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Revealing spoofing of classical radar using quantum noise
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Electromagnetic remote sensing technologies such as radar can be misled by targets that generate spoof pulses.
Typically, a would-be spoofer must make measurements to characterize a received pulse in order to design a
convincing spoof pulse. The precision of such measurements is ultimately limited by quantum noise. Here we
introduce a model of electromagnetic spoofing that includes effects of practical importance that were neglected
in prior theoretical studies. In particular, the model includes thermal background noise and digital quantization
noise, as well as loss in transmission, propagation, and reception. We derive the optimal probability of detecting
a spoofer allowed by quantum physics. We show that heterodyne reception and thresholding closely approaches
this optimal performance. Finally, we show that a high degree of certainty in spoof detection can be reached by
Bayesian inference from a sequence of received pulses. Together these results suggest that a practically realizable
receiver could plausibly detect a radar spoofer by observing errors in the spoof pulses due to quantum noise.
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I. INTRODUCTION

It was recently shown that quantum mechanics fundamen-
tally limits the ability to spoof electromagnetic pulses to
fool a sensor [1]. Specifically, the measurement made by an
adversary to characterize a pulse is generally insufficient to
fully determine its quantum state. Thus, in principle, a radar
operator can use knowledge of the transmitted quantum state
to detect spoofs. A classic application of spoofing is where
an airborne target emits spoof pulses to avoid being tracked
by a ground-based radar [2,3]. Spoofing also has nonadver-
sarial applications in hardware-in-the-loop testing [4–6]. A
limitation of the work in Ref. [1] was the neglect of important
practical considerations such as noise and loss. Clearly, a full
understanding of the importance of quantum physics to real
world spoofing requires a model that includes these effects.
Here we introduce such a model including both thermal back-
ground noise and digital quantization noise, as well as loss in
transmission, propagation, and reception.

The model provides insight into the relative importance of
these effects in comparison to the purely quantum limits on
spoofing previously identified. We analyze the performance
of a quantum optimal receiver in discriminating spoofs. We
find that, on one hand, loss and thermal noise degrade the
ability to detect spoofing, while on the other hand, quantiza-
tion noise in the spoof pulses acts similarly to quantum noise
thus increasing the ability to discriminate. Finally, we exam-
ine a realizable receiver architecture, heterodyne reception
combined with a thresholding procedure, which is shown to
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closely approach quantum optimal performance. Altogether,
these results suggest that under realistic conditions of large
loss and background noise, a realizable receiver can detect
spoofing errors due to quantum noise. To be clear, quantum
noise-based spoof detection is not a practical approach to cur-
rent spoofing technologies. These devices introduce a variety
of errors and a quantity of classical noise that provide the basis
for existing spoof detection methods [2,3]. Rather, this work
is forward looking to a future spoofing technology that can
mimic a transmitted pulse with an accuracy approaching the
quantum limit [1].

We introduce our model of spoof detection in Sec. II. The
model takes the form of a quantum hypothesis test deciding
between the presence or absence of a spoofer. In Sec. III, we
determine the quantum optimal probability of discriminating
between the hypotheses and present a specific architecture for
realizing optimal detection. In Sec. IV, we analyze a more
practically realizable detection scheme based on heterodyne
reception and thresholding. In Sec. V, we examine a specific
radar application where detection using heterodyne detection
closely approaches optimal performance. In Sec. VI, we show
how Bayesian inference can be used to aggregate information
from multiple received pulses to detect spoofing with near
certainty. Lastly, in Sec. VII, we give concluding remarks.

II. A QUANTUM MODEL OF RADAR SPOOFING

We model spoofing as a hypothesis test undertaken by the
operator of a friendly receiver who must decide if a received
pulse in a specific range-Doppler bin is a true reflection from
a target of interest (hypothesis H0), or a spoof pulse gener-
ated by an adversary (hypothesis H1). We assume the target
is probed by a narrowband, transform-limited pulse repre-
sented by a coherent state of a single, generalized, temporal
mode (ignoring consideration of the spatial field pattern, for
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FIG. 1. Schematic depictions of the hypotheses to be discrim-
inated where (a) and (c) illustrate a true echo from a target and
a target-generated spoof, respectively, and (b) and (d) show the
quantum channel models of each hypothesis. See text for more
explanation.

simplicity). By design, the mean amplitude α of the transmit-
ted coherent state is a complex random variable chosen to be
distributed with the zero-mean Gaussian probability density
given by

P(α) = λ

π
e−λ|α|2 , (1)

where λ is a positive constant. The value of α is assumed to
be known by the operator, but not by the adversary.

Under hypothesis H0, the received pulse is a true reflection
off a target of interest, as depicted in Fig. 1(a). In this case,
the pulse suffers loss as it is radiated from a transmitting
source (e.g., an antenna or a laser) with some degree of
impedance mismatch, propagated out to the target and back,
and is received by a detector (e.g., an antenna or photode-
tector). Thermal noise is added to the signal at transmission,
reflection, and reception. We model these processes by a
single-mode, lossy, Gaussian bosonic channel Lτ,NT with total
transmissivity τ and mean noise photon number NT [7]. The
action of Lτ,NT on an input Gaussian state with displacement
vector x and covariance matrix V is the transformation

x → √
τx, (2)

V → τV + (1 − τ )(2NT + 1)I. (3)

In the transformation of the covariance matrix, the first term
represents the reduction of the size of fluctuations due to loss
processes, while the second term represents fluctuations added
by thermal noise. In what follows, it will be useful to let
NT = N ′

T /(1 − τ ), where N ′
T is a fixed mean noise photon

number independent of τ .

Quantization noise is added upon digitization of the re-
ceived signal. Typically, quantization noise in high resolution
digitization is modeled as uniformly distributed over the range
E corresponding to the least significant bit, with zero mean
and variance E/12 [8]. For analytical convenience, it is here
assumed that the quantization process is a classical Gaus-
sian noise channel Cξ that adds Gaussian noise with variance
ξ = E/12 to the input signal. The action of Cξ on an input
Gaussian state with displacement vector x and covariance
matrix V is the transformation x → x, V → V + ξI [7,9].

The complete model under hypothesis H0, including the fi-
nal measurement made by the receiver, is depicted in Fig. 1(b).
Assuming the transmitted state is ρ̂ = |α〉〈α|, for which

x =
[

α + α∗

i(α∗ − α)

]
(4)

and V = I, where I is the identity matrix, the state measured
by the receiver under hypothesis H0, i.e., Cξ (Lτ,NT (ρ̂)), has
displacement vector

x0 = √
τx (5)

and covariance matrix

V0 = {2N0 + 1}I, (6)

where

N0 = N ′
T + ξ/2 (7)

and I is the identity matrix. The “0” subscripts in Eqs. (5)
and (6) indicate that these quantities describe the quantum
state at the receiver under hypothesis H0. Equivalently, this
state can be represented by the density operator

ρ̂0 = 1

πN0

∫
d2α′e− |α′−√

τα|2
N0 |α′〉〈α′|. (8)

Under hypothesis H1, the received pulse is a spoof, as
represented in Fig. 1(c). We assume the spoof is generated
by an adversary who has performed a single measurement
on the transmitted state and aims to reproduce this state as
closely as possible. We refer to this measure-and-prepare
approach as classical spoofing [1]. We model propagation
from the transmitter to the spoofer, and from the spoofer to
the receiver as two separate passes through the lossy channel
L√

τ ,NT
, which effects the transformation x → τ 1/4x, V →√

τV + (1 − √
τ )(2NT + 1)I. When the output of the first

channel is fed directly to the second channel, the result is
equivalent to the single channel under hypothesis H0, i.e.,
L√

τ ,NT
(L√

τ ,NT
(ρ̂)) = Lτ,NT (ρ̂ ). Thus, if the adversary were

able to exactly copy the transmitted quantum state, the re-
ceiver would have no basis for discriminating a spoof from
a real return. However, quantum physics does not allow the
adversary to fully characterize the transmitted state with a
single measurement.

The optimal single measurement for estimation of the
Gaussian-distributed mean amplitude of a noisy coherent
state, such as is received by the adversary, is heterodyne detec-
tion [10]. Thus, we assume the adversary makes a heterodyne
measurement of the complex amplitude. Heterodyne detection
has a long history in quantum optics, but is also essentially the
operation performed by a coherent radar receiver insofar as the
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received signal is mixed down to an intermediate frequency
and then input to a quadrature detector and matched filters that
output the real and imaginary parts of the complex amplitude.
We further allow for the introduction of quantization noise by
the adversary as the quadrature signals are typically digitized.

Ideal heterodyne detection realizes the positive operator-
valued measure with measurement operators |β〉〈β|/√π [11].
The statistics for heterodyne measurement on the output of
the lossy channel representing propagation from the trans-
mitter to the spoofer with added quantization noise, i.e.,
Cξ ′ (L√

τ ,NT
(ρ̂)), are described by the probability density

P(β ) = tr

[ |β〉〈β|
π

Cξ ′ (L√
τ ,NT

(ρ̂))

]
, (9)

=
exp

(
− |τ 1/4α−β|2

(1+√
τ )−1N ′

T +ξ ′/2+1

)
π [(1 + √

τ )−1N ′
T + ξ ′/2 + 1]

, (10)

where β is the complex measurement outcome. The variance
of the additive quantization noise is ξ ′, which is generally not
equal to that of the friendly receiver, ξ . The quantization noise
levels are different for these two receivers because they are
typically receiving signals of very different amplitudes.

The adversary generates a spoof pulse in the same general-
ized temporal mode with complex amplitude β and it passes
through the lossy channel L√

τ ,NT
representing the path from

the adversary to the friendly receiver. The receiver is assumed
to introduce quantization noise upon reception, resulting in
the state Cξ (L√

τ ,NT
(|β〉〈β|)). It is assumed that the receiver

knows the adversary’s measurement statistics, but not the
measurement outcome β. Thus, the state of the pulse at the
receiver is a mixture of coherent states weighted by the density
Eq. (10) as expressed by the displacement vector

x1 = x0 (11)

and the covariance matrix

V1 = V0 + 2
√

τ (1 + ξ ′/2)I. (12)

The subscripts in Eqs. (11) and (12) indicate that these
quantities describe the quantum state under hypothesis H1.
Equivalently, this state can be represented by the density op-
erator

ρ̂1 = 1

πN1

∫
d2α′e− |α′−√

τα|2
N1 |α′〉〈α′|, (13)

where

N1 = N ′
T + ξ/2 + √

τ (1 + ξ ′/2). (14)

Upon reception, a decision must be made as to whether a
received pulse is most consistent with the state specified by
Eqs. (5) and (6) under hypothesis H0 or by Eqs. (11) and (12)
under hypothesis H1. Comparing Eqs. (5) and (11), it can
be concluded that the displacement vector provides no basis
for a decision because it is the same under both hypotheses.
The second term on the right hand side of Eq. (12) does
provide a basis for a decision. The first term in parentheses in
this equation represents the quantum noise in the heterodyne
measurement outcome. One half of this noise is attributable to
quantum noise in the transmitted coherent state. The other half
is quantum noise associated with the Heisenberg uncertainty

relation between the real and imaginary field quadratures in
the course of an ideal heterodyne measurement. The second
term in parentheses in Eq. (12) represents the noise added by
the adversary through digital quantization. Interestingly, the
adversary’s quantum and classical noise enter the discrimina-
tion problem in the same manner even though their physical
origins are distinct.

Having now framed spoof detection as a hypothesis test,
we next turn to the analysis of specific measurement strategies
that the receiver operator might adopt when seeking to detect
the presence of a spoofer. In the sections that follow, the
optimal measurement strategy allowed by quantum mechanics
will be examined, as well as a practically realizable strategy
that closely approaches the optimum.

III. QUANTUM OPTIMAL DETECTION OF SPOOFING

Quantum detection theory enables the calculation of the
probability of successful detection assuming the receiver
executes the measurement and decision criterion that mini-
mizes the Bayesian total probability of error over all positive
operator-valued measures [12]. In this section, we examine
this optimal performance and the receiver architecture that
would achieve it. Throughout this section, the Bayesian prior
probability that a pulse is a spoof is assumed to be 0.5. It is
straightforward to generalize the results that follow to allow
for other values of this probability. But for the sake of clarity,
only the one case will be discussed. Letting Popt denote the
probability of choosing the hypothesis that corresponds to the
truth using the optimal receiver, then

Popt = 1
2

(
1 + 1

2 ||ρ̂1 − ρ̂0||1
)
, (15)

assuming equal Bayesian prior probabilities for the two hy-
potheses, equal costs for all types of error, and where || · ||1
denotes the trace norm [12].

We can obtain a fairly simple expression for Popt by noting
that it is unchanged if we apply a unitary transformation
to both ρ̂0 and ρ̂1. Since according to Eq. (11) both states
have the same displacement vector (phase space centroid),
we can apply a displacement transformation to reduce the
displacement vectors of both to zero while leaving the vari-
ances unchanged. This unitary transformation does not affect
Popt, but the resulting states are then thermal states and are
thus diagonal in the Fock basis. Following Helstrom [13], the
optimal probability of successful discrimination for any value
of α is then

Popt = 1

2

1

N0 + 1

m∑
n=0

(
N0

N0 + 1

)n

+ 1

2

1

N1 + 1

∞∑
n=m

(
N1

N1 + 1

)n

,

(16)

with

m = floor

{
ln N1+1

N0+1

ln
[N1(N0+1)

N0(N1+1)

]
}

. (17)

For the α = 0 case, Helstrom found optimal discrimina-
tion could be performed by photon counting followed by
comparison to a threshold of value m [13]. It follows that
for α 	= 0, optimal discrimination can be performed by a
receiver that first displaces the received signal by α and
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then counts photons and compares to the threshold. In the
context of microwaves, the displacement can be realized by
homodyne down conversion. In principle, photon counting
could be done on the resulting baseband signal. Unfortunately,
existing single photon detectors in the microwave regime
have low quantum efficiencies [14,15]. Thus, we next analyze
heterodyne detection and thresholding, a currently realizable
architecture. Importantly, this approach will be shown to per-
form close to optimally.

IV. DETECTION OF SPOOFING
WITH HETERODYNE RECEPTION

Consider a receiver that makes a heterodyne measurement
whose outcome is a complex amplitude that is compared to a
threshold to discriminate the two hypotheses. Under hypoth-
esis Hk , with k = 0, 1, the heterodyne measurement outcome
β is a random variable with probability density [11]

P(β|Hk ) = tr

( |β〉〈β|
π

ρ̂k

)
= e−|β−√

τα|2/(Nk+1)

π (Nk + 1)
. (18)

We introduce a threshold μ such that if |β| � μ we select
hypothesis H0, and conversely if |β| > μ we select hypothesis
H1. The set of β values satisfying the former condition, which
we will refer to as Z0, is a filled circle (a disk) with radius
μ centered on

√
τα. The set satisfying the latter condition,

referred to as Z1, is the rest of the complex plane. The prob-
ability of success in choosing the true hypothesis, Phet, is the
sum of the probability of choosing H0 when it is true and the
probability of choosing H1 when it is true. Mathematically,
this is

Phet = 1

2

∫
Z0

d2βP(β|H0) + 1

2

∫
Z1

d2βP(β|H1), (19)

= 1

2
(1 − e−μ2/(N0+1)) + 1

2
e−μ2/(N1+1), (20)

where, again, an assumption of equal prior probabilities has
been made. It follows that the value of the threshold μ that
optimizes Phet is equal to the magnitude of β where the
curves P(β|H0) and P(β|H1) intersect. Specifically, the op-
timal threshold is

μopt =
√

N0 + 1

1 − N0+1
N1+1

ln

(
N1 + 1

N0 + 1

)
. (21)

In the next section, we will compare this detection scheme
with optimal detection in a specific application.

V. AN EXAMPLE

As a specific example, we use the parameters of a W-
band radar designed to probe a small aircraft defined in
Refs. [16,17]. Conventional radar theory relates radar char-
acteristics, target range R, and target properties through the
“radar equation” [18]

τ =
(

GT

4πR2

)(
σAR

4πR2

)
, (22)

where τ is interpreted as the ratio of power transmitted to
power received, GT = AR/(2πc/ω0)2 is the radar antenna

gain, AR is the antenna’s effective area, σ is the target cross
section, ω0 is the pulse angular center frequency, and c is
the speed of light. The first factor in parentheses on the right
in Eq. (22) accounts for losses on propagation to the target,
and the second factor accounts for losses upon reflection and
propagation back to the radar antenna. The most significant
loss mechanism in this model is the spreading of the spherical
waves that make up the radar pulse such that τ decreases with
the inverse square of the range R on each leg of the round
trip. In the case of the W-band radar defined in Refs. [16,17],
AR = 1 m2, σ = 0.01 m2, and ω0/2π = 100 GHz.

Background noise in conventional radar theory is often
modeled as black body radiation with an effective noise tem-
perature [18]. For context, the noise temperature of the ground
is roughly 300 K, while the noise temperature of the night sky
is just a few K. At the horizon, the noise temperature takes an
intermediate value of 100 to 150 K. Following Refs. [16,17],
we consider a noise temperature of 150 K, which corresponds
to a mean noise photon number N ′

T = 32.
The magnitude of the quantization noise depends on the

transmittivity τ because (i) the dynamic range of a quantizer
is typically chosen to match the signal size at the receiver,
and (ii) the signal size at the receiver depends on the loss
in the channel, which is quantified by τ . To determine this
magnitude, we note that the real and imaginary parts of
the mean complex amplitude of the transmitted pulse are
zero mean random variables with variance (2λ)−1. So the
average mean photon number in such pulses is (2λ)−1. The
signal under hypothesis H0 passes through the channel Lτ,NT

before arriving at the receiver. The signal would emerge from
this channel with an average mean photon number τ/(2λ).
We assume this signal is quantized at the receiver with n bits
of resolution such that the least significant bit corresponds to
a range E ≈ 2−nτ/(2λ) with units of photon number. The
variance of the quantization noise is then taken to be ξ =
E/12. The value of (2λ)−1 is chosen by assuming the pulse
width T = 1 µs, and the average power Pave = 10 kW, giving
an average pulse energy of 10−2 J. Under the assumption of
narrow bandwidth, the energy per photon is approximately
h̄ω0. Then the effective mean photon number for quantization
noise at the radar receiver is

ξ ≈ τ
2−nT Pave

12h̄ω0
. (23)

A common value for n in existing microwave technology is
ten, giving ξ ≈ 9 × 104 at a range of 1 km. But due to

the rapid increase of loss with increasing range, ξ drops to
approximately one at 17 km. Beyond this level of resolution,
the quantization noise is small compared to the quantum noise
in this model. Existing ultra high resolution analog-to-digital
converters can have n = 32, giving ξ ≈ 1 at just 375 m.

The quantization noise introduced by the spoofer will
necessarily have larger variance than ξ because the spoofer
receives the signal after passing through the less lossy channel
L√

τ ,NT
. By the same reasoning as above,

ξ ′ ≈ √
τ

2−nT Pave

12h̄ω0
. (24)

In this case, with n = 10, ξ ′ falls to approximately one at the
impractical distance of 180 000 km, and with n = 32, ξ ′ ≈ 1
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FIG. 2. The probability of successfully discriminating between
true and spoofed pulses for an optimal receiver with quantization
noise due to digitization with bit resolution n = 32 (dashed red line)
and with no quantization noise (solid blue line).

at 88 km. Beyond this range, the spoofer can be said to be
limited chiefly by quantum noise.

With all the model parameters now set, we first exam-
ine the performance of optimal spoof detection. The optimal
probability of successful discrimination, as given by Eq. (17),
is shown as a function of range in Fig. 2. Since the prior
probability of spoofing is 0.5, the probability of successful
discrimination before transmitting any signal is also 0.5. Thus,
in the figure 0.5 is subtracted from Popt to emphasize the
increase due to the gain of information from reception and
measurement of a pulse. The blue line is the probability with
no quantization noise, i.e., ξ = ξ ′ = 0. The nonzero value
(after subtracting 0.5) indicates that, in principle, quantum
noise alone provides a sufficient physical basis for detect-
ing the spoofer. Importantly, since the spoofer is assumed
to employ the quantum optimal measurement for estimat-
ing the transmitted quantum state, no other measure-and-
prepare strategy can be devised to eliminate this physical
basis.

The dashed red line in Fig. 2 is the success probabil-
ity for quantization with a bit resolution of n = 32 bits.
At shorter ranges, the success probability can be orders of
magnitude higher with quantization present simply because
the noise it introduces is much larger than the quantum
noise. As range increases, the n = 32 probability approaches
the quantization-noise-free probability. This trend illustrates
the decreasing relative importance of classical quantization
noise versus quantum noise at long ranges where the signal
size at the spoofer is greatly reduced by losses, but the quan-
tum noise is not.

Optimal performance can be compared to that of hetero-
dyne reception and thresholding. For n = 32, the probability,
Popt, is shown (solid blue line) along with the corresponding
success probability for heterodyne reception, Phet, (dashed red
line) in Fig. 3. Importantly, the more practical heterodyne de-
tection scheme closely approaches the performance of optimal
detection. The inset shows how the former falls just short of
the latter.

FIG. 3. The probability of successfully discriminating between
true and spoofed pulses with quantization noise due to digitization
with bit resolution n = 32 for an optimal receiver (solid blue line)
and a heterodyne receiver with threshold detection (dashed red line).

With either detection method, the success probability is
very small at most ranges. For example, at a range of 10 km,
Phet − 0.5 for this receiver is approximately 10−8. One might
conclude that the increase in success probability over the
prior probability would be too small to be of practical use in
many applications. However, even a very small increase can
be exploited by aggregating information from multiple trans-
missions through a process such as Bayesian inference, as
described in the following section [1].

VI. BAYESIAN INFERENCE FROM MULTIPLE PULSES

The small effect of quantum noise added by an adversary
can be exploited by aggregating the information collected
from multiple pulses, each with a different random amplitude.
Previously, Bayesian inference was used to update the prior
probabilities in a noise-free, loss-free, spoofing model for a
binary phase shift keying signal set [1]. Here we apply the
same approach to the current model of spoofing with hetero-
dyne reception and threshold detection.

Bayesian inference involves updating the prior probability
after each new measurement outcome [19]. Let P0 (P1) be the
prior probability of hypothesis H0 (H1), respectively, after M
measurements. It is shown in the Appendix that the difference
between the prior probabilities after M � 1 trials will on
average take the value

〈|P1 − P0|〉 ≈ |1 − eM�0(�0−�1 )|
1 + eM�0(�0−�1 )

, (25)

where

�0 = 2e−μ2/(N0+1) − 1 (26)

and

�1 = 2e−μ2/(N1+1) − 1. (27)

This approximation to the mean difference in probabilities as
a function of M is shown to approach unity at large M in
Fig. 4 for the example parameters of Sec. V (and, in particular,
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FIG. 4. Mean difference in prior probabilities as a function of
number of pulses received. The prior probabilities are updated after
each new pulse is received according to the procedure of Bayesian
inference. The range is 1 km and the bit resolution is 32.

n = 32). This result means that certainty is approached by
one of the two hypotheses when enough pulses have been
received. For example, 〈|P1 − P0|〉 > 0.95 after about 6 × 105

pulses. To achieve a desired value of 〈|P1 − P0|〉 near one, the
required number of samples is

M ≈ 1

�0(�0 − �1)
ln

1 + 〈|P1 − P0|〉
1 − 〈|P1 − P0|〉 . (28)

Dividing this number by a pulse repetition rate would give
the required dwell time on target to achieve a desired average
level of certainty. Figure 5 shows the required dwell time
as a function of range for the example parameters assuming
a desired 〈|P1 − P0|〉 of 0.9 and a pulse repetition rate of
500 kHz. At 1 km, the required dwell time is about 120 ms.
During such an interval, a target with a velocity as high as 102

m/s would not move by a significant fraction of the range of
1 km.
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FIG. 5. Dwell time to reach a mean difference in prior proba-
bilities of 0.9 as a function of range with a pulse repetition rate of
500 kHz.

VII. CONCLUSION

In this article, we have shown that a practically realizable
receiver could plausibly detect a radar spoofer by observing
errors in the spoof pulses due to quantum noise. In practice,
information from many pulses would have to be aggregated
to reach a meaningful degree of certainty, but in an example
application this requirement was shown to be achievable.

To arrive at these results, we introduced a new model
of radar spoofing that includes noise and loss. Key assump-
tions of the model were (i) the set of signals used by the
radar (specifically coherent states with Gaussian-distributed
amplitudes), and (ii) the limitation of the spoofer to a measure-
and-prepare strategy. Extensions of this work could explore
the consequences of modifying either of these assumptions.
On the one hand, expanding the set of possible signals which
the spoofer must discriminate could enhance the radar opera-
tor’s ability to detect the spoofer. On the other hand, spoofing
strategies that exploit more of the information available in the
received quantum state than is extracted by a single measure-
ment might allow for more deceptive spoofing. Our current
work is pursuing both of these threads.

APPENDIX: CONVERGENCE OF BAYESIAN INFERENCE

Here we derive Eq. (25) assuming the radar transmits
M pulses, each with an independent, randomly chosen
amplitude. Under either hypothesis, the radar operator’s mea-
surement has two possible outcomes, a determination that
the received pulse is either a true return or a spoof. Let
the symbols − and + indicate the measurement outcomes
corresponding to a true return and a spoof, respectively. In
general, if Hi is true (where i is either zero or one), then the
probabilities of the two outcomes are

P(±|Hi ) = 1

2
± �i

2
= 1

2
(1 ± �i ), (A1)

where −1 � �i � 1, and the specific value of �i depends on
the particular choice of measurement. These probabilities are
known as likelihood functions. For heterodyne detection and
thresholding,

P(±|Hi ) =
∫

Zi

P(β|Hi ) d2β, (A2)

from which follows �0 and �1 as given by Eqs. (26) and (27),
respectively.

Let the prior probability of the hypothesis Hi before the
first pulse is received be P0(Hi ). After the nth pulse is received
and measured, our new state of knowledge is obtained by
multiplying the prior probabilities by the corresponding like-
lihood function and normalizing the result [19]. If we leave
off the normalization (which we can always do after all M
measurements have been made) the prior probabilities after
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the nth pulse is received are

Pn(Hi ) = P(±|Hi )Pn−1(Hi ), (A3)

= 1
2 (1 ± �i )Pn−1(Hi ), (A4)

≈ 1
2 exp (±�i )Pn−1(Hi ), (A5)

where the approximation in the last line is valid to the extent
that �i � 1. Repeating this procedure for M measurements,
and still without normalizing, we have

PM (Hi ) ≈ 1

2M
exp

(
�i

M∑
n=1

xn

)
P0(Hi ), (A6)

where xn = 1 if the outcome of the nth measurement indi-
cates a spoof and xn = −1 if it indicates a true return. Now
assuming equal initial prior probabilities and normalization,
the prior probabilities conditioned on the random variable
X ≡ ∑

n xn are

PM (H0|X ) = exp (�0X )

exp (�0X ) + exp (�1X )
, (A7)

PM (H1|X ) = exp (�1X )

exp (�0X ) + exp (�1X )
. (A8)

A measure of our average certainty as to which hypothesis is
true is

〈|PM (H1|X ) − PM (H0|X )|〉, (A9)

where the average is over all possible sets of measurement
outcomes {xn}.

To evaluate this average, we need the distribution for X
under each hypothesis. Since X is the sum of independent

random variables it will be Gaussian for large enough M.
Under the hypothesis Hi this Gaussian random variable has
mean and variance

mi =
M∑

n=1

1

2
(1 + �i ) − 1

2
(1 − �i ) =

M∑
n=1

�i = M�i,

(A10)

Vi =
M∑

n=1

[
(1 − �i )

2 1

2
(1 + �i ) − (1 + �i )

2 1

2
(1 − �i )

]

= M
(
1 − �2

i

)
. (A11)

The Gaussian distribution under hypothesis Hi is then

Pi(x) = 1√
2πVi

exp

[
− (x − mi )2

2Vi

]
. (A12)

The total distribution for X is

P(x) = P0(H0)
1√

2πV0
exp

[
− (x − m0)2

2V0

]

+ P0(H1)
1√

2πV1
exp

[
− (x − m1)2

2V1

]
. (A13)

With equal initial prior probabilities, the distribution for X is

P(x) = 1√
8πV0

exp

[
− (x − m0)2

2V0

]

+ 1√
8πV1

exp

[
− (x − m1)2

2V1

]
. (A14)

Thus, our certainty measure, defined in Eq. (A9), averaged
over all possible measurement results is

〈|PM (H1|X ) − PM (H0|X )|〉 = 1√
8π

∫ ∞

−∞

e�1x − e�0x

e�0x + e�1x

(
1√
V0

exp

[
− (x − m0)2

2V0

]
+ 1√

V1
exp

[
− (x − m1)2

2V1

])
dx. (A15)

The Gaussian functions in parentheses in the integrand act
as sampling functions that pick out the value of the preced-
ing factor at x = �0M and x = �1M. Then, since �0 ≈ �1,

Eq. (25) follows. The notation in Sec. VI is simplified by using
Pi to mean PM (Hi|X ).
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