (e) Iterations needed to discover the correct equation. Sa_LSTM refers to the proposed structure-aware LSTM agent.

expressions. Then, we focus on discussing their specific im-
pact on the entire optimization process.

Figure 14 illustrates the maximum reward distribution of
four PDEs with different N . It is obvious that the more ex-
pressions generated in each round, the better the ultimate
selected expressions to update the agent, and the fewer iter-
ations required to find the optimal equation. However, it is
worth noting that generating more expressions also requires
more computation resources. A trade-off must be established
between the volume of expressions generated and the com-
putational time invested to ensure an optimal and efficient
discovery process. In the actual training process, generating
as many expressions as possible, especially at the beginning,
is crucial to avoid getting stuck in local optima.

The other parameter ε determines the proportion of the
expressions generated in each round that can actually be used
to update the agent. When the parameter is set to 0, all

(a) (c)

(b) (d)

FIG. 14. Maximum reward distribution with different N for four
PDEs. (a) Burgers’ equation. (b) The KdV equation. (c) The Chafee-
Infante equation. (d) PDE_divide.

expressions will be used for the agent update, which is the
standard policy gradient approach. As shown in Fig. 15,
choosing a relatively small and reasonable value for this pa-
rameter is necessary for the agent to learn the optimal solution,
which can accelerate the training process. However, with the
policy gradient method, it is expected that the rewards of all
expressions in each batch are maximized, which obviously
slows down the update speed and may even fail to find the
final correct expression.

4. Equation-discovery parametrization in oceanic modeling

In climate modeling, high-resolution simulations are usu-
ally time consuming and computationally expensive, while
coarse-resolution simulations may fail to describe small-
scale features. Subgrid parametrization is a common way
of accounting for the impact of unresolved processes. By

(a) (c)

(b) (d)

FIG. 15. Maximum reward distribution with different ε for four
PDEs. (a) Burgers’ equation. (b) The KdV equation. (c) The Chafee-
Infante equation. (d) PDE_divide.

013182-21

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

FIG. 16. Workflow of the equation-discovery process by utilizing DISCOVER.

incorporating a reasonable forcing term to parametrize the
subgrid-scale process, it is expected to improve the per-
formance of low-resolution models and avoid the high
computational intensity of high-resolution simulations [68].
In our experiment, we intend to utilize DISCOVER to uncover
equations that can parametrize the behavior of subgrid-scale
processes. We use oceanographic data from a benchmark
problem [53] that comprises two flow regimes: the eddy and
jet configurations. All of the training and validation data are
taken from the eddy configuration. Note that high-resolution
and low-resolution modeling refers to simulations with a
grid size of 256 × 256 and 64 × 64, respectively. The target
subgrid forcing is diagnosed by filtering and coarse-grained
high-resolution simulations.

To accommodate the broad range of magnitudes present
in the calculations, the correlation between the discovered
result and the subgrid forcing is utilized as the training tar-
get. We adopt the iterative residual-fitting method to handle
potentially lengthy equations proposed in [53], in which the
difference between the original model output and the in-
termediate result is used as the target value for the next
iteration. However, this method is vulnerable to unreason-
able redundant terms, which can adversely affect the results
of subsequent iteration steps. To mitigate this issue, the
original benchmark employs a human-in-the-loop strategy to
manually determine whether the terms found in the current
iteration can be incorporated into the residual calculation.

Unfortunately, this strategy interrupts the training pro-
cess and poses challenges to the reproducibility of the
results.

To reduce manual intervention and discover unified equa-
tions, we made adjustments in three aspects compared with
the benchmark. First, we considered the correlation perfor-
mance of the upper and lower layers comprehensively during
the reward calculation process.

R = 1

2

(
Cov(S1, Ŝ1)

σS1σS1

+ Cov(S2, Ŝ2)

σS2σS2

)
(G1)

where S and Ŝ refer to the target subgrid forcing and predicted
value, respectively; and the subscripts represent different
layers. Second, extra constraints are imposed during the gen-
eration stage to prevent the emergence of unreasonable or
uncommon combinations in turbulence, such as terms that
comprise constants or instances where (∇2q̄) appears within
(u · ∇). Note that imposing constraints embodies the control-
lability of DISCOVER in generating candidates and is not
supported in the genetic algorithm utilized in the benchmark
[53]. This operation effectively eliminates the possible re-
dundant terms. Finally, we conducted a feature importance
evaluation to further remove unnecessary terms during each
residual calculation. Terms that cause a decrease or trivial
increase in reward are removed. The workflow is illustrated
in Fig. 16.

1×10−12 1×10−12 1×10−12 1×10−12

FIG. 17. Online metrics on jet configuration data.

013182-22

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

As a comparison, we also present the benchmark results,

SGP
q = (w1∇2 + w2∇4 + w3∇6)(u · ∇)q̄ + (w4∇4 + w5∇6)q̄

+ (u · ∇)2∇2(w6v̄x + w7ūy). (G2)

The first five terms of our model align with the findings from
previous theoretical studies [54–56]. For example, the last
two terms refer to the dissipation and redistribution of energy
in different scales. It proves that the discovered results are
reasonable in theory. For evaluating these results, we employ
both off-line and online metrics. Off-line metrics are utilized
to assess the approximation accuracy to the target values,
while online metrics are employed to evaluate the differ-
ence between the low-resolution simulations with the subgrid
parametrization incorporated and high-resolution simulations.
The performances in both online and off-line scenarios for
the jet configuration are shown in Figs. 17 and 18, respec-
tively. It is evident that the equation-based parametrizations
are effective and perform well compared to low-resolution
simulations. This not only affirms the interpretability of the
discovered equations, but also their strong potential for robust
generalization.

FIG. 18. Offline metrics on jet configuration data.

[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering gov-
erning equations from data by sparse identification of nonlinear
dynamical systems, Proc. Natl. Acad. Sci. USA 113, 3932
(2016).

[2] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng,
N. Tomašev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhász
et al., Advancing mathematics by guiding human intuition with
AI, Nature (London) 600, 70 (2021).

[3] F. P. Kemeth, T. Bertalan, T. Thiem, F. Dietrich, S. J. Moon,
C. R. Laing, and I. G. Kevrekidis, Learning emergent partial dif-
ferential equations in a learned emergent space, Nat. Commun.
13, 3318 (2022).

[4] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Data-
driven discovery of partial differential equations, Sci. Adv. 3,
e1602614 (2017).

[5] D. E. Shea, S. L. Brunton, and J. N. Kutz, SINDy-BVP: Sparse
identification of nonlinear dynamics for boundary value prob-
lems, Phys. Rev. Res. 3, 023255 (2021).

[6] K. Kaheman, J. N. Kutz, and S. L. Brunton, SINDy-PI: A robust
algorithm for parallel implicit sparse identification of nonlinear
dynamics, Proc. R. Soc. A. 476, 20200279 (2020).

[7] D. A. Messenger and D. M. Bortz, Weak SINDy for par-
tial differential equations, J. Comput. Phys. 443, 110525
(2021).

[8] U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton,
Ensemble-SINDy: Robust sparse model discovery in the low-
data, high-noise limit, with active learning and control, Proc. R.
Soc. A. 478, 20210904 (2022).

[9] Z. Chen, Y. Liu, and H. Sun, Physics-informed learning of
governing equations from scarce data, Nat. Commun. 12, 6136
(2021).

[10] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs
from data, in Proceedings of the International Conference on

Machine Learning (PMLR, Stockholm, Sweden, 2018), Vol. 80,
p. 3208.

[11] Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs
from data with a numeric-symbolic hybrid deep network,
J. Comput. Phys. 399, 108925 (2019).

[12] H. Xu, H. Chang, and D. Zhang, DLGA-PDE: Discovery of
PDEs with incomplete candidate library via combination of
deep learning and genetic algorithm, J. Comput. Phys. 418,
109584 (2020).

[13] Y. Chen, Y. Luo, Q. Liu, H. Xu, and D. Zhang, Symbolic
genetic algorithm for discovering open-form partial differential
equations (SGA-PDE), Phys. Rev. Res. 4, 023174 (2022).

[14] Y. Chen and D. Zhang, Integration of knowledge and data in
machine learning, arXiv:2202.10337.

[15] M. Schmidt and H. Lipson, Distilling free-form natural laws
from experimental data, Science 324, 81 (2009).

[16] D. A. Augusto and H. J. Barbosa, Symbolic regression via
genetic programming, in Proceedings of the Sixth Brazilian
Symposium on Neural Networks (IEEE, Rio de Janeiro, Brazil,
2000), Vol. 1, pp. 173–178.

[17] S. Sun, R. Ouyang, B. Zhang, and T.-Y. Zhang, Data-driven
discovery of formulas by symbolic regression, MRS Bull. 44,
559 (2019).

[18] S. S. M. Astarabadi and M. M. Ebadzadeh, Genetic program-
ming performance prediction and its application for symbolic
regression problems, Inf. Sci. 502, 418 (2019).

[19] M. A. Haeri, M. M. Ebadzadeh, and G. Folino, Statisti-
cal genetic programming for symbolic regression, Appl. Soft
Comput. 60, 447 (2017).

[20] G. Martius and C. H. Lampert, Extrapolation and learning equa-
tions, arXiv:1610.02995.

[21] S. Sahoo, C. Lampert, and G. Martius, Learning equations
for extrapolation and control, in International Conference on

013182-23

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1038/s41467-022-30628-6
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1103/PhysRevResearch.3.023255
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1016/j.jcp.2021.110525
https://doi.org/10.1098/rspa.2021.0904
https://doi.org/10.1038/s41467-021-26434-1
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1016/j.jcp.2020.109584
https://doi.org/10.1103/PhysRevResearch.4.023174
https://arxiv.org/abs/2202.10337
https://doi.org/10.1126/science.1165893
https://doi.org/10.1557/mrs.2019.156
https://doi.org/10.1016/j.ins.2019.06.040
https://doi.org/10.1016/j.asoc.2017.06.050
https://arxiv.org/abs/1610.02995

DU, CHEN, AND ZHANG PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

Machine Learning (PMLR, Stockholm, Sweden, 2018), Vol. 80,
pp. 4442–4450.

[22] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić,
and M. Soljačić, Integration of neural network-based symbolic
regression in deep learning for scientific discovery, IEEE Trans.
Neural Netw. Learning Syst. 32, 4166 (2020).

[23] F. Sun, Y. Liu, J.-X. Wang, and H. Sun, Symbolic physics
learner: Discovering governing equations via Monte Carlo tree
search, in International Conference on Learning Representa-
tions (ICLR, Kigali, Rwanda, 2023).

[24] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago,
S. K. Kim, and J. T. Kim, Deep symbolic regression: Recover-
ing mathematical expressions from data via risk-seeking policy
gradients, in Proceedings of the International Conference on
Learning Representations (ICLR, Virtual Event, Austria, 2021).

[25] H. Zhang and A. Zhou, Rl-GEP: Symbolic regression via
gene expression programming and reinforcement learning, in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN, Shenzhen, China, 2021), pp. 1–8.

[26] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M.
Faissol, and B. K. Petersen, Symbolic regression via deep rein-
forcement learning enhanced genetic programming seeding, in
Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS, virtual, 2021), Vol. 34, pp. 24912–24923.

[27] P. Y. Lu, J. Ariño Bernad, and M. Soljačić, Discovering sparse
interpretable dynamics from partial observations, Commun.
Phys. 5, 206 (2022).

[28] M. Zhang, S. Kim, P. Y. Lu, and M. Soljačić, Deep learning
and symbolic regression for discovering parametric equations,
IEEE Trans. Neural Netw. Learn. Syst., 1 (2023).

[29] H. Xu, H. Chang, and D. Zhang, Dl-pde: Deep-learning based
data-driven discovery of partial differential equations from dis-
crete and noisy data, Comm. Comput. Phys. 29, 698 (2021).

[30] S.-M. Udrescu and M. Tegmark, Ai feynman: A physics-
inspired method for symbolic regression, Sci. Adv. 6, eaay2631
(2020).

[31] L. Billard and E. Diday, Symbolic regression analysis, in Clas-
sification, Clustering, and Data Analysis (Springer, New York,
2002), pp. 281–288.

[32] T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture
search: A survey, J. Mach. Learn. Res. 20, 1997 (2019).

[33] A. Tamar, Y. Glassner, and S. Mannor, Policy gradients beyond
expectations: Conditional value-at-risk, arXiv:1404.3862.

[34] A. Tamar, Y. Glassner, and S. Mannor, Optimizing the CVaR
via sampling, in Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI, Austin, Texas, 2015),
p. 2993.

[35] T. Hiraoka, T. Imagawa, T. Mori, T. Onishi, and Y. Tsuruoka,
Learning robust options by conditional value at risk optimiza-
tion, in Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS, Vancouver, Canada, 2019), Vol.
32, p. 2619.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor, in Proceedings of the Interna-
tional Conference on Machine Learning (PMLR, Stockholm,
Sweden, 2018), pp. 1861–1870.

[37] M. Maslyaev, A. Hvatov, and A. V. Kalyuzhnaya, Partial differ-
ential equations discovery with epde framework: Application
for real and synthetic data, J. Comput. Sci. 53, 101345 (2021).

[38] D. J. Korteweg and G. de Vries, On the change of form of long
waves advancing in a rectangular channel, and a new type of
long stationary wave, Philos. Mag 39, 422 (1895).

[39] J. M. Burgers, A mathematical model illustrating the theory of
turbulence, Adv. Appl. Mech. 1, 171 (1948).

[40] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite
amplitude convection, J. Fluid Mech. 38, 279 (1969).

[41] B. Straughan, Jordan–cattaneo waves: Analogues of compress-
ible flow, Wave Motion 98, 102637 (2020).

[42] Y. Mao, Exact solutions to (2+1)-dimensional Chaffee–Infante
equation, Pramana 91, 9 (2018).

[43] A. Debussche, M. Högele, and P. Imkeller, Asymptotic first exit
times of the Chafee-Infante equation with small heavy-tailed
Lévy noise, Electron. Commun. Probab. 16, 213 (2011).

[44] A. Korkmaz, Complex wave solutions to mathematical biology
models I: Newell–Whitehead–Segel and Zeldovich equations,
J. Comput. Nonlinear Dyn. 13, 081004 (2018).

[45] G. Gardner, J. Downie, and H. Kendall, Gravity segregation of
miscible fluids in linear models, Soc. Pet. Eng. J. 2, 95 (1962).

[46] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase
boundary motion and its application to antiphase domain coars-
ening, Acta Metall. 27, 1085 (1979).

[47] J. Shen and X. Yang, Numerical approximations of Allen-Cahn
and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. 28,
1669 (2010).

[48] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform
system. I. interfacial free energy, J. Chem. Phys. 28, 258 (1958).

[49] M. Z. Bazant, Thermodynamic stability of driven open sys-
tems and control of phase separation by electro-autocatalysis,
Faraday Discuss. 199, 423 (2017).

[50] M. Khater, C. Park, D. Lu, and R. A. Attia, Analytical,
semi-analytical, and numerical solutions for the Cahn–Allen
equation, Adv. Differ. Equ. 2020, 9 (2020).

[51] P. A. Reinbold, L. M. Kageorge, M. F. Schatz, and R. O.
Grigoriev, Robust learning from noisy, incomplete, high-
dimensional experimental data via physically constrained
symbolic regression, Nat. Commun. 12, 3219 (2021).

[52] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E.
Galván-López, Semantically-based crossover in genetic pro-
gramming: Application to real-valued symbolic regression,
Genet. Program. Evolvable Mach. 12, 91 (2011).

[53] A. Ross, Z. Li, P. Perezhogin, C. Fernandez-Granda, and L.
Zanna, Benchmarking of machine learning ocean subgrid pa-
rameterizations in an idealized model, J. Adv. Model. Earth
Syst. 15, e2022MS003258 (2023).

[54] C. Meneveau and J. Katz, Scale-invariance and turbulence mod-
els for large-eddy simulation, Annu. Rev. Fluid Mech. 32, 1
(2000).

[55] M. F. Jansen and I. M. Held, Parameterizing subgrid-scale
eddy effects using energetically consistent backscatter, Ocean
Modell. 80, 36 (2014).

[56] J. A. Anstey and L. Zanna, A deformation-based parametriza-
tion of ocean mesoscale eddy Reynolds stresses, Ocean Modell.
112, 99 (2017).

[57] M. Du, Y. Chen, and D. Zhang, Autoke: An automatic knowl-
edge embedding framework for scientific machine learning,
IEEE Trans. Artif. Intell. 4, 1564 (2023).

[58] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
Automatic differentiation in machine learning: A survey,
J. Mach. Learn. Res. 18, 5595 (2017).

013182-24

https://doi.org/10.1109/TNNLS.2020.3017010
https://doi.org/10.1038/s42005-022-00987-z
https://doi.org/10.1109/TNNLS.2023.3297978
https://doi.org/10.4208/cicp.OA-2020-0142
https://doi.org/10.1126/sciadv.aay2631
https://dl.acm.org/doi/10.5555/3322706.336199
https://arxiv.org/abs/1404.3862
https://doi.org/10.1016/j.jocs.2021.101345
https://doi.org/10.1080/14786449508620739
https://doi.org/10.1016/S0065-2156(08)70100-5
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1016/j.wavemoti.2020.102637
https://doi.org/10.1007/s12043-018-1583-4
https://doi.org/10.1214/ECP.v16-1622
https://doi.org/10.1115/1.4040411
https://doi.org/10.2118/185-PA
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.1063/1.1744102
https://doi.org/10.1039/C7FD00037E
https://doi.org/10.1186/s13662-019-2475-8
https://doi.org/10.1038/s41467-021-23479-0
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1029/2022MS003258
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1016/j.ocemod.2014.06.002
https://doi.org/10.1016/j.ocemod.2017.02.004
https://doi.org/10.1109/TAI.2022.3209167
https://dl.acm.org/doi/abs/10.5555/3122009.3242010

DISCOVER: DEEP IDENTIFICATION OF SYMBOLICALLY … PHYSICAL REVIEW RESEARCH 6, 013182 (2024)

[59] GitHub, https://github.com/menggedu/DISCOVER.
[60] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio, Learning phrase
representations using RNN encoder-decoder for statistical ma-
chine translation, in Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP) (Asso-
ciation for Computational Linguistics, Doha, Qatar, 2014),
pp. 1724–1734.

[61] L. Li and T. Zhang, Research on text generation based on
LSTM, Int. Core. J. Eng. 7, 525 (2021).

[62] Y. Wang, M. Huang, X. Zhu, and L. Zhao, Attention-based
LSTM for aspect-level sentiment classification, in Proceedings
of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP, Austin, Texas, 2016), pp. 606–615.

[63] Y. Li, Z. Zhu, D. Kong, H. Han, and Y. Zhao, Ea-lstm: Evolu-
tionary attention-based lstm for time series prediction, Knowl.
Based. Syst. 181, 104785 (2019).

[64] J. Cheng, L. Dong, and M. Lapata, Long short-term memory-
networks for machine reading, in Proceedings of the 2016
Conference on Empirical Methods in Natural Language

Processing (Association for Computational Linguistics, Austin,
Texas, 2016), pp. 551–561.

[65] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard et al., {TensorFlow}:
A system for {Large-Scale} machine learning, in Proceedings
of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (2016), pp. 265–283.

[66] M. Landajuela, B. K. Petersen, S. K. Kim, C. P. Santiago, R.
Glatt, T. N. Mundhenk, J. F. Pettit, and D. M. Faissol, Improving
exploration in policy gradient search: Application to symbolic
optimization, arXiv:2107.09158.

[67] A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J.
Goldschmidt, J. Callaham, C. B. Delahunt, Z. G. Nicolaou, K.
Champion, J.-C. Loiseau et al., PySINDy: A comprehensive
python package for robust sparse system identification, J. Open
Source Softw. 7, 3994 (2022).

[68] S. Khani and F. Porté-Agel, Evaluation of non-eddy vis-
cosity subgrid-scale models in stratified turbulence using
direct numerical simulations, Eur. J. Mech. B Fluids 65, 168
(2017).

013182-25

https://github.com/menggedu/DISCOVER
http://www.icj-e.org/download/ICJE-7-5-525-535.pdf
https://doi.org/10.1016/j.knosys.2019.05.028
https://arxiv.org/abs/2107.09158
https://doi.org/10.21105/joss.03994
https://doi.org/10.1016/j.euromechflu.2017.03.009

