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Topotaxis of active particles across long distances by sliding along obstacles
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Many biological active agents respond to gradients of environmental cues by redirecting their motion. In
addition to the well-studied prominent examples such as phototaxis and chemotaxis, there has been considerable
recent interest in topotaxis, i.e., the ability to sense and follow topographic environmental cues. A trivial topotaxis
is achievable through a spatial gradient of obstacle density, though over limited length scales. Here, we introduce
a type of topotaxis based on sliding of particles along obstacles—as observed, e.g., in bacterial dynamics near
surfaces. We numerically demonstrate how imposing a gradient in the angle of sliding along pillars breaks the
spatial symmetry and biases the direction of motion, resulting in an efficient topotaxis in a uniform pillar park.
By repeating blocks of pillars with a strong gradient of sliding angle, we propose an efficient method for guiding
particles over arbitrary long distances. We provide an explanation for this spectacular phenomenon based on
effective reflection at the borders of neighboring blocks. Our results are of technological and medical importance
for design of efficient taxis devices for living agents.
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I. INTRODUCTION

Biological microswimmers, migrating cells, and other liv-
ing organisms can sense and follow topographic cues of the
environment and respond by adapting their dynamics. This
feature, which is called topotaxis, has attracted considerable
attention [1–8], as it does not rely on the influence of any
specific stimulus on the internal self-propulsion mechanism of
the agent; it is solely based on the physical interactions with
and properties of the surrounding environment such as spatial
arrangement of obstacles, degree of lateral confinement, and
surface topography. For a more efficient navigation, these fea-
tures may be exploited by biological organisms—particularly
by immune cells, as they are responsible for exploring ex-
tracellular matrices and confined tissues to detect pathogens
[9–14]. So far, topotaxis has been reported in the presence of
a spatial gradient of either obstacle density [1–5] or substrate
topography (for free motion on surfaces) [6,7]. It is unclear
whether spatial variation of other topographic features can
lead to an efficient taxis. Moreover, the topotaxis induced by
such features is practically applicable only on short length
scales: A gradient over a long distance will be so weak that
the taxis device becomes inefficient for single runs. A weak
net flux can be obtained only by statistically averaging over
long times and large ensembles. Additionally, inducing an
extremely weak gradient of any topographic feature requires
high fabrication precision, which is challenging at least at
microscale.
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Living organisms interact with obstacles in different ways.
For instance, swimming bacteria may be hydrodynamically
captured by and slide along surfaces [15–17], migrating or
killer cells are often temporarily trapped near obstacles [2,18–
20], and microalgae push their flagella against surfaces and
scatter [21–23]. While the diffusivity may be enhanced by
sliding around the objects [16], it is reduced by being trapped
near obstacles or scattered from them [24–29]. A detailed
understanding of how the existence or strength of topotaxis
depends on the interplay between topographic cues and the
nature of agent-obstacle interaction is currently lacking.

Here, we study the motion of active agents in obstacle
parks consisting of regularly arranged circular pillars. The
density of pillars is the same throughout the system to prevent
possible drifts due to obstacle density variations. We impose
a gradient of topographic stimulus by varying the particle-
obstacle interactions throughout the obstacle park, which is
implemented through the sliding around pillars. Although this
particular sort of motion is limited to a class of active objects
that physically interact with obstacles, it constitutes an impor-
tant class of biological agents including swimming bacteria
and migrating (immune) cells. By performing extensive nu-
merical simulations of a persistent random walk (PRW) with
two distinct states in the bulk and in the vicinity of obstacles
[30–32], we verify that the interplay between self-propulsion
of the moving agents, agent-obstacle interactions, and topo-
graphical cues in the environment determines the possibility
and strength of an effective topotaxis along the imposed gra-
dients.

II. MODEL

We consider a two-dimensional medium consisting of cir-
cular pillars placed on a square lattice; see Fig. 1. We model
the motion of the self-propelled agents by a PRW. The walkers
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FIG. 1. Schematic drawing of a sample trajectory in a pillar array
with lattice constant a and pillar radius R. The sliding and leaving
angles are denoted with α and θ , respectively.

move with a constant step length l at each time step. We
define the mean local persistence as p = 〈cos φ〉 [33], with φ

being the turning angle between the successive steps and 〈· · · 〉
denoting the average with respect to the turning-angle distri-
bution R(φ). The persistence values p = 1 and 0 correspond
to ballistic and purely diffusive motion, respectively. We in-
troduce a sliding boundary condition on the pillar surfaces.
After collision, the walker moves along the obstacle surface
with an angle α and leaves the obstacle surface with angle θ

from the tangent of the circle; see Fig. 1. Here, θ is uniformly
chosen from [0, π

4 ]. We checked that the choice of θ has no
influence on the observed trends and our conclusions. While
the free parameter α can be pillar-size dependent in general
[15], here, α is independent of R.

We perform Monte Carlo simulations of migration through
the pillar park. The simulation box is 300l × 300l , in which
the pillars are arranged on a square lattice with lattice constant
a = 12.5l . A circular pillar with radius R is placed on each lat-
tice point (24 pillars in each row or column). By changing R,
we vary the occupied fraction by pillars (characterized by the
dimensionless parameter λ = 2R/a ∈ [0, 1]). An event-driven
algorithm is applied, where every collision with an obstacle is
considered a new event. The particle takes a step with length l ,
unless it collides with an obstacle. In the case of no collision,
the walker takes a new direction drawn from R(φ), which is
chosen to be uniform over [φ0, φ1]. The values of the angles
φ0 and φ1 can be tuned to get the desired persistence p. An
ensemble of 105 random walks (RWs) with random initial
position and direction are considered, and periodic boundary
conditions are applied. To induce topotaxis, we consider a
constant sliding angle α around each pillar but impose a
gradient of α in the medium.

III. RESULTS

To understand the influence of the geometric parameters
α and λ on the particle migration in pillar parks, we study
the behavior of the effective diffusion constant D at a given
α and vary λ by changing the radii of obstacles. Since the
diffusion constant in free space D0 depends on the persis-
tence as D0∝ 1+p

1−p [34], in the following, we rescale D as
˜D = D/D0 to eliminate the role of p. In Figs. 2(a) and 2(b),
˜D is plotted vs λ for different values of α. The results are
presented for p = 0 and 0.5. Typical behavior of the mean
square displacement (MSD) in the steady state (from which D

(a) (b)

(c) (d)

FIG. 2. Rescaled diffusion constant vs λ = 2R/a for (a) a normal
random walk (RW) and (b) a persistent RW (PRW) with persistence
p = 0.5. Each color represents a fixed sliding angle on the obstacle
surface. Inset: Typical MSD(t) for p = 0.5. (c) D/D0 vs α for a
normal and persistent RW. (d) D/D0 vs α for normal RW in pillar
parks with various pillar densities. The full, dotted, and dashed lines
represent λ = 0.96, 0.8, and 0.64, respectively.

is extracted) is shown in the inset of Fig. 2(b). We observe that
D grows with λ, and its variation is affected by the choice of
α. Without sliding along obstacle surfaces, e.g., with reflective
boundary conditions on pillar surfaces, ˜D decreases with pillar
density, which is a known result [29]; however, when sliding
along the obstacle surface is allowed, ˜D interestingly increases
with density. For dense packing, the displacement Rα on the
perimeter of a pillar is larger than the pillar spacing. Moreover,
in denser pillar parks, where random walkers are trapped
between pillars, they use the sliding on the pillar surface to
escape the traps and propagate faster between pillars. In the
case of PRW [Fig. 2(b)], with the same α as for p = 0, we
observe a weaker increase in the relative diffusion constant.
This is because active agents are less frequently trapped be-
tween pillars due to their active motion; thus, the relative
impact of sliding on diffusion coefficient is less pronounced.
In Fig. 2(c), ˜D of normal and persistent RWs is plotted vs
α in a dense pillar park with λ = 0.96. We observe three
peaks at multiples of π

2 . The maximum value of ˜D is located
either at α = π

2 or α = π , depending on the persistence of the
random walker. However, this behavior disappears in smaller
packing fractions, as shown for p = 0 in Fig. 2(d). A similar
trend is observed for p > 0. Thus, for sufficiently large λ, the
impact of geometrical properties of the pillars (e.g., α) on
the diffusion constant are more pronounced. Based on these
findings, we hypothesize that a gradient of the sliding angle
through dense pillar parks can lead to topotaxis.
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FIG. 3. Inducing taxis in an obstacle park with homogeneous
packing fraction by varying the sliding angle. (a) Schematic rep-
resentation of an obstacle park with piecewise changing of sliding
angle α. A different value of α is assigned to each zone, with zone A
(C) having the smallest (largest) angle. The color intensity of pillars
is proportional to α. The lower panel depicts a one-dimensional (1D)
asymmetric random walk (RW) model with unequal transition prob-
abilities for hopping to right and left. (b) Relative particle density in
each zone (with respect to the homogeneous stationary density ρs )
for normal and persistent RWs for two sets of αA, αB, and αC shown
by green and blue, at λ = 0.96.

To induce topotaxis in a homogeneous medium with uni-
form packing fraction, we consider a monodisperse pillar park
and assume that the sliding angle of the particles along the
pillars can be tuned by adapting the surface properties, e.g.,
by means of different coatings. We divide the medium into
parallel sections and assign a constant α to each section.
Here, we present the results for choosing three zones A, B,
and C with αA < αB < αC, as depicted in Fig. 3(a). Note that,
due to periodic boundary conditions, sections A and C are
also neighbors. We define particle density ρ as the num-
ber of random walkers per unit of available area (i.e., pillar
area excluded). We let the particles migrate in the medium,
starting from random positions and orientations. In a homo-
geneous medium, one expects to have ρA = ρB = ρC ≡ ρs,
with ρs = 1

3 being the particle density in the steady state of a
homogeneous pillar park. Here, we observe ρA < ρB < ρC,
which means that the particles preferentially reside in the
zones with larger α. Interestingly, this tendency mainly de-
pends on the values of sliding angles (in a given λ) rather
than the persistence of the random walker. A larger difference
�α between the sliding angles in adjacent zones results in a
larger difference in the steady particle densities ρA, ρB, and
ρC. In Fig. 3(b), exemplary variations of the relative density
�ρ = ρ − ρs are shown in different zones in the steady state.
The results are presented for p = 0, 0.2, and 0.5 and two

choices of sliding angles, as depicted by red in the figure.
For simplicity, we assume that the differences between sliding
angles in the two neighboring zones are the same, i.e., �α =
|αA − αB| = |αB − αC| = 1

2 |αA − αC|. In examples shown in
Fig. 3(b) with green and blue colors, �α equals π

2 and π
4 ,

respectively. For all choices of persistence, a positive (neg-
ative) �ρ in section C (A) in the steady state shows that
more (less) particles are found there. Moreover, a larger �α

(green) results in a significantly larger |�ρ/ρs| than the one
with a smaller �α (blue). This result indicates a taxis from
smaller to larger α emerges with a strength which depends
on �α. This can be mapped into a one-dimensional (1D)
asymmetric RW model where each slot is represented by a site
with asymmetric transition probabilities to the neighboring
sites [see Fig. 3(a)]. We checked that other (inhomogeneous)
initial conditions lead to similar conclusions. The result illus-
trated by Fig. 3(b) is somewhat counterintuitive since sliding
with larger angles is reminiscent of active particles attain-
ing higher activity or self-propulsion—which leads in active
Brownian particle systems to a depletion of particles [35],
contrary to what happens here—and we will clarify the reason
below.

To better understand how the topotaxis strength depends on
�α and λ, we quantify the strength of taxis 	 by the maximum
difference between the steady densities, i.e., 	 = ρC − ρA.
In Fig. 4(a), 	 is plotted vs �α for different values of λ

for a given p. We set αC = π and vary �α (i.e., choose
αA = π − 2�α and αB = π − �α). Here, 	 shows a nearly
linear dependence on �α which is stronger for larger λ. Even
for middle values of λ, a significant topotaxis can be achieved
by choosing proper parameters. Figure 4(b) shows 	 vs p for
various choices of λ and �α. It can be clearly seen that 	 is
independent of persistence, while it strongly depends on the
choice of the geometrical parameters λ and �α. Here, 	 is
also plotted vs λ in Fig. 4(c), which shows that increasing
λ enhances the topotaxis strength, and the effect is more
pronounced for larger �α.

We note that, for a given choice of �α, there is a degree of
freedom to choose the set of the sliding angles of the zones.
An example for �α = π

4 and two choices of sliding angles
is shown in Fig. 4(d). Interestingly, 	 depends not only on
�α but also on the chosen range of the sliding angles. De-
noting the minimum sliding angle by αmin ≡ αA, we observe
that choosing a smaller αmin leads to a larger 	. Thus, for
given values of �α and λ, the maximum topotaxis strength
is achieved for αmin = 0, i.e., no sliding on the pillars.

In an inhomogeneous environment, particles tend to gather
in regions where they have a lower mobility, i.e., smaller
D [36]. Therefore, the trivial way to induce topotaxis is to
apply a gradient of the packing fraction of obstacles, which
changes the local available space for migration. This way, the
density of particles will be higher in regions with larger ob-
stacle density, where particles have smaller D due to frequent
reflections. However, our findings demonstrate a counterintu-
itive possibility. We induce accumulation in zones with larger
sliding angles, which have a larger D [see Fig. 2(c)]. To pro-
vide a qualitative understanding of the underlying mechanism,
we focus on the interface between two zones with different
sliding angles α1 < α2. In Fig. 5(a), a sample trajectory in
the extreme case of α1 = 0 and α2 = π is depicted. Starting
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(a) (b) (c) (d)

FIG. 4. (a) Topotaxis strength vs �α for p = 0.6 and different λ. (b) 	 vs p for various λ and �α. (c) 	 vs λ for various choices of �α.
(d) 	 for �α = π

4 and two choices of sliding angles. p = 0.6 in panels (a), (c), and (d).

in region 1 (i.e., left), the particle is often trapped between
the obstacles due to frequent reflections from them. How-
ever, when it enters region 2 with the possibility of sliding
on pillars, it can be effectively pulled into the medium by
sliding around many pillars without being locally trapped. If
one waits enough, the particle returns to the interface again,
as shown in Fig. 5(b) for different choices of p, α1, and α2.
While these sample random walkers have the chance to reenter
region 1, the interface acts as a pseudoreflective wall and
effectively guides them back to region 2.

Toward practical applications, such as guiding biological
agents inside channels, particles should be guided in a spec-
ified direction over long distances. To this aim, one could
partition the system into many blocks with successively in-
creasing α. However, this corresponds to small �α between

neighboring blocks, thus, a weak effective topotaxis [see
Fig. 4(a)]; indeed, 	 → 0 for �α → 0. We exploit this fea-
ture by partitioning a long strip into several blocks and let α

decrease from π to 0 in each block, as shown in Fig. 5(c),
and apply periodic boundary conditions. Consequently, while
the particles experience a topotaxis within each block, they
are pulled into the neighboring block at the interface with
�α = π . The transition rates from all interfaces (including the
one with periodic boundaries) are similar; thus, all transitions
between the blocks have a bias to the right and create a circular
flux. In contrast, in the setup of Fig. 3(a), the transition across
the periodic boundary is in the opposite direction at other
interfaces, leading to an accumulation of particles in the right-
most stripe. We measure the net flux by counting the number
of particles passing cross-sections at different positions per

(a) (b)

(c)

FIG. 5. (a) An exemplary trajectory at the interface of two zones with different α. The orange circle depicts the starting point. (b) Examples
of longer trajectories where the random walker has enough time for several returns to the interface. Different panels represent either normal or
persistent random walks (RWs) for two choices of sliding angles α1 and α2. The orange and red circles represent the starting and final position,
respectively. (c) Schematic design for guiding particles through blocks of pillars with a linear decrease of α in each block, represented with
decreasing color intensity. Arrows show the direction of the net flux. The net flux (per length unit) is shown at different cross-sections (red
triangles).
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time step along the channel. We obtain a significant flux of
particles in the steady state, from left to right; for instance,
the result is shown in Fig. 5(c) for initial density of ∼1
particle per unit area. The strength of the induced topotaxis
depends on the occupied fraction λ, as the variation range
of the diffusion constant upon changing α in Figs. 2(a) and
2(b) depends on the choice of λ. Consequently, an effective
topotaxis based on the sliding angle can only be effective
at large densities. While the idea of repeating blocks leads
to a net flux for sliding-angle-based topotaxis, it results in
localization near the borders for other topotaxis types (based
on obstacle density, size, etc.) due to reflection at the borders
of blocks.

We note that the values of α1 and α2 and the trajectories
in Fig. 5 have been selected to highlight the effective reflec-
tion at the interface. Nevertheless, transport occurs in both
directions in general, although with asymmetric probabilities
f1→2 and f2→1 which depend on the geometrical parameters
�α, αmin, and λ but are independent of p. The Markov pro-
cess of transport between these two zones eventually leads to
steady-state probabilities ρ1 = f2→1/( f1→2 + f2→1) and ρ2 =
f1→2/( f1→2 + f2→1) for residence in each zone. Although the
explicit dependence of transition probabilities on topological
properties of the medium is not known, their asymmetry is
reflected in their ratio in the steady state, which is given
as f1→2

f2→1
= ρ2

ρ1
. A strong topotaxis is gained for the set of

conditions {λ → 1, �α 	 0, and αmin → 0}. Inversely, in
sparse pillar parks or in the limit of �α → 0, we obtain
ρ1 ≈ ρ2 ≈ ρs corresponding to a very weak topotaxis. As a
final note, while the persistence affects neither the transition

probabilities nor the steady densities, it determines the time
scale to reach the steady state; a particle with a larger p visits
the interface more frequently, as it has a larger D.

IV. CONCLUSION

In summary, we have proposed a method to induce
topotaxis over arbitrarily long distances by imposing a gra-
dient of the sliding angle around obstacles. Such a gradient
can be realized through coating for agents which form close
contact with pillar surfaces (such as migrating cells). Cell-
surface adhesion and cell migration dynamics at microscale
are tunable, e.g., by changing the percentage of PLL-PEG
coating [37]. Other topographic features can also be exploited
depending on the nature of the agent-pillar interaction. For
example, changing the slip condition at the pillar surface can
affect the hydrodynamic interaction of swimming bacteria
with pillars and, thus, the sliding distance over the pillar
surface. Furthermore, the persistence dependence of the re-
laxation time to the steady state can be exploited to separate
a mixture of microorganisms with different persistence. Our
results are of technological and medical importance as a non-
invasive method to design efficient taxis devices for guiding
biological agents across vast distances.
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