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The identification of spin-nematic states is challenging due to the absence of Bragg peaks. However, the
study of dynamical physical quantities provides a promising avenue for characterizing these states. In this study,
we investigate the dynamical properties of spin-nematic states in three-dimensional quantum spin systems in a
magnetic field, using a two-component boson theory that incorporates magnons and bimagnons. Our particular
focus lies on the dynamical spin structure factor at zero temperature and the nuclear magnetic resonance (NMR)
relaxation rate at finite temperatures. Our findings reveal that the dynamical structure factor does not exhibit
any diverging singularity across momentum and frequency while providing valuable information about the
form factor of bimagnon states and the underlying structure of spin-nematic order. Furthermore, we find a
temperature dependence in the NMR relaxation rate proportional to T 3 at low temperatures, similar to canted
antiferromagnets. A clear distinction arises as there is no critical divergence of the NMR relaxation rate at the
spin-nematic transition temperature. Our theoretical framework provides a comprehensive understanding of the
excitation spectrum and the dynamical properties of spin-nematic states, covering arbitrary spin values S and
encompassing site and bond nematic orders. Additionally, we apply the same methodology to analyze these
dynamical quantities in a canted antiferromagnetic state and compare the results with those in the spin-nematic
states.
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I. INTRODUCTION

Exploring hidden order phases in condensed matter is
challenging due to their elusive nature in conventional static
measurements. An intriguing hidden order is a spin-nematic
order in spin systems, characterized by the absence of a mag-
netic Bragg peak and the presence of a broken partial spin
rotation symmetry resulting from spin quadrupolar order [1].
The emergence of spin-nematic order arises from the Bose-
Einstein condensation of bound magnon pairs [2]. Theoretical
investigations have predicted the appearance of spin-nematic
order in various systems, including spin-S bilinear-biquadratic
systems [3–6], frustrated ferromagnets [2,7–15], and quan-
tum dimer systems [16–19]. Importantly, the symmetry of
magnon pairing varies across systems, with S-wave symmet-
ric magnon pairs leading to quadrupolar order on each lattice
site and magnon pairs with other symmetries, such as d-wave
symmetry, leading to bond nematic order with quadrupolar
order on bonds. Subsequent to these predictions, there has
been a growing interest in experimental investigations aimed
at verifying the existence of spin-nematic phases [20–28].
However, conclusive experimental confirmation requires fur-
ther insights into the intrinsic characteristics of these phases.

Detecting spin-nematic phases is challenging, but dynam-
ical quantities show promise as valuable tools for identifi-
cation. In one-dimensional spin-nematic Tomonaga-Luttinger
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liquids, the temperature dependence of the nuclear-magnetic-
resonance (NMR) relaxation rate 1/T1 shows a slower decay
compared to conventional one-dimensional antiferromagnets
[29], providing a means to detect spin-nematic liquids (see,
for example, Ref. [23]). However, in three-dimensional spin-
nematic ordered phases, different methods have yielded
inconsistent results regarding the temperature dependence of
the NMR relaxation rate at low temperatures [30,31], leading
to a lack of comprehensive understanding. In a 1/N expansion,
the temperature dependence of 1/T1 was estimated as T 5 [30],
whereas a field-theoretical approach concluded T 7 [31]. Both
results deviate from the temperature dependence of T 3 for
the conventional antiferromagnets derived by Moriya [32–34].
Another distinct difference from antiferromagnets was argued
to be the absence of a critical divergence in 1/T1 at the transi-
tion temperature of the spin-nematic phase [31].

In this paper, we investigated the dynamical properties of
spin-nematic phases in three-dimensional systems in a mag-
netic field to address this confusing issue. To accomplish
this, we developed a methodology for describing spin-nematic
states using a boson representation, which enables us to
use the established standard interacting boson theory. Ex-
panding on our previous study [28], where we employed a
two-component boson theory including both magnons and
bimagnons to investigate the thermodynamic properties of
the spin-gap phase near a spin-nematic phase, the present
work extends this methodology. Specifically, we investigated
the dynamical quantities in the spin-nematic and paramag-
netic phases, considering the influence of interactions and
bimagnon condensation. Our approach incorporates the struc-
ture of spin-nematic order, as captured by the form factor of
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bound magnon pairs, enabling the analysis of various types of
spin-nematic order, including site-nematic and bond-nematic
orders, within a unified theoretical framework. Consequently,
this method enables a comprehensive study of the spin-
nematic phases.

In particular, we calculated the dynamical spin structure
factor at T = 0 and the NMR relaxation rate at finite temper-
atures. We find that the dynamical structure factor shows no
diverging singularity at any momentum and frequency, consis-
tent with previous studies on specific spin models [5,6,30,35].
Our results uncover that the dynamical spin structure fac-
tor carries information about the form factor of bimagnon
states, providing insights into the underlying structure of spin-
nematic order. Furthermore, in contrast to previous studies,
we observe that the NMR relaxation rate in the spin-nematic
phase exhibits a temperature dependence proportional to T 3,
similar to canted antiferromagnets. A notable distinction from
antiferromagnets is the absence of a critical divergence in
the NMR relaxation rate at the spin-nematic transition tem-
perature, consistent with a prior field-theoretical study [31].
Among these results, explicit dependence on pairing symme-
try appears only in the intensity of the one-magnon mode
in the dynamical structure factor. The remaining results con-
stitute universal features of spin-nematic phases that do not
explicitly rely on pairing symmetry. Additionally, using the
same methodology, we reanalyzed these dynamical quantities
in a canted antiferromagnetic phase, facilitating comparisons
between spin-nematic and antiferromagnetic systems.

This paper is organized as follows: Sec. II details the
formulation for describing spin-nematic phases in a mag-
netic field. Section III presents the results for the dynamical
quantities of spin-nematic phases. Section IV describes an
application of our results to the spin-nematic phase in the
low magnetic field regime of spin-dimer systems. Section V
focuses on the analyses of canted antiferromagnets. Finally,
we summarize our main findings in Sec. VI, along with
discussions.

II. BEC OF BI-MAGNONS

When magnetic excitations above a spin-gapped ground
state form stable two-particle bound states with lower energy
than two scattering excited states, these bound states close the
gap as the magnetic field varies. Subsequently, at low temper-
atures, a macroscopic number of magnetic bound particles are
induced by the field, interacting with each other, which leads
to a spin-nematic phase [2]. In this section, we introduce an in-
teracting boson theory to describe the spin-nematic phase in a
magnetic field. In the Supplemental Materials of our previous
paper [28], we discussed the characteristics of the spin-gapped
phase adjacent to the spin-nematic phase. Extending the pre-
vious analysis, we investigate the effects of interactions and
Bose-Einstein condensation (BEC) of bi-magnons.

A. Interacting boson theory for spin nematics

In the following theory, we treat the spin-nematic phases
near saturation in spin-S systems on a three-dimensional
lattice �, where S can be arbitrary. One example of such
a system is a layered square-lattice frustrated ferromagnet,

where spins on each layer couple with the ferromagnetic first-
neighbor and antiferromagnetic second-neighbor interactions
[2,12]. These arguments are equally applicable to the spin-
nematic phase observed in low fields in frustrated spin-dimer
systems, including the two-dimensional Shastry-Sutherland
model [16,17,28,36], as discussed in Sec. IV.

1. Boson mapping

To describe dilute magnetic excitations on top of the
fully polarized state, we set up Fock spaces for both single
magnon excitations (Sz = −1) and bound pairs (Sz = −2) as
the Hilbert space. To manage the state overlap between two
magnons and a bound pair, we extend the Hilbert space and in-
troduce an effective repulsive interaction in the Hamiltonian.
The creation operator for a bound pair is expressed as b†

k =
(N�)−1/2 ∑

q gqa†
k/2+qa†

k/2−q. Here a†
k denotes the bosonic cre-

ation operator of a magnon with momentum k, N� is the
number of the lattice sites, and gq is a form factor satisfying
the normalization 2(N�)−1 ∑

q |gq|2 = 1. We use the form
factor derived from the exact bound two-magnon eigenstate in
the lowest-energy mode above the fully polarized state, avail-
able through various methods [10,14,37,38]. In spin-nematic
phases in frustrated ferromagnets on the zigzag chain [39], the
square lattice [2], and the body-centered-cubic lattice [14],
the function gq is real, whereas, in a frustrated ferromagnet
on the triangular lattice, gq can be complex due to a chiral
degeneracy [13].

We investigate an interacting boson system with these
two types of magnetic excitations, characterized by the
Hamiltonian

H =
∑

k

ε1,ka†
kak + 1

2N�

∑
k,k′,q

v1,qa†
k+qa†

k′−q
akak′

+
∑

k

ε2,kb†
kbk + 1

2N�

∑
k,k′,q

v2,qb†
k+qb†

k′−q
bkbk′

+ 1

N�

∑
k,k′,q

uqa†
k+qakb†

k′−q
bk′ . (1)

Here, ε1,k (ε2,k) and v1,q (v2,q) denote the excitation en-
ergy and the repulsive potential of one-magnons (bound
bi-magnons), respectively, while uq represents the repulsion
between magnons and bimagnons. These interactions encom-
pass both microscopic interactions and the effect of removing
the extended excess boson space. A similar approach is
adopted in the flavor wave expansion, where repulsive inter-
actions are included by expanding Holstein-Primakoff type
square root operators [4,35]. The energies ε1,k and ε2,k include
the Zeeman energies h and 2h, respectively, with explicit
expressions: ε1,k = ε

(0)
1,k + h and ε2,k = ε

(0)
2,k + 2h. The Hamil-

tonian with only bimagnon operators b has been previously
discussed in studies of spin-nematic states [8,35,39], while the
Hamiltonian involving both types of bosons has been utilized
to describe the spin-nematic Tomonaga-Luttinger liquid [40].

Here, we briefly delve into the generality of the Hamil-
tonian form. The original spin system maintains spin U(1)
rotation symmetry around a magnetic field. During rotation,
the boson operators a and b undergo a phase change to aeiθ

and be2iθ , respectively. Due to the U(1) symmetry, interactions
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involving the same kind of bosons must have an equal number
of creation and annihilation operators. Interactions between
different boson species are allowed, provided they satisfy U(1)
invariance. For example, a†ab†b and a†a†b. In our study, we
omitted pair creation and annihilation terms such as aab†

and a†a†b for simplicity, as they only quantitatively alter the
physical quantities in our mean-field treatment.

To simplify the analysis, we disregard the momentum
dependences in the potentials, specifically setting v1,q = v1,
v2,q = v2, and uq = u. Thus, microscopic interactions are
approximated with local on-site effective repulsions. Since
we focus on the low-density regime, where bosonic particles
are well separated each other, microscopic interaction details
are not crucial; instead, they can be represented by on-site
effective couplings. The remaining information from the mi-
croscopic models are incorporated in the energy spectra ε1,k

and ε2,k, as well as in the form factor gq of bimagnons in this
framework. Additionally, for simplicity, we assume the space
inversion symmetry, implying ε1,−k = ε1,k and ε2,−k = ε2,k.

In the extended boson Hilbert space, we have determined
the matrix elements of spin operators in a low-density regime.
For S = 1/2 [28], we find that

S−
k � a†

k + 2√
N�

∑
q

g∗
(k−q)/2b†

k+qaq + . . . , (2)

Sz
k �

√
N�

2
δk,0 − 1√

N�

∑
q

(a†
k+qaq + 2b†

k+qbq), (3)

while for arbitrary spin S,

S−
k �

√
2Sa†

k + 2
√

2S√
N�

∑
q

g∗
(k−q)/2b†

k+qaq

+ 2(
√

2S − 1 − √
2S)√

N�

g∗(0)
∑

q

b†
k+qaq + . . . , (4)

Sz
k � S

√
N�δk,0 − 1√

N�

∑
q

(a†
k+qaq + 2b†

k+qbq), (5)

where g(0) = N�
−1 ∑

q gq denotes the on-site form factor of
bimagnons, and g(0) = 0 for S = 1/2 due to the hard-core
on-site repulsion. In the expression for S−

k , we have omitted
terms with three or more operators. The terms with b†

k+qaq

represent transitions from a single magnon to a bound pair.
An illustration of these transitions is shown in Fig. 1. The
mapping between spin and boson operators in Sz

k was used
to construct the bosonic low-energy effective theory for the
spin-nematic Tomonaga-Luttinger liquid in one dimension
[39], where the field-theoretical prediction showed an excel-
lent agreement with the numerical results obtained from the
corresponding S = 1/2 spin model [8]. Additionally, for the
S � 1 case, approximating the bimagnon state as consisting
solely of two magnons on the same site (i.e., g(k) = 1/

√
2)

makes the mappings (4) and (5) equivalent to one form of
the flavor-wave expansions [4,35]. However, we note that, in
the exact two-magnon bound states at the saturation field of
quadrupolar phases, the two magnons are usually spatially
spread out and distributed at nearby sites [41,42].

en
er

g
y

k

S z  2

S z 1

(k)

(k)

0

Sq

Sq

FIG. 1. Energy spectrum for single-particle excitations with Sz =
−1 and bound excitation pairs with Sz = −2 in a gapped phase.
The arrows represent selected matrix elements of the spin lowering
operator S−

q .

We also find that a spin-pair lowering operator, important
in describing the spin-nematic order parameter, operates as

S−
k S−

k′ � a†
ka†

k′ + 2√
N�

{2Sg∗
(k−k′ )/2

+ [
√

2S(2S − 1) − 2S]g∗(0)}b†
k+k′

+ . . . . (6)

in the low-density limit. Establishing a mapping between spin
and boson operators enables us to use various tools and ex-
isting results in the framework of interacting boson theory to
study spin-nematic states.

2. Bimagnon BEC

We consider the case in which, as the magnetic field h
is decreased, bound pairs first close the excitation gap at a
critical field hc at the � point k = 0. At this critical field,
we have ε

(0)
2,0 + 2hc = 0, while the single particle excitations

still have a positive energy gap with ε
(0)
1,k + hc > 0 for any

k. Following the closure of the excitation energy gap, the
bound pairs show the Bose-Einstein condensation (BEC). In
this regime, the bound-pair creation operator is written as

b†
k = √

Nce−2iθ δk,0 + b̃†
k, (7)

where Nc denotes the number of condensed bound pairs. By
using this relation, the spin operators are expressed, for exam-
ple, in the case of S = 1/2, as

S−
k � a†

k + 2
√

ncg∗
ka−k + 2√

N�

∑
q

g∗
(k−q)/2b̃†

k+qaq + . . . ,

(8)

Sz
k �

(
1

2
− 2nc

)√
N�δk,0 − 2

√
nc(b̃−k + b̃†

k )

− 1√
N�

∑
q

(a†
k+qaq + 2b̃†

k+qb̃q), (9)
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where nc denotes the condensate density nc = Nc/N� of
bound pairs.

To describe the dilute Bose gas composed of bi-magnons
and magnons, as well as bimagnon BEC, we use the self-
consistent Hartree-Fock-Popov (HFP) approximation [43,44],
as used in Ref. [45]. Within this approximation, we obtain
the mean-field Hamiltonian HHFP in a quadratic form. By
applying the Bogoliubov transformation, we diagonalize the
Hamiltonian as

HHFP =
∑

k

E1,ka†
kak +

∑
k

E2,kβ
†
kβk + const., (10)

where

E1,k = ε1,k + 2n1v1 + n2u, (11)

E2,k =
√

(ε2,k + 2n2v2 + n1u)2 − (ncv2)2, (12)

βk = b̃k cosh φk + b̃†
−k sinh φk (13)

with cosh 2φk = (ε2,k + 2n2v2 + n1u)/E2,k and sinh 2φk =
ncv2/E2,k. Here n1 and n2 denote the densities given by
the thermal averages n1 = 〈a†

i ai〉 and n2 = 〈b†
i bi〉, which are

evaluated with the Hamiltonian HHFP at a finite temperature.
The bimagnon and condensate densities, n2 and nc, satisfy
n2 − nc = 〈b̃†

i b̃i〉, i.e.,

n2 − nc

= 1

N�

∑
k

{
ε2,k + 2v2n2 + un1

E2,k

[
nB(E2,k) + 1

2

]
− 1

2

}
.

(14)

The function nB(E ) denotes the Bose distribution function
[exp(E/kBT ) − 1]−1. Furthermore, the HFP approximation
[44] imposes the condition

ε2,0 + (2n2 − nc)v2 + n1u = 0. (15)

Consequently, by solving these relations self-consistently,
we determine the values of n1, n2, and nc at a finite
temperature.

The one-magnon excitation energy E1,k undergoes cor-
rections arising from finite densities and interactions. A
similar calculation has been done in a one-dimensional sys-
tem [40]. In the condensed phase (nc > 0), E2,k becomes
gapless at k = 0 due to relation (15), and it exhibits a
k-linear dispersion relation of the Nambu-Goldstone mode
near k = 0 with the velocity vNG = √

v2nc/M, where M
is given by ε2,k � (2M )−1k2 + 2(h − hc) in the limit of
small wave vectors. In the high-temperature non-condensed
phase (nc = 0), E2,k exhibits a positive energy gap, which
vanishes at a transition temperature with decreasing temper-
ature. Hereafter, we focus on situations where the dispersion
relation E1,k possesses a positive energy gap 	1, i.e.,
E1,k � 	1 > 0.

The field dependence of the excitation gaps at T = 0 is
shown in Fig. 2. In the spin-gap ground state, the one-magnon
excitation energy, Eq. (11), results in E1,k = ε

(0)
1,k + h since

both n1 and n2 are zero. In the spin-nematic phase, the energy
includes a correction from the finite density n2 and interac-
tions; at T = 0, the one-magnon density n1 is found to vanish

FIG. 2. Field dependence of the lowest energy of one-magnon
excitations (E1,k0 ) and bimagnon excitations (E2,0). Inside the spin-
nematic phase, the slope of the one-magnon gap changes depending
on the interaction ratio u/v2.

since one-magnons have a gap. The densities n2 and nc, which
usually satisfy n2 > nc due to zero-point oscillation, can be
calculated from Eqs. (14) and (15) at zero temperature. In the
limit of low density n2 → 0+ for bimagnons, as h → hc−,
the condensate density approaches the total density, resulting
in nc/n2 → 1. In the case nc = n2, one finds ε2,0 + n2v2 = 0,
leading to the field dependence of the one-magnon energy gap
expressed as E1,k0 = ε

(0)
1,k0

+ hc + (1 − 2u/v2)(h − hc). Here,

ε
(0)
1,k0

+ hc is the one-magnon gap at the critical field hc, and
below hc, the slope as a function of h changes to 1 − 2u/v2.
Hence, the interaction effect in the spin-nematic phase im-
pedes the rapid closure of the one-magnon gap and may even
widen the gap.

In the case of u < v2/2, the one-magnon gap closes as
the magnetic field decreases in the spin-nematic phase. This
closure leads to an additional phase transition, resulting in
magnon BEC and a transition to an antiferromagnetic phase.
This phenomenon has been observed in a two-dimensional
hard-core boson system with correlated hopping [46,47]
and a two-dimensional ferromagnetic J1-antiferromagnetic
J2 model [12], indicating that these systems are effectively
described by the model with u < v2/2. Conversely, in the
case of u > v2/2, the one-magnon gap begins to increase at
the critical field. Numerical calculations of the zigzag chain
showed a weak gap increase below saturation with decreasing
field [11], implying u > v2/2. Experimental observations on
triplon excitations in SrCu2(BO3)2, a potential material for
spin-nematic order, showed an upward turn with a kink near
the magnetic field where the magnetization begins to increase
[36,48]. This suggests an effective description by the model
with u > v2/2. (The application of our theory to the spin-
nematic phase at low magnetic fields in spin-dimer systems
is discussed in Sec. IV.) These results from theoretical model
calculations may vary in the presence of interlayer or inter-
chain coupling.

B. Static quantities

The above two-component boson theory describes a spin-
nematic state in a magnetic field. The spin expectation values
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(a)

(b)

FIG. 3. Illustration of quadrupolar orders on two-dimensional
planes. The directors represent the arrangements of quadrupolar mo-
ments. (a) On-site ferroquadrupolar moments are formed by s-wave
magnon pairing. (b) Antiferro-quadrupolar moments are formed on
bonds through d-wave paring.

are expressed as
〈
Sx

j

〉 = 〈
Sy

j

〉 = 0,〈
Sz

j

〉 = S − n1 − 2n2 (16)

at a finite temperature. Notably, the transverse spin compo-
nents (in the x and y directions) show no dipolar spin order
at any temperature. This result does not depend on the form
factor gq.

In contrast, in the low-temperature condensed phase (nc >

0), the following quadrupolar order appears on bonds:
〈
Sx

i Sx
j − Sy

i Sy
j

〉 = 4S
√

ncg∗(ri − r j ) cos 2θ,〈
Sx

i Sy
j + Sy

i Sx
j

〉 = −4S
√

ncg∗(ri − r j ) sin 2θ (17)

for i 	= j, where g(r) = N�
−1 ∑

q gqe−iq·r, and on the same
sites for S � 1 as

〈(
Sx

i

)2 − (
Sy

i

)2〉 = 2
√

2S(2S − 1)ncg∗(0) cos 2θ,〈
Sx

i Sy
i + Sy

i Sx
i

〉 = −2
√

2S(2S − 1)ncg∗(0) sin 2θ. (18)

Note that 〈Sx
i Sx

j − Sy
i Sy

j〉 and 〈Sx
i Sy

j + Sy
i Sx

j 〉 are spin-nematic
order parameters, capturing a breakdown of the spin U(1)
symmetry about the applied field [2].

In the case the bimagnons have s-wave symmetry, e.g.,
g(k) = 1/

√
2, a dominant quadrupolar order appears on the

lattice sites. On the other hand, if the bimagnons exhibit
d-wave symmetry, such as g(k) = (cos kx − cos ky)/

√
2, a

dominant quadrupolar order appears on the bonds, resulting
in an orthogonal director structure on two-dimensional planes.
See Fig. 3 for an illustration.

III. DYNAMICAL QUANTITIES
IN THE SPIN-NEMATIC STATE

Our effective theory can describe characteristic behaviors
in dynamical quantities of the spin-nematic state. This sec-
tion presents the results of the dynamical spin structure factor
at zero temperature and the NMR relaxation rate at finite
temperatures. These analyses are conducted without assuming
any symmetry of the form factor of bimagnons.

A. Dynamical spin structure factor at T = 0

At zero temperature, the dynamical spin structure factor is
written as

Sμμ(k, ω) = π
∑

n

|〈n|Sμ

k |0〉|2δ(ω − En + E0), (19)

where μ = x, y, z. Here, |n〉 and En denote eigenstates and
eigenenergies, with n = 0 signifying the lowest energy level.
This quantity has been calculated for the field-induced spin-
nematic state in the spin-1 bilinear-biquadratic model in
Ref. [35], where the computation is performed under the as-
sumption of a solely on-site s-wave pairing. For comparison,
we show the spin-1/2 case with magnon pairing of arbitrary
symmetry as follows:

Sxx(k, ω) = Syy(k, ω) = π

4
|1 + 2

√
ncgk|2δ(ω − E1,k )

+ π

N�

∑
q

|g(k+q)/2|2 sinh2 φk−q

×δ(ω − E1,q − E2,k−q), (20)

Szz(k, ω) = 4πnce−2φkδ(ω − E2,k)

+2π

N�

∑
q

sinh2(φk−q + φq)

×δ(ω − E2,q − E2,k−q). (21)

The transverse component Sxx(k, ω) comprises a gapful
one-magnon excitation mode with energy E1,k and a contin-
uous spectrum of two-magnon states above it. Due to the
absence of transverse spin order, this component does not
exhibit diverging singularity. Importantly, the intensity of the
one-magnon mode depends on the form factor gk of two-
magnon bound states and the order parameter of bimagnon
BEC |〈b†

i 〉| = √
nc. Thus, the intensity contains valuable in-

formation about the form factor. In the case of an s-wave
symmetric form factor, the intensity of the one-magnon mode
appears isotropic in momentum space around k = 0. Other-
wise, the intensity displays oscillations in momentum space,
reflecting the symmetry of the bound magnon pairs. Hence,
this momentum-dependent signal can be a valuable tool for
detecting the spin-nematic order and identifying the symmetry
of the bound magnon pairs.

The longitudinal component Szz(k, ω) contains, in the
lowest energy mode, a gapless k-linear Nambu-Goldstone
mode with energy E2,k, which is gapless only at k = 0.
Near the gapless point k = 0, this component behaves
as Szz(k, ω) � 2π

√
nc/Mv2‖k‖δ(ω − vNG‖k‖), and the

intensity of this mode vanishes linearly. The loss of intensity
behavior at the gapless point comes from the U(1) spin
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symmetry of the system, and hence, it is common in systems
showing magnon BEC (see Sec. V B) and bimagnon BEC
[35]. The second term in Szz(k, ω) shows a continuum above
the gapless mode, originating from two Nambu-Goldstone
bosons created by the operators β

†
k+qβ

†
−q. We note that this

continuum part does not satisfy the exact frequency sum
rule lim|k|→0

∫ ∞
0 ωSzz(k, ω)dω = 0, presumably due to the

Hartree-Fock approximation.
Overall, the dynamical spin structure factors do not show

any diverging singularity, and the intensity decreases linearly
in the vicinity of gapless point k = 0. This behavior has also
been observed in quadrupolar phases in the spin-1 bilinear-
biquadratic models in zero [5,41,49] and applied magnetic
fields [35].

B. NMR relaxation rate

1. Formula

Dynamical spin correlations at finite temperatures give the
NMR relaxation rate 1/T1 as

1

T1
= 1

T1,⊥
+ 1

T1,‖
,

1

T1,⊥
= 1

h̄N�

∑
k

∫ ∞

−∞
dteiω0t |A⊥

k |2
∑
α=x,y

〈
Sα

k (t )Sα
−k

〉
,

1

T1,‖
= 1

h̄N�

∑
k

∫ ∞

−∞
dteiω0t |A‖

k|2
〈
δSz

k(t )δSz
−k

〉
, (22)

where A⊥
k and A‖

k denote the form factors describing the
coupling between nuclear and electronic spins, ω0 the reso-
nance frequency of nuclear spins, and δSz

k = Sz
k − 〈Sz

k〉. We
neglect the momentum dependence in the form factors A⊥k

and A‖k, setting |A⊥k|2 = c⊥ and |A‖k|2 = c‖, and take the
limit ω0 → 0.

2. Transverse component

The transverse component 1/T1,⊥ comes from the dynam-
ics of excitations created by the operator S−

k in Eq. (8). Since
the one-magnon excitation created by a†

k has an energy gap,
it can not receive the small energy h̄ω0 from nuclear spins
and does not affect the relaxation. If there is an energy over-
lap between one-magnon excitations and gapless collective
modes, their scattering process, such as those involving inte-
gral

∫ ∞
−∞ dt〈β†

k+q(t )aq(t )a†
qβk+q〉, contributes to the relaxation

rate [28]. Because of the one-magnon excitation gap 	1, this
process shows an exponential decay form exp(−	1/kBT ) for
low temperatures kBT  	1. Three magnon terms with the
form a†a†a or a†aa in Sx

k, omitted in Eqs. (2) and (4), also
result in the exponential form in the relaxation rate.

3. Longitudinal component

The longitudinal component 1/T1,‖ originates from
excitations created by the operator Sz

k in Eq. (5). This
operator includes a linear term of bimagnon operators,
contributing to a one-particle propagator in the formula
for 1/T1,‖. However, since the linear term in terms of the
operators β and β† has a very weak coefficient near k = 0 as

Sz
k ∼ nc

1/4‖k‖1/2(β†
k + β−k), the contribution from the one-

particle propagator in 1/T1,‖ vanishes in the limit of ω0 → 0.
Among the various terms in the longitudinal component,

the dominant contribution arises from the Raman process
induced by the operator β

†
k+qβq in Sz

k, similar to the case of
antiferromagnets [32]. This process leads to a relaxation rate
given by

1

T1,‖
= 8πc‖

h̄

∫
dE [D2(E )]2

[
1 + (ncv2)2

E2

]

× [1 + nB(E )]nB(E ), (23)

where D2(E ) represents the density of states per site for
bosons created by β†. We note that this relaxation rate
equation has the same form as Eq. (41) derived from the longi-
tudinal component for the canted antiferromagnetic phase. In
the long-wavelength approximation, the leading term results
in a T 3 temperature dependence,

1

T1,‖
� 2c‖

3π h̄vnc
(MkBT )3, (24)

in the low-temperature range h̄ω0  kBT  kBTSN, reflecting
the k-linear behavior of the collective mode. Here TSN denotes
the spin-nematic phase transition temperature. As a result, the
NMR relaxation rate 1/T1 in the spin-nematic phase exhibits
a T 3 dependence at low temperatures. Notably, this finding
differs from the previous studies [30,31]. This most dominant
behavior arises from a term that was previously omitted.

Based on the preceding discussion, the dominant contri-
bution to the NMR relaxation rate in the spin-nematic phase
comes from the longitudinal component presented in Eq. (23).
To further investigate the temperature dependence, we nu-
merically computed Eq. (23) on a three-dimensional lattice,
solving self-consistent equations at finite temperatures while
employing a long-wavelength approximation for the density
of states. The results of these computations are presented
in Fig. 4.

Throughout the low-temperature spin-nematic phase, the
evaluated values clearly demonstrate a distinct T 3 temperature
dependence. At the transition temperature TSN, the energy
gap in Eq. (12) closes, indicating the achievement of the
critical point as the temperature is decreased from above TSN.
However, when the temperature is increased from below TSN,
a first-order phase transition occurs at the transition point.
Importantly, the evaluated value of 1/T1 does not exhibit a
diverging singularity at the transition temperature, even as the
temperature is decreased. Instead, it shows a cusplike behavior
consistent with earlier field-theoretical research [31]. This
absence of a diverging singularity represents a characteristic
feature of the spin-nematic phase.

IV. APPLICATION TO SPIN-DIMER SYSTEMS
IN A LOW MAGNETIC FIELD

In this section, we discuss an application of our results to
the spin-nematic phase in spin-dimer systems, especially in
the low magnetic field regime adjacent to the zero-field spin-
gap phase. For this investigation, we use the two-dimensional
orthogonal dimer model, known as the Shastry-Sutherland
model. In the absence of a magnetic field, the ground state is
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FIG. 4. Temperature dependence of the NMR relaxation rate
1/T1 near the transition temperature TSN of a spin-nematic phase
in (a) logarithmic scales and (b) linear scales. The plot is evaluated
from Eq. (23). The system continuously changes to the critical point
(T = TSN) with decreasing the temperature and, just below the criti-
cal temperature, the system shows a first-order phase transition to a
spin-nematic ordered state. The value does not diverge at T = TSN.

the spin-singlet dimer state [50]. The excitations in this state
comprise triplons, characterized by low mobility [51], and
bound triplon pairs, which show high mobility [52,53]. Upon
applying a magnetic field, triplons with Sz = 1 and bound
triplon pairs with Sz = 2 become prominent low-energy de-
grees of freedom, and the bound pairs close the energy gap
[16,17] at a magnetic field. Hereafter, we focus on these two
types of degrees of freedom.

Due to the inherent structure of the Shastry-Sutherland
lattice, a refinement in the definition of operators a and b is
necessary. This lattice contains two types of orthogonal dimer
bonds, and each unit cell hosts two distinct dimer bonds. The
labeling of spin operators involves the unit cell position index
j, the dimer-type index η = A, B in each unit cell, and the site
index m = 1, 2 in each dimer, denoted as Sα

j,η,m (α = x, y, z).
A single triplon occupies a dimer bond, and the creation
operator for triplons with Sz = 1 on an η-type dimer is written
as a†

k,η
. Despite the existence of two branches of triplon energy

modes, we focus on the lowest energy mode, represented
by a creation operator in the form a†

k = (a†
k,A + σa†

k,B)/
√

2
with σ = 1 or −1 depending on the model parameter. Here
we assume the lowest mode is nondegenerate. We omit the
higher energy mode created by (a†

k,A − σa†
k,B)/

√
2. Addition-

ally, we consider the lowest-energy model of the bound triplon
pairs with Sz = 2, and its creation operator is represented

as b†
k = (N�)−1/2 ∑

q,η,η′ gq,η,η′a†
k/2+q,η

a†
k/2−q,η′ with a form

factor gq,η,η′ .
In the extended boson Hilbert space, spanned by a†

k and b†
k,

the low-energy effective Hamiltonian retains the same form as
in Eq. (1), but with the opposite magnetic field dependence:
ε1,k = ε

(0)
1,k − h and ε2,k = ε

(0)
2,k − 2h. Consequently, the ob-

served results of the excitation spectrum, as depicted in Fig. 2,
can be applied to the Shastry-Sutherland model by reversing
the sign of the magnetic field dependence. In SrCu2(BO3)2,
a material with a Shastry-Sutherland lattice structure sharing
many magnetic properties with the Shastry-Sutherland model,
the one-triplon excitation energy exhibits an upward trend
with a kink near the magnetic field where the magnetization
starts to increase [36,48]. This suggests that the system en-
ters into a spin-nematic phase at this magnetic field, and the
effective couplings for SrCu2(BO3)2 satisfy v2/2 < u < v2.

To evaluate dynamical spin quantities, a refinement in the
mapping between spin and boson operators is also necessary.
In the dilute regime, the matrix elements of spin operators can
be expressed as follows:

1√
2

⎧⎨
⎩

∑
m=1,2

(−1)mS+
k,A,m + σ

∑
m=1,2

(−1)mS+
k,B,m

⎫⎬
⎭ � a†

k

+ 2√
N�

∑
q

⎧⎨
⎩

∑
η=A,B

g∗
(k−q)/2,η,η + 2σg∗

(k−q)/2,A,B

⎫⎬
⎭

× b†
k+qaq + . . . , (25)

1√
2

⎧⎨
⎩

∑
m=1,2

(−1)mS+
k,A,m − σ

∑
m=1,2

(−1)mS+
k,B,m

⎫⎬
⎭ � 0, (26)

∑
η,m

Sz
k,η,m � 1√

N�

∑
q

(a†
k+qaq + 2b†

k+qbq) (27)

in the boson Hilbert space. Here, 1√
2

∑
m(−1)mS+

j,η,m repre-
sents the bond operator creating a triplon with Sz = 1 on the
η-type dimer in the jth unit cell. These expressions enable the
extraction of information about dynamical spin quantities in
the Shastry-Sutherland model using interacting boson theory.

V. COMPARISONS WITH CANTED ANTIFERROMAGNETS

To compare with the dynamical quantities in the spin-
nematic phases, we investigate the dynamical structure factors
and the NMR relaxation rate in canted antiferromagnets in a
magnetic field within the present theoretical framework.

A. Interacting boson theory of magnons

We consider a spin-S antiferromagnetic system near satura-
tion. The magnons, which are bosonic particles with quantum
number Sz = −1, arise as excitations above the fully polar-
ized state. To study this system, we employ the interacting
boson theory to describe a magnon Bose gas and magnon
BEC [45,54,55]. We follow the approach used in Ref. [45].
This method succeeded in explaining various thermodynamic
properties, including magnetization [45], specific heat [56],
and thermal Hall conductivity [57].
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The Hamiltonian for interacting bosons can be expressed
as

Hcaf =
∑

k

εka†
kak + 1

2N�

∑
k,k′,q

vqa†
k+qa†

k′−q
akak′ , (28)

where εk denotes the excitation energy, including the Zeeman
energy εk = ε

(0)
k + h, and a†

k (ak) denotes the bosonic creation
(annihilation) operator for a magnon with momentum k. The
interaction vq denotes the repulsive potential between two
magnons. We omit the momentum dependence of repulsive
coupling, setting vq = v.

The spin operators are written in terms of the boson opera-
tors as

S−
k �

√
2Sa†

k − 1

2
√

2SN�

∑
q,q′

a†
k+qa†

q′aq+q′ , (29)

Sz
k � S

√
N�δk,0 − 1√

N�

∑
q

a†
k+qaq (30)

in the dilute limit. In Eq. (29), we have expanded the Holstein-
Primakoff transformation [58].

Let us assume that the energy spectrum εk has the lowest
energy at a specific momentum k0. We consider the case
where bosons condense solely at a single momentum k0,
i.e., 2k0 lies within the reciprocal lattice space. Above the
saturation field hc, the ground state has a positive energy gap
εk0 > 0. This gap closes at h = hc, satisfying the condition
ε

(0)
k0

+ hc = 0. In the condensed phase (h < hc), the interac-
tions lead to BEC of magnons, and the boson operators can be
written as

ak = √
Nceiθ δk,k0 + ãk, (31)

where Nc is the number of condensed bosons.
By treating interactions with the HF approximation and ap-

plying the Bogoliubov transformation, we obtain the effective
Hamiltonian

Hcaf-HF =
∑

k

(Ekα
†
kαk − vn) (32)

with

Ek =
√

(εk + 2vn)2 − (vnc)2, (33)

αk = ãk cosh θk + ã†
−k sinh θk, (34)

where n denotes the particle density per site, nc represents the
condensate density nc = Nc/N�, and θk satisfies cosh 2θk =
(εk + 2vn)/Ek and sinh 2θk = vnc/Ek.

In the presence of finite condensates (nc > 0), the particle
and condensate densities satisfy the relation

εk0 + (2n − nc)v = 0 (35)

in the HFP approximation [44], leading to a gapless en-
ergy spectrum with Ek0 = 0. In the absence of a condensate
(nc = 0), there is no similar constraint on n. The values of
n and nc also satisfy the self-consistent equation n − nc =
(1/N�)

∑
k〈ã†

kãk〉, where 〈· · · 〉 denotes the thermal average
with the Hamiltonian Hcaf-HF. The particle and condensate
densities can be calculated by solving these self-consistent
equations at a finite temperature, as in Refs. [45,56].

We set θ = 0 without loss of generality. By using the
operators ãk, we can express the spin operators: For S = 1/2,
we have

S−
k � √

Nc

(
1 − nc

2

)
δk,k0 + (1 − nc)ã†

k − nc

2
ã2k0−k

−
√

nc

2
√

N�

∑
q

(ã†
k+qã†

k0−q + 2ã†
k+qãk0+q), (36)

Sz
k �√

N�

(
1

2
− nc

)
δk,0 − √

nc(ã†
k+k0

+ ã−k+k0 )

− 1√
N�

∑
q

ã†
k+qãq, (37)

where we have omitted three-body terms in S−
k . Both spin

operators consist of linear and quadratic terms. The transverse
spin components align in the x direction, and their expectation
values are given by 〈Sx

i 〉 = √
nc(1 − nc

2 )e−ik0·ri and 〈Sy
i 〉 = 0,

where the zero-point oscillation from the quadratic terms in
Eq. (36) has been disregarded.

B. Dynamical structure factors at T = 0

We obtain the dynamical structure factors in the S = 1/2
canted antiferromagnet at zero temperature using this frame-
work. Here, we focus on the one-magnon excitation mode,
which behaves as

Sxx(k, ω) = π

4

(
1 − 3

2
nc

)2

e−2θkδ(ω − Ek), (38)

Syy(k, ω) = π

4

(
1 − 1

2
nc

)2

e2θkδ(ω − Ek), (39)

Szz(k, ω) = πnce−2θk+k0 δ(ω − Ek+k0 ). (40)

In the low-energy regime, the transverse component
Syy(k, ω) shows a diverging singularity at (k, ω) = (k0, 0)
as Syy(k, ω) � 1

2π
√

mvnc(1 − 1
2 nc)2‖k − k0‖−1δ(ω −

vcaf‖k − k0‖). Here m is given from the expansion of
ε(k) near k = k0 as ε(k) � (2m)−1‖k − k0‖2 + h − hc and
vcaf = √

vnc/m represents the velocity of magnon excitations.
In contrast, the intensities of the low-energy re-

gions in Sxx(k, ω) near (k, ω) = (k0, 0) and Szz(k, ω)
near (k, ω) = (0, 0) decay linearly as Sxx(k, ω) �
1
8π (mvnc)−1/2(1 − 3

2 nc)2‖k − k0‖δ(ω − vcaf‖k − k0‖) and
Szz(k, ω) � 1

2π (nc/mv)1/2‖k‖δ(ω − vcaf‖k‖), respectively.
The linear decay of intensity in the longitudinal component
Szz(k, ω) near the gapless point k = 0 is due to the
conservation of Sz

k in the limit of k = 0 and hence is
a common feature observed in systems with spin U(1)
symmetry.

Lastly, we note that there have been discussions regarding
the decay of magnons in canted antiferromagnets [59]. This
decay mechanism contributes to the broadening of the one-
magnon excitation peak. However, the treatment of this issue
needs further study beyond the HF approximation and hence
lies beyond the scope of the present study.
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TABLE I. Temperature dependence of the NMR relaxation rate
in the field-induced spin-nematic (SN) phase and the canted anti-
ferromagnetic (CAF) phase. The NMR relaxation rate consists of
transverse and longitudinal components corresponding to the first
and second terms in Eq. (22), respectively. Here, 	1 denotes the gap
of one-magnon excitations in the spin-nematic state. The temperature
is within the range of h̄ω0  kBT  kBTc, where Tc denotes the
transition temperature. For the CAF phase, the behavior depends on
the spin anisotropy: (a) when the spin anisotropy gap 	aniso exceeds
the NMR frequency ω0, ω0 < 	aniso, and (b) either in the presence of
perfect U(1) spin symmetry or when 	aniso < ω0.

SN phase CAF phase

Transverse component exp(−	1/kBT ) (a) T 3, (b) T
Longitudinal component T 3 T 3

C. NMR relaxation rate

Moriya argued that the two-magnon Raman process con-
tributes most dominantly to the NMR relaxation rate in
zero-field antiferromagnets [32,33]. We derive the same result
for canted antiferromagnets using the interacting boson theory
described above. Our conclusion is summarized in Table I.

1. Longitudinal component

The operator Sz
k shown in Eq. (37) includes a linear

term with operators a and a†. The contribution from this
term to 1/T1,‖ vanishes in the limit of ω0 → 0, similar to
the extinction of the effect of the bimagnon propagator in
the longitudinal component in the spin-nematic phase. Among
the various operators present in Sz

k, the quadratic term with the
operator α

†
k+qαq contributes to the Raman process. After the

time integration, only the Raman process remains nonzero in
the calculation of 1

N�

∑
k

∫ ∞
−∞〈δSz

k(t )δSz
−k〉dt , leading to

1/T1,‖ = 2πc‖
h̄

∫
dE [D(E )]2

[
1 + (vnc)2

E2

]

× [1 + nB(E )]nB(E ). (41)

Here D(E ) represents the density of states per site. This equa-
tion has the same form as the well-known result obtained by
Moriya using the spin-wave expansion [33], except that nc

is self-consistently determined in our approach. Hence, the
longitudinal part 1/T1,‖ shows a T 3 temperature dependence
at low temperatures.

2. Transverse component

The transverse component 1/T1,⊥ in Eq. (22) comes from
propagations of excitations created by the operators in S−

k
[Eq. (36)]. It has been argued that the one-magnon propagator
gives 1/T1,‖ a T -linear temperature dependence at low tem-
peratures [55]. This result can be seen in our calculations;
since the coupling of the magnon creation and annihila-
tion operators in Sy

k has a diverging singularity at k = k0 as
Sy

k ∼ i(nc
1/2/‖k − k0‖)1/2(α†

k − α−k), the contribution from
the one-magnon propagator to 1/T1,⊥ survives and results in a
T -linear temperature dependence even in the limit of ω0 → 0.

However, in real materials, this effect is typically eliminated
by a spin anisotropy gap [32].

To demonstrate the spin anisotropy dependence of the T -
linear term in 1/T1,⊥, we maintain a small but finite value
for ω0 instead of taking the limit ω0 → 0. We introduce a
weak uniaxial anisotropy along the spin x axis, which is added
to the Hamiltonian Hcaf as the term η

∑
k εk(a†

ka†
−k + h.c.),

with η being a small positive real constant. In the ordered
phase, the energy is minimized with θ = 0. In the HFP
approximation, the relation between n and nc in Eq. (35)
is replaced by (1 + 2η)εk0 + (2n − nc)v = 0. Consequently,
the energy spectrum of magnons is given by Eaniso(k) =√

(εk + 2vn)2 − (vnc + 2ηεk)2, and it has an energy gap
	aniso = √

2η(hc − h)vnc, which closes at the critical tem-
perature due to nc = 0. Using these results, we find that the
contribution from the one-magnon propagator to 1/T1,⊥ be-
haves as

πc⊥Daniso(ω0)F (ω0)kBT

h̄(ω0)2
(42)

for h̄ω0  kBT , where Daniso(ω) denotes the density of states
with the energy spectrum Eaniso(k) and F (ω) = [2ηv(nc −
4ηn) +

√
v2(nc − 4ηn)2 + (1 − 4η2)ω2]/(1 − 4η2). Though

n and nc implicitly depend on the temperature, they can be
well approximated at low temperatures with the values at zero
temperature. Hence, the dominant temperature dependence in
Eq. (42) is T linear at low temperatures.

Note that ω0 is typically much smaller than the energy
scales of spin interactions. Only in cases where ω0 > 	aniso,
does Eq. (42) exhibit a T -linear behavior. In many magnetic
materials, where ω0 < 	aniso, the term in Eq. (42) disappears
due to Daniso(ω0) = 0. Consequently, no T -linear behavior
is observed in nearly the entire temperature range of the
canted antiferromagnetic phase. In such cases, the operator
α

†
k+qαk0+q in S−

k , which gives the Raman process, results in

the most dominant T 3 temperature dependence in 1/T1,⊥.
Even in the presence of anisotropy, the critical diver-

gence of 1/T1 arises from the one-particle propagator. The
anisotropy gap closes near the critical region, including the
quantum critical point at T = 0 and the phase transition
line at finite temperatures. Consequently, the influence of the
one-magnon propagator becomes pronounced in the critical
region, contributing to the diverging singularity at T = Tc

shown in Ref. [60].

VI. SUMMARY AND DISCUSSIONS

We have successfully formulated an interacting boson the-
ory that incorporates both magnon and bimagnon degrees
of freedom, establishing a comprehensive framework for de-
scribing spin-nematic states. Our theory accommodates a
wide range of spin-nematic states, encompassing site to bond
spin-nematic states. The characteristics of the spin-nematic
order structure are embedded into the form factor of the bound
bimagnons. By utilizing well-established methods in the field
of interacting boson theory, our versatile method enables the
calculation of various physical quantities. In this paper, we ap-
plied the self-consistent HFP approximation and successfully
obtained the dynamical quantities in the spin-nematic phases.
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The dynamical quantities in the spin-nematic phases
exhibit distinct behaviors compared to canted antiferromag-
nets. The dynamical spin structure factors in the spin-
nematic phases do not show diverging singularities at any
combination of momentum and frequency. This behavior,
which has also been previously observed in some spe-
cific models [5,30,35,41,49], is a general characteristic of
spin-nematic phases. Furthermore, the transverse compo-
nent of the dynamical structure factor displays a gapful
structure, indicating the presence of a finite binding energy
for bimagnons. Notably, the intensity of one-magnon ex-
citations in this transverse component is influenced by the
form factor governing the structure of bound magnon pairs.
As a result, the intensity can exhibit oscillatory patterns
around k = 0, providing information about the symmetry
characteristics, such as d-wave, of the spin-nematic order
parameter.

The NMR relaxation rate 1/T1 shows another character-
istic in the spin-nematic phases. Specifically, the relaxation
rate does not show any diverging singularity; instead it
shows a cusp at the critical temperature of these phases.
This observation aligns with a previous field-theoretical
argument [31]. Moreover, through our reanalysis of the low-
temperature behavior of the relaxation rate, we revealed a
previously unreported T 3 temperature dependence to be the
most dominant one in 1/T1. This behavior is similar to
that observed in canted antiferromagnets with weak spin
anisotropy, which is common in typical compounds. Notably,
in systems with perfect U(1) spin symmetry, canted antifer-
romagnets show a T -linear temperature dependence at low
temperatures, while the spin-nematic phases maintain the T 3

behavior.
Among the obtained results concerning the dynamical

quantities, only the intensity of one-magnon excitation mode
in the dynamical structure factor explicitly depends on the
form factor of the bound magnon pairs. Conversely, the re-
maining results exhibit universal features of the spin-nematic
states, indicating their independence from the symmetry of the
magnon pairs. It would be worth future work to explore addi-
tional quantities beyond those analyzed in this study that hold
the potential to reveal and identify magnon-pair symmetry.

In this paper, we focused on the case where the wave-
number vector of spin-nematic order is given as kSN = 0.
Now, we discuss the case where the wave vector is nonzero.
If 2kSN points on one of the vertices of the reciprocal lat-
tice, bimagnons only condense at one wave number, making
our discussion mostly applicable. In this case, the excitation
energies take the same form as in Eq. (10), but the HFP con-
dition, Eq. (15), changes to ε2,kSN + (2n2 − nc)v2 + n1u = 0,
and the bi-magnon excitation energy E2,k has a gapless point
at wave number kSN. However, the temperature dependence
of the NMR relaxation rate remains unchanged, indicating
that the results shown in Table I exhibit universal behaviors
in spin-nematic ordered states. If the wave number kSN is
incommensurate, as observed in the J1-J2 zigzag chain [39],
the discussion goes beyond the analysis in this paper since
bimagnons can condense at two wave numbers ±kSN.

Lastly, it is crucial to consider spin anisotropy when com-
paring with experiments on spin-nematic states. In systems
with spin anisotropy allowed by crystal structures, such as
Dzyaloshinskii-Moriya interactions, the symmetry breaking
of spin-nematic order is either discrete or absent, as discussed
in Refs. [61,62]. This significantly influences the critical prop-
erties of the spin-nematic phase transition. Excitations have
an anisotropy gap, and the temperature dependence of ther-
modynamic quantities varies at very low temperatures. When
no symmetry is broken, the system undergoes a crossover
from a paramagnetic state to a spin-nematic state, and the
anisotropy gap remains open, even near the crossover tem-
perature. Whether symmetry breaking occurs or not needs to
be considered for each individual crystalline structure of the
material.
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