
PHYSICAL REVIEW RESEARCH 6, 013173 (2024)

Approximate symmetries of long-range Rydberg molecules including spin effects
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An operator that generates an approximate symmetry of long-range Rydberg molecules (LRRMs) formed
by two alkali atoms, one in a Rydberg state and the other in the ground state, is identified. This is first done
by evaluating the natural orbitals associated with a variational calculation of the binding wave function within
the Born-Oppenheimer description of the molecule including s and p Fermi pseudopotential and the hyperfine
structure energy terms. The resulting orbitals with the highest occupation number are shown to be identical to
those obtained by a perturbative model for high angular momentum—trilobite and butterfly—LRRMs. Whenever
the slight dependence of the quantum defects of the Rydberg electron on its total momentum �j = �� + �s1

can be neglected, the symmetry operator of the high angular momentum LRRMs orbitals is identified as
the sum of the spin of the Rydberg electron �s1, spin of the valence electron �s2, and the spin of nucleus �i
of the ground-state atom, �N = �s1 + �s2 +�i. The spin orbitals that diagonalize �N define compact basis sets for
the description of LRRMs beyond the aforementioned approximations. The matrix elements of the Hamiltonian
in these basis sets have simple expressions, so that the relevance of triplet and singlet contributions can be directly
estimated. The expected consequences of this approximate spin-symmetry on the spectra of LRRMs are briefly
described.

DOI: 10.1103/PhysRevResearch.6.013173

I. INTRODUCTION

A highly excited electron of a Rydberg atom scattered by
one or more ground-state atoms can lead to the formation
of long-range Rydberg molecules (LRRMs). Novel structure
properties of ultracold LRRMs are their large dipole mo-
ments present even for homonuclear diatomic realizations
[1–3], relatively long lifetimes [4], huge bond lengths with
a vibrational dynamics in the microsecond timescale [5], and
binding energies on the meV scale. Experimental generation
of these molecules [2,4,6–25] has confirmed their predicted
high sensitivity to the scattering phase shifts which determine
the Fermi pseudopotential [26,27] that describes the primary
chemical bonding mechanism [1,28–30]. Their interaction
with external electric [31–34], magnetic [32,35,36], and elec-
tromagnetic waves [37] offers an ideal scenario for the study
of interesting dynamics such as induced remote spin flips [4],
beyond Born-Oppenheimer approximation molecular physics
[12,38–40], and scattering of negative ions at low tempera-
tures [18].

For alkali atoms and diatomic LRRMs, it has been recog-
nized that the orbital angular momentum (��) of the scattered
Rydberg electron and the intrinsic electronic angular momenta
of both the scattered Rydberg and the ground-state atom, �s1
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and �s2 respectively, play an essential role not only in the result-
ing phase shifts but also in the fine and hyperfine structure of
the system [30,41,42]. Thus the quantum numbers associated
to the preparation of the atomic Rydberg state previous to
the scattering process define control parameters of the proper-
ties of the generated LRRM including its spectroscopy. That
is, LRRMs provide an unique platform to perform precise
scattering experiments in the low-energy regime with clearly
identified actuating variables.

Here we are mainly interested in understanding the gen-
eral features of the spectroscopy of high-� diatomic Rydberg
molecules. This requires the identification of simple electronic
wave functions that incorporate spin effects. Due to simul-
taneous hyperfine and Rydberg electron–ground-state atom
interaction, the full Hilbert space can not be separated a priori
into subspaces of well-defined hyperfine and singlet/triplet
scattering states. A good quantum number for the system is
the total angular momentum projection onto the internuclear
axis � = mj + m2 + mi; it involves the projections of the total
angular momentum of the Rydberg electron, mj = m� + m1,
and those of the electron spin m2 and the nuclear spin mi

of the ground-state atom. Another quantum number is pro-
vided by the principal quantum number n of the Rydberg
electron for an asymptotic separation between the ground
and Rydberg atoms. The spin interaction �s1 · �s2 between the
electrons is directly manifested in the scattering phase shifts
and the corresponding Fermi pseudopotential. Simultaneously
the magnetic interaction between the electron �s2 and nuclear �i
spins of the ground-state atom, �s2 · �i is evident in the hyperfine
structure of the system. These features prevent the identifica-
tion of an operator that exactly generates a spin-symmetry of
the LRRM.
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Nevertheless, the identification of an operator �N that
approximately generates such a symmetry can be used to
distinguish interesting phenomena to be expected both in the
spectroscopy realm and in the spin-dynamics context. We
employ several techniques to such an end; it results that all
of them point to the same final result. We start making a vari-
ational treatment of the LRRM within the Born-Oppenheimer
approximation. The basic spin orbitals are defined by the exact
symmetry operator �̂. From such a calculation a set of natural
orbitals with the highest occupation numbers is determined.
We show that the spin structure of the LRRM can always
be written in terms of few simple configurations. Simultane-
ously, a perturbative treatment of both Fermi pseudopotential
and hyperfine Hamiltonian is done. The resulting spin or-
bitals are shown to coincide with those obtained as natural
orbitals generated by the variational treatment. These orbitals
are eigenfunctions of the operator �N = �s1 + �s2 +�i which is
then identified as a generator of an approximate symmetry of
the system. Finally we discuss the consequences on LRRMs
behavior.

Most calculations are reported for 39K molecules, though
they were performed also for 87Rb. For both cases, the varia-
tional results are similar to those that have been reported in the
literature [4,23,43]. A comparison of the role of the operator
�N for 39K and 87Rb in the description of LRRMs is made.

In the next section, the Hamiltonian that models the system
and the expressions of the matrix elements of its terms in
the uncoupled basis is revisited. Then, the three approaches
to study the approximate potential energy curves (PECs) and
wave functions associated to the electronic structure are de-
scribed. The results of the implementation of those approaches
for high-� LRRMs of 39K and 87Rb are reported and briefly
discussed. In Sec. IV, the symmetries of the spin orbitals
that yield a compact representation of the electronic wave
function according to the results of the previous section are
identified. The matrix elements of the Hamiltonian in this
basis set are worked out in Sec. V. Finally, in Sec. VI, the
consequences of the approximate symmetry of the electronic
wave functions on the spectroscopy of LRRMs are discussed,
and the conclusions are given.

II. THEORETICAL FRAMEWORK

Consider LRRM constructed from a Rydberg atom coupled
to a ground-state alkali atom. Within the Born-Oppenheimer
approximation and the pseudopotential scheme, the Hamilto-
nian that describes the dynamics of the highly excited electron
located at �r relative to the Rydberg core for a given separation
R of the atomic nuclei including relativistic effects is

Ĥ (�r; R) = ĤRyd + Ĥpol + V̂Fermi + ĤHF. (1)

Here ĤRyd is the Rydberg Hamiltonian that takes into ac-
count the attraction of the electron to the atomic core and
its spin-orbit interaction, whose effect can be encompased
through a dependence on the angular momentum �j = �� +
�s1 of the quantum defects. The hyperfine structure of the
Rydberg atom is not considered, as this contribution is
much smaller than the rest of the interactions for all alkali
atoms studied. The term Ĥpol = −αp/2R4 corresponds to the

polarization potential between the Rydberg core and the scat-
tered atom. The Fermi pseudopotential V̂Fermi incorporates
the electron scattering channels up to the p wave; their
strengths are parametrized by the relative wave number k =√

2/R − 1/n2
H , the total �S = �s1 + �s2 electronic spin (triplet

or singlet), the orbital angular momentum of the scattered
electron with respect to the ground-state atom �L, and the total
angular momentum �J = �L + �S. In this work, the values of the
corresponding scattering lengths and volumes for each 2S+1LJ

configuration are evaluated using the phase shifts reported
in Refs. [28,43]. The ground-state atom hyperfine term is
ĤHF = AHF �i · �s2, where as before�i is the nuclear spin operator
of the ground-state atom. The constant AHF determines the
intensity of the hyperfine interaction for each element. The
αp and AHF parameters used in our calculations correspond to
those reported in Refs. [42,43].

We choose to represent the Hamiltonian in a basis formed
by the eigenstates of the Rydberg atom |n� jm j〉 and the un-
coupled nuclear and electronic spin states of the ground-state
atom |s2m2; imi〉, where m2 and mi are the projections of the
electronic s2 and nuclear i spin respectively. Therefore we
seek to find the representation of the Hamiltonian in the basis
|n� jm j〉 ⊗ |s2m2; imi〉.

Once the ground-state atom species has been determined,
the value of i is fixed. This allows us to replace |s2m2; imi〉
with |m2, mi〉 to simplify the notation without risk of confu-
sion. The nuclear spin is i = 3/2 for 87Rb and 39K. The matrix
elements of ĤRyd, Ĥpol and ĤHF in the uncoupled basis are
straightforward to obtain.

The model developed in Ref. [42] allows to write the
Fermi pseudopotential in a way that correctly incorporates
the dependence on the total electronic spin �S and angu-
lar momentum �L. The Fermi pseudopotential is diagonal in
the basis formed by states of relative angular momentum
to the perturber |LSJMJ〉 ≡ |β〉. The β quantum numbers
are incompatible with the η = {n, �, j, mj} quantum numbers
characterizing the eigenstates of the Rydberg electron. To find
the matrix elements of the Hamiltonian operator of Eq. (1)
in the |n� jm j〉 ⊗ |m2, mi〉 basis, it is necessary to perform an
expansion of the electronic wave function about the position
of the ground state. A frame transformation matrix A changes
the coordinates and quantum numbers between the Rydberg
core and the perturber atom. Written explicitly,

Aηs2m2,β =
L∑

ML=−L

√
4π

2� + 1
C

jmj

�ML,s1mj−ML

× Qn� j
LML

(R)CSmj−ML+m2

s1mj−ML,s2m2
C

Jmj+m2

LML,Smj−ML+m2
, (2)

Qn� j
0 0 (R) =

√
2� + 1

4π

fn� j (R)

R
, (3)

Qn� j
1 0 (R) =

√
2� + 1

4π

d

dr

(
fn� j (r)

r

)∣∣∣∣
r=R

, (4)

Qn� j
1 ±1(R) =

√
(2� + 1)(� + 1)�

8π

fn� j (R)

R2
, (5)

where fn� j (R) are the radial eigenstates of the Rydberg atom.
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The scattering matrix VFermi is diagonal in the nuclear
angular momentum mi and can be written as

VFermi = A × U × A†, (6)

Uβ,β ′ = δββ ′
(2L + 1)2

2
a(L S J, k), (7)

where a(LSJ, k) is the scattering length (volume) correspond-
ing to the scattering channel with quantum numbers L, S, and
J . It depends implicitly on the nuclear separation R through
the wave number k(R).

Note that the rotational symmetry along the internuclear
vector guarantees that a good quantum number for the system
is the total angular momentum projection � = mj + m2 + mi.
As a result, the matrix of Ĥ is block diagonal in �, so it is
possible to solve for each value of � independently.

III. ADIABATIC DESCRIPTION OF LRRMS

We are interested in obtaining compact representations of
the electronic wave functions of LRRMs that allow the under-
standing of the spin structure within the Born-Oppenheimer
approximation. We consider three different approaches to ob-
tain the approximate potential energy curves (PECs) and wave
functions for 39K and 87Rb homonuclear LRRMs.

(i) The diagonalization of the Hamiltonian matrix in a
given truncated basis for each value of the internuclear dis-
tance R. Within this basis, the spin quantum numbers are finite
and their incorporation is direct, while the principal quan-
tum number of the hydrogen-like orbitals is used to define
a truncated basis. The PECs are base dependent; it has been
found that there is not a well defined convergence in this
diagonalization method [30,44]. Nevertheless, it has also been
recognized that using two n-manifolds below and one above
the level of interest usually produces the best agreement with
other methods [42] and well as with experimental spectro-
scopic results [2,13,14]. Having this in mind, our calculations
use a basis that includes the four hydrogenic manifolds {nH −
2, nH − 1, nH , nH + 1} and all Rydberg states whose energy
lies between EnH −2 and EnH +1. This approach yields an ac-
curate representation of the electronic wave functions that
nevertheless is, in general, not compact.

(ii) Using the eigenstates obtained in (i), a density matrix
is constructed for each R value. The corresponding natural
orbitals [45] (eigenstates) and occupation numbers (eigen-
values) of such a reduced density matrix are obtained. The
natural orbitals with highest occupation numbers are taken as
an approximation to the electronic wavefunction. In all the
cases we have considered, two natural orbitals are enough for
achieving an occupancy number around 0.99.

(iii) A perturbative approach taking as reference Ĥ0 =
ĤRyd + Ĥpol is performed. Since the eigenstates of Ĥ0 for each
principal quantum number n0 are nearly degenerate, a new set
of orbitals is obtained by diagonalizing Ĥ − Ĥ0.

We compare the results of (ii) and (iii). Their accuracy
is estimated from their fidelity with the exact eigenfunctions
obtained by (i), and their comparison with the respective
numerical PECs. We have found that (ii) and (iii) give nu-
merically equivalent results, with a high fidelity to the exact
electronic function. Even more important, for the high-�

molecular states, the relevant (ii) and (iii) spin orbitals are
shown to be eigenstates of an operator

�N = �s1 + �s2 +�i. (8)

As a consequence, �N defines the generator of an approxi-
mate symmetry of the system. The degree of approximation
of this symmetry depends on the scattering parameters of
the ground-state atom. Particularly the splitting between 3PJ

phase shifts. For this reason, the symmetry is always present in
molecular states resulting from s-wave scattering but its range
of validity on p-wave scattering states depends on the atomic
species of the ground-state atom.

A. Numerical diagonalization

Here we present the results obtained through numerical
diagonalization using the full Hamiltonian given by Eq. (1)
including all scattering channels (s-, p-wave interactions, sin-
glet and triplet electronic configurations). The Fermi-Omont
effective zero-range interaction terms in Eq. (1) depend on the
scattering phase shifts. Here we consider the values reported
in Ref. [43] for 39K and those in Ref. [28] for 87Rb. The
phase shifts for 39K reported in [43] are non relativistic and
therefore are not J-dependent. Since the 3PJ splitting in light
alkali-metal atoms scales as Z4/n3 [46], for K this fine struc-
ture splitting is estimated to be 182 µeV [24] and therefore
neglecting the spin-orbit coupling in the e-K scattering is
reasonable and sufficiently valid [24,43]. Based on this, we
take all three 3PJ scattering phase shifts to be equal for our
calculations in 39K.

Since only the first two partial waves (L � 1) are consid-
ered the states that will be modified are those with |mj | � 3/2.
With the possible spin quantum number values of 39K and
87Rb (i = 3/2), we have the cases |�| = 1

2 , 3
2 , 5

2 , 7
2 . For states

around nH = 35, the number of elements in the basis of each
block varies from 2340 in the case of |�| = 1/2 to 330 for
maximum |�|.

It must be mentioned that interesting results derived from
an alternative fully spin-dependent Green’s function method
have been recently reported [30]. In the formalism used in that
work the phases of the wave function are directly manipulated,
avoiding a diagonalization procedure.

As it is customary in this type of Rydberg ground-state
molecules, two different classes of molecular states are identi-
fied. The first type is the low angular momentum molecule in
which the Rydberg electron has a well-defined � � 2 orbital
angular momentum. The second type is the high-� molecules.
In this class of molecule the electronic state is formed by a
mixing of high-� hydrogenic states. Within this high-� class
there are two different subfamilies of states. The trilobite
and butterfly states originated by s-wave and p-wave scat-
tering, respectively. Here we focus on high orbital angular
momentum molecular states. The minimum orbital angular
momentum value �min from which we consider that we speak
of high-� states is determined by the quantum defects. For the
atomic species studied in this work, we use �min = 3.

Figure 1 shows a set of numerical PECs for triplet
dominated trilobites in the vicinity of states |34(� � �min)〉|F 〉
for the possible values of � in 39K2 LRRMs. The hyperfine
structure adds multiplicity that increases as the value of |�|
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FIG. 1. PECs for n = 34 triplet trilobite 39K LRRM as a function of the internuclear distance R for (a) � = 1/2, (b) 3/2, and (c) 5/2. The
energy scale is relative to |34 f5/2〉|2〉.

decreases. In these trilobite PECs, the effect of the shape
resonance is evident, creating a set of avoided crossings and
sharp drops around R = 800 a0 and R = 1300 a0 where a0 is
the Bohr radius. For the extreme value � = 7/2 there are
no PECs that support bound states. The depth of the PECs
is on the order of GHz and, despite the effect of the shape
resonance, trilobite PECs are formed in a dominant way by
s-wave scattering. The shape resonances modify them through
the appearance of avoided crossings. Another notable differ-
ence compared to low angular momentum PECs [4,23] is
that all trilobite curves originate almost entirely from one
spin-character scattering length (S = 0 or S = 1). The triplet
dominated PECs correspond to bound states. The splitting
into multiple PECs occurs mostly as a result of the hyperfine
interaction of the ground-state atom. For different values of �,
both trilobite PECs with well-defined F and PECs that exhibit
a combination of hyperfine states are present.

Some butterfly PECs are shown in Fig. 2. Butterfly
molecules with principal quantum number n are bonded in the
vicinity of (n + 2)p states as a consequence of the quantum
defect value (μ1 ≈ 1.7) for potassium. We observe several
deeper wells (with depths of GHz) that are regularly spaced

and support the existence of multiple vibrational levels for
nuclear separations R ≈ 100 a0 − 400 a0. In the same way as
in the trilobite case, for smaller values of |�| we have more
multiplicity of butterfly PECs. The PECs presented here are
consistent with the results reported in Ref. [43].

In the case of 87Rb, there is an observable splitting of
the 3PJ phase shifts. This introduces richness and additional
structure to the PECs in this atomic species, as can be seen in
the insets of Fig. 6. Later, we will analyze the origin of said
additional structure in terms of the symmetries of the system.

B. Numerical natural orbitals

For high-� trilobite states, we find that the natural orbitals
with the highest occupancy numbers are built from spin or-
bitals with a single principal quantum number n (n = 34 in
the particular example corresponding to 39K) and with all
possible values of � � �min and j with projection mj = ±1/2.
Additionally, for all cases, the electronic part can be separated
into the same two R-dependent states |u(n)

± (R)〉 defined by the
projection mj . For example, for � = 3/2 and triplet domi-
nated trilobites, in the spatial region where we expect bound

FIG. 2. PECs for n = 34 dominated triplet butterfly 39K LRRM as a function of the internuclear distance R for (a) � = 1/2, (b) 3/2, and
(c) 5/2. The energy scale is relative to the |34 f5/2〉|2〉 state. The blue circle corresponds to the asymptotic energy of the |36 p3/2〉|2〉 state and
the pink square to that of |36 p3/2〉|1〉.
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states, each of the two states can be written as

|ψT
X 〉 ≈

√
λT

X+(R)|u(n)
+ (R)〉(AX |1 1〉 + BX |2 1〉)

+
√

λT
X−(R)|u(n)

− (R)〉 |2 2〉, (9)

with X = 1, 2 labeling each of the states. The values AX and
BX that multiply the hyperfine components |FMF 〉 of |ψT

X 〉
in Eq. (9) are the average of the numerically obtained natural
orbitals for each R. However, the variation of these numerical
coefficients around these average values is minimal. The val-
ues λT

X± correspond to the eigenvalues of the reduced density
matrix for the state X . Although a dependence on R is written,
these values also show negligible fluctuations relative to their
average values [approximately (0.7,0.3) and (0.8,0.2)] and can
be considered constant.

For other values of n, we find the same ground-state atom
spin components for the natural orbital. Therefore, as a first
approximation, trilobite states have hyperfine components
with the same structure regardless of the value of n and for
all internuclear distances R. Additionally, the weight λT

X±
of each natural orbital also remains almost constant. In the
perturbative approach presented in the following section, the
reason behind these particular values for the coefficients is
identified. For the other � values, we find a similar structure
for the natural orbitals. The electronic contributions are given
by the same functions |u(n)

± (R)〉 and the spin component has
approximately constant coefficients.

Next we study the natural orbitals for the butterfly states.
In the spatial region where we can expect molecular binding
the electronic component is formed by n(� � �min) states but
now there is a small not always negligible contribution of
(n ± 1)(� � �min) states. For these PECs, we find two differ-
ent classes of states. First, those with pure |mj | = 1/2 and
low-� contribution, for which we can write

|ψB1
X 〉 ≈

√
λ

B1
X+(R)

∑
n

γ
(n)
+ (R)|v(n)

+ (R)〉(ÃX |1 1〉 + B̃X |2 1〉)

+
√

λ
B1
X−(R)

∑
n

γ
(n)
− (R)|v(n)

− (R)〉 |2 2〉

+
∑

j,F,MF

bj,F,MF
X (R)|n∗ p j 3/2 − MF 〉|F MF 〉, (10)

where the principal quantum number n∗ of the low-� con-
tribution is determined by the p quantum defect. For 39K,
n∗ = n + 2 as previously mentioned.

And second, those states with mixed projection |mj | =
1/2, 3/2 that can be written as

|ψB2
X 〉 ≈

√
λ

B2
X3/2(R)

(∑
n

δ(n)(R)|w(n)
3/2(R)〉

)
× (ĀX |1 0〉 + B̄X |2 0〉)

+
√

λ
B2
X1/2(R)

∑
n

γn(R)|w(n)
1/2(R)〉

× (C̄X |1 1〉 + D̄X |2 1〉), (11)

As for the trilobite case, here the eigenvalues λ
B1
X±,

λ
B2
X1/2, λ

B2
X3/2 and coefficients of the hyperfine component are

practically constant over the spatial region of interest and
independent of the principal quantum number n. We have
used the notation |v(n)

± 〉 and |w(n)
1/2,3/2〉 to highlight that these

states have the same structure among themselves and the
only parameter that differentiates them is n. The sum over
n includes terms with n and n ± 1. We make emphasis in
the fact that the general structure is the same for all three
classes of states: constant hyperfine components and reduced
density matrix eigenvalues with an electronic state given by
a linear combination of states with the same structure which
only depend on n.

For butterfly LRRMs, the distinction between the two types
of orbitals discussed in previous paragraphs is more evident
for 39K than for 87Rb. Nevertheless the natural orbitals can
always be written as a superposition of Eqs. (10) and (11).

C. Perturbative model

In the spin-independent description of LRRMs, perturba-
tion theory provides a way of finding very good approximated
analytic Rydberg electron wave functions and PECs [1,28,47].
Since states with low-� have nonzero quantum defects with
large noninteger parts they are energetically well differenti-
ated. As � increases the quantum defects rapidly get smaller
and are almost j-independent. For states with high �, the
splitting in the Rydberg energy is negligible compared to the
strength of the Fermi pseudopotential and they can be treated
as degenerate states for a given principal quantum number n0.
So first-order degenerate perturbation theory is used in this
high-� subspace.

Here we extend the perturbative analysis presented in
Refs. [1,47] to include spin effects. The first step is to de-
fine which part of the electronic Hamiltonian in Eq. (1) is
identified as the unperturbed Hamiltonian. We take the Ry-
dberg Hamiltonian along with the polarization potential as the
unperturbed Hamiltonian, i.e., Ĥ0 = ĤRyd + Ĥpol. Restricted
to the set of nearly degenerate states with high angular mo-
mentum for a given principal quantum number n0, we have
approximately

Ĥ0|n0(� � �min) jm j〉|m2mi〉 = εn0 |n0(� � �min) jm j〉|m2mi〉,
where

εn0 = ERyd
n0���min

− αp

2R4
. (12)

To write Eq. (12) we have assumed that ERyd
n0���min

does
not depend on � or j for � � �min. This is a reasonable
assumption since we are dealing with states of high angu-
lar momentum (quasidegenerate hydrogenlike manifold) for
which the energy splitting between states with different � and
j is negligible compared to the Fermi pseudopotential. Under
this assumption, the set of states {|n0� jm j〉|m2mi〉}, where
�min � � � n0 − 1, � − 1/2 � j � � + 1/2, and the projec-
tions (mj ; m2, mi ) take all possible values, is a degenerate
subspace of Ĥ0 for each internuclear distance R. We denote
this subspace as Wn0 .

The system is approximately solved by first introducing the
Fermi pseudopotential that fully includes spin-orbit coupling
of the scattering process given by Eq. (6) as a perturbation
to Ĥ0. Therefore perturbation theory for degenerate states is
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applied. Additionally it is assumed that the coupling between
states with different principal quantum numbers is negligible
at this stage. To find the new eigenvectors and correspond-
ing energies it is then necessary to diagonalize the matrix
of V̂Fermi in the subspace Wn0 . Since the total Hamiltonian is
block diagonal in �, each value of � is considered separately.
Finally, it is assumed that the energy gap between s-wave and
p-wave scattering is large enough to treat them separately.
This assumption is supported by the results of the numerical
calculation for values of the internuclear distance R out of a
small region around the avoided crossings. This means that
away from these singular points a state can be identified either
as trilobite or as butterfly.

The core idea of the perturbative method is to find func-
tions Q̃

n� jm j

LML
(R) from which the Fermi pseudopotential matrix

VLS for each L and S in a given � block, can be written in
a simple way as a low-rank matrix with a structure similar to
the spin independent case. In this situation, the eigenvectors
are simply a linear combination of Q̃

n� jm j

LML
terms which are an

extension of the Qn� j
LML

(R) functions—introduced in Ref. [42]
and exemplified in Sec. II–that take into account the angular
momentum projection mj . It results convenient to define the

functions Q̃
n� jm j

LML
(R) according to

Q̃
n� jm j

LML
(R) = C

jmj

�ML,s1mj−ML
Qn� j

LML
(R). (13)

From these functions, we can construct a set of matrices Mk ∈
M2(n0−3)×2(n0−3) in the Wn0 subspace that appear throughout
the calculation for all values of �. Generally, for a given L,

each of these matrices can be written as

(Mk )� j,�′ j′ =
∑

ML,M ′
L

BML,M ′
L
Q̃

n0� jm j

LML
Q̃

n0�
′ j′m′

j

LM ′
L

. (14)

Up to this point the description is general. To proceed fur-
ther we now make the assumption that there is no 3PJ splitting.
As we have pointed out, this is a valid enough approximation
for LRRMs formed by 39K and lighter alkali atoms like Li
and Na [43]. However, it breaks down for Rubidium and the
consequences will be discussed below. With the assumption
of negligible 3PJ splittings, the terms with mixed ML cancel
each other and it is possible to separate ML = 0 and ML = ±1
contributions. As a consequence, the VLS matrices have a sim-
ple block structure in terms of Mk with well-defined ML. It is
straightforward to find their eigenvalues and eigenvectors. The
eigenvalues are then J-independent and and have generally the
form

λLS (R) = 2π (2L + 1)a(L, S, J, k(R))σ n0mj

LML
(R), (15)

where the normalization constants are defined as

σ
nmj

LML
(R) =

∑
� j

∣∣∣Q̃n� jm j

LML
(R)

∣∣∣2
. (16)

The corresponding eigenvectors can be written as∣∣v(n0 )
LML

〉 =
∑
m2,mi

Dm2,mi |α(n0 )
�−m2−mi,LML

〉|m2 mi〉, (17)

where the fundamental electronic states are∣∣α(n)
mj ,LML

〉 = 1√
σ

nmj

LML
(R)

∑
�, j

Q̃
n� jm j

LML
(R)|n� jm j〉. (18)

Before continuing, it is important to make two observations.
The first is that the coefficients Dm2,mi are numbers that do not
depend on n or R. And the second is that although the Rydberg
electron component of the eigenstates (given by |α(n)

mj ,LML
〉)

could be thought of as similar to those obtained in the spin-
independent description, our perturbative method provides
the correct multiplicity of states the nontrivial values of the
coefficients Dm2,mi that make the full spatial-spin state |v(n0 )

LML
〉

an approximate eigenvector of the spin-orbit dependent Fermi
pseudopotential. More details of the method are presented in
Appendix A where, as an illustrative example, explicit values
of these coefficients for � = 3/2 are presented in Eqs. (A4)
and (A6) for trilobite states and Eqs. (A10)–(A12) for buttter-
fly states.

So far we have not considered the hyperfine interaction of
the ground-state atom ĤHF. We include this term as an additive
perturbation to the Hamiltonian Ĥ0 + V̂Fermi for which we have
approximate solutions |v(n0 )

LML
〉 given by Eq. (17). Depending on

�, the eigenvectors for Fermi singlet or triplet pseudopotential
have degeneracy gLS , so that perturbation theory of degener-
ate states within the corresponding gLS dimensional subspace
must be used. By diagonalizing the hyperfine interaction in
this subspace, the degeneracy is completely broken (in al-
most every case) and different trilobite (butterfly) states are
found for L = 0 (1). This procedure is described in general
and exemplified in detail for � = 3/2 in the Appendix B.
For the � = 3/2 example, the explicit expressions for the
approximate eigenvectors of the full Hamiltonian including
Fermi and hyperfine terms are given by Eqs. (B1), (B2) and
(B5)–(B10) in that Appendix.

For each value of n0, perturbation theory predicts gLS

different states for L, S Fermi pseudopotential interaction.
For example, for � = 3/2 we have g00 = 1 and g01 = 2 for
trilobite states. This prediction is consistent with the result of
numerical diagonalization shown in Fig. 1.

Figure 3(a) shows a comparison between the energy of
the numerical diagonalization described in Sec. III A and the
prediction of the perturbative model for singlet and triplet
trilobite states for 39K and � = 3/2. It can be seen that in gen-
eral, perturbative analysis produces excellent results for both
singlet and triplet terms. For the triplet PECs, the differences
between the energies are mainly due to the contribution of
p-wave scattering. The shape resonance causes a slight shift of
the energy levels in the neighborhood of the avoided crossings
and such effect is not included in the perturbative model.

For trilobite molecules, the mixture of different hyper-
fine states is mostly caused by the hyperfine interaction.
The perturbative trilobite eigenstates represent an excellent
approximation to those obtained numerically. The quantum
fidelity between the numerical and perturbative states is a
simple way to quantify how good the approximation is.
Figure 3(c) shows the fidelity as a function of the internuclear
distance. A value above 90% for all values of R in the region
of interest is achieved. This value is even greater outside the
avoided crossing regions.

013173-6



APPROXIMATE SYMMETRIES OF LONG-RANGE RYDBERG … PHYSICAL REVIEW RESEARCH 6, 013173 (2024)

FIG. 3. Comparison between numerical trilobite PECs as a function of the nuclear distance R from complete diagonalization (solid line)
and those predicted by the perturbative analysis (red dotted line) for � = 3/2 and n0 = 34 in 39K molecules. (a) depicts 900a0 � R � 2200a0,
while the region around avoided crossings is highlighted in (b). (c) Fidelity between numerical and perturbative singlet |ψT s〉 and triplet |ψT t 〉
states.

Similar results are found for the other possible values of
� and L = 1 scattering. The Fermi pseudopotential matrix
can always be written as a block matrix formed by matrices
Mk with an n, �, j independent prefactor that depends only on
the projections for the corresponding block and the scattering
channel. It is important to note that the only dependence on n
in trilobite states is through the electronic state |α(n)

± 1
2 ,0 0

〉. The

ground atom component of the state is always the same for
all n.

In a consistent way with numerical natural orbitals for
39K, we found two classes of perturbative butterfly states. The
ML = 0 states that correspond to � molecular symmetry are
denoted as radial butterflies and written explicitly as Eqs. (B5)
and (B6) in the Appendix below. And the |ML| = 1 angular
butterfly states of Eqs. (B7)–(B10) with � symmetry. The
numerical natural orbitals are a linear combination of these
perturbative butterfly states for n − 1, n, n + 1 manifolds with
a low-� contribution. The explicit expressions are Eqs. (B13)
and (B14) of the Appendix A.

As mentioned before, in 87Rb, there is a considerable 3PJ

splitting of the phase shifts. This prevents the VLS matrices
from having a simple separable block structure. This can be
considered the source of the difficulty in describing the but-
terfly dominated LRRMs for 87Rb because it is not possible to
separate the contributions of different ML.

IV. TOTAL SPIN QUASISYMMETRY FOR HIGH-� LRRMS

Now, with compact expressions for the high-� states for
s-wave and p-wave scattering at hand, we are interested in
studying their possible symmetries. In this section we present
an analysis in order to show that the molecule total spin
�N = �s1 + �s2 +�i results in good quantum numbers that iden-
tify each of the spin orbitals used to describe high-� molecular
states and PECs in determined spatial regions. Although the
quantum number N has been used to some degree in the de-
scription of LRRMs [21], its quality as an operator associated
with a symmetry has not been explored.

We can write the total spin �N by prioritizing the hyperfine
coupling s2 − i, as this way we have obtained the perturbative
states. The operator is written as �N = �s1 + �F for this coupling

scheme, and the corresponding vectors are given by

|(s1F ) N, MN 〉 =
∑

m1,MF

CN MN
s1 m1, F MF

|s1m1〉s1 |FMF 〉F , (19)

where MN is the projection of �N onto the internuclear axis.
However, taking into account the Fermi pseudopotential, if

the s1 − s2 coupling is first performed �N = �S +�i the states are
determined by

|(Si) N, MN 〉 =
∑

MS ,mi

CNMN
SMS ,imi

|SMS〉S|imi〉i. (20)

To express these well-defined (N ; S, i) states using hy-
perfine coupling, it is necessary to carry out the base
transformation associated with the change in coupling type.
This is commonly done in the study of atomic spectra that
is outside the LS or j − j coupling regime, so that one type
of coupling may be more suitable than another for different
configurations [48,49]. Explicitly, for a given N and starting
from a s1 − s2 coupling, the transformation between represen-
tations is given in terms of 6 − j symbols,

|(Si) N, MN 〉 =
i+s2∑

F=|i−s2|
(−1)i+s1+s2+N

√
(2F + 1)(2S + 1)

×
{

F s1 N
S i s2

}
|(s1F ) N, MN 〉. (21)

Now, we shall show that the perturbative states for all
different values of � found in previous sections result to have
N as a good quantum number within the s1 − s2 coupling
scheme. First, we express the electronic state with the spin of
the Rydberg electron written explicitly. Starting from Eq. (18),
whenever the j dependence of the high-� quantum defects is
neglected, the electronic orbitals can be approximately written
as

|α(n)
mj ,LML

〉 ≈ 1√
σ n

LML
(R)

⎡⎣ ∑
���min

Qn�
LML

(R)|n�ML〉
⎤⎦

× |s1 mj − ML〉s1 := |�(n)
LML

〉|s1 mj − ML〉s1 ,

(22)
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FIG. 4. Values of the good quantum number N for the 39K LRRM triplet trilobite PECs already illustrated in Fig. 1.

where |�(n)
LML

〉 are the spin-independent trilobite and butterfly
orbitals [47]. Substituting Eq. (22) in the expressions for the
perturbative states, we find molecular states in which the
spatial and spin degrees of freedom are completely separated.
When writing the resulting states according to Eq. (19) we
find that the weight of each F contribution is precisely the
coefficient that appears in Eq. (21) and the dependence on N
is made clear. It results that all perturbative states are of the
form

|�〉 := |�(n)
LML

(R)〉|(Si) N, � − ML〉. (23)

As a consequence, each high-� perturbative state can be
labeled by the total angular momentum projection �, the
principal quantum number n, the total molecular spin N and
the scattering channel they come from L, ML and S. We denote
this set of quantum number as ξ := (n, L, ML, S, N ; �). The
projection of �N is not an independent observable since MN =
� − ML. We note that all spatial dependence is contained in
the |�〉 orbitals and that the spin component is independent
of L.

Through this general expression for |�ξ 〉, it is possible to
determine the number of perturbative states that exist for each
scattering channel for a given value of �. Remembering that
for 39K we have a nuclear spin i = 3/2, the possible values
of N are N = 1/2, 3/2, 5/2. For our working example � =
3/2, and given that only the scattering by the two first partial
waves (|ML| � 1) is considered, there are two well-defined N
states for S = 0,

|(0, 3/2) 3/2, MN 〉, 1/2 � MN � 3/2. (24)

And six states for S = 1

|(1, 3/2) 1/2, 1/2〉, (25)

|(1, 3/2) 3/2, MN 〉, 1/2 � MN � 3/2, (26)

|(1, 3/2) 5/2, MN 〉, 1/2 � MN � 5/2. (27)

Taking into account the values of L compatible with each
of these eight spin states, there are a total of 11 states. This
is exactly the number of states obtained with the perturbative
analysis.

As it has been shown in the previous section, the pertur-
bative trilobite states are practically equal to the numerical
eigenvectors. As a consequence, the symmetry generated by
�N is present in the states resulting from the complete diago-
nalization of the Hamiltonian. Figure 4 illustrates the triplet
trilobite PECs and the corresponding N values.

For 39K, since the spin component is independent of the
principal quantum number n, a linear combination of but-
terflies of the same type has the same value of N as the
elements of the linear combination. For different values of
� and within a range of principal quantum numbers around
n = 34, we performed a careful analysis to verify that the co-
efficients G(F )

j,MF
(R) of Eq. (B13) are such that the low angular

momentum contribution of the state also has a well-defined
value of N on the region of interest, which coincides with the
value of N for the butterfly character of the state. Therefore
we verify that under the used approximation of taking all
3PJ phase shifts to be equal, the symmetry given by N is
also present for the numerical butterfly states for this atomic
species. Accordingly, for 39K the triplet dominated butterflies
PECs (and eigenstates) asymptotically correlated to one n
in an � block can be labeled by (N, ML ) similar to Fig. 4.
However, we have to keep in mind that there are two radial
(ML = 0) butterfly PECs for each value of N as a consequence
of the splitting when including low-� states. This produces
two sets of radial butterfly PECs, and in each of said sets
all the N values compatibles with � are present. Consider
for example � = 3/2, the four angular butterflies correspond
to the (N, ML ) values (1/2, 1), (3/2, 1), (5/2, 1), (5/2,−1)
in ascending order of energy. We note that the two N = 5/2
PECs are degenerate. In each doublet of radial butterfly PECs,
the lower curve corresponds to N = 3/2 and the higher to
N = 5/2.

Since the symmetry given by �N is an approximate one, it
results necessary to quantify how approximate this symmetry
is. To this end, we have calculated the expectation value of N̂2

using its spectral decomposition given by

N̂2 = �N · �N =
∑

N,MN ,S

N (N + 1) P̂N,MN ;S, (28)
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FIG. 5. Expectation value 〈ψ |N̂2|ψ〉 and corresponding PECs as a function of the internuclear distance R for the numerical (a) trilobite
and (b) butterfly states with � = 3/2 in 39K. For the trilobite curves, blue dashed corresponds to N = 3/2 and red dotted to N = 5/2 states.
For butterfly curves blue dashed, red dotted and green continuous correspond to the lower N = 3/2 and N = 5/2 radial, and N = 1/2 angular
states, respectively. The values corresponding to the exact N (N + 1) are shown in faded gray lines. The energy is relative to the |34 f5/2〉|2〉
state.

where P̂N,MN ;S is a projector onto the state with well-defined
N and MN restricted to electronic spin S. Note that we
are using the S − i coupling for N and we do not write
explicitly i neither for 39K nor 87Rb as it has a fixed
value i = 3/2. We sum over spin singlet and triplet con-
tributions as we are interested in the symmetry given only
by �N .

We first consider the case of 39K LRRMs. Figure 5 il-
lustrates the results for the two trilobite states and the lower
N = 3/2, 5/2 radial and N = 1/2 angular butterfly states with
� = 3/2 for different values of the internuclear distance R.
For trilobite molecules, we find a practically constant value
corresponding to the well-defined values of N shown in Fig. 4.
For the case of butterfly molecules and in the region where
bonded states exist (R � 420 a0), we find that 〈N̂2〉 is almost
constant and deviates of the associated N (N + 1) value only
on the avoided crossings between the PECs. For R � 420 a0

the expectation value starts to show a real variation as a
function of the internuclear distance and as a consequence N
is no longer a good quantum number in this region. A similar
analysis has been performed for 87Rb LRRMs. For this sys-
tem, there is experimental evidence for spin-orbit interaction
[21] and the role of �N must be carefully studied. In this case,
the 3PJ splittings are not negligible which enhances the role
of scattering coupling scheme L-S in the molecule formation.
This splitting affects the performance of �N as an approximate
symmetry. In Fig. 6, we present the expectation value of N̂2

for Rb2 molecules for some representative PECs. As the effect
of p-wave Fermi interaction on trilobite states is minimal we
find that away of the avoided crossings the N-symmetry is
also present in the general trilobite case. On the other hand,
for butterfly states the symmetry is broken. The label (N, ML )

can no longer be used to identify each PEC. As it is illustrated
in Fig. 13 in Appendix, each PEC have contributions of all
three N values. Nevertheless, the term (N, ML ) with dominant
contribution in any PEC correspond to the expected state in
absence of 3PJ splitting. To perform a reasonable description
of the states associated with butterfly molecules when there
is 3PJ splitting, it is necessary to include states with different
values of N and ML.

From the two examples presented here it can be observed
that the greatest deficiencies in N as a good quantum number
occur when two (or more) PECs are close to each other. Even
in the case of 39K, in Fig. 5, the points where the value of
N changes suddenly are precisely in the avoided crossings
between two PECs, that is when they are almost degenerate.
A similar behavior is observed in 87Rb, for in Fig. 6 the
peaks that are furthest from the value corresponding to a
well-defined N are located in the internuclear separations in
which the PECs become almost degenerate. This suggests that
degeneration between PECs is one of the factors contributing
to the N-symmetry breaking.

Despite the N-symmetry breaking, the characterization of
the states in terms of superposition of spin orbitals that include
quantum number provides a compact expression of the elec-
tronic wave function: for this case where i = 3/2 there are
only three possible N values. This is studied in detail in the
following section.

V. SPIN-ORBITAL COMPACT BASIS

According to the analysis presented in the previous section,
to describe the numerical eigenstates of the complete Hamil-
tonian, it is sufficient to use at most a set of perturbative states
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FIG. 6. Expectation value 〈ψ |N̂2|ψ〉 and corresponding PECs as a function of the internuclear distance R for the numerical (a) trilobite
and (b) butterfly states with � = 3/2 in 87Rb. For the trilobite curves, blue dashed corresponds to N = 3/2 and red dotted to N = 5/2 states.
For the butterfly curves blue dashed, red dotted, and green continuous correspond to the lower N = 3/2 and N = 5/2 radial, and N = 1/2
angular dominated states respectively. The values corresponding to the exact N (N + 1) are shown in faded gray lines. The energy is relative to
the |22 f5/2〉|2〉 state.

with 2 or 3 values of principal quantum number n and some
states with low angular momentum. Returning to our example
of � = 3/2, this translates to approximately 60 states needed
to describe the set of resulting PECs and eigenvectors in the
region of interest. This number is significantly smaller than
the 2300 elements of the Rydberg state basis.

The set {|�ξ 〉} of states given by Eq. (23) constitutes a
compact set, which is convenient to use for the description of
high-� LRRMs. On one hand, the numerical advantage is ob-
served with the significantly smaller size of the basis. On the
other hand, analytically it allows for a better understanding of
each contribution of the Hamiltonian and the interactions that
are relevant between different classes of states. Since the spin
components of |�ξ 〉 are orthogonal the matrix elements of the
Rydberg and polarization interactions are diagonal in spin and
proportional to the spatial matrix element. As the |�(n)

LM〉 are

in general not orthogonal, this spatial matrix element is given
simply by the trilobite overlap matrix [47]

ϒLML

L′M ′
L
(n, R) =

n−1∑
���min

Qn�
LML

(R)Qn�
L′M ′

L
(R). (29)

Using the fact that the normalization constant σ n
LML

can be
recast in terms of the overlap matrix, for our high-� states, we
have the orthogonality condition

〈ξ |ξ ′〉 = δnn′δMLM ′
L
δSS′δNN ′

ϒLML

L′M ′
L
(n, R)√

ϒLML
LML

(n, R)ϒL′ML
L′ML

(n, R)
. (30)

For a given � block, the matrix elements of Ĥ0 are

〈�ξ |ĤRyd + Ĥpol|�ξ ′ 〉 = δSS′ δNN ′ δMLM ′
L
δnn′

ϒLML

L′M ′
L
(n, R)√

ϒLML
LML

(n, R) ϒ
L′M ′

L

L′M ′
L
(n, R)

(
ERyd

n���min
− αp

2R4

)
. (31)

For the hyperfine term, we use Eq. (21) to write the states in the |FMF 〉F basis. We obtain

〈�ξ |ĤHF|�ξ ′ 〉 = AHF

2
δnn′ δMLM ′

L

ϒLML

L′M ′
L
(n, R)√

ϒLML
LML

(n, R) ϒ
L′M ′

L

L′M ′
L
(n, R)

δNN ′ (−1)2i+2N
√

(2S + 1)(2S′ + 1)

×
i+s2∑

F=|i−s2|
(2F + 1)[F (F + 1) − i(i + 1) − s2(s2 + 1)]

{
F s1 N
S i s2

}{
F s1 N
S′ i s2

}
. (32)

Through Eq. (32) we can conclude that states with different N do not couple through the hyperfine interaction. The quantum
number N is preserved under the hyperfine Hamiltonian. However, the electronic total spin S is not preserved. Singlet and triplet
states do couple due to this interaction for they have a nonzero matrix element.

013173-10



APPROXIMATE SYMMETRIES OF LONG-RANGE RYDBERG … PHYSICAL REVIEW RESEARCH 6, 013173 (2024)

Finally we study the matrix elements of the Fermi pseudopotential. In this notation, we have for the L̄, S̄ Fermi pseudopotential
matrix element

〈�ξ |V̂L̄S̄|�ξ ′ 〉 = 2π (2L̄ + 1)
ϒL,ML

L̄ML
(n, R)ϒL′,M ′

L

L̄,M ′
L

(n′, R)√
ϒLML

LML
(n, R)ϒL′M ′

L

L′M ′
L
(n′, R)

δSS̄ δS′S̄

×
∑

mi

∑
J,MJ

CN�−ML
SMJ −ML,imi

CN ′�−M ′
L

SMJ −M ′
L,imi

CJMJ

L̄ML,SMJ −ML
CJMJ

L̄M ′
L,SMJ −M ′

L
a(L̄, S̄, J ). (33)

We can think of Eq. (33) as a simple expression for the Fermi
interaction matrix element that is proportional to the overlap
matrix of the states with the corresponding L̄ scattering chan-
nels multiplied by an effective dispersion length (volume).
Also, from Eq. (33), we immediately see that singlet and
triplet states do not couple. We can deduce that s-wave inter-
action does not couple trilobite and butterfly states, the only
coupling between these two types of states arise from p-wave
interaction. To study this coupling, we consider two cases for
the total Fermi scattering interaction V̂F = ∑

L̄,S̄ V̂L̄S̄ . First,
potassium to exemplify the behavior when the 3PJ splittings
are negligible, and then rubidium to understand the effects of
these splittings.

A. Potassium

When a(L̄, S, J ) does not depend on J , it can be taken out
of the sum in Eq. (33) and the sum of Clebsch-Gordan coef-
ficients can be carried out explicitly. It results in δNN ′ δMLM ′

L
,

implying that the Fermi pseudopotential only couples trilobite
and butterfly |�ξ 〉 states with the same symmetry given by N
and ML and the matrix element is the same for all different
N values. As said before, for 39K there is a 3PJ splitting
that is negligible compared to other energies involved, and
therefore a(L̄, S, J ) can then be considered as approximately
J-independent. In Fig. 7, we present the nonzero matrix ele-
ments of the triplet Fermi pseudopotential for n = 34 and 35
for this alkali atom. We focus on triplet states (interaction)
as these are the dominant states in the corresponding bound
LRRM. We see that the nondiagonal elements (associated
to the coupling between trilobite and ML = 0 butterfly) are
always much smaller than the diagonal matrix elements for
internuclear distances that correspond to the region where
bound trilobites molecules exist (R ≈ 900 a0 − 2100 a0) for
both n′ = n and n ± 1. For this case, we shall not observe con-
siderable Fermi pseudopotential coupling between trilobite
and butterfly states in accordance to the numerical diagonal-
ization results for potassium.

From Fig. 7, we can also see that the Fermi matrix elements
for n′ = n and n ± 1 are of comparable magnitudes. However,
when considering the full Hamiltonian in a simple two level
model, we find that to first order, the n ± 1 correction for
the n dominated state is given by 〈�ξ |V̂F |�ξ ′ 〉/�, where
� = |ERyd

n���min
− ERyd

n±1���min
|. We see that for trilobite states

this correction is always small

〈n = 34, L = 0, ML = 0|V̂F |n = 33, L = 0,

ML = 0〉/� � 0.05

in the region of interest. On the other, for butterfly states in
the bound region R ≈ 200 a0 − 400 a0, this correction is more
significant

〈n = 34, L = 1, ML = 0|V̂F |n = 33, L = 1, ML = 0〉/� ≈ 0.4.

For this reason, it was already recognized in the numerical
analysis that the contribution of n ± 1 terms is not negligible
for butterfly states.

B. Rubidium

As we have exemplified in preceding sections, the N-
symmetry can be broken when the Fermi pseudopotential
entails a strong magnetic interaction between the orbital an-
gular momentum with respect to the ground-state atom L and
the electronic spin S. This is the case for alkali atoms like
Rb and Cs. For these atomic species, the 3PJ splittings are
considerable and cannot be ignored. In this case we find a
nonzero matrix element between states with different N and
ML. As example we consider 87Rb2 molecules with n = 22
and � = 3/2. The trilobite and butterfly avoided crossings are
shown in the PECs of Fig. 6. For this case, in Fig. 8(a), we
show some N diagonal matrix elements for different (L, ML ).

FIG. 7. Triplet Fermi pseudopotential matrix elements for 39K
between k and k′ states (k, k′) as a function of the internuclear
distance R in � = 3/2 block. The basis states are distinguished by
{n, L, ML}; labels 1, 2 correspond to {34, 0, 0}, {34, 1, 0} and 3, 4
to {33, 0, 0}, {33, 1, 0}, respectively. As established in the main text
the results are independent of N and we use � as normalization.
The shaded region corresponds to the neighborhood of the avoided
crossings.
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FIG. 8. Triplet Fermi pseudopotential matrix elements as a function of the internuclear distance R between k and k′ states (k, k′) for
(a) N = N ′ and (b) N �= N ′ and the same principal quantum number n = n′ = 22 in 87Rb molecules. The basis states are distinguished by
{L, ML, N}; labels 1,2,...,5 corresponds to {0, 0, 3

2 }, {0, 0, 5
2 }, {1, 0, 3

2 }, {1, 0, 3
2 }, {0, 0, 5

2 }, {1, 0, 5
2 }, and {1, 1, 1

2 } respectively. The shaded
region corresponds to the neighborhood of the avoided crossings.

For comparison we present matrix elements for states with
N ′ �= N in Fig. 8(b). As we can see, these off-diagonal matrix
elements can be comparable or even larger than the diagonal
elements, resulting in a significant coupling between different
classes of states {L, ML, N} for the same principal quantum
number n.

To study the mixing of states with different principal quan-
tum number, we realize a similar analysis to the one for
Potassium. In a set of the same N = 3/2 states, we obtain
the Fermi pseudopotential matrix elements and compare them
to � as shown in Fig. 9. For trilobite states the correction is
negligible,

〈n = 22, L = 0, ML = 0|V̂F |n = 23, L = 0, ML = 0〉/� � 0.1

in R ≈ 500 a0 − 1000 a0. Meanwhile the correction

0.5 � 〈n = 22, L = 1, ML = 0|V̂F |n = 23, L = 1,

ML = 0〉/� � 0.7

FIG. 9. Triplet Fermi pseudopotential matrix elements as a func-
tion of the internuclear distance R for 87Rb between k and k′ states
(k, k′) in � = N = 3/2 block. The basis k-states are distinguished by
{n, L, ML} numbers; labels 1, 2 correspond to {22, 0, 0}, {22, 1, 0}
and 3, 4 to {23, 0, 0}, {23, 1, 0}, respectively. The shaded region
corresponds to the neighborhood of the avoided crossings.

for butterfly states in R ≈ 100 a0 − 400 a0 cannot be ne-
glected. Again we find that mixing between n and n ± 1 states
only occurs for butterfly states.

Despite the fact that matrix elements between high-� N
and N ′ can be different from zero, it must be noted that
this quantum number has limited options. In our examples,
N = 1/2, 3/2, and 5/2, so it is relatively simple to track
couplings between different N values by using the compact
spin-orbital basis. In this approach, we include both high-�
states for n, n ± 1 and also low-� states, particularly relevant
for the p-wave interaction. For consistency, we also use low-�
states with well-defined N and S. A similar analysis can be
done for the coupling between high and low-� states. We
found that while the noninteger part of the s state quantum
defect is negligible, the corresponding � now defined as
� = ERyd

n���min
− ERyd

n′,0,1/2 will always be very large compared
to the Fermi pseudopotential matrix element. Resulting in no
significant mixing of n′s states with n trilobites. However,
for p-wave states, the Fermi matrix element can take higher
values and quasidegeneration between high-� and low-� states
is not required to observe the mixing of n′ p states with n
butterflies. This is consistent with the reported results here and
in other studies [13,42,43] for different atomic species.

In the same way as in the spin independent case [47],
the eigenstates of the Hamiltonian can be written as a linear
combination of |�ξ 〉 with a low-� contribution. Since the spin
trilobite states are not orthogonal, the problem results in a
generalized eigenvalue equation that includes the full overlap
matrix � = δnn′δNN ′δSS′ϒLML

L′M ′
L
(n, R).

VI. SPECTROSCOPIC CONSEQUENCES OF THE
QUASISYMMETRY GENERATED BY �N

Our compact basis allows us to understand some spectro-
scopic properties of LRRMs. As the dipole moment operator
acts only on the spatial degrees of freedom of the electron,
it does not affect the spin component of the state. Therefore
the R-dependent dipole moment matrix element between two
elements of our compact basis is

�D(R) = 〈
�

(n)
LML

∣∣ �̂d∣∣�(n′ )
L′M ′

L

〉
δSS′ δNN ′ δ�−ML,�′−M ′

L
. (34)
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Expressing the dipole moment vector �̂d using the spherical
base {d̂0, d̂±} and from Eq. (34) we obtain a series of selection
rules for given spin orbitals |�ξ 〉, Eq. (23). First, the ones
involving the electronic S and molecular spin N associated to
the Kronecker deltas that appear in Eq. (34). These selection
rules apply for all components of the dipole moment operator.
Second, the selection rules that will be different for parallel or
transverse (in the molecular frame) to the internuclear axis
transitions. These selection rules arise as a combination of
the projection condition � − ML = �′ − M ′

L and the spatial
matrix element. For parallel transitions (d̂0), the spatial matrix
elements requires ML = M ′

L to be nonzero. This implies that
� = �′. For perpendicular transitions (d̂±), the condition im-
posed by the spatial component is �ML = ±1 and according
to Eq. (34) this implies that �� = ±1.

These selection rules can be used to understand the nu-
merical results. When considering a bound trilobite LRRM in
which the numerical state can be accurately approximated by
only one triplet spin-orbital |�ξ 〉 with L = ML = 0, only the
d̂0 component is different from zero and only transitions in the
same � block are allowed. This is precisely the result found
with numerical calculations as the only trilobites in (�′, n′)
with nonzero numerical transition dipole moments are the
ones with n �= n′, N = N ′ and S = S′ within a �′ = � block.

When considering butterfly states a distinction has to be
made according to the extent of the N symmetry. If N remains
a good quantum number, 39K, for example, in the region
where bound states exist, the numerical states are expressed
as a linear combination of butterfly spin orbitals of different
principal quantum n, n ± 1 and low angular momentum n∗ p
states (n∗ determined by the quantum defect μ1) with the same
well-defined N . In this case, the most relevant selection rule is
N ′ = N for each of the spin orbitals |�ξ 〉 required to represent
the LRRM state. In one set of PECs correlated to n∗ p asymp-
totes on the same � block, the only allowed transitions are
between radial butterflies. The existence of two radial butterfly
LRRMs with the same N occurs due to the splitting caused
by the inclusion of low-� states. However, despite having the
same N we note that due to the spatial shift between the PECs,
numerical simulations show that the overlap of the nuclear
wave functions corresponding to bound states will be mini-
mal, reducing the transition probability. Within this � block
but for a target set of n∗′

p asymptotically correlated states the
selection rules admit various radial-radial and angular-angular
transitions to the equivalent state. These transitions have
considerable Franck-Condon factors. For different � blocks,
the selection rules permit perpendicular transitions between
radial and angular butterflies in the same set of PECs corre-
lated to the n∗′

p asymptotes.
If the N symmetry is broken, 87Rb for example, we can

expect that butterfly LRRMs will exhibit a qualitatively dif-
ferent spectroscopy. Contrary to the well-defined N case, here
for the same � and n∗′

p asymptote correlated block, transi-
tions between all different states have a nonzero probability
of occurring. As illustrated in Fig. 13, each state can have a
nonzero contribution from different values of N in consider-
able spatial regions. Therefore there will regions where the
N overlap between the two butterfly states of the same block
under consideration can reach no negligible values and this

can lead to nonzero transition electric dipole moments. Given

that the different dipole matrix elements 〈�(n)
LML

| �̂d|�(n′ )
L′M ′

L
〉 for

fixed n, n′ have comparable magnitudes, the sum of the N
overlaps between two states provides a rough estimate of
which of these transitions within the same block are more
probable. For the three butterfly PECs considered in Fig. 6
and using the projectors values of Fig. 13 to obtain the total N
overlap, we found that near the potential minima of the lowest
radial dominated PEC, the overlap between that state and the
angular dominated PEC is greater of that between the two
radial dominated PECs or the higher radial dominated PEC
with the angular dominated PEC. Thus the corresponding
dipolar transition is more probable.

VII. CONCLUSIONS

We have shown that our spin-orbital basis set results in
simple expressions for the matrix elements of each term of the
full electronic-ground-state Hamiltonian for different atomic
species of alkali atoms. These expressions permit a clear
identification of which degrees of freedom are relevant for
each of the interactions of the Hamiltonian and which of
them will couple due to those interactions. Even when the
nondiagonal matrix elements are significant the basis provides
a good compact representation of them.

The presented theoretical scheme, was applied to two
paradigmatic examples with emphasis on the question of
the effect of both the principal quantum number n and the
N -symmetry of the spin orbitals on the LRRMs spec-
troscopy. The calculations allow to understand the behavior
and differences both in complexity and in the associated
photon energies (and even polarization) for 39K and 87Rb
LRRMs dipole transitions. They are mainly due to the bro-
ken N-symmetry derived from 3PJ scattering splitting, whose
relevance has already been recognized in the literature [30],
though the role of this symmetry has not been previously
remarked.

In the cases described in detail in this work, the n values se-
lected for 39K are considerably higher than the ones for 87Rb.
As mentioned, part of the breaking of the N-symmetry occurs
when the PECs are nearly degenerate and exhibit avoided
crossings. For larger n values, the intensity of the couplings
present on the Hamiltonian (Fermi, hyperfine) change and
can lead to a greater separation between the different PECs,
breaking degeneracy and possibly contributing to the preser-
vation of N as a good quantum number.

As its is well documented [30,42], LRRMs PECs present
a problem of formal convergence and dependence on the
size of the base used to describe them. The efficiency of
our compact basis instead of the Rydberg basis in numerical
diagonalization on the convergence of the PECs deserves fur-
ther studies. Besides such a basis could be ideal for studying
LRRM in external electric and magnetic fields. Future studies
could include generalizations of �N as a symmetry operator to
incorporate the scattering channel. For example, �N ′ = �N + �L
has the advantage of reducing to �N for trilobite states and
may be of greater relevance in butterfly states. Finally the spin
compact basis provides a direct way of identifying the relevant
interaction terms in the neighborhood of avoided crossings,
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which are important in understanding nonadiabatic effects on
LRRMs.
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APPENDIX A: FERMI PSEUDOPOTENTIAL
DIAGONALIZATION

In this section, we present details in the diagonalization of
the Fermi pseudopotential within our perturbative model.

1. s-wave scattering

Here we focus on trilobite states. From Eq. (2) for A, we
notice that the Fermi pseudopotential for s-wave (L = ML =
0 = 0) only couples states with |mj | = 1/2, and its matrix el-
ement will be zero for states that do not satisfy this condition.
As a consequence, we only need to consider the elements of
Wn0 whose projection is mj = ±1/2.

Now we proceed with the detailed example of the construc-
tion and diagonalization of the matrix for the s-wave Fermi
pseudopotential in Wn0 for � = 3/2 in 39K.

Only three triads of projections (mj ; m2, mi ) satisfy
the condition on mj . Therefore the subspace in which
we must diagonalize the pseudopotential is W̃n0 =
{{|n0� j 1

2 〉| 1
2

1
2 〉}, {|n0� j 1

2 〉|− 1
2

3
2 〉}, {|n0� j− 1

2 〉| 1
2

3
2 〉}}, where each

{|n0� jm j〉|m2mi〉} is a set of 2(n0 − 3) states considering all
possible values of l and j. Ordered in this way, the subspace
W̃n0 can be thought of as composed of three different
subsets {|n0� jm j〉|m2mi〉} characterized by the projections
(mj ; m2, mi ). By evaluating the matrix elements of V̂Fermi on
the states of W̃n0 , we obtain a block matrix, in which each
block is associated with the pair (mj ; m2, mi ), (m′

j ; m′
2, m′

i )
and will be proportional to one of the matrices Mk .

If we explicitly write separately the contribution of singlet
(S = 0) and triplet (S = 1)

V s
Fermi = V s

sing + V s
trip, (A1)

we found that in W̃n0 the matrix for the s-wave Fermi pseu-
dopotential is

V s
Fermi = 2πa(0, 0, 0, k(R))

⎛⎜⎝O O O

O 1
2M1 − 1

2M3

O − 1
2M

T
3

1
2M2

⎞⎟⎠

+ 2πa(0, 1, 1, k(R))

⎛⎜⎝M1 O O

O 1
2M1

1
2M3

O 1
2M

T
3

1
2M2

⎞⎟⎠.

(A2)

It is straightforward to find the eigenvectors and eigenval-
ues of the Fermi pseudopotential matrices. The singlet matrix
is a rank 1 matrix which has a single nonzero eigenvalue given
by

λ000(R) = 2πa(0, 0, 0, k(R))σ
n 1

2
00 (R), (A3)

and eigenvector

|v1〉 = 1√
2

(∣∣α(n0 )
1
2 ,0 0

〉∣∣− 1
2

3
2

〉 − ∣∣α(n0 )
− 1

2 ,0 0

〉∣∣ 1
2

3
2

〉)
. (A4)

On the other hand, the matrix of the triplet V s
trip has rank 2

and a nonzero eigenvalue with degeneracy 2. The eigenvalue
and their respective linearly independent eigenvectors are

λ011(R) = 2πa(0, 1, 1, k(R))σ
n 1

2
00 (R) (A5)

and

|v2〉 = ∣∣α(n0 )
1
2 ,0 0

〉∣∣ 1
2

1
2

〉
,

|v3〉 = 1√
2

(∣∣α(n0 )
1
2 ,0 0

〉∣∣− 1
2

3
2

〉 + ∣∣α(n0 )
− 1

2 ,0 0

〉∣∣ 1
2

3
2

〉)
. (A6)

If we consider Qn� j
LML

(R) independent of j the eigenvector
of the singlet matrix is in the kernel of the triplet matrix, and
viceversa. So we have

V s
trip|v1〉 = 0, V s

sing|vi〉 = 0, i = 2, 3. (A7)

Since we are considering only high-� states this is a reasonable
assumption over Qn� j

LML
(R). As a consequence of Eq. (A7), the

contributions of the singlet and triplet can be viewed as inde-
pendent terms; the set formed by the union of the independent
eigenvectors |vi〉 is identical to the set of eigenvectors of the
total s-wave Fermi interaction. Their eigenvalues are also the
same as the union of the eigenvalues of V s

sing and V s
trip.

The two triplet states span a degenerate subspace, whose
energy correction λ011(R) produces the characteristic trilobite
PECs.

The electronic states |α(n)
mj ,LML

〉 are orthogonal with respect
to the principal quantum number n and projection mj〈

α
(n)
mj ,LML

∣∣α(n′ )
m′

j ,L
′M ′

L

〉 = δnn′δmj m′
j
. (A8)

However, states with the same principal quantum number and
projection but associated with different scattering channels are
not orthogonal to each other.

We will refer to the high angular momentum electronic
states |α(n)

± 1
2 ,0 0

〉 as trilobite fundamental states. Figure 10

shows the probability density for one of these states and the
characteristic structure in the Rydberg electron wave function
is evident. They depend parametrically on the internuclear
distance R through the functions Q̃.

2. p-wave scattering

We now consider the p-wave scattering interaction for
butterfly states with the same assumptions as in the case of
s-wave scattering. We study the same � = 3/2 case as for
trilobite states. As shown in Fig. 2, for this value of � there are
at least eight potential curves with structure that we expect to
correspond to butterfly PECs, apparently separated into two
different classes of curves. The first class have a structure
of several wells that could support vibrational levels. On the
other hand, the second class are those PECs corresponding to
a single well extended throughout the entire spatial region of
interest. These eight curves arise almost exclusively from the
Fermi interaction associated with the triplet-spin. With this in
mind, we restrict our analysis to this case.
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FIG. 10. Trilobite unnormalized probability density |α(34)
1
2 ,0 0

〉 for

R = 1495 a0 in cylindrical coordinates (ρ, z). The Rydberg core and
perturber atom are shown as red and black circles, respectively.

For � = 3/2, we have five possible combinations of pro-
jections. As a consequence Wn0 is composed of five subsets
characterized by different projections and the Fermi pseu-
dopotential matrix in this subspace V (p,1)

Fermi is a 5 × 5 block
matrix. We can write the matrix of the Fermi pseudopotential
for p-wave triplet as a sum of contributions from different J .
That is, we can write

V (p,1)
Fermi = V (p)

J=0 + V (p)
J=1 + V (p)

J=2. (A9)

The expression given by Eq. (A9) is valid in general. To
proceed further, we make the additional assumption that the
3PJ splitting of the phase shifts is negligible and all dispersion
volumes a(1, 1, J ) can be considered equals. We have seen
that for potassium this assumption is reasonable. By making

this approximation, the sum over the possible values of J is
simplified and the terms that mix different ML cancel each
other. It turns out that for this case we can separate the
matrices according to their contributions of ML. This is an
important simplification as the matrices associated with each
ML are independent in the same sense discussed in the trilobite
Section. For p-wave scattering, the Fermi pseudopotential
does not completely break the degeneracy in Wn0 . Since it was
possible to separate the contributions of ML = 0 and |ML| =
1, we can identify the molecules by approximate symmetry �
or �. The eigenvectors of the matrix for ML = 0 are identified
as radial butterfly states, and the ones for |ML| = 1 as angular
butterfly states. It should be emphasized that in the general
case with different scattering volumes, it will not be possible
to separate contributions from different ML. Figure 11 shows
the electronic probability density corresponding to the states
associated with the two types of butterfly states.

For our study case � = 3/2, the matrix for ML = 1 has
rank two while the matrix for ML = 0 has rank one. The re-
sulting matrices have the same simple block structure as in the
case of s-wave scattering. Therefore finding their eigenvectors
is straightforward. The radial and angular butterfly eigenstates
are given by

|v4〉 = 1√
2

(∣∣α(n0 )
1
2 ,0 0

〉∣∣− 1
2

3
2 〉 + ∣∣α(n0 )

− 1
2 ,1 0

〉∣∣ 1
2

3
2

〉)
,

|v5〉 = ∣∣α(n0 )
1
2 ,1 0

〉∣∣ 1
2

1
2

〉
, (A10)

and

|v6〉 = 1√
2

(
|α(n0 )

3
2 ,1 1

〉|− 1
2

1
2 〉 + |α(n0 )

1
2 ,1 1

〉| 1
2

1
2 〉
)
, (A11)

|v7〉 = ∣∣α(n0 )
3
2 ,1 1

〉∣∣ 1
2 − 1

2

〉
,

|v8〉 = ∣∣α(n0 )
− 1

2 ,1 −1

〉∣∣ 1
2

3
2

〉
,

|v9〉 = ∣∣α(n0 )
1
2 ,1 1

〉|− 1
2

3
2

〉
, (A12)

respectively.

FIG. 11. Butterfly un-normalized probability density for (a) radial |α(34)
1
2 , 1 0

〉 and angular |α(34)
1
2 , 1 1

〉 states for R = 230 a0 in cylindrical

coordinates (ρ, z). The Rydberg core and perturber atom are shown as red and black circles, respectively.
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APPENDIX B: HYPERFINE DIAGONALIZATION

Once the Fermi pseudopotential is diagonalized we still
need to include the hyperfine term to approximately solve
the Schroedinger equation of the full Hamiltonian written in
Eq. (1). Taking advantage of the results from the previous
section, the general procedure is illustrated here for � = 3/2.

1. Trilobite states

Since the singlet state is nondegenerate, its correction to
the energy is simply the expected value of the hyperfine inter-
action. However the bound trilobite states come mostly from
the triplet term, so we focus on this term. The eigenstates
of the triplet Fermi pseudopotential are degenerate. We use
perturbation theory of degenerate states within the adequate
subspace. In the illustrative case of study (� = 3/2) the this
degenerate subspace is spanned by {|v2〉, |v3〉}, so the hyper-
fine interaction matrix is a 2 × 2 matrix.

By diagonalizing the hyperfine interaction in the trilo-
bite subspace, the degeneracy is completely broken and two
different trilobite states are found. In the hyperfine coupled
basis, these triplet trilobite states are

∣∣� (n0 )
T1

〉
3
2

=
√

7

10

∣∣α(n0 )
1
2 ,0 0

〉(5

2

√
1

7
|1 1〉 + 1

2

√
3

7
|2 1〉

)

−
√

3

10

∣∣α(n0 )
− 1

2 ,0 0

〉|2 2〉, (B1)∣∣� (n0 )
T2

〉
3
2

= 2√
5

∣∣α(n0 )
1
2 ,0 0

〉|2 1〉 + 1√
5

∣∣α(n0 )
− 1

2 ,0 0

〉|2 2〉 (B2)

with respective energy corrections

γ1 = −1

2
AHF, γ2 = 3

4
AHF. (B3)

For each value of n0, perturbation theory predicts two dif-
ferent triplet trilobite states with energies

Ei(R) = εn0 (R) + 2πa(0, 1, 1, k(R))
∑
�, j

∣∣∣Q̃n0� j 1
2

0 0 (R)
∣∣∣2

+ γi.

(B4)
This prediction is consistent with the result of numerical

diagonalization shown in Fig. 1. In Eqs. (B1) and (B2), we
have written the trilobite state vectors in a way that shows
explicitly the natural orbitals of each vector. This allows for
a direct comparison with the numerically obtained orbitals of
Eq. (9). A similar analysis provides the explicit trilobite states
for each �.

2. Butterfly states

For � = 3/2, the radial butterfly vectors {|v4〉, |v5〉} span
a two-dimensional degenerate subspace. After diagonalizing

the hyperfine interaction we find two radial butterflies orbitals:

∣∣� (n0 )
B1

〉
3
2

=
√

7

10

∣∣α(n0 )
1
2 ,1 0

〉(5

2

√
1

7
|1 1〉 + 1

2

√
3

7
|2 1〉

)

−
√

3

10

∣∣α(n0 )
− 1

2 ,1 0

〉|2 2〉, (B5)

|� (n0 )
B2 〉 3

2
= 2√

5
|α(n0 )

1
2 ,1 0

〉|2 1〉 + 1√
5

|α(n0 )
− 1

2 ,1 0
〉|2 2〉. (B6)

For the angular butterfly states, we also must solve the
hyperfine interaction in the degenerate subspace spanned by
the four eigenvectors associated with |ML| = 1. Through a
similar calculation to the one presented in the trilobite section,
we find the different angular butterfly states:

|� (n0 )
B3 〉 3

2
=

√
1

3
|α(n0 )

3
2 ,1 1

〉|1 0〉 −
√

2

3
|α(n0 )

1
2 ,1 1

〉|1 1〉, (B7)

|� (n0 )
B4 〉 3

2
=

√
17

30
|α(n0 )

3
2 ,1 1

〉
(

5√
34

|1 0〉 + 3√
34

|2 0〉
)

+
√

13

30
|α(n0 )

1
2 ,1 1

〉
(

5

2

√
1

13
|1 1〉 − 3

2

√
3

13
|2 1〉

)
,

(B8)

|� (n0 )
B5 〉 3

2
=

√
3

5
|α(n0 )

3
2 ,1 1

〉|2 0〉 +
√

2

5
|α(n0 )

1
2 ,1 1

〉|2 1〉, (B9)

|� (n0 )
B6 〉 3

2
= |α(n0 )

− 1
2 ,1 −1

〉|2 2〉. (B10)

We note that in the same way as for the trilobite states,
the perturber components in each eigenstate are the same for
every value of n0. The energy of kr − th radial and ka − th
angular butterflies states are respectively

EBkr (R) = εn0 (R)+6πa(1, 1, 1, k(R))
∑
�, j

∣∣∣Q̃n0� j 1
2

1 0 (R)
∣∣∣2

+ γkr,

(B11)

EBka (R) = εn0 (R)+6πa(1, 1, 1, k(R))
∑
�, j

∣∣∣Q̃n0� j 1
2

1 1 (R)
∣∣∣2

+ γka,

(B12)

where γk is the respective correction resulting of diagonal-
ization of the hyperfine interaction in the degenerate butterfly
subspace.

According to the perturbative analysis, there should be
four PECs associated with angular butterfly states. Study-
ing the numerical eigenvector of each of the numerical
PECs shown in Fig. 2 reveals that the four middle energy
curves are the ones associated with angular butterfly states.
For the case of radial butterfly states, perturbation theory
predicts only two PECs, while in the numerical diagonal-
ization we observe four energy curves. By analyzing the
corresponding numerical eigenvector of these PECs, we find
that they are mostly composed of radial butterfly states n0 =
34, although contributions from (n + 2)pj states are also
present. The splitting of each perturbative radial PECs in two
different curves is a consequence of the admixture of butterfly
and np states.
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FIG. 12. Expectation value of well-defined N projectors P̂N as a function of internuclear distance R for butterfly states on 39K. (a), (b),
and (c) correspond to the blue, red, and green PECs of Fig. 5. N = 1/2, 3/2, and 5/2 are shown as dotted, continuous, and dashed lines,
respectively.

A direct comparison between perturbative |� (n)
Bk 〉 and full

numerical natural orbitals shows that the latter cannot be
written as a perturbative state of a single principal principal
quantum number. However, we can use the perturbative states
as a small basis to represent the numerical eigenvectors. For
the angular butterflies, the states can be written as butterflies
of different n0. For the radial butterflies, it is also necessary
to include np states. Explicitly we can write the numerical
angular buttefly associated to the ka − th PEC as

|� (n)
�,ka

〉� = Aka (R)
∣∣� (n)

Bka

〉
�

+ Bka (R)
∣∣� (n+1)

Bka

〉
�

+ Cka (R)
∣∣� (n+1)

Bka

〉
�
. (B13)

And the radial butterfly for the kr th PEC as

|��,kr 〉� =
∑
j,MF

[
G(1)

j,MF
(R)|(n + 2)p j � − MF 〉|1 MF 〉

+G(2)
j,MF

(R)(R)|(n + 2)p j � − MF 〉|2 MF 〉]
× Akr (R)|� (n)

Bkr
〉� + Bkr (R)|� (n+1)

Bkr
〉�

+ Ckr (R)|� (n−1)
Bkr

〉�. (B14)

We note the mixing of different values for n0 in the eigen-
vectors. This is a consequence of the p-wave interaction.

For this we cannot neglect interaction between different n
states.

APPENDIX C: �N PROJECTORS

To study further the N symmetry, the expectation value of
P̂N can be calculated. Here,

P̂N =
∑
MN ,S

P̂N,MN ;S (C1)

is the projector on the state with good quantum number
N regardless of projection and electronic spin character.
This analysis is necessary to achieve a better understanding
of the observed value in 〈N̂2〉 presented in Figs. 5
and 6.

First, Fig. 12 shows the projectors expectation values for
39K. We can see that except of a few singular points, corre-
sponding to avoided crossings, for each of the butterfly PECs
the expectation value of P̂N for a given N reaches the value of
1 and remains practically constant around this value. On the
contrary, for 87Rb contributions from all three possible values
of N are observed in Fig. 13 and N no longer labels each PEC.

FIG. 13. Expectation value of well-defined N projectors P̂N as a function of internuclear distance R for butterfly states on 87Rb. (a), (b),
and (c) correspond to the blue, red, and green PECs of Fig. 6. N = 1/2, 3/2, and 5/2 are shown as dotted, continuous, and dashed lines,
respectively.
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