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Inferring attracting basins of power system with machine learning
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Power systems dominated by renewable energy encounter frequently large, random disturbances, and a critical
challenge faced in power-system management is how to anticipate accurately whether the perturbed systems will
return to the functional state after the transient or collapse. Whereas model-based studies show that the key
to addressing the challenge lies in the attracting basins of the functional and dysfunctional states in the phase
space, the finding of the attracting basins for realistic power systems remains a challenge, as accurate models
describing the system dynamics are generally unavailable. Here we propose a new machine-learning technique,
namely balanced reservoir computing, to infer the attracting basins of a typical power system based on measured
data. Specifically, trained by the time series of a handful of perturbation events, we demonstrate that the trained
machine can predict accurately whether the system will return to the functional state in response to a large,
random perturbation, thereby reconstructing the attracting basin of the functional state. The working mechanism
of the new machine is analyzed, and it is revealed that the success of the new machine is attributed to the new
objective function adopted in optimizing the machine hyperparameters, which keeps a good balance between the
echo and fading properties of the reservoir network; the effect of noisy signals on the prediction performance
is also investigated, and it is found that the machine performance is improved by introducing a certain amount
of noise. Finally, we demonstrate that the new technique can also be utilized to infer the attracting basins of
coexisting attractors in typical chaotic systems.
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I. INTRODUCTION

A distinct feature of many real-world systems is that the
asymptotic states that the systems are settled into are de-
pendent on their initial conditions. This feature, known as
multistability in nonlinear science, has important implications
to the functionality and security of a wide variety of complex
systems, ranging from the human brain to ecosystems and
power grids [1–5]. For systems such as ecosystems and power
grids, a critical challenge faced in system management is to
estimate the possible influences that a nonsmall disturbance
might induce, saying, for instance, whether a fire or illegal
logging will switch a rainforest from the fertile state to the
barren state [4], and whether the failure of a power station or
a single transmission line will trigger a large-scale blackout in
a power grid [5]. The concern of multistability is particularly
important for today’s world, as evidence indicates that many
natural and man-made complex systems are currently working
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in the vicinity of their tipping points [5–8]. One approach to
coping with the challenge is finding the attracting basins of
the asymptotic states that the systems will settle into, namely
the basins of attraction [9]. Briefly, the attracting basin of an
asymptotic state is the set of initial conditions that evolve
into this state eventually. For nonlinear systems, the attracting
basins are normally entangled with each other in a compli-
cated fashion, e.g., the boundaries separating the basins are
fractal or riddled [10,11], while the size or volume of each
basin determines the stability of the associated state [8,9].
In particular, nearby the boundary of the basins, a small
perturbation may lead the system to a completely different
state. As such, to anticipate whether the disturbed system will
return to its functional state, the key is to identify precisely
the basin boundaries [12–15]. Though it is well recognized
in nonlinear science that the boundaries of the attracting
basins are defined by the stable manifolds of the nonattract-
ing states, an accurate characterization of the boundaries in
the global phase space remains a challenge, especially for
high-dimensional nonlinear systems in which the number of
nonattracting states is huge and the stable manifolds of the
nonattracting states are very complicated [11,16]. Addition-
ally, in realistic situations, the equations governing the system
dynamics are usually unknown, and what is available are
only measured data, e.g., the time series measured from the
transient dynamics of a power system, which renders the
development of model-free, data-driven techniques an urgent
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task in analyzing the basin stability of real-world complex
systems [11–18].

Recent advances in machine learning provide a bunch of
new tools for the model-free inference of complex dynami-
cal systems [19,20]. In particular, a special type of recurrent
neural network called a reservoir computer (RC) has been
employed recently in the literature as a data-driven technique
for inferring chaotic systems [21,22]. From the perspective
of dynamical systems, an RC can be regarded as a com-
plex network of coupled nonlinear units, which, driven by
the input signals, generates the outputs through a readout
function. In the simplest form, the implementation of RC
consists of two phases, namely the training and predicting
phases. In the training phase, the machine is fed with the time
series measured from the target system, and the purpose of
the training is to find the set of coefficients in the readout
function for the best fitting of the training data. In the predict-
ing phase, the input signals are replaced by the outputs, and
the machine is running as an autonomous system with fixed
parameters, with the outputs giving the predictions. Although
structurally simple, RC has demonstrated its superpower in
a variety of applications, e.g., predicting the short-term state
evolution of chaotic systems [22], inferring the unmeasured
variables [23], anticipating the long-term statistical properties
of chaotic attractors [24], and replicating the dynamics of
Hamiltonian chaos [25]. By a parallel architecture, RC has
also been applied successfully to predict the state evolution
of spatiotemporal systems [26–28]. Besides predicting the
dynamics of the target systems from which the training data
are measured, recent studies also show that by introducing a
parameter-control channel, RC is also able to infer the dy-
namics of some new systems it has never seen, e.g., based
on the time series of a few exampling states, an RC is able
to reconstruct the whole bifurcation diagram of a chaotic
system [29–31].

Inspired by the multifunctionality of biological neural net-
works, attempts have been made recently on the learning of
multiple attractors by a single RC [32–34]. By the mechanism
of invertible generalized synchronization, Lu et al. proposed a
multifunctional learning framework in which an RC “repli-
cates” the dynamics of multiple attractors in the training
phase [32], and later each attractor is “retrieved” successfully
by driving the RC with a transient time series in the predicting
phase. Röhm et al. further demonstrated that, given that the
driving series is sufficiently long, the RC can be trained by
even a single noisy trajectory, while the trained machine is
able to infer the coexisting attractors “unseen” in the train-
ing data [33]. An alternative framework of multifunctional
RC is proposed by Flynn et al. [34], in which a “blending
technique” is employed to generate from the time series of
two coexisting attractors the training data. It is shown that, by
resetting the initial conditions of the reservoir network, the
same machine is able to reproduce the trajectories of both
attractors in the predicting phase. (As the initial conditions
are set as the final state of the reservoir in the training phase,
here a long time series of the target system is needed to drive
the machine before making the predictions.) The fact that a
single RC can replicate the dynamics of multiple attractors
makes RC a potential solution to the model-free inference
of the attracting basins in complex dynamical systems, as

demonstrated preliminarily in the recent studies [35,36]. By
the architecture of parameter-aware RC [29–31], Roy et al.
showed that the machine trained by the time series of a few
exampling states is able to reconstruct the attracting basins
of a new state with a reasonable precision [35]. Similar to the
studies in Refs. [32–34], before making the predictions, a long
time series from the desired attractor is also needed to drive
the reservoir out of the transient. As the driving time series
used to “warm up” the machine is sufficiently long in these
studies (which normally contains thousands of data points
and sustains hundreds of system oscillations), the system will
have already approached the asymptotic attractor during this
time period, rendering the prediction of attracting basins by
machine-learning techniques unnecessary [38].

To cope with the problem of long driving series for ini-
tiating the RC, a new technique named next-generation RC
(NGRC) has been employed recently for inferring the attract-
ing basins of coexisting attractors in chaotic systems [36,37].
Different from the conventional RC techniques in which a
nonlinear reservoir and a linear output layer are adopted,
NGRC utilizes a linear reservoir and a nonlinear output layer.
Compared to the conventional RCs, NGRC is featured by
employing fewer hyperparameters and using a much shorter
“warming up” time series. The latter makes NGRC a promis-
ing technique for inferring the attracting basins of complex
dynamical systems, as demonstrated by Gauthier et al. in a
recent study [36]. Specifically, it is shown in Ref. [36] that
NGRC can be trained by the time series measured from a
single attractor, while the trained machine is able to predict
the fractal basins of the coexisting attractors in chaotic sys-
tems (e.g., the Li-Sprott system). Remarkably, compared to
the standard RC, the “warming up” series of NGRC is short-
ened by about three orders of magnitude, while the prediction
performance is improved by about two orders of magnitude.
However, as pointed out by Zhang et al. in Ref. [38], the
excellent performance of NGRC comes at the cost of a priori
knowledge of the nonlinearity of the target system. Specif-
ically, a small uncertainty of the nonlinear functions of the
target system might lead to a complete failure of the NGRC
technique. This creates a catch-22 for NGRC: one has to
balance between the prediction performance and the available
system information (the nonlinearity of the target system) but
it cannot have both [38].

Noticing that the conventional RCs have their own catch-
22 (i.e., no prior knowledge of the target dynamics is required
but a long time series is needed to “warm up” the reservoir
before making the predictions) [32–35], it is reasonable to
conjecture that the key for an RC to infer the dynamics of
multistable systems might lie in the balance between the
prediction performance and the prediction cost. For the con-
ventional RCs, the cost is reflected in the length of the driving
(“warming up”) series; for the NGRC, the cost is reflected in
the knowledge of the system dynamics. With this in mind, we
propose in the present work a new technique of RC by intro-
ducing a new objective function that balances the prediction
performance and the prediction cost in machine optimization,
and we utilize the new RC to infer the attracting basins of a
typical power system. We are able to show that, trained by
the transient series of a handful of perturbation events, the
machine is able to anticipate accurately whether the power
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system will return to the functional state when a nonsmall
random disturbance is encountered given that the initial re-
sponse of the system is measured, thereby reconstructing the
attracting basin of the functional state in the phase space.
We shall discuss in detail how the contradiction between
prediction performance and cost is balanced by the new ob-
jective function, and we demonstrate how the introduction
of moderate noise can improve the prediction performance.
Finally, we shall demonstrate that the new technique can also
be utilized to infer the attracting basins of coexisting attractors
in typical chaotic systems, signifying the capability of this
new technique in learning the dynamics of general multistable
systems.

II. MULTISTABILITY OF POWER SYSTEM

The power system studied in the present work is the voltage
source converter (VSC)—a key electronic device that has
been widely adopted in renewable-energy-dominated power
systems for maintaining the synchronization relationship be-
tween the generators (e.g., the wind farms and photovoltaic
plants) and the power grid through the technique of a phase-
locked loop (PLL) [39]. The failure of VSC leads generally
to the dysfunction or collapse of power generators, which,
according to industrial reports [40], contributes to a significant
portion of the accidents in modern power systems. While
sophisticated models have been proposed in the literature for
the dynamics of PLL-based VSC, here we adopt the gener-
alized swing model proposed in Ref. [41] for simplicity and
demonstration purposes. The model reads

θ̇ = ω, ω̇ = I − sin θ − (α cos θ − D)ω, (1)

where θ and ω denote, respectively, the phase and frequency
mismatches between the generator and the grid, I represents
the dimensionless input power (determined by the operational
conditions of the generator), D stands for the constant equiv-
alent damping coefficient (determined by both the operational
conditions and the integral coefficients of the PLL module),
and α characterizes the state-dependent equivalent damping
coefficient (determined by the ratio of the proportional and
integral coefficients of the PLL module). The three parameters
(D, I, α) are positively defined on the physical ground, and
Eq. (1) describes essentially the stability of the synchroniza-
tion state of the power generator [41]. Different from the
classical swing models in which the damping coefficient is
a constant [39], the generalized swing model is featured by
the state-dependent damping coefficient, D̂(t ) = α cos θ − D.
This feature makes the stability of the renewable-energy-
dominated power systems significantly different from that
of synchronous-generator-dominated power systems, and it
raises a series of new challenges in system analysis and man-
agement, e.g., the attracting basin of the functional state shows
a fishlike pattern [42–44].

To illustrate the complex dynamics of the generalized
swing model, we set (I, D, α) = (0.4, 0.39, 0.7) in Eq. (1),
and, using the approach of model simulations, we plot in
Fig. 1(a) the system evolutions started from several initial
conditions (θ0, ω0). In numerical simulations, Eq. (1) is solved
by the fourth-order Runge-Kutta algorithm with the time step
δt = 0.05. Since θ and ω represent, respectively, the phase

FIG. 1. Multistability of the power system described by the gen-
eralized swing model. (a) The time evolution of the system started
from typical initial conditions. Purple curve: the stable case in which
ω is damped to 0 after a transient period about T = 30. Green curve:
the system is unstable. ω diverges to +∞ with time. Yellow curve:
the system is unstable. ω diverges to −∞ with time. (b) Basins
of attraction obtained by the approach of model simulation. Purple
region: the attracting basin of the operational state ω = 0. Green
region: the attracting basin of the diverging state ω = +∞.
Yellow region: the attracting basin of the diverging state ω = −∞.
(c) The initial response of the system to a large, random perturbation,
which contains l = 10 data points. This short time series will be used
as the guiding series for the machine to anticipate the asymptotic
state.

and frequency mismatches between the generator and the
grid, different initial conditions can be regarded as different
disturbances added onto the power system. The system is
considered stable if ω is damped to 0 after a short transient,
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and unstable if ω is diverging with time. We see in Fig. 1(a)
that, though the initial conditions (disturbances) are very close
(similar) to each other, the asymptotic states the power system
is settled into are completely different: the system is returned
to the functional (operational) state with ω = 0 for one of
the initial conditions (the purple curve), but it is diverged
to infinity for the other two initial conditions (the green and
yellow curves). In particular, in the stable case, the system is
returned to the operational state (ω = 0) after a short transient
period T ≈ 30, i.e., the disturbance disappears after about
four system oscillations. Treating ω = ±∞ as two different
attractors, we plot in Fig. 1(b) the attracting basins of the
three asymptotic states (ω = 0, ∞, and −∞) in the phase
space based on the results of model simulations. In plotting
Fig. 1(b), the initial conditions are uniformly distributed over
the space. We see that the basins are separated from each
other by irregular boundaries. (More complex boundaries can
be generated by decreasing the parameter D, which will be
discussed later.)

Whereas Fig. 1(b) serves as the reference manual for sys-
tem management in dealing with any random disturbance, the
construction of the attracting basins is extremely challenging
for realistic systems. One reason is that the accurate model
describing the power system is unavailable, which makes a
brute-force search of the attracting basins by the approach of
model simulation, as was done in plotting Fig. 1(b), infeasi-
ble. Without an accurate model, any attempt to construct the
basins must be based on measured data. On the other hand,
as large-perturbation events in power systems are rare, and
a complete record of the system response to large perturba-
tions is difficult in practice (especially for incidents leading
to system collapses), it is also impossible to reconstruct the
basins by collecting data for each possible perturbation (initial
condition). From the perspective of power-system manage-
ment, what is available is just the time series measured from
a few fully recorded perturbation events, while the mission is
to anticipate whether the system will return to the operational
state in the presence of a random perturbation. In particular,
by noticing the abnormal behavior of a power system for a
very short episode (which shows no sign of the asymptotic
state that the perturbed system will evolve into), the system
operator needs to decide promptly whether actions should be
taken to prevent the system from collapsing (if it is unstable)
or if the system should be left alone (if it is stable) [39].
For the generalized swing model studied here, the question
can be rephrased as follows: given that the time series of
a handful of perturbation events are measured and the data
are available, can we predict, based on the initial responses
of the power system to a random perturbation, whether the
system will restore the operational state after the transient?
An example of the initial responses of the system to a random
perturbation is plotted in Fig. 1(c), which contains l = 10 data
points and sustains for only a time period of T = 0.5 (less
than one-tenth of the system oscillation). Our main objective
in the present work is to predict, based on the information of
the initial responses, whether the power system will restore
its functional state. We are going to demonstrate that this
goal can be achieved by a new technique generalized from
the standard RCs. In specific, we are able to show that by
introducing a new objective function that balances the echo

and fading properties of the reservoir network, the machine
trained by the time series of a few perturbation events [as
depicted in Fig. 1(a)] is able to infer from the short time series
of the initial responses whether the perturbed system will
return to the operational state or collapse eventually, therefore
reconstructing the attracting basins of the power system.

III. BALANCED RESERVOIR COMPUTER

The new RC technique proposed in the current study is
similar to the conventional ones in architecture [23–26], but
it is different in hyperparameter optimization (based on a new
objective function) and machine implementation. Like the
conventional RCs, the new RC also consists of three modules:
an input layer, a reservoir, and an output layer. The input layer
is characterized by the matrix W in ∈ Rn×d , whose function is
coupling the input vector u(t ) ∈ Rd to the reservoir. The ele-
ments of W in are randomly drawn from a uniform distribution
within the range [−σ, σ ]. The reservoir is represented by a
complex network of n dynamical nodes, with the initial states
of the nodes being randomly chosen from the interval [−1, 1].
The state of the reservoir network, r(t ) ∈ Rn, is updated as

r(t + �t ) = (1 − α)r(t ) + α tanh[Ar(t ) + W inu(t )]. (2)

Here, �t is the time step for updating the reservoir (in appli-
cations, we set �t to be identical to the time interval of signal
sampling, i.e., the RC is operating as a discrete, mapping
system), α is the leaking coefficient, tanh is the hyperbolic
tangent function, and A ∈ Rn×n is a weighted adjacency ma-
trix characterizing the coupling relationship between nodes
in the reservoir. The adjacency matrix A is constructed as
a sparse random Erdös-Rényi network: with probability p,
each element of the matrix is given a nonzero value drawn
randomly from the interval [−1, 1]. The matrix A is rescaled
to make its spectral radius equal to λ. The output layer is
characterized by the matrix W out ∈ Rd×n, which generates the
output vector, v(t ) ∈ Rd , according to the equation

v(t + �t ) = W outr̃(t + �t ), (3)

where r̃ ∈ Rn is the new state vector obtained from the reser-
voir state (i.e., r̃i = ri for the odd nodes and r̃i = r2

i for the
even nodes) [26], and W out is the output matrix to be obtained
through a training process.

The implementation of the machine consists of three
phases (training, validation, and prediction), and each phase
contains two stages (listening and working). In the training
phase, the reservoir is driven by the time series of the target
system first for a transient period of l steps (the listening
stage) and then for a long period of L steps (the working
stage). The purpose of the listening stage is to make the
reservoir network “forget” its initial conditions, so as to re-
alize the “echo” property of the machine in the working
stage [22]. The mission of the working stage in the training
phase is to find a suitable output matrix W out, so that the
output vector v(t + �t ) as calculated by Eq. (3) is as close
as possible to the input vector u(t + �t ) for the data points
at t = (l + 1)�t, . . . , (l + L)�t in the training series. This
can be done by minimizing the cost function with respect to
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W out [23–26], which gives

W out = UV T (VV T + ηI)−1. (4)

Here, V ∈ Rn×L is the state matrix whose kth column is
r̃[(l + k)�t], U ∈ Rd×L is a matrix whose kth column is
u[(l + k)�t], I is the identity matrix, and η is the ridge
regression parameter for avoiding the overfitting. The hyper-
parameters of the machine include n (the size of the reservoir
network), p (the connectivity of the reservoir network), λ (the
spectral radius of the reservoir network), σ (the range defining
the input matrix), α (the leaking coefficient), and η (the ridge
regression parameter). For a specific set of hyperparameters,
we generate a number of realizations for the reservoir, and the
above training process is conducted for each realization based
on the same training data set. The set of hyperparameters,
together with the realization of the reservoir network and the
associated output matrix, define a specific machine, which
will be used later for validation purposes.

The machine, which gives a good performance on the train-
ing data, might not perform well on the validating (testing)
data. The mission of the validation phase is to find that the op-
timal set of hyperparameters perform well for both the training
and testing data. For the conventional RCs, the performance
of the machine is generally evaluated by the length of the time
series that is accurately predicted, and the optimal machine
is identified as the one giving the longest prediction length
(horizon). To achieve a longer prediction, a general approach
is to prolong the memory of the reservoir, e.g., setting its
dynamics at the edge of chaos through modifying the structure
of the reservoir network [45–48] (counterexamples are given
in Ref. [49], in which it is shown that the memory capacity
should be matched to the prediction task). While prolonged
memory improves the “echo” property of the reservoir and
could extend the prediction horizon in some circumstances, it
also slows down the convergence of the reservoir dynamics
in response to external drivings. To emulate the dynamics of
a chaotic system, a necessary condition is the establishment
of the (generalized) synchronization relationship between the
target system and the reservoir [32], with the synchroniza-
tion speed characterized by the largest conditional Lyapunov
exponent of the reservoir network. For a multifunctional RC
capable of replicating multiple attractors, the synchronization
speed determines the length of the time series required for
driving the reservoir to the desired attractor: the faster the
synchronization speed, the shorter the driving series. From
the perspective of basin inference, this means that, to an-
ticipate the asymptotic state of the target system based on
its initial dynamics, the reservoir should be designed with a
short memory. This requirement, however, is contradictory to
the requirement posed for predicting the system evolution (in
which a longer reservoir memory is desired). Therefore, to
infer the attracting basins of multiple systems, a balance must
be made between the “echo” (state-evolution prediction) and
“fading” (synchronization) properties of the reservoir.

We take the power system introduced in Sec. II as the
example to demonstrate the contradictory requirements of
state-evolution prediction and reservoir synchronization in
optimizing a multifunctional RC. Shown in Fig. 2 is the
performance of 100 RCs on the tasks of state-evolution pre-
diction and reservoir-network synchronization. The RCs are

FIG. 2. The contradictory requirements of state-evolution pre-
diction and reservoir-network synchronization in designing multi-
functional RC. Shown is the performance of 100 RCs on the tasks
of state-evolution prediction and reservoir-network synchronization.
δep denotes the error of state-evolution prediction (black circles).
δes denotes the error of reservoir synchronization (red triangles). δe
denotes the balanced error defined by the new objective function
(blue dots). δe/2 is plotted to guide the eye. The RCs are indexed
by the increasing order of δe under the balancing parameter β = 10.

identical in network size (the hyperparameter n is identical
while the network structures are generated independently), but
they are different in the other hyperparameters, (p, λ, σ, α, η).
(See the Supplemental Material for details [50]. ) The perfor-
mance of state-evolution prediction is evaluated by the error
δep = 〈‖u(t ) − v(t )‖〉, with ‖ · ‖ the L2-norm and 〈·〉 the
time-average function. (In predicting the system evolution, the
machine is first driven by a short time series for l = 10 steps
in the open-loop configuration, then the machine is closed
and operating in the closed-loop configuration for L = 1000
steps.) Here u(t ) and v(t ) represent, respectively, the ground-
truth results and the predicted results. The synchronization
performance of the reservoir network is measured by the error
δes = ‖rτ − r′

τ‖. Here, rτ is the instant state of the reservoir
network after being driven by the input series for τ = 10
steps, and r′

τ is the state of the same reservoir network but
started from the different initial conditions. (In our studies, we
always set l = τ in order to keep the training and predicting
phases consistent.) Clearly, the smaller the error δep, the better
the prediction on system evolution; the smaller the error δes,
the faster the establishment of generalized synchronization
between the reservoir and the target system [51]. While an
ideal RC is expected to enjoy both a smaller prediction error
and a smaller synchronization error, the results shown in Fig. 2
imply that such an ideal RC is impossible. To be specific, we
see in Fig. 2 that the RC with the local minimum prediction
error also has a larger synchronization error, e.g., the 81th RC.
As such, in finding the optimal machine performing well on
both prediction and synchronization, a tradeoff must be taken
between the two errors. This feature is more distinct for RCs
with small prediction errors in Fig. 2 (i.e., RCs with an index
below 30), where it is shown that the machine with a smaller
δep also possesses a larger δes, signifying the competition of
the two performances in optimizing the machine.
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For the contradictory requirements revealed above, we pro-
pose to evaluate the performance of multifunctional RC by the
error (objective function)

δe = δep + βδes, (5)

with β the parameter balancing the performances of state-
evolution prediction (δep) and reservoir synchronization
(δes). [Note that the synchronization error can also be
expressed as δes = A0 exp (�trτ ), with �tr the largest con-
ditional Lyapunov exponent associated with the generalized
synchronization state of the reservoir, and A0 the initial syn-
chronization error [32]. Both �tr and A0 can be obtained
numerically. Here, to facilitate the optimization process, we
calculate δes directly by simulations.] In applications, the
value of β is chosen in such a way that the two terms on
the right-hand side of Eq. (5) are of the same order, i.e.,
δep = O(βδes). As δes is dependent on τ (the length of the
driving series for synchronizing the reservoir) and δes 	 δep

in general when τ is not very small (>5), we have β 
 1 in
most cases. Adopting δe as the new objective function, the
next step is to find the optimal set of hyperparameters giving
the best overall performance for the testing data, namely the
validation phase. This is done by scanning each hyperparame-
ter over a certain range through the conventional optimization
algorithms such as the Bayesian and surrogate optimization
algorithms [29]. (Please see the supplemental material [50] for
more details on the process of hyperparameter optimization.)
As the optimal machine so constructed takes into account both
the prediction and synchronization performances, we name
the new machine the balanced RC. Finally, in the predicting
phase, with the reservoir network and the hyperparameters
being fixed, we first drive the machine by the guiding time
series measured from the initial responses of the system [as
depicted in Fig. 1(c)] in the open-loop configuration (i.e., the
listening stage). Then, we operate the machine in the closed-
loop configuration (i.e., the working stage), and, based on the
outputs, we anticipate the asymptotic state that the system will
settle into eventually.

IV. RESULTS

We proceed to utilize the technique of balanced RC to infer
the asymptotic state and the attracting basins of multistable
dynamical systems, including the power system introduced in
Sec. II and two typical chaotic systems.

A. Inferring the attracting basins of power system

We start by preparing the training and testing data sets.
Setting the parameters (I, D, α) = (0.4, 0.39, 0.7) in Eq. (1),
we obtain by numerical simulation the time evolution of the
system state started from different initial conditions. The ini-
tial conditions of the system are randomly chosen from the
ranges θ0 ∈ [−3, 3] and ω0 ∈ [−4, 2], and each time series
contains L̂ = 1500 data points (sustained for T = L̂δt = 75
time units). According to the asymptotic state that the sys-
tem is settled into (ω ∈ {0,+∞,−∞}), we divide the time
series into three groups. We pick out m = 3 time series
from each group, and N = 9 time series are selected in to-
tal. We then normalize the data by the arctangent function:

FIG. 3. Inferring the attracting basins of the generalized power
system. (a) The time series of the normalized variable ω′(t ) in the
training data. The time series is composed of N = 9 segments, and
each segment contains L̂ = 1500 data points. (b) Typical predictions
made by the machine on the state evolution of the perturbed system.
Black curves are the results obtained by model simulations. Red
curves are the results predicted by the machine. (c) The attract-
ing basins of the power system predicted by the machine. Initial
conditions that are attracted to the operational state (ω′ = 0), the
positive-diverging state (ω′ = 1), and the negative-diverging state
(ω′ = −1) are represented by purple, green, and yellow points,
respectively. Red points denote the false predictions, which are dis-
tributed along the basin boundaries. The prediction accuracy is about
96.7%.

θ ′ = 2 arctan θ/π and ω′ = 2 arctan ω/π . The N normalized
time series form the training data. Plotted in Fig. 3(a) is the
time series of ω′ in the training data, in which the segments
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are colored according to the asymptotic states. The testing
data are prepared in exactly the same way (m = 3 and N = 9),
except that the time series are generated by different initial
conditions.

We next find the optimal machine for basin inference ac-
cording to the new objective function defined by Eq. (5). For
simplicity, we fix the size of the reservoir as n = 500, while
tuning the hyperparameters (p, λ, σ, α, η) in searching the
optimal machine. The ranges over which the hyperparameters
are searched are p ∈ (0, 1), λ ∈ (0, 3), σ ∈ (0, 3), α ∈ (0, 1),
and η ∈ (1 × 10−10, 1 × 10−2). The optimal hyperparameters
are obtained after 300 trials in the parameter space with the
help of the “optimoptions” function in MATLAB. For each set
of hyperparameters that define the machine, we first calculate
the synchronization error δes of the reservoir network based
on the training data, and then we evaluate the prediction
error δep based on the testing data. In calculating δes, the
driving series contains τ = 10 data points, and the result
is averaged over 50 realizations of the initial conditions of
the reservoir. In calculating δep, the driving series contains
l = 10 data points, and each training (testing) series contains
L = 1490 data points. In this application, the balancing pa-
rameter is chosen as β = 10, which is estimated according
to the prediction and synchronization errors of a randomly
selected reservoir. (The prediction performance of the ma-
chine is not sensitively affected by changing L and β. See the
supplemental material [50] for details.) The validation phase
ends up with the optimal hyperparameters (p, λ, σ, α, η) =
(0.480, 0.033, 2.917, 0.574, 3.458 × 10−4), which, together
with the specific reservoir network and the associated output
matrix, defines the optimal machine.

Is the machine designed and optimized in such a way
capable of inferring the asymptotic state and the attracting
basins of the power system? We first check the capability
of the machine in predicting the asymptotic state when the
initial responses of the power system to a random disturbance
are measured [see Fig. 1(c)]. In doing this, we first drive
the machine by the guiding series (containing l = 10 data
points) in the open-loop configuration, and then, using the
final state of the reservoir as the initial state, we operate the
machine in the closed-loop configuration. Typical examples of
the predictions are plotted in Fig. 3(b). We see that, though the
transient states of the system evolution are not precisely pre-
dicted, the machine does anticipate accurately the asymptotic
state the power system settles into eventually. We proceed to
check the capability of the machine in inferring the attracting
basins of the operational state (ω′ = 0), the positive-diverging
state (ω′ = +1), and the negative-diverging state (ω′ = −1).
The results predicted by the machine are plotted in Fig. 3(c),
in which the regions colored in purple, green, and yellow
represent, respectively, the attracting basins of the operational
state, the positive-diverging state, and the negative-diverging
state. [In plotting Fig. 3(c), the system is regarded as having
settled into the operational state if |ω′| < 1 × 10−2 after 1500
iterations (75 time units), and is regarded as having settled into
the positive-diverging (negative-diverging) state if ω′ > 0.99
(ω′ < −0.99) after the same number of iterations.] Compared
to the ground-truth results plotted in Fig. 1(b), the machine
predicts correctly the asymptotic state for 96.7% of the initial
conditions. The false predictions, which are marked by the red

points in Fig. 3(c), are distributed along the basin boundaries.
A close look at the false predictions shows that in these cases
the predicted trajectories are diverged from the true trajecto-
ries shortly after the machine is operating in the closed-loop
configuration (not shown), signifying the sensitivity of the
system dynamics near the basin boundaries [10,11]. [With
the same settings, the prediction accuracy of the standard
RC (with β = 0) is only about 65%. See the supplemental
material [50] for more details.]

Is the proposed technique still capable of inferring the
attracting basins when some variables of the target system
are not measured? To investigate, we measure only the time
series of θ , and, with the same procedures used in plotting
Fig. 3(c), we obtain a new machine and utilize it to infer the
attracting basins. For this new machine, the optimal hyperpa-
rameters are (p, λ, σ, α, η) = (0.14, 0.0173, 2.47, 0.79, 1 ×
10−4), and the prediction accuracy is about 87.9%. (See the
supplemental material [50] for details.)

B. Impacts of sampling series and noise

In learning the dynamics of multistable systems by the
conventional RC techniques, a general requirement is that
the training data should be composed by the time series of
all the coexisting attractors [32,34]. This requirement also
applies to the technique of balanced RC proposed in our
present work. Additional simulations show that if the train-
ing data are composed by the time series of only one or
two asymptotic states, the accuracy of the prediction will
be clearly decreased (not shown). Even though the training
data contain the time series of all the attractors, the per-
formance of the machine is still influenced by the number
of the sampling series. To show an example, we delete one
time series for each asymptotic state in the training data
shown in Fig. 3(a) (i.e., m = 2 and N = 6), and we use
the tailored data to optimize and train a new machine. The
hyperparameters of the new machine are (p, λ, σ, α, η) =
(0.804, 0.852, 2.690, 0.965, 1.552 × 10−4), and the balanc-
ing parameter is chosen as β = 15. The attracting basins
predicted by the new machine are plotted in Fig. 4(a). Com-
pared to the results plotted in Fig. 3(c), we see in Fig. 4(a)
that a significant portion of the predictions are incorrect (the
red points). The prediction accuracy of the new machine is
about 70%, which is clearly smaller than that of the original
machine (∼96.7%). [The adoption of more sampling series,
e.g., m = 4 samplings for each asymptotic state, will improve
the prediction performance, but the improvement is marginal
(∼96.8%). Please see the supplemental material [50] for more
details.]

In predicting real-world dynamical systems by machine-
learning techniques, an important concern is the possible
impacts of noise on machine predictions [52,53]. Compared
to noise-free signals, the machine performance is normally
deteriorated when noise is introduced [54,55], e.g., the pre-
diction horizon is shortened and the replicated dynamics is
unstable. Counterintuitive examples have been reported re-
cently in predicting chaos using standard RC, in which it
is found that under some circumstances the introduction of
noise could improve the prediction performance [56,57]. To
be specific, it is demonstrated in Ref. [57] that, with the
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FIG. 4. The impact of sampling series and noise on the infer-
ence of attracting basins. (a) The attracting basins predicted by the
machine trained by the tailored training data consisting of N = 6
sampling series (each asymptotic state contributes m = 2 time se-
ries). The prediction accuracy is about 70%. (b) The attracting basins
predicted by the machine trained by noisy signals with amplitude
D0 = 1 × 10−5. The prediction accuracy is about 85%. (c) The
phenomenon of noise-enhanced machine prediction. Shown is the
variation of the prediction accuracy with respect to the noise am-
plitude D0. The prediction accuracy reaches its maximum at about
D0 = 2 × 10−3. Results are averaged over 50 realizations. Error bars
denote the variances. False predictions are represented by red dots in
(a) and (b).

increase of the noise amplitude, the prediction performance of
RC is first increased and then decreased, showing the typical
phenomenon of resonance in nonlinear science [58]. Inspired
by these studies, we investigate here the impacts of noise

on the prediction performance of balanced RC. To introduce
noise perturbations, we modify the dynamical functions of the
power system to

θ̇ = ω, ω̇ = I − sin θ − (α cos θ − D)ω + D0ξ (t ), (6)

with ξ (t ) the Gaussian white noise (zero mean and unity
variance) and D0 the noise amplitude. Setting D0 = 1 × 10−5,
we generate the training data by simulating Eq. (6) numer-
ically with the Euler-Maruyama method, and then we use
the noisy signals to train and optimize a new machine. As
we did for the noise-free case [see Fig. 4(a)], we collect
for each asymptotic state m = 2 sampling series, and N = 6
sampling series are collected in total in the training data set.
The hyperparameters of the new machine are (p, λ, σ, α, η) =
(0.404, 0.752, 2.637, 0.738, 8.341 × 10−4), and the balanc-
ing parameter is chosen as β = 12. The attracting basins
predicted by the new machine are plotted in Fig. 4(b). We see
that, compared with the noise-free case, the prediction accu-
racy is significantly improved for the noisy signals (∼85%).
(The phenomenon of noise-enhanced prediction is not sensi-
tively affected by β. See the supplemental material [50] for
details.) To have a global picture on the impacts of noise on
the prediction performance, we plot in Fig. 4(c) the variation
of the prediction accuracy with respect to the noise ampli-
tude. It is seen that with the increase of the noise amplitude,
the prediction accuracy is first increased and then decreased,
reaching its maximum at about D0 = 2 × 10−3.

We note that the mechanism behind the phenomenon of
noise-enhanced machine prediction observed here is different
from the one revealed in Ref. [57]. In Ref. [57], noise is added
onto the measured data directly (i.e., the measurement noise),
and the noise-enhanced machine prediction is attributed to
the competition between the performances of the machine
on the training and testing data (or a resonance between the
measurement noise and the intrinsic dynamics of the reservoir
network). In such a situation, noise plays essentially the same
role as the ridge regression parameter (η): avoiding overfitting
in machine training. Different from that, in our current study
noise is added onto the system dynamics (i.e., the intrinsic
noise), and the phenomenon of noise-enhanced prediction
emerges as a competition between the extended transient dy-
namics and the data quality. To be specific, by increasing the
noise amplitude, the transient period for the perturbed power
system to be settled into the asymptotic state will be extended,
which provides more information about the system dynamics
and therefore is beneficial to the learning. However, if the
noise is too strong, the quality of the data will be reduced,
making the replication of the system dynamics inaccurate. (A
similar phenomenon is also observed in Ref. [59], in which it
is shown that the introduction of intrinsic noise could extend
the transient time for synchronization, which improves the
performance of the RC in predicting the critical point for
synchronization.)

C. Inferring complicated attracting basins

How about complicated attracting basins? By changing the
parameter D, more complicated basins can be observed in the
power system [41]. Setting D = 0.06 in Eq. (1), we plot in
Fig. 5(a) the attracting basins of the operational (ω = 0) and
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FIG. 5. The attracting basins of the power system for the parame-
ter D = 0.06. (a) The results obtained by model simulations. (b) The
results predicted by the machine based on noise-free signals. The
prediction accuracy is about 91%. (c) The results predicted by ma-
chine based on noisy signals with noise amplitude D0 = 1 × 10−2.
The prediction accuracy is about 96%. Purple region: the attracting
basin of the operational state. Green region: the attracting basin of
the diverging state. Red dots: the false predictions.

diverging (ω = +∞) states in the phase space. Compared to
the basins plotted in Fig. 1(b) (D = 0.39), we see that the
basins are more complicated. In particular, the attracting basin
of the operational state is composed of several disconnected
regions, showing the feature of the fishlike pattern [41]. We
next utilize the technique of balanced RC to infer the fishlike
basins.

For the generalized swing model, the transient period for
the perturbed system to be settled into the asymptotic states is

decreased with the parameter D. For the parameter D = 0.06,
the system is damped to the operational state after only one or
two oscillations. To obtain sufficient information for training
(validating) the machine, here we collect from each asymp-
totic state m = 5 time series, while each time series contains
L̂ = 1500 data points. As there are only two asymptotic states
(ω = 0 or +∞) in the case, the training (testing) data contain
N = 10 time series and 15 000 data points in total (which is
longer than the training data used in Fig. 3). The listening
(guiding) series contains still l = 10 data points, and the time
series predicted by the machine contains 2000 data points. In
this application, the balancing parameter is chosen as β =
30, and the optimal hyperparameters are (p, λ, σ, α, η) =
(0.758, 0.046, 1.689, 0.586, 6.91 × 10−5). The criteria for in-
ferring the asymptotic state are the same as in Fig. 3(c). The
results predicted by the machine are plotted in Fig. 5(b). The
prediction accuracy is about 91%. We see that, compared to
the results of D = 0.39 [see Fig. 3(c)], the prediction accu-
racy is decreased for the fishlike attracting basins (even with
more training data). In agreement with the results shown in
Fig. 3(c), false predictions are observed only in the vicinity of
the basin boundaries.

Introducing noise to the system dynamics, we check fur-
ther the impact of noise on the prediction performance.
Setting the noise amplitude as D0 = 1 × 10−2, we regen-
erate the training and testing data by simulating Eq. (6),
and then we obtain a new machine by the same proce-
dures as were used for the noise-free case. The new set of
hyperparameters are (p, λ, σ, α, η) = (0.854, 0.086, 2.401,

0.489, 9.161 × 10−5) and the balancing parameter is still cho-
sen as β = 30. The results predicted by the machine are
plotted in Fig. 5(c). The prediction accuracy is about 96%.
Again, we see that the introduction of noise can improve the
prediction performance, which is consistent with the results
obtained for the parameter D = 0.39 [see Fig. 4(c)].

D. Inferring the attracting basins of coexisting
attractors in chaotic systems

We finally utilize the proposed technique to infer the
attracting basins of coexisting attractors in typical chaotic
systems. Before presenting the detailed results, we would
like to mention briefly some challenges met currently in the
literature in predicting the attracting basins of chaotic sys-
tems by the RC techniques [38]. One challenge is about the
length of the guiding series. To retrieve the attractors en-
coded in the machine, the guiding series used for driving the
reservoir in the listening stage is required to be sufficiently
long [32,33,35,36]. As the system has already settled into
the asymptotic attractors after such a long transient period,
the adoption of machine-learning techniques is unnecessary.
Another challenge is about overlapped attractors. To make
the internal representations of the attractors in the reser-
voir distinctly different from each other, it is required that
the coexisting attractors should be clearly separated in the
phase space [32]. Otherwise, if the attractors are overlapped,
the one-to-one correspondence between the state of the tar-
get system and the state of the reservoir network will be
lost, resulting in failed predictions. This requirement restricts
seriously the application of the RC technique, as in realistic
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systems the coexisting attractors are generally overlapped,
e.g., the same set of neurons may participate in a variety of
cognitive tasks in the neurocortex [60,61]. In what follows,
we are going to show that both challenges are well overcome
by the technique of balanced RC.

The first model we consider is the Chua circuit. The system
dynamics is governed by the set of equations [62]

ẋ = c1[y − x − g(x)], ẏ = c2(x − y + z), ż = −c3y,
(7)

with g(x) = m1x + (m0 − m1)(|x + 1| − |x − 1|)/2 the
piecewise-linear function. We set the system parameters as
(c1, c2, c3, m0, m1) = (15.6, 1, 33,−8/7,−5/7), by which
the system dynamics is chaotic and the largest Lyapunov
exponent is about � ≈ 0.23. In numerical simulations,
Eq. (7) is solved by the fourth-order Runge-Kutta algorithm
with the time step δt = 0.05. Depending on the initial
conditions, the system may evolve into different attractors.
Shown in Fig. 6(a) are the two attractors that the system might
settle into, which are symmetric about the origin. Clearly,
the two attractors are partially overlapped in the phase space.
We denote the attractor on the left side as Al (purple), and
the one on the right side as Ar (green). Fixing the initial
condition of variable z as 0, we plot in Fig. 6(b) the attracting
basins of Al and Ar in the (x, y)-space based on the results of
model simulations. Here the task to be accomplished by the
technique of balanced RC is as follows: given that the system
evolution started from several initial conditions is measured,
can we predict which attractor the system will settle into by
noticing the initial evolution of the system started from a
random initial condition? [An example of the initial evolution
of the Chua circuit is plotted in Fig. 6(a) (black dotted curve),
which contains l = 10 data points and sustains for a period of
T = 0.5 (about one-fiftieth of the system oscillation).]

In implementing the prediction task, we first generate the
training and testing data by recording the state evolution of
the system started from N = 10 different initial conditions,
among which half of the initial conditions are developed to
Al and the other half are developed to Ar . The variables x
and z are normalized to be within the range [−1, 1], while the
variable y is kept unchanged. Each time series contains L̂ =
3000 data points, and the training data set contains, therefore,
15 000 data points in total (the remaining data are used for val-
idation purposes). For each time series in the training (testing)
data, the first l = 10 data points are used as the listening series
for driving the reservoir out of the transient, and the remaining
data points are used for machine training (validation). Still,
we fix the size of the reservoir network as n = 500, while op-
timizing the hyperparameters (p, λ, σ, α, η) in searching for
the optimal machine. The ranges of the hyperparameters are
identical to that of the power system, and the optimal machine
is obtained after 400 trials. According to the ratio of the pre-
diction and synchronization errors, here we set the balancing
parameter as β = 20, for which the optimal hyperparame-
ters are (p, λ, σ, α, η) = (0.7691, 0.300, 2.763, 0.424, 1.1 ×
10−3).

In the predicting phase, the reservoir is first driven by the
guiding series for l = 10 data points, and then is operated
in the closed-loop configuration for L = 10 000 steps. The
system is regarded as having settled into Al if the time-

FIG. 6. Inferring the attracting basins of coexisting attractors in
the chaotic Chua circuit. (a) The coexisting attractors. The attractors
on the left and right sides are denoted as Al and Ar , respectively.
Black dots denote the guiding series, which contains l = 10 data
points. (b) The attracting basins obtained by model simulations.
(c) The attracting basins predicted by the machine. The prediction
accuracy is about 96%. Red dots denote the false predictions.

averaged variable x̄ is negative for the last 1000 predictions,
and to Ar if x̄ is positive. The attracting basins predicted by
the machine are plotted in Fig. 6(c). The prediction accuracy
is about 96%. Comparing to the ground-truth results plotted
in Fig. 6(b), we see that, similar to the results of the power
system [e.g., Fig. 3(c)], the failed predictions are distributed
along the basin boundaries. [The impacts of intrinsic noise
on the predictions have also been checked. Unlike the power
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system, the phenomenon of noise-enhanced machine predic-
tion is not observed here (not shown).]

The second model we adopt is the chaotic Duffing oscilla-
tor. The system dynamics reads

ẋ = y, ẏ = −ky + x − x3 + A sin(�t ), (8)

with k the dissipation coefficient, A the amplitude of the exter-
nal driving, and � the driving frequency. Setting (k, A,�) =
(0.5, 0.38, 1), the system presents the chaotic motion, with
the largest Lyapunov exponent � ≈ 0.04. Depending on the
initial conditions, the system may evolve to different chaotic
attractors, as depicted in Fig. 7(a). We denote the attractors on
the left (right) side as Al (Ar). It is seen that the two attractors
are symmetric about the origin and are partially overlapped in
the phase space. Based on the results of model simulations,
we plot in Fig. 7(b) the attracting basins of the two attractors,
which shows that the basins are entangled and the boundaries
separating the basins are irregular. Our mission here is to
reconstruct the attracting basins utilizing the technique of
balanced RC.

In this application, the training (testing) data are composed
of N = 10 time series, with each attractor contributing m = 5
time series. The data are obtained by evolving Eq. (8) nu-
merically with the time step δt = 1 × 10−2. Each time series
contains L̂ = 300 data points, and the variables x and y are
normalized to be within the range [−1, 1]. In the training
(validation) phase, the listening series contains l = 10 data
points. Again, we fix the size of the reservoir network as
n = 500, while optimizing the hyperparameters (p, λ, σ, α, η)
in constructing the optimal machine. According to the pre-
diction and synchronization errors, here we set the balancing
parameter as β = 25, for which the optimal hyperparam-
eters are (p, λ, σ, α, η) = (0.995, 0.501, 0.607, 0.631, 1.9 ×
10−3) (obtained after 400 trails). In the predicting phase,
the guiding series contains l = 10 data points [as depicted
in Fig. 7(a)], and the time series predicted by the machine
contains L = 10 000 data points. The system is regarded
as approaching Al if x̄ < 0 and approaching Ar if x̄ > 0,
with x̄ being averaged over the last 100 data points in the
predicted time series. The predicted results are plotted in
Fig. 7(c), in which the false predictions are represented
by red points. A comparison with the ground-truth results
plotted in Fig. 7(b) shows that the prediction accuracy is
about 85%.

V. DISCUSSIONS AND CONCLUSION

A few remarks on the implementation and performance of
balanced RC are in order:

(i) In preparing the training and testing data, we have
collected time series from all the coexisting attractors (asymp-
totic states). This manner of data collection makes the mach-
ine capable of “sensing” the global dynamics of the target
system and thereby it is necessary for reconstructing the at-
tracting basins. This point has been confirmed by additional
simulations, which show that if the data are collected from
only some of the attractors, the performance of the machine
will be significantly deteriorated (not shown). Furthermore, in
composing the training and testing data, we have adopted from
each attractor the same number of time series. This adoption

FIG. 7. Inferring the attracting basins of coexisting attractors in
chaotic Duffing oscillator. (a) The coexisting attractors in the phase
space. Black dots denote the guiding series, which contains l = 10
data points. (b) The ground-truth results of the attracting basins ob-
tained from model simulations. (c) The attracting basins predicted by
the machine. The prediction accuracy is about 85%. False predictions
are represented by red dots.

is just for the sake of simplicity. It is possible that the machine
performance can be further improved by adopting a different
sampling strategy, e.g., choosing the number of time series for
each attractor according to its basin volume.

(ii) The performance of the machine is dependent on the
length of the guiding series. While the prediction accuracy
can be efficiently improved by increasing the length (time
duration) of the guiding series (see the supplemental mate-
rial [50] for the numerical evidence), a shorter guiding series
is more feasible and desirable from the perspective of real
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applications, due to the cost and difficulty in data acquisition.
In particular, in infrastructure systems such as power grids,
a shorter guiding series also means a more prompt response
to dysfunctions and cascading events, which is critically im-
portant for system management. To demonstrate the efficacy
of balanced RC, we have set the length of the guiding series
in such a way that (1) it is much less than the period of the
system oscillation, and (2) no sign of the asymptotic state
is shown during this episode. The adoption of a very short
guiding series is the key difference between the technique
of balanced RC and the multifunctional RCs proposed in the
literature [32–34].

(iii) The machine performance can be further improved by
optimizing the balancing parameter β. As depicted in Fig. 2
and expressed in Eq. (5), the role of β is to balance the per-
formances of state-evolution prediction and reservoir-network
synchronization. As the synchronization performance is de-
pendent on the length of the driving series (the longer the
series, the smaller the synchronization error), the balancing
parameter is also dependent on the driving series. In our stud-
ies, the value of β is chosen according to the ratio between
the prediction and synchronization errors, which is slightly
different from the criteria used in predicting the attracting
basins (e.g., based on the sign of the time-averaged variables).
This makes it possible to improve further the performance of
the machine by optimizing β, e.g., treating β as an additional
hyperparameter.

(iv) The inference of complicated attracting basins remains
a challenge. For the models studied in our present work, the
failed predictions are all observed at the boundaries of the at-
tracting basins. This observation is understandable, as the
system is sensitive to small perturbations near the basin
boundaries. This raises the question of how to infer compli-
cated basins, e.g., fractal or riddled basins, using the technique
of balanced RC. One approach to solving the question could
be increasing the length of the guiding series, which, however,
will degrade the efficacy of the technique.

(v) The applicability of the new technique to other multi-
stable systems, particularly the realistic systems, is yet to be

checked. For demonstration purposes, the multiple dynamical
models we have adopted are of low dimension and simple at-
tractors. It remains unknown whether the proposed technique
can be applied to high-dimensional systems or systems with
more complicated attractors, e.g., the attracting basins of the
synchronization patterns emerged in spatiotemporal systems
of coupled oscillators.

To summarize, we have proposed a new machine-learning
technique, namely balanced RC, and utilized it to infer the
global stability of a power system. We have demonstrated that
the new machine is able not only to predict whether the power
system will return to its functional state in the presence of a
large, random perturbation, but also to reconstruct the attract-
ing basin of the functional state with high precision. The new
technique is featured by a very short guiding series in mak-
ing the predictions, and the success of the new technique is
attributed to the new objective function that balances the per-
formances of state-evolution prediction and reservoir-network
synchronization. The impact of noise on predictions has been
checked, and it is found that the machine performance can
be improved when a certain amount of noise is introduced.
The new technique has also been applied successfully to infer
the attracting basins of coexisting attractors in typical chaotic
systems, including the Chua circuit and the Duffing oscilla-
tor. The results show that, though the coexisting attractors
are overlapped in the phase space, the machine is still able
to reconstruct the attracting basins with high precision. The
technique of balanced RC provides a powerful tool for the
data-based stability analysis of power systems, and paves the
way to the model-free prediction of multistable dynamical
systems.
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