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Three-dimensional harmonic oscillator as a quantum Otto engine
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A quantum Otto engine based on a three-dimensional harmonic oscillator is proposed. One of the modes of
this oscillator functions as the working fluid, while the other two play the role of baths. The coupling between
the working fluid and the baths is controlled using an external central potential. All four strokes of the engine are
simulated numerically, exploring the nonadiabatic effects in the compression and expansion phases, as well as the
energy transfer during the working fluid’s contact with the baths. The efficiency and power of several realizations
of the proposed engine are also computed with the former agreeing well with the theoretical predictions for the
quantum Otto cycle.
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I. INTRODUCTION

The purpose of a quantum engine is the same as that
of a classical one: converting energy into work. The main
distinction is that quantum components play the role of the
working fluid [1,2]. Examples of quantum systems that can
act as the fluid include two-level systems [3,4], one [5–11]
or multiple [12,13] harmonic oscillators, or photons [14]. The
second difference between classical and quantum varieties is
their energy sources. While classical versions get their energy
from hot reservoirs, quantum engines can be powered by
measurements, as described in several recent studies [15–24].

Despite the variety of quantum engines, perhaps the most
common one is based on the classical Otto cycle, where the
working fluid is a gas. This cycle involves four processes:
adiabatic compression, constant-volume heat transfer to the
gas, adiabatic expansion, and constant-volume heat transfer
away from the gas. The two heat exchange processes indicate
that the engine requires two heat reservoirs for its operation.
In the quantum variety of the Otto cycle, the working fluid is
often chosen to be a harmonic oscillator [5–7,9,10,12] because
the compression and expansion can be achieved by adjusting
the oscillator’s force constant.

This paper proposes an implementation of a quantum Otto
engine, consisting of a three-dimensional harmonic oscillator
with anisotropic force constants in the three orthogonal direc-
tions. The three corresponding modes act as a hot reservoir, a
cold reservoir, and the “gas” with an adjustable force constant.
The coupling between the gas and the baths can be controlled
using an external central potential, as shown in Ref. [25].
Although single “bath” modes do not function as true
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thermodynamic reservoirs, they can be regarded as ancillae
that deliver energy to or extract it from the gas mode. While
a particular bath mode is disconnected from the gas, it can
be either cooled or heated to return it to its precontact state.
The cooling and heating mechanisms for the ancillae may
involve optics (such as laser cooling) or coupling the mode to
a thermodynamic reservoir at a particular temperature. The
coupling between the modes of the oscillators can be con-
trolled by an external potential that would mix the Cartesian
coordinates of the modes. For example, a central potential
with a cylindrical symmetry applied to a plane defined by
two of the modes can be used to couple these modes. For
the sake of brevity, the two ancillary modes will be referred
to as “baths” in the text while keeping in mind that there are
additional external reservoirs. The schematic for the system is
given in Fig. 1.

It is worth noting that Ref. [8] demonstrated that a three-
oscillator setup can operate as a “finite” engine when one
of the oscillators starts in a hot state, the second one is
initialized at a low temperature, and the third one acts as
the working fluid. An important distinction from the present
paper is the fact that the bath modes are not returned to
their original state in the course of the engine operation.
As such, the system in Ref. [8] can be thought of as a
“battery-powered” engine that runs until most of the usable
energy is extracted from the hot bath in contrast to this work,
where the amount of energy available in the hot reservoirs is
infinite.

A reasonable question is why the auxiliary bath modes
are necessary instead of directly cooling and heating the gas
mode using the same means. The reason is complexity: Cool-
ing and heating of a single mode means one must be able
to swap the heating and the cooling mechanisms. If there
are dedicated ancillary modes, however, each one of them
needs to be connected to, at most, a single external system.
Moreover, if the “resetting” process of the bath modes is
sufficiently slower than their rate of energy exchange with
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FIG. 1. Engine schematic. The proposed engine consists of a
three-dimensional harmonic oscillator with different force constants
in the three dimensions. The force constant of one of the modes
corresponding to the working fluid, can be modified during the en-
gine operation. The other two modes are kept in thermal states by
coupling them to external reservoirs. The working fluid mode can be
coupled to the other two using symmetry-breaking central potentials
�c(xc, xg) and �h(xh, xg), where xi’s are the displacements of the
oscillator in the direction of the modes.

the gas mode, the external system can remain connected to
the bath mode throughout the engine’s operation. The idea of
always keeping the bath connection on for different imple-
mentations of the quantum Otto cycle was explored earlier in
Refs. [26,27].

The efficiency of an ideal quantum Otto cycle is obtained
by assuming that the working fluid is compressed and ex-
panded adiabatically, and that it reaches the bath temperature
[1]. For an engine to deliver a nonvanishing power, they must
be able to complete their cycles in a finite amount of time.
Therefore, the compression and expansion phases are likely to
give rise to nonadiabatic effects. Additionally, for the engine
proposed here, one does not expect the gas mode to reach
the temperature of the bath mode. In fact, the state of the
gas mode is likely not to be thermal generally. Nevertheless,
this paper demonstrates that, despite these deviations from
the ideal cycle, the resultant efficiency can be close to the
predicted value.

To show that the engine proposed does not need to adhere
to the ideal configuration to deliver such efficiency, it is
useful to first focus on individual strokes of the Otto cycle.
Thus, after presenting the theoretical model describing the
engine in Sec. II, this paper dedicates Secs. III and IV
to the compression/expansion phases and energy exchange
with the baths, respectively. The entire cycle of the engine
operation is presented in Sec. V. Summary and conclusions
are found in Sec. VI.

All computations are performed using the JULIA program-
ming language [28]. The plots are made using Makie.jl
package [29] using the color scheme designed for colorblind
readers [30]. The scripts used for computing and plotting can
be found on GitHub [31].

II. MODEL

As discussed in the Introduction, the engine consists of
a three-dimensional harmonic oscillator, where two of the
dimensions function as baths, and the remaining one operates
as the “gas” in the Otto cycle. The Hamiltonian for such a
system is given by

Ĥ (t ) =
∑

d=c,h,g

(
p̂2

d

2m
+ kd

2
x̂2

d

)
+ κ (t )

2
x̂2

g

+ Uh(x̂h, x̂g, t ) + Uc(x̂c, x̂g, t ), (1)

where the c, h, and g correspond to cold, hot, and gas, re-
spectively. The last term of the first line allows the gas to be
compressed and expanded, as required by the engine opera-
tion. The second line contains the interaction terms between
the gas and the baths.

The most natural way to describe the system is using the
Fock basis | j〉c ⊗ |k〉h ⊗ |l〉g ≡ | j, k, l〉, where j, k, and l are
the energy levels of the three modes. Therefore, one may
be tempted to write the portions of Eq. (1) corresponding
to the baths as h̄�b(b̂†b + 1/2). Although entirely valid, this
choice makes the subsequent computations messier. Conse-
quently, it is easier first to rewrite Eq. (1) as

Ĥ (t ) =
∑

d=c,h,g

(
p̂2

d

2m
+ k

2
x̂2

d

)
+ κ (t )

2
x̂2

g + κmax

2
x̂2

h

+ Uh(x̂h, x̂g, t ) + Uc(x̂c, x̂g, t ). (2)

Here, it was assumed that the gas force constant takes a
range of values kc = k � k + κ (t ) � kh = k + κmax during
the compression and expansion phases. Writing the first line
of Eq. (2) using the ladder operators gives the following
Hamiltonian:

Ĥ (t ) =
∑

d=c,h,g

h̄�

(
d̂†d̂ + 1

2

)

+ α(t )
h̄�

4
(ĝ† + ĝ)2 + αmax

h̄�

4
(ĥ† + ĥ)2

+ Uh(x̂h, x̂g, t ) + Uc(x̂c, x̂g, t ), (3)

where � = √
k/m and α(t ) = κ (t )/m�2 = κ (t )/k. Be-

cause the frequency of the hot mode is given by �h =√
(k + κ )/m = �

√
1 + αmax, one gets αmax = ω2 − 1 with

ω = �h/� giving the ratio of compressed and uncompressed
frequencies. It is also convenient to express all the en-
ergies in terms of h̄�, time as t = 2πτ/�, and lengths
in terms of the corresponding quantum oscillator length
to get

Ĥ (τ ) =
∑

d=c,h,g

(
d̂†d̂ + 1

2

)

+ α(τ )

4
(ĝ† + ĝ)2 + αmax

4
(ĥ† + ĥ)2

+ �h(x̂h, x̂g, τ ) + �c(x̂c, x̂g, τ ), (4)

where � = U/h̄�.
It is worth noting that only some terms must be included

from Eq. (4) during the engine operation. For example, during
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FIG. 2. Engine cycle. An illustration of the engine cycle, indi-
cating the portions of the Hamiltonian that need to be considered
for each phase. All four phases need to include the component cor-
responding to the gas, given by the expression inside the rectangle.
During the heating and cooling phases, the terms positioned next to
the corresponding lines need to be included.

the compression and expansion phases, the interaction terms
are switched off as α(τ ) changes in time. On the other hand,
only one of the interaction terms is nonzero during the bath
coupling phases, and the uncoupled bath can be ignored as
it evolves independently. A sketch of the cycle with relevant
portions of the Hamiltonian for each phase is given in Fig. 2.

III. COMPRESSION AND EXPANSION

When the gas undergoes compression or expansion, it is
disconnected from the baths and the relevant normal-ordered
portion of Eq. (4) is

Ĥ (τ ) =
(

ĝ†ĝ + 1

2

)[
1 + α(τ )

2

]
+ α(τ )

4
(ĝ†ĝ† + ĝĝ). (5)

In this paper, α(τ ) is taken to vary linearly with time between
0 and αmax during the compression and expansion phases. The
time to change α between its extremal values will be referred
to as τα . The process is guided by the time-evolution opera-
tor, given by the solution to the time-dependent Schrödinger
equation

d

dτ
Û (τ, τ ′) = −2π iĤ (τ )Û (τ, τ ′), (6)

where the factor of 2π arises from the definition of τ . In
this paper, Eq. (6) is solved using the fifth order Runge-
Kutta method with the numerical benchmarks provided in
Appendix A.

Although it is common to treat the compression/expansion
phases of the quantum Otto cycle as adiabatic, the finite
duration of the strokes is likely to give rise to nonadiabatic
effects. To quantify the amount of nonadiabaticity, it is con-
venient to proceed as follows. Let a system, described by
a Hamiltonian Ĥi start in some state ρ̂i. If the system is
compressed or expanded adiabatically, the final energy will
be EA

f = tr[Ĥf ρ̂i], where Ĥf is the final form of the Hamil-

tonian. For a nonadiabatic modification, E f = tr[Ĥf Û ρ̂iÛ†].
The level of nonadiabaticity is obtained by taking the ratio
E f /EA

f , which, for a thermal state ρ̂i is greater than 1. Figure 3
illustrates the effects of nonadiabatic tuning of thermal states
at two temperatures which, as expected, are greatest for higher
rates of change, corresponding to small τα , and large ω.

FIG. 3. Nonadiabatic effects. A system initialized at a 41-level
thermal state at temperature ωT = kBT/h̄� with α = 0 (top row) or
α = ω2 − 1 (bottom row). Next, the state is either compressed (until
it arrives at α = ω2 − 1) or expanded (until α = 0) uniformly over
time τα , which can be chosen independently of of α. The final energy
of the system is then divided by what would be the energy of the
system if the modification were adiabatic. The color of the heatmap
gives the magnitude of this ratio with smaller numbers corresponding
to greater adiabaticity. The nonadiabatic effects are most prevalent
when the rate of the confinement change is high (corresponding to
large ω and small τα). High-temperature compression demonstrates
the effects of the finite Fock space, as discussed in the main text.

In addition to illustrating the consequences of dα(τ )/dτ �=
0, Fig. 3 highlights another aspect of this stroke that needs
to be kept in mind when performing numerical simulations.
One can see that the difference between the finite-time and
adiabatic results for the high-temperature compression phase,
shown in Fig. 3(c), is greater than for all other cases. This is
a spurious effect arising from the finite size of the Fock space
used here. For any modification of the oscillator frequency,
there is a finite probability of the oscillator transitioning to
higher energy levels, especially during a compression. At low
temperatures, only the lowest-energy states are occupied at
τ = 0 so fewer Fock states are needed to correctly represent
the compression. As the temperature is increased, more levels
become occupied, requiring a larger Fock space to allow the
required transitions. All panels in Fig. 3 use 41 states and, for
ωT = 5, this is not sufficient. Halving the number of states
aggravates the problem specifically for panel (c) while keep-
ing the other panels relatively intact. When demonstrating the
engine operation in Sec. V, the hot bath’s temperature will be
set to ωT = 5, while the cold one will be kept at ωT = 1/10.
The fact that panels (a) and (d) do not change when reducing
the number states indicates that this basis size is sufficient
to avoid the finite-basis effects for these temperatures with
ω � 3 and τα � 1.
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IV. BATH COUPLING

The purpose of the bath modes is to either add energy to
or remove it from the gas mode. The state of the baths does
not have to take a particular form as long as the energy flow
occurs in the right direction. It is, however, convenient to
consider thermal baths as illustrative examples so that their
unnormalized density operators are ρ̂b = e−Ĥb/ωT .

Coupling the gas mode to a thermal bath will not, generally,
set the gas to a thermal state. However, repeating the process
multiple times by introducing new identical thermal baths is
expected to bring the gas to the bath temperature eventually.
One can use this physical intuition to check that the energy
exchange between the modes functions appropriately before
focusing on the engine itself.

When the gas couples to a bath, α remains fixed, leading to

Ĥ (τ ) =
(

ĝ†ĝ + 1

2

)(
1 + α

2

)
+ α

4
(ĝ†ĝ† + ĝĝ)

+
(

b̂†b̂ + 1

2

)(
1 + α

2

)
+ α

4
(b̂†b̂† + b̂b̂)

+ �(x̂b, x̂g, τ ). (7)

Although the force constants of the two modes do not, in
general, have to be identical, setting the oscillator frequencies
to the same value facilitates the coupling between the modes.

Assuming that the coupling between the gas and the baths
is switched on and off quickly, it is reasonable to suppress the
time argument inside the interaction term so that the matrix
elements in the Fock space become

〈u, v|�(x̂b, x̂g)| j, k〉 =
∫

dxbdxg�(xb, xg)
 j (xb)
k (xg)

× 
∗
u (xb)
∗

v (xg), (8)

where 
n(x) = 〈x|n〉 are the harmonic oscillator
wavefunctions.

As discussed in the Introduction, the coupling between
the modes is controlled using a central potential that can be
switched on and off. Equation (8) shows that if the coupling
term is even in xb and xg (as is the case for a central potential
aligned with the origin), only the states with the same parity in
each of the modes can couple. One can introduce coupling be-
tween more modes by positioning the extremum of the central
potential away from the symmetric (0,0) point so that the in-
teraction term takes a general form �(r − r0). For illustration,
it is convenient to use a Gaussian interaction �0 exp(−|r −
r0|2/2σ 2) = �0e−(xg−xg,0 )2/2σ 2

e−(xb−xb,0 )2/2σ 2
. The advantages

of this interaction are twofold. First, its amplitude and extent
are easily tunable. Second, because the term is separable in
xg and xb, the integrals in Eq. (8) can be easily computed
numerically.

If the extremum of the central potential is positioned with
xg,0 = xb,0 = x0, the procedure of computing the interaction
matrix becomes particularly simple. First, one obtains the
matrix �single with elements 〈 j|e−(x−x0 )2/2σ 2 |k〉 for all the Fock
states in the single-oscillator basis. From this, the full interac-
tion matrix becomes � = �0�single ⊗ �single.

A set of four simulations is performed to demonstrate
the energy flow between oscillator modes. To this end, four

thermal oscillator states using 41 energy levels are gener-
ated defined by (α, ωT ) with α ∈ {0, 8} and ωT ∈ {ωcold

T =
1, ωhot

T = 5}. The interaction width σ and x0 are set to 1. The
coupling strength will be allowed to vary, as described below.
For a given α, one of the states is designated as the gas, while
the other acts as the bath with the gas (bath) state denoted by
ρ̂g (ρ̂b). The key idea is that by having the gas interact with a
series of baths, the state of the gas should approach the bath
state. The trace distance, defined for two density operators σ1

and σ2 as

T [σ1, σ2] = 1
2

√
(σ1 − σ2)†(σ1 − σ2), (9)

is used to measure how close the gas is to ρ̂b.
For this demonstration, we will employ a repeated interac-

tion scheme, also knows as the collision model [32]. In this
realization of the scheme, the gas will interact with twelve
baths. For the first five of them, the coupling strength �0 = 1,
for the next four �0 = 1/5, and for the final three �0 = 1/20.
The reason for ramping down �0 is the reduction of energy
stored in the interaction between the two oscillators: As the
gas state approaches ρ̂b, most of the energy needs to be stored
in the oscillator energy, not in the coupling term between the
gas and the bath.

At τ = 0, as the gas is brought into contact with the
first bath, the trace distance is calculated. At this moment,
the full state of the system is ρ̂0

total = ρ̂g ⊗ ρ̂b. Because the
Hamiltonian does not vary in time, Û (δτ ) = e−2π iĤδτ can be
calculated exactly for �0 = 1 and δτ = 5 so that the state
of the composite system at later times is given by ρ̂total(n ×
δτ ) = Ûnρ̂0

total(Û†)n. For 1 � n � 10, the partial trace of the
gas with respect to the bath trb[ρ̂total(n × δτ )] is computed
and its trace distance to ρ̂b is calculated to show how the
reduced density operator evolves while the gas is coupled to
the bath. At n = 10, the bath is traced out and the gas becomes
coupled to a new bath in state ρ̂b so that the total state is
ρ̂total = trb[Û10ρ̂g ⊗ ρ̂b(Û†)10] ⊗ ρ̂b. The process is repeated
for each of the twelve bath using the Û for the appropriate �0.

The computed trace distance as a function of time is plotted
in Fig. 4(a). One can see that the trace distance is less than
10−2 at the end of the simulation for all four configurations.
The final distance is smaller for the hot bath because, for
a given �0, the interaction energy is proportionally smaller
compared to the average oscillator energy at large tempera-
tures. One can reduce the distance for small ωT by further
lowering �0.

Figure 4(a) shows that the gas state approaches the bath.
However, it is not evident that the gas is not also approaching
some temperature different from the bath’s ωT . One can
verify that the gas is indeed not drifting towards some wrong
temperature by computing the trace distance between the fi-
nal gas state and thermal states for a range of ωT with the
corresponding α. The results, shown in Fig. 4(b) confirm that
the distance is smallest when ωT equals the bath temperature.
Thus, even though the gas state is not quite thermal [because
of the nonzero trace distance in panel (a)], the thermal state
that it is closest to has the correct temperature.

It is important to note that the thermal equilibration pro-
tocol is somewhat ad hoc with the aim to demonstrate the
general process, not make the energy transfer fast or efficient.
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FIG. 4. Interaction with a series of baths. (a) Trace distance
between the gas and bath modes as a function of time. The density
operators include 41 Fock states. “Expanded” (“compressed”) cor-
responds to α = 0 (α = 8). “Heat” means that the oscillator starts
at ωT = 1 and the bath is at ωT = 5; for “cool” the temperatures
are switched. The interaction between the modes is Gaussian with
σ = 1 and offset x0 = 1. The interaction strength starts with 1, later
being reduced to 1/5 and, finally, to 1/20. The vertical lines mark the
times when the bath is switched our for a new one. For dashed lines,
�0 is unchanged; solid lines show where the interaction strength
is reduced. (b) Trace distance between the final states from panel
(a) and thermal states for a range of ωT . Vertical lines indicate the
temperatures of the cold and hot baths. These lines coincide with
the minima of the distance curves, indicating that the final gas state
approaches the correct thermal state.

The contact times, σ , x0, as well as the values of �0 were not
optimized. A more carefully designed procedure can speed up
the process and bring the gas closer to ρ̂b. The most important
result of this section is that the coupling model used here
results in the correct energy transfer between oscillator modes,
validating its use in the engine description.

V. ENGINE OPERATION

Having demonstrated the compression and expansion
strokes of the engine, as well as the correct energy exchange
with the baths, it is now possible to turn to the engine op-
eration. The main goal for this section to is confirm that the
engine states are cyclical and that work can be extracted from
the gas mode.

Without the loss of generality, it is convenient to have the
cycle begin with the gas compression. Thus, if the state of the
gas in the beginning of the nth cycle is given by ρ̂n, the state
of the gas in the beginning of the following cycle is

ρ̂n+1 = trb[Ĉ{Û†trb[Ĥ(Û ρ̂nÛ† ⊗ ρ̂h)Ĥ†]Û ⊗ ρ̂c}Ĉ†]. (10)

Equation (10) should be read from the inside outward to
follow the transformations that the gas undergoes. First, sand-
wiching ρ̂n between Û and its conjugate compresses the gas.
Next, the compressed gas is coupled to the hot bath in ther-
mal state ρ̂h, as shown by the tensor product. After that, the
composite system is allowed to evolve in time by applying
operators Ĥ and Ĥ†, followed by a decoupling represented
by the partial trace operator trb. Then, the gas is expanded,
as can be seen by the reversed application of Û† and Û , and
connected to a cold bath ρ̂c. Following the evolution guided

by Ĉ, the gas is finally separated from the bath by the partial
trace operator, completing the cycle.

For a particular engine configuration, Ĉ, Ĥ, Û , and
ρ̂c/h need to be computed only once. The first two opera-
tors are calculated by multiplying the total Hamiltonian by
−2π iτcontact and exponentiating the result, where τcontact is
the gas-bath interaction time. Û is computed using the same
Runge-Kutta scheme as was employed in Sec. III for a linear
compression.

Four configurations are chosen for demonstration with two
different ω’s (2 and 3) and two different sets of times used
for expansion/compression and bath contact. For the first pair,
the duration of all strokes of the cycle is equal to 1. For the
second pair, the expansion/compression time is set to 4, while
the bath contact time is 10. Hence, there are two “fast” and
two “slow” cycles. The bath temperatures are the same for
all realizations with ωcold

T = 1/10 and ωhot
T = 5 and the basis

consists of 41 states.
For each engine, the gas is initialized in the thermal state

at ωcold
T . Next, it is taken 50 times through the cycle described

by Eq. (10). At the end of each stroke, the energy of the gas is
calculated by taking the trace of the product of the gas density
operator and the Hamiltonian in Eq. (5) with α = 0 or α =
ω2 − 1, as appropriate.

The computed energies for the four realizations are given
in Figs. 5(a)–5(d). The x coordinate labels the cycle and, for
each cycle, the order of the points is “expanded cold” →
“compressed cold” → “compressed hot” → “expanded hot,”
after which one moves to “expanded cold” of the next cycle.

First, one can observe that, for the slow engine, the energies
stabilize within a few cycles. The fast engine, on the other
hand, requires a substantially longer time. Aside from this
effect, the largest difference between the two speeds is the
amount of energy transferred to and from the baths, as can
be seen from the difference between “compressed cold” →
“compressed hot” and “expanded hot” → “expanded cold”
transitions. Naturally, the ω = 3 configuration demonstrates
larger energy changes during the compression and expansion
phases, as expected.

To quantify the efficiency of the engine, one first
calculates the work output by the engine, given by
−[(Eexp hot − Ecomp hot ) + (Ecomp cold − Eexp cold )]. Dividing
this value by the heat delivered by the hot bath
Ecomp hot − Ecomp cold yields the efficiency, plotted in Fig. 5(e).
The plot demonstrates that, for the slow engine, the efficiency
is ≈1/2 for ω = 2 and ≈2/3 for ω = 3. These values agree
well with the expected efficiency of an Otto cycle that
operates in a fully adiabatic regime with thermal baths,
where the efficiency is given by 1 − ω−1 [1]. Curiously, the
efficiency of the fast engine is slightly higher, but still close
to these values. It is worth noting that both engines operate
close to the adiabatic regime, as can be seen from Fig. 3 for
the values of τα employed. For the heat exchange, on the
other hand, even the slow engine is not expected to reach the
temperature of the bath, as confirmed by Fig. 4.

As is clear from Figs. 5(a)–5(d), the fast engine yields
much less work per cycle. However, given that its cycle is
seven times slower, it is more appropriate to compare the
power of the two setups, as is done in Fig. 5(f) by dividing
the work output by the cycle period. This figure shows that
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FIG. 5. Engine operation. [(a)–(d)] Energies of the gas in an Otto
engine at each phase of the cycle as a function of time. For the fast
engine (top row), the time of each stroke is 1. For the slow engine
(bottom row), the time of expansion/compression is 4, while the bath
contact time is 10. The system is evolved following Eq. (10) with
ωhot

T = 5 and ωcold
T = 1/10. The interaction between the baths and the

gas is the same as in Fig. 4 with �0 = 1. For the compression and
expansion phases, Û is calculated for a 41-state basis. (e) Efficiency
for each of the engines as a function of the cycle number, computed
by dividing the total work output by heat input. (f) The power of the
engines, obtained by dividing the total work output by the duration
of a cycle.

despite a higher efficiency, the fast engine delivers less power
by about a factor of two.

The most important message of this section is that the
engine reaches a stable cycle and its efficiency agrees well
with the predicted value both in a slow and fast operation
regimes. Additionally, for the realizations here, the factor that
reduces the work output of the engine is not the nonadia-
batic effects associated with fast compressing/expansion, but
a shorter contact with the bath, limiting the amount of energy
transferred.

VI. SUMMARY

This paper has introduced and simulated a realiza-
tion of a quantum Otto engine comprising of a single

three-dimensional harmonic oscillator. One of the modes of
the oscillator functions as a compressible working fluid, while
the others act as hot and cold reservoirs. The coupling between
the baths and the working fluid is controlled by a nonlinear
external potential. Individual finite-time strokes of the engine
were simulated numerically to explore the role of adiabaticity
during the compression and expansion phases, as well as the
energy flow during thermal contact with the baths. It has been
shown that even for a ninefold increase of the working fluid’s
force constant, performing the compression and expansion
over a few oscillator periods essentially eliminates the nonadi-
abatic effects. Additionally, it has been confirmed that having
the working fluid interact with a series of baths eventually
brings the working fluid to the bath temperature, as expected.
Finally, the study demonstrates that the working fluid reaches
a stable state as it goes through multiple engine cycles. The
efficiency obtained here agrees well with the theoretically
predicted value for the quantum Otto cycle operating in the
adiabatic regime with thermal reservoirs.

A possible implementation would involve a gas of cold
atoms in a three-dimensional optical trap with tunable fre-
quencies in the three orthogonal directions. The coupling
between the orthogonal modes could be introduced using ad-
ditional optical potentials with cylindrical symmetry applied
in the plane of the modes that need to be coupled.

There are several research directions that this study opens
up. In this paper, it was assumed that the baths manage to
reach thermal states while they are decoupled from the work-
ing fluid. It is worth investigating the importance of the state
being thermal and how the operation of the engine changes if
it is not. More importantly, because the bath modes become
“reset” while decoupled, they act as ancillae to connect the
working fluid to thermodynamic reservoirs. If the bath modes
do not have to be in thermal states and simply need to be able
to exchange energy with the working fluid, it is interesting
to explore the possibility of the confining potentials acting
as the energy reservoirs. For example, the cold mode could
be laser cooled to remove excess energy, while the hot mode
experiences an external driving force that contributes energy
to it. As an extension, it is useful to explore the possibility of
keeping the bath modes connected to their respective reser-
voirs throughout the engine operation.

Finally, the operation protocol presented here was not opti-
mized for power or efficiency. It would be useful to determine
which parameters enhance the energy and power output of the
engine.
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APPENDIX: NUMERICAL BENCHMARKING

To ensure numerical stability and physical realism, there
are several guidelines that need to be followed when solv-
ing Eq. (6). Most obviously, the Fock space has to be
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FIG. 6. Numerical benchmarks. A system is initialized in a 101-
dimensional thermal mixed state with ωT = 5 and α = 0 at τ = 0. It
is then evolved numerically until τ = 5 using the fifth-order Runge-
Kutta method. For one set of simulations, α is set to a finite value
at τ = 0+ and kept constant (labeled αfixed in the legend). For the
second set, α increases linearly until it reaches its maximum value at
τ = 5 (labeled as αmax). The final state is calculated for 3 � ε/δτ �
16 and the trace distance is obtained between the smallest time step
and all others for each configuration. The trace distance is then taken
as the error.

represented by a finite number of states. When working with
thermal states, the maximum level should be chosen so that
nmax  ωT to guarantee the correct level occupancy, where
ωT = kBT/h̄� is the thermal frequency. With nmax fixed, the
largest elements in the Hamiltonian are ≈ [1 + α(τ )/2]nmax.
Consequently, the time step δτ has to be substantially

smaller than the period associated with this frequency,
2π [1 + α(τ )/2]nmax � 1/δτ . Hence, one needs to guaran-
tee that ωT � nmax � [2πδτ (1 + αmax/2)]−1. It is useful to
define ε = [2πnmax(1 + αmax/2)]−1 so the time-step require-
ment becomes δτ � ε.

As the first step, it is important to demonstrate the accuracy
of the Runge-Kutta approach by performing two benchmark
procedures. For the first one, α(0) �= 0 is kept fixed and the
system is initialized in a thermal mixed state with the density
operator ρ̂0 = e−Ĥ0/ωT /tr[e−Ĥ0/ωT ] for Ĥ0 = ĝ†ĝ + 1/2. To il-
lustrate the dependence of the numerical error on the step
size, Eq. (6) is solved for several values of δτ and the final
density operator is computed using these Û’s. By taking the
trace distance between each of the results and the density
operator obtained for the smallest δτ , the convergence of the
numerical results is observed. One should note that, because
the Hamiltonian does not change in time, the analytical form
of Û (τ, 0) = e−2π iτ Ĥ so that ρ̂(τ ) = e−2π iτ Ĥ ρ̂0e2π iτ Ĥ . The
reason for not comparing the numerical results to the known
analytical form has to do with the second benchmarking
procedure where α(τ ) starts at zero and increases to some
maximum value. In this case, the analytical result is generally
not known and the best one can do is show the convergence
of the numerical calculations. Hence, the same procedure is
employed even in the constant-α case for the sake of consis-
tency. The results for these two checks are given in Fig. 6,
showing that one can achieve errors less than one part per
million without making the time step drastically smaller than
ε. As a balance between accuracy and speed, the time step for
Runge-Kutta solutions in the main text is taken δτ = ε/5.
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