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Separable graph Hamiltonian network: A graph deep learning model for lattice systems
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Addressing the challenges posed by nonlinear lattice models, which are vital across diverse scientific dis-
ciplines, we present a new deep learning approach that harnesses the power of graph neural networks. By
representing the lattice system as a graph and leveraging the graph structures to identify complex nonlinear
relationships, we have developed a flexible solution that outperforms traditional techniques. Our model not only
offers precise trajectory predictions and energy conservation properties by incorporating separable Hamiltonians
but also proves superior to existing top-tier models when tested on classic nonlinear oscillator lattice problems:
a mixed Fermi-Pasta-Ulam Klein-Gordon, a Klein-Gordon system with long-range interactions, and a two-
dimensional Frenkel-Kontorova, highlighting its potential for wide-reaching applications.
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I. INTRODUCTION

Nonlinear lattice systems have garnered significant atten-
tion across a vast array of disciplines, from condensed matter
physics [1,2] and high-energy physics [3,4] to cosmology
[5,6], materials science [7–9], chemistry [10], and biology
[11–14]. Their importance stems from their ability to exhibit a
multitude of complex behaviors like chaotic dynamics, phase
transitions, and pattern formations. As such, they are invalu-
able in comprehending the behavior of complex systems and
engineering materials and equipment with specific attributes.

In this research, we mainly focus on the classical coupled
nonlinear lattice system, which is governed by

d

dt
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q
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)
= J

(
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∂q
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)
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(
O I
−I O

)
, (1)

where q = (qα, α ∈ Zd ) and p = (pα, α ∈ Zd ) are the gen-
eralized position and momentum, respectively; d is the
dimension of the system. I ∈ Rd×d is the identity matrix. Here
H = T + V is the Hamiltonian function, with kinetic energy

T (p) =
∑
α∈Zd

|pα|2
2mα

*Corresponding author: gaoyx643@nenu.edu.cn
†Corresponding author: hongkun@math.umass.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and potential energy

V (q) =
∑
α∈Zd

(V1(qNk (α) ) + V2(qα )). (2)

The intersite potential V1 encapsulates particle interactions
within the kth order neighbor Nk (α), while the on-site po-
tential V2 accounts for potential interactions with an external
environment, such as a substrate. Moreover, mα denotes the
mass of the αth pointlike particle, and we set mα = 1 in this
research for simplicity. This model is applicable to a variety
of physical problems, including heat conductivity, atomic vi-
brations in crystals and molecules, and field modes in optics
or acoustics [15,16].

The exceptional capabilities of deep neural networks have
been increasingly leveraged in recent years to address scien-
tific challenges in physical system modeling [17–19]. These
cutting-edge neural network technologies have emerged as
some of the most promising tools for analyzing nonlinear lat-
tice systems. This includes solving nonlinear equations with
physics informed neural networks (PINNs) [20], identifying
phase transitions via multilayer perceptrons (MLPs) [21], and
uncovering governing equations through a synergistic use of
PINNs and symbolic regression [22]. Additionally, building
lattice models based on PINNs [23] and exploring Poisson lat-
tice systems through Poisson neural networks (PNNs) [24], a
technology derived from symplectic neural networks (Symp-
Nets) [25], are burgeoning areas of interest.

Despite their utility, the aforementioned methods depen-
dent on conventional neural networks present challenges.
Some require an understanding of system equations [20,23],
while some necessitate the creation of an overcomplete op-
erator library [22]. These techniques are primarily tailored
toward simpler lattice systems existing on one-dimensional
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FIG. 1. A one-dimensional lattice system with long-range
interactions.

lattice points, with a predominant focus on short-range in-
teractions. However, it’s well understood that lattice systems
typically encompass myriad degrees of freedom and com-
plex interactions, giving rise to diverse and intricate lattice
structures. These structures could exhibit irregularities [26] or
even demonstrate long-range interactions [27,28], as depicted
in Fig. 1(a). Some lattice systems might present even more
complex phenomena, further complicating the simulation of
trajectories. Therefore, the demand for more accurate and effi-
cient deep learning methodologies for lattice system modeling
is both immediate and vital.

To address these challenges, we have designed an in-
novative deep learning methodology, utilizing graph neural
networks for the exploration of lattice systems. Our primary
step entails constructing a graph structure, indicative of point-
like particle interactions. In this configuration, the nodes
of the graph correspond to the particles or field variables
within the system, while the edges mirror the interactions
between these pointlike particles, as visualized in Fig. 1(b).
Utilizing this graph-based approach not only provides us
with powerful tools to analyze irregularly structured lattices
and those presenting long-range interactions, but also offers
a significant advantage over traditional methods. Traditional
techniques often struggle with the complex topology and
multiscale nature of lattice systems, whereas our graph-based
method naturally integrates these aspects into the model. This
inherent flexibility and adaptability enable us to accurately
capture and learn the unique features of each lattice system,
regardless of its complexity.

Proceeding from this, we combine graph neural networks
(GNN) to achieve lattice system learning. Contrasting with
conventional neural networks constructed for vector data,
GNNs are purposefully designed to process graphical data.
Whereas conventional neural networks analyze each element
of the input data individually, GNNs exploit the global struc-
ture of the graph and interactions between nodes to capture
expansive features and patterns with higher efficacy. As a
result, GNNs outshine in recognizing complex nonlinear rela-
tionships and topological structures. Additionally, GNNs can
adeptly handle graphs of various sizes, thus obviating the

need for preprocessing or fixed dimensions, a necessity in
conventional network technologies. In addition to this, GNNs
utilize the graph structure and message-passing mechanisms
to incorporate global information, leading to notably accurate
predictions.

In the heart of our model lies the integration of GNNs.
This integration is accomplished by setting up neural network
parameterized update functions that operate on both node and
edge features. In doing so, we harness the rich information en-
capsulated in the graph formulated from the lattice system for
effective learning of system representation. The model, aptly
named the separable graph Hamiltonian network (SGHN), is
a method for learning the kinetic and potential energies of sys-
tems based on graph neural networks. It not only assimilates
generalized coordinates and momentum as part of its input
data but also incorporates the graph structure resulting from
the lattice system. The architecture of SGHN is illustrated in
Fig. 2.

To evaluate the performance of SGHN, we subjected it to
benchmark tests against three state-of-the-art baseline models
in the context of one-dimensional, two-dimensional, and long-
range interacting lattice systems. The results indicate that
SGHN displays an in-depth understanding of Hamiltonian
dynamics, showing significant superiority over the baseline
models in preserving system energy and accurately predict-
ing system trajectory. This superiority is particularly evident
in systems with multidimensional attributes or notable non-
linearity. Given its versatility and adaptability to any lattice
structure irrespective of its size or shape, our approach offers
a promising avenue for examining complex lattice physics
models that have yet to be fully explored.

Our contributions can be summarized as follows:
(i) We introduce an innovative method of graph-based

representation of nonlinear lattice systems with short and/or
long-range interactions. This paradigm shift conceptualizes
lattice pointlike particles as nodes and their interactions as
edges, paving the way for a fresh perspective in the study of
lattice systems.

(ii) We pioneer the integration of GNNs into nonlinear
Hamiltonian lattice system learning. This approach creates a
synergistic link between traditional neural networks and graph
theory techniques, proving to be markedly superior.

(iii) Our third major contribution is the extraordinary
versatility of our model, which demonstrates its ability to
effectively handle a variety of intricate lattice models. This in-
cludes, but is not restricted to, high-dimensional and irregular
systems, as well as those with long-range interactions. Such
adaptability positions our model at the forefront of new ex-
plorations in the complex and diverse realm of lattice physics.

II. REPRESENTING LATTICE SYSTEMS ON GRAPHS

Consider a given lattice system, defined by Eqs. (1) and (2),
with N pointlike particles. This system can be represented as a
directed (or an undirected) graph, symbolized by G = (V, E ),
consisting of N nodes. The node set V = {v1, · · · , vN } signi-
fies the particles inhabiting our lattice system. The presence
of interaction between particles is depicted through link-
ing corresponding nodes with directed edges E = {ei, j, i, j =
1, · · · , N}. Each ei, j embodies a directed edge originating
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FIG. 2. The architecture of the separable graph Hamiltonian neural network (SGHN). For the definition about h(k)
i , ĥ(k)

i , and ai see the
“Neural Networks Models” section.

from node vi and ending at node v j . If such an edge is present,
we designate vi as the in-neighbor of v j and reciprocally, v j is
referred to as the out-neighbor of vi.

In this research, we consider three lattice systems. The first
one is the 1D Fermi-Pasta-Ulam Klein-Gordon (FPU-KG)
chain model. The system is assumed to be periodic, implying
that (q1+N , p1+N ) = (q1, p1). When constructing the graph,
we connect the first and last nodes to form a ring graph to
maintain the periodicity of the model.

The second one is the 1D Klein-Gordon lattice system with
long-range interactions (KG-LRI). The physical interaction
structure of the KG-LRI system is depicted in Fig. 2(a). We
again extend our investigation to the periodic boundary con-
ditions. Given the inclusion of long-range interactions, the
resulting graph is exhibited in Fig. 2(b).

We also consider the 2D Frenkel-Kontorova (FK) model.
We assume that the model is located in the quadrilateral lat-
tice. In accordance with the periodic boundary condition, we
link nodes located on the parallel edges of the quadrilateral
grid graph, so that the graph structure is a torus.

For a detailed introduction to these three lattice models,
please refer to the Appendix.

III. NEURAL NETWORK MODELS

Our neural network leverages two neural network compo-
nents, V net and T net, to model lattice systems with separable
Hamiltonian functions, as shown in Fig. 2.

The V net is the parametrization of the potential energy, Vθ ,
within the lattice system. This parametrization is built upon
a GNN that leverages the position, q, and graph structure as
inputs.

In the model, each node and edge is tied to a node feature
vector, h(0)

i , and an edge feature vector, ei, j , respectively. To
kickstart the process, the position qi is utilized as the initial
feature of node vi within the lattice graph, thereby defining
h(0)

i = qi. In an adaptive fashion, edge features are learned

through neural networks as follows:

e(0)
i, j = Fe(qi − q j ). (3)

Here, Fe signifies functions parameterized by deep neural
networks.

Further, we prescribe K-layer node update and edge update
operations as such:

h(k+1)
i =

∑
v j∈N(i)

F (k)
un

(
e(k)

i, j

)
, (4)

e(k+1)
i, j = 1/S

S∑
s=1

(
e(k)

i, j + F (k,s)
ue

(
h(k)

i � h(k)
j

))
. (5)

In these expressions, F (k)
un and F (k,s)

ue , with 0 � k � K − 1 are
functions parametrized by deep neural networks. N(i) indi-
cates the out-neighbor of vi, and � signifies the Hadamard
product used to assess node interactions.

Subsequently, we amalgamate the node and edge informa-
tion to depict the final node features:

ai = Fa

(
Fv1

(
h(0)

i

) ‖ Fv2

(
h(K )

i

) ‖
∑

v j∈N(i)

Fv3

(
e(K )

i j

))
. (6)

In this context, F· is a function parametrized by deep neural
networks, and ‖ represents the concatenation operation.

As a final step, we employ the function parametrized by
deep neural networks to learn the definitive graph representa-
tion learning,

yv = Fv{ai|vi ∈ V}, (7)

where yv ∈ R is the approximate value of potential energy by
the neural network model Vθ .

The T net involves the parametrization of the kinetic en-
ergy, Tθ . We define the node feature vector as ĥ(0)

i = pi. Then,
we use K-layer node update operations as follows:

ĥ(k+1)
i = F (k)

ut

(
ĥ(k)

i

)
. (8)
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TABLE I. Specify the parameters of the baseline models. For the
LA-SympNet, the last column represents the number of sublayers.

Networks Hidden layers Hidden neurons

NODE 2 256
HNN 2 200
LA-SympNet 20 4 (sublayers)
G-SympNet 20 50

Finally, we obtain the kinetic energy of the system by aggre-
gation function as follows:

yt =
∑
vi∈V

ĥ(K )
i . (9)

We learned the system Hamiltonian parametrization func-
tion Vθ + Tθ through neural networks, and defined the
following loss function to ensure the ability to learn precise
conserved quantities from the data:

L =
∥∥∥∥∂Tθ

∂p
− dq

dt

∥∥∥∥
2

+
∥∥∥∥−∂Vθ

∂q
− dp

dt

∥∥∥∥
2

. (10)

IV. EMPIRICAL EVALUATION

To evaluate the efficacy of our SGHN, we made a compar-
ative analysis with three established models: neural ordinary
differential equations (NODEs) [29], Hamiltonian neural net-
works (HNNs) [30], and symplectic networks (SympNets)
[25]. The latter two models, HNNs and SympNets, are widely
recognized as the leading-edge gray-box modeling tools for
learning Hamiltonian systems.

For the SGHN model, Eq. (8) is the fully connected neural
network that has two hidden layers, each with ten hidden units.
Equation (7) is the fully connected neural network that has
two hidden layers, each with sixty hidden units. The neu-
ral network parametrization functions in Eqs. (3)–(6) are all
represented by the fully connected neural network, with two
hidden layers and five units per layer. In Eqs. (7) and (8), the
layers for node and edge updates are K = 1. S = 2 in Eq. (7).

The specific parameters of the NODE, HNN, LA-
SympNet, and G-SympNet are shown in Table I. The total
parameters of the network model for 1D lattice systems and
2D lattice systems are shown in Table II.

TABLE II. Network model parameters.

NODE HNN LA-SympNet G-SympNet SGHN

1D 98 816 53 400 83 808 34 000 6390
2D 213 504 98 200 1 667 376 146 000 13 110

For dataset creation, training details, and initial value set-
tings, as well as some supplementary experiments, please
refer to the Appendix.

V. RESULTS

To appraise the performance of our model, we relied on
the mean squared error (MSE) of the predicted energies (H),
and the MSE of the predicted state variables (qθ , pθ ). As
presented in Table III, the MSE of the predicted energies
for 20 test samples distinctly underlines the superiority of
the SGHN over other models, a point further reinforced by
the highest performing results highlighted in bold. Figure 3
provides a compelling visual comparison of the MSE of the
predicted state variables over time, which reveals the excep-
tional long-term predictive stability of the SGHN. In addition,
our dynamic demonstration (refer to README.md in [31]).
comparing predicted and ground truth positions given an arbi-
trary initial value further testifies to SGHN’s proficiency, with
the predicted trajectory mirroring the ground truth so closely
that discerning any deviation is beyond the capabilities of the
unaided eye.

Analysis of the two key metrics clearly shows that SGHN
significantly excels over the other models in all aspects. In
addition, compared to the baseline model, SGHN uses the
least number of parameters and has the best performance in
maintaining system energy over the long term and accurately
predicting system trajectories. To investigate the impact of
graph neural networks on our model’s performance, we sub-
stituted the V net and T net components with a three-layer
fully connected neural network. Each layer of this network
contains 200 hidden units. The energy prediction MSE for
this configuration is presented in Table IV. This comparison
reveals a significant decline in the network’s performance
when graph neural networks are not utilized, underscoring
their importance in our model. These outcomes underscore
the instrumental role of the graph neural network in learning
lattice systems.

TABLE III. The MSE of the predicted energies, which measures whether the network model conforms to the property of system energy
conservation when predicting over long timespans. The best results are emphasized by bold fonts.

FPU-KG KG-LRI 2D FK

NODE 5.36 × 10−1 ± 1.22 × 100 3.54 × 10−1 ± 3.73 × 10−1 9.85 × 104 ± 2.14 × 105

HNN 5.98 × 10−3 ± 6.21 × 10−3 4.48 × 10−3 ± 5.64 × 10−3 1.26 × 108 ± 5.22 × 107

LA-SympNet 5.01 × 10−2 ± 4.06 × 10−2 4.55 × 10−2 ± 4.11 × 10−2 3.89 × 10−1 ± 1.74 × 10−1

G-SympNet 4.63 × 10−2 ± 3.96 × 10−2 8.27 × 10−2 ± 5.90 × 10−2 2.13 × 10−1 ± 3.46 × 10−2

SGHN(ours) 3.18 × 10−7 ± 4.13 × 10−7 1.28 × 10−6 ± 1.95 × 10−6 2.72 × 10−6 ± 1.19 × 10−5
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FIG. 3. MSE of the predicted state variables, which measures the stability of the network model in predicting generalized momentum and
generalized position over long timespans. The color line represents the MSE of the predicted state over time, which is the average value of 20
test samples. See README.md in [31], for a dynamic demonstration of comparing the predicted position with the ground truth position given
a random initial value.

VI. CONCLUSION

In conclusion, our work presents a groundbreaking
methodology for deciphering and understanding lattice sys-
tems, substantially transforming our comprehension of these
structures. We effectively merge graph structures with the
intricate topology and varied interaction ranges of lattice par-
ticles, culminating in a robust model that excels in deciphering
complex lattice systems, particularly those exhibiting high
dimensionality or notable nonlinearity.

By leveraging the inherent structure of these systems, our
graph-centric approach effectively encapsulates the potential
energy generated from particle interactions or external in-
fluences, as well as the kinetic energy of the system. This
model proficiency is encapsulated in the adoption of GNNs
to house this potential energy and kinetic energy. Our model
continually outperforms base models in predictive accuracy
and generalization across all evaluated scenarios, notably in
systems with heightened dimensional properties or significant
nonlinearity. Furthermore, our simulation results highlight the
crucial role of GNNs in bolstering neural network perfor-
mance.

This study initiates a paradigm shift in the exploration
and understanding of lattice systems, paving the way for new
research directions within this field. We are confident that this
innovative approach will propel further inquiries, leading to
a plethora of potential applications and advancements in this
domain.
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APPENDIX: SUPPLEMENTAL MATERIAL

In this Appendix, we will introduce the lattice system used
for testing, the acquisition of datasets, training settings, and
some supplementary experiments.

1. Lattice systems

(i) Fermi-Pasta-Ulam Klein-Gordon (FPU-KG) model.
The FPU-KG model, a derivative of the extended discrete

nonlinear Schrödinger equation, provides profound insights
into mixed-type lattices. Especially achievable through ro-
tational wave type approximation, this model serves as a
touchstone for the exploration of breather-forming mecha-
nisms [32,33].

The potential energy of the model can be expressed as
follows:

V1(qi, qi+1) = a
(qi+1 − qi )2

2
+ b

(qi+1 − qi )4

4
, (A1)

V2(qi ) = q2
i

2
+ q4

i

4
, (A2)

where i = 1, · · · , N , a > 0, and b � 0. In our experimental
setting, we assign the values a = 1, b = 0.25, and N = 32.

(ii) The Klein-Gordon (KG) Lattice System.
The KG lattice system stands as a paradigmatic model

within theoretical and applied physics, particularly instrumen-
tal in studying nonlinear phenomena like localized excitations
in ionic crystals [34], and thermal denaturation of DNA [13].

TABLE IV. The MSE of the predicted energies, where V net and T net are fully connected neural networks.

FPU-KGE KG-LRI 2D FK

Model parameters 94 000 94 000 138 800
MSE 1.02 × 10−4 ± 6.98 × 10−5 3.26 × 10−4 ± 5.17 × 10−4 3.36 × 10−3 ± 2.989 × 10−3
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FIG. 4. When t = 40s, the comparison between the predicted position and the ground truth position with a given random initial value. See
Ref. [31] for dynamic demonstrations.

The potential energy of the KG system with long-range
interactions (KG-LRI) is delineated as follows [35]:

V1(qi, qi+1, qi+2) = a
(qi+1 − qi )2

2
+ b

(qi+2 − qi )2

2
,

where a > 0, b � 0, and V2(qi ) is as defined in Eq. (A2), for
i = 1, . . ., N .

We extend our investigation to the periodic KG-LRI model,
presuming a = b = 1 and a total of N = 32 nodes.

(iii) The 2D Frenkel-Kontorova (FK) Model.
The FK model holds significant theoretical value within the

realms of solid-state physics and nonlinear dynamics [36]. It
encapsulates the intriguing interplay between local particle in-
teractions and a periodic potential enforcing long-range order
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TABLE V. Specify the parameters of the network structure.
For the LA-SympNet, the last column represents the number of
sublayers.

Networks Hidden layers Hidden neurons

NODE′ 5 200
NODE′′ 2 600
HNN′ 5 200
HNN′′ 2 600
LA-SympNet′ 50 8 (sublayers)
LA-SympNet′′ 10 2 (sublayers)
G-SympNet′ 10 100
G-SympNet′′ 20 100

[37–41]. This interaction results in an intriguing variety of dy-
namical behaviors, including the manifestation of topological
solitons, which are localized particle displacements moving
through the lattice without altering shape. In this work, we
focus on a two-dimensional variant of the FK model [42].

For i = 1, . . ., N and j = 1, . . ., M, the potential energy
V2(qi, j ) = − cos(qi, j ) and V1(qi, j, qi+1, j, qi, j+1) is given by

a
(qi+1, j − qi, j − ρ)2

2
+ b

(qi, j+1 − qi, j )2

2
,

where a > 0, b > 0, and ρ denotes the average particle dis-
tance absent an external potential. Within our 2D FK model
framework, we set a = b = ρ = 1. Assuming M = N = 12,
this model portrays a quadrilateral grid with a total of 144
particles.

2. Dataset acquisition

For the FPU-KG model and KG-LRI model, we set N =
32, and for 2D FK, we set M = N = 12. We used the fourth-
order Runge-Kutta integrator by scipy.integrate.solve_ivp on
the time interval [0, 40] sec with time step 0.002 and error
tolerance 10−12 to find 100 trajectories. The initial conditions
(ICs) of FPU-KG and KG-LRI were

q0(i) = λi sin

(
(i − 1)π

N − 1

)
, (A3)

p0(i) = 0, i = 1, · · · , N, (A4)

where λi ∼ N (0, 1) and N represents the normal distribution.
Their boundary conditions (BCs) were qi+N = qi and pi+N =
pi. The ICs of 2D FK were

q0(i, j) = λi, j sin

((
M(i − 1) + ( j − 1)

)
π

MN − 1

)
, (A5)

p0(i, j) = 0, i = 1, · · · , N, j = 1, · · · , M. (A6)

The BCs were qi+N, j+M = qi, j and pi+N, j+M = pi, j .
We subsampled the trajectories at a fixed timestep

of 0.2 as a dataset and then performed a 50/30/20%
train/validation/test set split over trajectories.

3. Training settings

We adopt a learning rate piecewise constant decay strategy
[43]. The learning rate was initialized to 10−4, and after 3000
epochs, the learning rate was 10−5. We also applied an early
stop strategy [44] for the validation set’s loss, with the pa-
tience set to 100 epochs. The total epochs were set to 100 000.
The optimizer was Adam and the batch size was 256. The
activation functions of all models were taken tanh.

4. Trajectory prediction

The prediction of trajectory was accomplished by integrat-
ing neural network models as per the following equation:

(qθ,t , pθ,t ) = (q0, p0) +
∫ t

t0

Nθdt . (A7)

We utilized a fourth-order Runge-Kutta integrator for this
purpose, where (q0, p0) represents the initial values from the
test set. In our study, t0 = 0 and t = 40, with a time step
size of 0.002. Here, Nθ refers to the neural network models,
which include NODE, HNN, and SGHN. For the SympNet
model, the predicted state was obtained using the subsequent
equation:

(qθ,t+1, pθ,t+1) = NSympNet (qθ,t , pθ,t ). (A8)

In this context, the time step size was kept consistent with the
training step size at 0.2. NSympNet symbolizes LA type and G

TABLE VI. The MSE of the predicted energies, which measures whether the network model conforms to the property of system energy
conservation when predicting over long timespans. The best results are emphasized by bold fonts. The parameters required for the network
model are in parentheses, and the parameters used for the FPU-KG and KG-LRI network models are the same.

FPU-KG KG-LRI (parameters) 2D FK (parameters)

NODE′ 1.36 × 104 ± 7.12 × 103 1.07 × 103 ± 4.04 × 102 (174 000) 1.70 × 105 ± 3.32 × 104 (218 800)
NODE′′ 1.83 × 10−2 ± 1.34 × 10−2 1.09 × 10−2 ± 1.27 × 10−2 (438 000) 4.13 × 10−1 ± 6.89 × 10−1 (706 800)
HNN′ 7.18 × 10−4 ± 5.12 × 10−4 3.76 × 10−2 ± 2.68 × 10−2 (174 000) 2.33 × 108 ± 1.08 × 108 (218 800)
HNN′′ 1.47 × 10−4 ± 1.31 × 10−4 2.35 × 10−4 ± 1.82 × 10−4 (400 200) 1.61 × 10−2 ± 8.25 × 10−3 (534 600)
LA-SympNet′ 2.04 × 10−2 ± 1.78 × 10−2 4.87 × 10−2 ± 4.10 × 10−2 (663 008) 6.04 × 10−1 ± 1.79 × 10−1 (8 315 856)
LA-SympNet′′ 3.05 × 10−2 ± 2.86 × 10−2 5.50 × 10−2 ± 4.36 × 10−2 (21 408) 4.12 × 10−2 ± 1.20 × 10−2 (418 896)
G-SympNet′ 4.89 × 10−2 ± 3.99 × 10−2 8.78 × 10−2 ± 6.04 × 10−2 (34 000) 2.35×10−1 ± 3.39 × 10−2 (146 000)
G-SympNet′′ 4.75 × 10−2 ± 3.92 × 10−2 5.09 × 10−2 ± 4.40 × 10−2 (68 000) 4.76 × 10−1 ± 5.40 × 10−2 (292 000)
SGHN(ours) 3.18 × 10−7 ± 4.13 × 10−7 1.28 × 10−6 ± 1.95 × 10−6 (6390) 2.72 × 10−6 ± 1.19 × 10−5 (13 110)
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type SympNets [25]. The MSE of the predicted state variables
is defined as

MSEstate =
∑
α∈Zd

(
(qα,t − qθ,α,t )

2 + (pα,t − pθ,α,t )
2

)
.

5. Experimental supplement

Figure 4 shows a snapshot of the comparison between the
predicted position and ground position at t = 40s, where the
initial values are randomly given. The red circle represents
the predicted particle position, while the black circle repre-
sents the ground truth particle position. It can be seen that
there is almost no difference between the predicted posi-
tion and the ground truth position of the SGHN model. The
dynamic diagram can be seen in [31]. For the sake of rigor,

we have increased the depth and width of the baseline models,
and their network settings are shown in Table V. We recorded
the MSE of the predicted energy in Table VI, and it can be
seen that different network parameter settings did not improve
the performance of the baseline model.

Observing Table VI, we found that for the 2D FK sys-
tem, increasing the HNN width from 200 to 600 significantly
improved the results of MSE. We continue to explore the
impact of increasing the width of HNN on the results. We
take three layers of 1200, 2400, and 3600 hidden units,
and their predicted energy MSEs are 1.29 × 10−2 ± 7.82 ×
10−3, 9.31 × 10−3 ± 6.80 × 10−3, and 1.90 × 10−2 ± 1.15 ×
10−2, respectively. It can be seen that the HNN model has
reached its limit under certain parameters. Continuing to
increase the model width will not further improve the perfor-
mance of the model.
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