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Interacting random-field dipole defect model for heating in semiconductor-based qubit devices
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Semiconductor qubit devices suffer from the drift of important device parameters as they are operated. The
most important example is a shift in qubit operating frequencies. This effect appears to be directly related to
the heating of the system as gate operations are applied. We show that the main features of this phenomenon
can be explained by the two-level systems that can also produce charge noise if these systems are considered
to form an interacting random-field glass. The most striking feature of the theory is that the frequency shift can
be nonmonotonic in temperature. The success of the theory and the questions it raises considerably narrow the
possible models for the two-level systems.
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I. INTRODUCTION

There has been considerable progress in semiconductor
quantum computing, with significant strides in scaling up and
in gate fidelities [1,2]. The chief difficulty is decoherence due
to the fact that the qubits sit in a noisy environment, with
charge noise being one of the most important. The charge
noise is often modeled as random telegraph noise (RTN). This
gives a good explanation of the low-frequency noise in quan-
tum point contacts [3,4], in Hall bars [5], and in quantum dots
[4]. RTN is seen in GaAs/AlxGa1−x heterostructures [6–8],
Si/SiGe structures [4], and the Si/SiO2 interface [9] and
seems to be particularly associated with the regions near gates
[8,10]. The key point for our purpose here is that two-level
systems (TLSs) with a fluctuating electric dipole moment are
the only natural explanation of RTN. RTN, together with the
assumption of uniform distribution of barrier heights, also
provides a natural explanation of the 1/ f noise that is seen in
quantum dots and many other solid-state systems [11]. There
have been extensive characterizations of the noise spectrum
[12,13] and the spatial correlations in the noise [14,15] in dif-
ferent devices. These observations can help in the elucidation
of the nature of TLSs, but the data are not currently sufficient
to pin things down precisely.

Another problem, at first sight quite separate, that inter-
feres with qubit operation is the pulse-induced resonance
shift (PIRS). This is a shift in the operating frequency of the
qubits as a computation proceeds. It is highly problematic
since continual recalibration of the system is not practical.
Quadrature control [16] and prepulsing [17] can mitigate but
not eliminate this issue. PIRS was recently the focus of an
intensive experimental study [18].

*rjjoynt@wisc.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Here we propose that the source of PIRS is also a group
of TLSs, perhaps the same group that gives charge noise.
Hence, detailed observations of PIRS may provide additional
insight into the microscopic origin of the noise. We proceed
in the time-honored fashion of proposing a phenomenological
model that explains the data and then seeing what constraints
the model places on the underlying physics of the system.

Let us take a concrete situation in which the system is in
a resting state at a low temperature T for times t < 0 and the
operations, which involve microwave pulses that feed energy
into the system, begin at t = 0 and end at some later time t f .
PIRS is a time-dependent shift � f (t ), with � f (t = 0) = 0
by definition. � f is a function of time that ultimately reverts
to the base state sometime after the operations have ceased.
PIRS appears to be rather ubiquitous in semiconductor qubits,
but there is considerable variability in how it manifests itself.
Early observations found positive shifts (� f � 0) of the order
of a few megahertz [17]. The magnitude of the shift was an
increasing function of the energy injected by the pulses. It
also depended on the details of the electron wave functions in
the dots, for example, on the dot occupations. The megahertz
magnitude of the shifts is fairly typical for quantum dot qubits.
It generally occurs on top of the operating frequency f , which
is about 10–20 GHz. Importantly, � f can also be negative
[16,19]. The decay time after t f varies in the dot systems, with
values from 0.5 ms [1] to 38 μs [19] having been observed.
PIRS also occurs in donor-based qubit systems [20], although
|� f | is much smaller, of the order of tens of kilohertz. Effects
of a similar magnitude are seen in flip-flop qubits [21]. In this
work we concentrate on experiments in dots, but we expect
the theory to apply more broadly.

Our interpretation is based on the fact that dot and donor
systems share the feature that the qubit operating frequency
depends on the spatial position of the qubit. The arbitrary sign
of � f then suggests that a change in the electric field on the
qubit is the origin of PIRS. Experimentally, it now appears to
be clear that PIRS is essentially a thermal heating effect rather
than a mechanical effect [1,18]. This is also supported by the
characteristic return to a base state, most naturally interpreted
as a return to thermal equilibrium. The most striking feature
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of the results is that the magnitude of � f (T ) is typically not
monotonic in temperature T , instead rising to a maximum at
about 200–300 mK and then decreasing [18].

We focus on explaining the T dependence of PIRS rather
than attempting to relate it to the pulse sequences and ampli-
tudes. Doing the latter would require a detailed calculation of
the heat flow in the system. That would be very challenging,
since phonon mean free paths are comparable to the dimen-
sions of device features, rendering the usual macroscopic
theory of heat conduction inapplicable [22,23].

II. MODEL

To explain these observations, we introduce a model based
on the charged TLSs that are known to exist in these devices
and that, in fact, are also responsible, at least in part, for
the decoherence of the qubits. These charged defects or traps
are modeled as a collection of N fluctuating electric dipoles.
The jth dipole fluctuates between states s jp j , where s j = ±1
and p j is a fixed vector for each j. The model is Ising-like
in that only two antiparallel directions for any single dipole
are allowed, but as we will explain further below, the axis
for the dipoles may not always be the same. For simplicity
we assume that the dipoles all have the same magnitude:
|p j | = p0. This is reasonable if all the TLSs have the same
physical origin. The dipoles can have a nonzero equilibrium
moment which is random in direction, and they interact via the
long-range Coulomb interaction. We call this the interacting
random-field glass model (IRGM). Somewhat similar models
have been introduced to understand charge noise (rather than
equilibrium fields) in dot systems [24] and also in the context
of superconducting qubit systems to explain fluctuations in the
relaxation time T1 [25,26].

The electric field 〈Fq〉 on a qubit at the origin of coordinates
is

〈Fq〉 = 1

4πε

N∑
j=1

〈s j〉3(p j · r j ) r j − p j |r j |2
|r j |5 ≡

N∑
j=1

〈s j〉F j .

(1)

The angle brackets indicate a thermal average. In the devices
in question, the qubit operation frequency depends linearly on
the electric field at its position. The frequency is a quasiequi-
librium quantity, so 〈Fq〉 is the object of interest for our
purposes. The relation between field and frequency is platform
dependent. In the setup of Refs. [1,16,17], 〈Fq〉 causes the
displacement of the spin qubit in a magnetic field gradient,
so that the flipping of the TLS moves the qubit in the field
gradient, changing the physical magnetic field on the spin.
We can therefore regard 〈Fq〉 as an effective magnetic field.
Further details are given in Appendix A. In the flip-flop qubit
architecture, motion of the qubit caused by 〈Fq〉 would change
the hyperfine coupling or the g factor [27]. In all cases the dis-
placement changes the qubit operating frequency. The qubit
frequency is f (T ) = f0 + cq · 〈Fq〉(T = 0) + � f (T ), where
f0 is the T -independent part from the applied magnetic field,
〈Fq〉(T = 0) �= 0 is a constant that comes from the ground
state configuration of the TLS, and � f (T ) is the PIRS effect,
and all the T dependence of f comes from it. Thus, � f (T ) =
cq · [〈Fq〉(T ) − 〈Fq〉(T = 0)] is the quantity of interest.

Introducing cq, the frequency susceptibility, in this way
embodies the assumption of linearity of the dependence of � f
on the static electric field. cq depends on the particular type of
qubit and the position of the qubit in the device. Its direction is
determined by the condition that the effective magnetic field
produced by 〈Fq〉 (see Appendix A) should be parallel to the
applied magnetic field.

The Hamiltonian of the TLS in our model contains a
random-field term Hr and an interaction term Hint:

H = Hr + Hint = −p0

N∑
j=1

s jE j · p̂ j + p2
0

8πε

N∑
j �=k=1

s jskVjk .

Here

Vjk = 3( p̂ j · p̂k ) |r j − rk|2 − p̂ j · (r j − rk ) p̂k · (r j − rk )

|r j − rk|5 .

The random effective electric fields E j , if interpreted in
a double-well picture of the TLS, are related to the energy
asymmetry (“detuning”) of the two wells. However, the phys-
ical origin of E j may not be the same in all cases. For example,
they could be actual external electric fields coming from gate
electrodes, strain fields, asymmetric microscopic defects, etc.
For our purposes they are considered to be phenomenological
parameters that must be fit since they are very difficult to es-
timate in the absence of a real microscopic model. We expect
N to be a number in the range of perhaps 10 to 100 and to
be sample dependent [12]. The dipoles may well be the same
TLSs that give rise to the noise in the system, but here we are
interested in their equilibrium behavior, not their fluctuations.
This assumes that measurement of PIRS takes place over a
time interval longer than the characteristic switching times of
the TLSs. However, the intersection of the set of TLSs that
causes qubit dephasing and the set that causes PIRS need not
be complete.

III. NONMONOTONICITY OF PIRS

The T dependence of 〈Fq〉 in a noninteracting model with
Hint = 0 is already interesting, so we discuss it in detail. In
this case the problem is exactly solvable, once the positions
of the dipoles are specified: 〈s j〉 = sgn( p̂ j · E j ) tanh(p0 p̂ j ·
E j/kBT ). 〈s j〉 has a definite sign at T = 0, but eventually,
〈s j〉 → 0 as T → ∞. We can identify a turnoff temperature
Tj = p0|E j |/kB for each TLS. Substituting the form of 〈s j〉
into Eq. (1) and performing the sum give the equilibrium
electric field 〈Fq〉(T ) at the qubit.

To understand the qualitative T dependence of 〈Fq〉 in
the IRGM we begin with T = 0. We divide the TLSs into
two groups. In the set S+ we have the indices j for which
〈Fq〉(T = 0) · F j〈s j〉(T = 0) > 0, while in group S− we have
the indices j for which 〈Fq〉(T = 0) · F j〈s j〉(T = 0) < 0.
That is, the dipoles in S+ are aligned with the ground state
resultant field, while those in S− are antialigned. The electric
field at the qubit is the result of a random walk of the vectors
〈s j〉 F j with the resultant vector

〈Fq〉 =
∑
j∈S+

〈s j〉F j +
∑
j∈S−

〈s j〉F j . (2)
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The vectors in group S+ are in the direction of the final result
of the walk, while those in group S− are in the opposite di-
rection. Due to the randomness in the asymmetry, the various
components of the walk turn off at different temperatures,
and there will be some average turnoff temperature T + for
group S+ and a different average turnoff temperature T − for
group S−. We now increase T from zero. If T + > T −, then
the total field strength |〈Fq〉| will first increase and eventually
vanish when T 	 T +. In this case we have a nonmonotonic
T dependence of the field strength |〈Fq〉|, a rather surprising
result. T + and T − are not expected to be very different if
the dipoles have the same physical structure, but even in
this case the relatively small value of N implies that random
fluctuations will make T + �= T −. If T + < T −, then the total
field strength |〈Fq〉| will decrease as the dominant dipoles
turn off and eventually vanish when T 	 T −. If there is a
gross mismatch between T + and T −, then one or more of the
components of 〈Fq〉 could even reverse sign, but overall, we
would expect a monotonic decrease. The relative magnitudes
of | ∑ j∈S+〈s j〉F j | and | ∑ j∈S−〈s j〉F j | are also important. If
| ∑ j∈S+〈s j〉F j | dominates, then there is little cancellation in
the sum, and the nonmonotonic behavior will be suppressed.
If the fields from S+ and S− are comparable, then nonmono-
tonicity is more likely.

Now we turn to the effects of interactions. Dipolar in-
teractions are always antiferromagnetic after averaging over
the directions of the separation vector. (This may be seen by
noting that the second term in Vjk vanishes when averaged
over the directions of r j − rk , leaving the first term, which is
proportional to p̂ j · p̂k .) This favors depolarization—a smaller
net moment |〈P〉| = |∑ j〈s j〉p j |. If the TLSs are located on
one side of the qubit, then the correlation between |〈P〉| and
|〈Fq〉| will be strong, but even if the qubit is surrounded
symmetrically by the TLSs, fluctuations will still give some
correlation in a given sample. Small |〈P〉| comes from cancel-
lation in the directions of the individual moments.

There is an additional temperature scale associated with the
interactions, which is the average change in the interaction
energy from flipping one spin: Tint = |〈Hint〉|/NkB. If Tint <

T +, T −, then the interactions will turn off before the random-
field effects as T is increased, and |〈P〉| increases. If Tint 	
T +, T −, then the system is frozen by the interactions, and we
expect little change in |〈P〉| until T 	 Tint .

Overall, the effect of interactions is to make cancellation
more likely due to their antiferromagnetic character. Unless
the interactions are extremely strong, they make the nonmono-
tonic T dependence of |〈Fq〉| and therefore of � f (T ) more
likely.

IV. CALCULATION DETAILS

This analytic analysis of the IRGM is semiquantitative. To
make the arguments more firm we perform numerical simu-
lations. We do this for three different physical pictures of the
TLSs. In all simulations there is a single qubit at the origin.

In the first picture the TLSs are charge traps near the sur-
face of a two-dimensional electron gas. The trap is positively
charged when empty and then relatively negatively charged
when full. We include the image charge. This can be described
as a fluctuating dipole in the z direction, with z being the

growth direction. There are 30 dipoles uniformly distributed
at positions r j = (x j, y j, z j ), with −150 < x j, y j < 150 nm
and z j = 50 nm, thus in a layer of zero thickness above the
qubit with an areal density of 3.33 × 10−4/nm2. This is the
trap picture.

The second picture conceives of the TLSs as point defect
dipoles in the oxide with orientations uniformly distributed
in direction. The positions of the 30 TLSs r j = (x j, y j, z j )
are uniformly distributed in a layer with coordinates satisfy-
ing r j = (x j, y j, z j ), with −150 < x j, y j < 150 nm and 30 <

z j < 50 nm. Thus, the TLSs are all located in a layer 20 nm
thick with the center of the plane 30 nm above the qubit, with a
density of 1.67 ×10−5/nm3. This is the random dipole picture.

In the third picture the 30 TLSs are distributed in the neigh-
borhood of the qubit. The spatial positions of the TLSs are
uniformly distributed in a spherical shell with the qubit at the
center. r j = (r j, θ j, φ j ) satisfy 60 < r j < 80nm, 0 � θ j < π ,
and 0 � φ j < 2π . The radii are chosen to make Tint ∼ 1 K.
The density is 2.42 × 10−5/nm3. This is the spherical shell
picture.

We define a random-field temperature scale Tr =
|〈Hr〉|/NkB in addition to Tint. We use the parameter values
p0 = 48 D ≈1|e| nm and N = 30, which are chosen because
they give T2 of the order of 10−6 s in the correct experimen-
tal range [28]. The TLS density from these values is also
consistent with those computed from the magnitude of mea-
sured power spectra [29,30]. It is desirable to sample values
of the dipole strength p0 from a distribution with variable
mean and width. However, that would require a great increase
in computation time. The random-field strength is taken as
�E0 = 5 × 103 V/m, which denotes the standard deviation of
a distribution centered on zero. With these values, Tr ∼ 0.1 K,
and Tint ∼ 1 K in most samples, but while Tr is almost inde-
pendent of the disorder because its strength is roughly fixed,
Tint can vary from 0.1 to 10 K because it depends sensitively
on the separations and orientations of the TLSs. Overall,
these values are chosen to be representative of experiments on
semiconductor qubit systems in the sense that most analyses
give something like our value for N , which, together with the
value of p0 that we use, gives a reasonable dephasing time.
A key observation here is that Tint comes out approximately
correct when the distances of the TLSs from each other and
from the qubit and the dipole magnitude are chosen to fit T2

and other noise experiments. Further details are given in Ap-
pendix A. The IRGM passes the self-consistency check that
Tint does, indeed, match the temperature scale at which � f
varies.

The number used for |p0|, 1|e| nm, means that the electron
must hop three to four lattice spacings. This is a long distance
on the atomic scale, but if the hopping is slow, the distance
must, in fact, be long. This insight is at the basis of the theory
of variable-range hopping conduction [31]. Experiments on
this type of conduction at the Si-SiO2 interface indeed showed
hops of at least up to 3 nm [32]. In those experiments the
interface was doped with Na impurities, but the localiza-
tion length was independent of the impurity concentration,
suggesting that the disorder is largely intrinsic. We do not
propose that the noise in semiconductor devices arises from
variable-range hopping, which seems unlikely to give tele-
graph noise. Rather, we cite the observation of such systems
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FIG. 1. Temperature dependence of qubit frequency shifts in the trap picture of the TLSs in some representative samples. The shifts are
proportional to one component of the equilibrium electric field 〈Fq〉(T ) at the qubit. “Without Int.” and “With Int.” indicate the noninteracting
and fully interacting cases, respectively. (a) Both noninteracting and interacting cases show nonmonotonic shifts. (b) Example in which the
interaction causes nonmonotonic behavior.

as an existence proof of long electron hops in disordered
insulators.

We note that a much smaller value for the dipole magnitude
is appropriate for dipole glasses in alloys of molecules with
permanent dipole moments. An important recent paper [24]
used a model of this kind. For example, in (KBr)1−x(KCN)x

the dipole moment of the TLSs is 0.2 D [33,34]. In a case
like this the elastic interactions among the dipoles may be
as strong as, or even stronger than, the Coulomb interaction
that is dominant in electron tunneling models such as that
employed here.

V. RESULTS

In Fig. 1 we plot one example of � f (T ) in the trap picture
for both the noninteracting case Hint = 0, which is exactly
solvable, and the fully interacting case, which is computed
by a Monte Carlo algorithm. Full details of the Monte Carlo
simulations are given in Appendix E. The main physical point
is that the TLSs can be thought of as being in thermal equilib-
rium in the experiment in Ref. [18] since they let the system
thermalize for several minutes for each dataset.

We use arbitrary units for � f since the conversion factor
cq is platform dependent. For the interacting case, a moving
average over 11 neighboring temperatures is applied to obtain
stable results, and a smaller number of neighboring tempera-
tures are used for the moving average at the ends of the curves.

We stress that 〈Fq〉(T ) is sample dependent for all three
pictures in that changing the parameters in natural ranges can
alter � f (T ) qualitatively. In particular, nonmonotonic behav-
ior of 〈Fq〉 is by no means universal. For a single sample it is
even possible that one component of the field is nonmonotonic
and another is monotonic. Some idea of the variety of possible
behaviors is given in Appendix B.

Figure 1 demonstrates that nonmonotonicity can arise al-
ready even when the TLSs do not interact. This comes simply
from the fact that there can be a cancellation of the random
fields at T = 0 that is lessened as T increases in certain
circumstances, as explained above. The interactions tend to
enhance nonmonotonicity as in Fig. 1(a), although this ef-
fect is not universal. In fact, as we will see below, only a

minority of samples for the trap picture show nonmonotonic-
ity. Interactions can create nonmonotonicity when the non-
interacting picture shows monotonicity, as seen in Fig. 1(b).
Again, this is consistent with the idea of cancellation as the
active ingredient in nonmonotonicity. Additional examples of
the different types of behavior that can occur for � f (T ) are
given in Appendix B.

Once universality of the nonmonotonicity is ruled out, the
question becomes whether it is likely or not. To answer this we
did simulations over 10 000 samples for each of the three pic-
tures and determined whether a monotonic or nonmonotonic
behavior was observed for each component of the electric
field. The precise criterion for monotonicity or its absence is
given in Appendix C.

The results in Table I support the physical picture explained
above. In the trap picture, the cancellation of fields from
different dipoles is relatively small since the vectors leading
from the qubit to the TLSs, while not collinear, generally
do not make large angles with each other. Similar statements
apply to the random dipole picture, but there is some addi-
tional cancellation due to the different orientations. The most
interesting result is for the spherical shell picture. Here we see
the appearance of nonmonotonic behavior for noninteracting
TLSs in about one quarter of the cases, as would be suggested
by the above arguments. With dipoles on all sides of the qubit,
the cancellation effect is quite strong.

Interactions do promote nonmonotonicity in all cases, as
expected, especially when the interactions are strong: Tint >

Tr . Overall, nonmonotonicity increases as we proceed from
the trap to the random dipole to the spherical shell pictures.
The interaction enhancement reinforces this pattern of non-
monotonicity.

We turn now to a comparison of theory and experiment.
In nearly all measurements � f is measured as a function of
time, not temperature. Making a comparison to data of this
type would require detailed modeling of the heat flow in the
system, which is outside the scope of this paper. We therefore
make a comparison only to the temperature data for � f (T )
for six qubits in a single device reported in Ref. [18]. We
plot these data with a theoretical fit in Fig. 2. The fit was
done as follows. We first chose a set of TLS positions and
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TABLE I. The fractional number of samples showing nonmono-
tonicity obtained from Monte Carlo simulation and exact solutions
for three physical pictures. 〈Fq,i〉 is the i component of the vector
〈Fq〉(T ). “Without Int.” and “With Int.” indicate the noninteracting
and fully interacting cases, respectively. Tr < Tint indicates Tr ∼
0.1 K and Tint ∼ 1 K, while Tr ∼ Tint indicates Tr ∼ 0.1 K and Tint ∼
0.1K. The averages are taken over 104 samples.

Trap 〈Fq,x〉 〈Fq,y〉 〈Fq,z〉
Tr < Tint

Without Int. 15.9% 16.4% 12.0%
With Int. 48.0% 48.6% 40.1%

Tr ∼ Tint

Without Int. 11.0% 10.9% 7.4%
With Int. 30.5% 30.2% 24.2%
Random dipole 〈Fq,x〉 〈Fq,y〉 〈Fq,z〉

Tr < Tint

Without Int. 14.7% 15.9% 12.4%
With Int. 61.9% 61.9% 57.2%

Tr ∼ Tint

Without Int. 10.0% 9.4% 7.8%
With Int. 42.5% 42.3% 36.9%
Spherical shell 〈Fq,x〉 〈Fq,y〉 〈Fq,z〉

Tr < Tint

Without Int. 25.0% 25.3% 28.0%
With Int. 89.5% 89.4% 90.1%

Tr ∼ Tint

Without Int. 21.0% 21.8% 25.8%
With Int. 79.4% 79.0% 81.4%

random fields such that the parameters were in a range where
nonmonotonicity could be expected and peak in � f would be
around 250 mK. Then, since the curves have a fairly similar
shape but differ in vertical scale, we varied cq for each of the
curves. Finally, the positions of the TLSs were adjusted to
fit each curve individually. The main feature that needed to
be accounted for in this final step was the sharper peak and

FIG. 2. PIRS data: theory and experiment. The points are mea-
sured frequency shifts for six qubits, Q1–Q6, from Ref. [18], and
the dashed lines are theoretical fits. The qubits are situated in a
one-dimensional array. The fitting procedure is described in detail
in the text. The applied magnetic field is assumed to be in the y
direction.

steeper falloff at high T that are seen in qubits 3–6. Some
further details are given in Appendix D.

The fits are quite good quantitatively, but not too much
should be made of this since the number of parameters far
exceeds the number of qualitative features to be fit for each
curve. However, even given this, the fit does provide evidence
for the correctness of the IRGM. The nonmonotonicity arises
naturally but also from the linear behavior at small T (which
is caused by the uniform distribution of E j near zero) and,
finally, the 1/T behavior at large T .

VI. CONCLUSION

We conclude by summarizing the strong and weak points
of the IRGM as a model for PIRS. There are three evalua-
tion categories: qualitative phenomenological understanding,
semiquantitative self-consistency, and quantitative fit of the-
ory and experiment.

In qualitative terms, the surprising nonmonotonic T depen-
dence and some of the other features of the T dependence of
the qubit frequencies find a natural explanation in the IRGM.
The important theoretical ingredients are the cancellations
due to vector summations that involve only a relatively small
number of variables combined with the natural temperature
dependence of the TLS fluctuations and the depolarizating
effects of interactions. The explanation of nonmonotonicity
quite defies the usual expectation that thermal effects in the
absence of phase transitions tend to be monotonic. Overall,
this is quite strong evidence for the IRGM. Aside from the
nonmonotonicity, there is the observation that � f is some-
times negative [16,19]. This is also somewhat surprising if one
assumes that the heating affects the qubits directly in some
fashion. In the IRGM, there is nothing that constrains the sign
of the components of cq, so the sign of the effect is not deter-
mined. Similarly, the fact that the effect is not resonant with
qubit frequencies suggests that an ancillary part of the device
is driven by the heating; in the IRGM, the system of TLSs
is driven. Hysteresis does not seem to be a feature of PIRS.
This might seem to argue against the IRGM, but in fact, with
only a few tens of TLSs involved, this aspect of glassiness
does not argue against the model. In contrast, no T -dependent
electric field shows up in measurements at the charge sensor
[18], which is not explained in the model as it stands.

There are two experimental scales that must be consistent
with the theory: the overall magnitude of � f (1 MHz in dot
systems) and the temperature of the peak in � f (about 0.2
to 0.4 K in dot systems). The first number is very consistent
with the roughly known numbers for the magnitude of the
moment of the dipoles and their presumed positions. The
second depends on the distribution of the random local fields
E j , and indeed, the distribution must be such that |p0E j/kB|
is clustered near 0.3 K. There is no obvious reason why this
should be so, so the IRGM does include at least one ad hoc
element.

The fit to the data in Fig. 2 is strikingly accurate, but it
raises questions. If interactions are relatively weak for some
reason (such that the TLSs are particularly far apart), then
why do six out of six qubits all show nonmonotonicity? This is
only consistent with the spherical shell picture, which in turn
is not very consistent with the usual idea that the TLSs are
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associated with the oxide layer. Furthermore, the nonmono-
tonicity in all six qubits means that there must be correlations
between the positions of the TLSs and the strength and di-
rection of their random fields. Specifically, the TLSs closer to
the qubits must have stronger random fields for each qubit.
In addition, in order for the shift to be positive in all qubits,
the random fields for the nearby TLSs must all have the same
orientation across all six qubits.

We conclude that the basic mechanism of PIRS is ex-
plained by the IRGM but that the explanation is far from
complete at this stage. Most likely, the model needs to sup-
plemented by a better picture of the positions of the TLSs and
a better understanding of their physical nature. This would
limit the model to a smaller region of its parameter space
and give it more explanatory power. Thus, for example, if the
random-field strength and the electric field of the TLSs are
correlated in the appropriate way for reasons that have not
yet emerged, the nonmonotonicity would become a universal
feature.
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APPENDIX A: MAGNITUDE OF FREQUENCY SHIFT
IN QUANTUM DOT ARCHITECTURE

Here we give an order-of-magnitude estimate of the PIRS
effect and some of the intermediate quantities involved in
it for a Si/SiGe heterostructure quantum dot device with a
micromagnet. In this case, � f is due to the shift in position
of the electron in the nonuniform magnetic field caused by
the micromagnet. Let there be an electron spin qubit in a
quantum dot at the origin of coordinates. The electron is at the
bottom of a circularly symmetric two-dimensional harmonic
potential k(x2 + y2)/2. At this point there is a magnetic field
gradient ∂Bi/∂x j , where i and j are Cartesian indices. The
static electric field of the TLSs moves the qubit in the gradient
and therefore changes the magnetic field on the spin.

The qubit frequency shift is determined by � f = cq ·
[〈Fq〉(T ) − 〈Fq〉(T = 0)], with the frequency susceptibility cq

given as [28]

cq = gμB

h

q

mtω
2
orb

(
∂By

∂x
x̂ + ∂By

∂y
ŷ

)
. (A1)

We have assumed that the externally applied magnetic field
is in the y direction. A typical device of this kind that was
particularly well characterized was described in Ref. [35]. The
magnetic field gradients for that device in units of mT(nm)−1

were ∂By/∂x = −0.05 and ∂By/∂y = 0.18. The transverse
effective mass mt = 0.19 me = 1.73 × 10−31 kg. We take the
lowest orbital excitation frequency as ωorb ∼ 2 meV/h̄, which
is related to the spring constant by k = mtω

2
orb, and an average

value of |∇B| of 0.1 mT (nm)−1. These numerical values
should be more or less typical of micromagnet-based Si/SiGe
devices, but variations from device to device could certainly
alter our estimate.

A single component of 〈Fq〉 at T = 0 is the result of a
random-walk summation of the same component of the field
exerted at the position of the qubit by the N TLSs. It is
therefore given by

√
N times the rms value of the individ-

ual contributions to one component in the sum in Eq. (A1).
There is an additional angular average over the directions
of pi with the result that � f (T = 0) ∼ √

2N/3 p0/4πεεrd3,
where d is an average distance from the TLSs to the qubit,
and we use d ∼ 50 nm and εr ∼ 11. Combining this with
Eq. (A1), we find � f (T = 0) ∼ 1.4 MHz, not too far from
what is observed for the maximum � f , which should be
roughly comparable with the computed quantity. With these
parameters, the qubit moves about 0.5 nm due to 〈Fq〉, a field
of about 4500 V/m.

APPENDIX B: FURTHER EXAMPLES OF THE
TEMPERATURE DEPENDENCE

OF THE ELECTRIC FIELD

In this Appendix we give a few representative examples of
the temperature dependence of the qubit frequency for single
TLS configurations in the different pictures of TLS positions
and directions. In each figure we show two configurations
with the interaction turned off and on. In fact, we compute
the y component of 〈Fq〉 and leave cq,y arbitrary. Then we
enforce the condition that � f (T = 0) = 0. This means that
the ground state configurations for the interacting and nonin-
teracting cases and their resultant 〈Fq〉 may be quite different.
The curves for the interacting case are smoothed by averaging
over the 11 points centered at the plotted point, except at the
ends of the curve. Note that 〈Fq〉 → 0 as T → ∞, but this
asymptote is usually off the plotted region.

In Fig. 3 we plot results for the random dipole picture.
Figure 3(a) shows an example in which T + considerably
exceeds T −, leading in the noninteracting case to a peak
at relatively low T . Interactions mainly shift the peak but
leave nonmonotonicity intact. In Fig. 3(b) the needed can-
cellation pattern does not occur for the noninteracting case,
but there is nonmonotonicity in the interacting case because
of increased cancellation. Interactions have a strong influence
on the ground state configuration for this particular sample,
as indicated by the change in sign for the interacting and
noninteracting cases.

In Fig. 4 we see � f (T ) for the spherical shell picture for
two different TLS configurations. In this picture the interac-
tions are more effective in producing nonmonotonicity, and
once more, we see that the nonmonotonicity can be present
already in the noninteracting case or it can be induced by the
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FIG. 3. Temperature dependence of qubit frequency shifts in the random dipole picture of the TLSs. The shifts are computed from the
equilibrium electric field 〈Fq〉(T ) − 〈Fq〉(T = 0) at the position of the qubit for two configurations of the TLSs. “Without Int.” and “With
Int.” indicate the noninteracting (Hint = 0) and fully interacting cases, respectively. (a) Both the noninteracting and interacting cases show
nonmonotonic shifts. (b) Example in which the interaction causes nonmonotonic behavior. The applied magnetic field is assumed to be in the
y direction.

interactions. � f (T ) can show somewhat surprising behavior
in the interacting case, in which it has a more complicated
increase and decrease as a function of T . This has not been
observed to date. If it were, it would be a sign that interactions
are important.

In Fig. 5 we plot � f (T ) for two samples belonging to
the trap and random dipole pictures. These plots are mainly
included to dispel any impression that nonmonotonicity is
universal in the IRGM. Both the noninteracting and inter-
acting cases can show monotonic behavior as a function of
temperature. This can happen as in Fig. 5(a), where the ground
state configuration of the TLSs changes drastically when
interactions are turned on, or as in Fig. 5(b), where the two
ground states are apparently rather similar.

APPENDIX C: NONMONOTONICITY CRITERION

To determine whether a component Fq,i(T ) of 〈Fq〉 has
nonmonotonic T dependence, we set up the following cri-
terion: from exact or numerical results, we define a set of

differences

Fdiff = {Fm+1 − Fm| m = 1, 2, 3, . . . , M − 1}, (C1)

where M = 100 is the number of temperature points for eval-
uation. The average slope magnitude is defined as

s = 1

M − 1

M−1∑
m=1

|Fm+1 − Fm|. (C2)

To avoid false positives from small random fluctuations
(which is particularly important for Monte Carlo simulations),
small slope elements are excluded from Fdiff so that the
smaller set is

Flarge =
{

Fm+1 − Fm| s

2
< |Fm+1 − Fm|

}
. (C3)

Defining the signs of the differences as σm = sgn(Fm+1 − Fm),
we have groups of positive and negative slopes:

Fpos = {Fm+1 − Fm| σm > 0 and Fm+1 − Fm ∈ Flarge},
Fneg = {Fm+1 − Fm| σm < 0 and Fm+1 − Fm ∈ Flarge}. (C4)

FIG. 4. Temperature dependence of qubit frequency shifts in the spherical shell picture of the TLSs. The shifts are computed from the
equilibrium electric field 〈Fq〉(T ) − 〈Fq〉(T = 0) at the position of the qubit for two configurations of the TLSs. “Without Int.” and “With
Int.” indicate the noninteracting (Hint = 0) and fully interacting cases, respectively. (a) Both the noninteracting and interacting cases show
nonmonotonic shifts. (b) Example in which interaction causes nonmonotonic behavior. The applied magnetic field is assumed to be in the y
direction. Note the change in vertical scale from (a) to (b).
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FIG. 5. Temperature dependence of qubit frequency shifts in the trap and random dipole picture of the TLSs. The shifts are computed
from the equilibrium electric field 〈Fq〉(T ) − 〈Fq〉(T = 0) at the position of the qubit for two configurations of the TLSs. “Without Int.” and
“With Int.” indicate the noninteracting (Hint = 0) and fully interacting cases, respectively. Both the noninteracting and interacting cases show
monotonic shifts for the (a) trap and (b) random dipole pictures. The applied magnetic field is assumed to be in the y direction. Note the change
in vertical scale from (a) to (b).

The final nonmonotonicity criterion is

min(|Fpos|, |Fneg|)
|Fpos| + |Fneg| > 0.1, s > 5, (C5)

where the first inequality requires that Fq,i(T ) has non-
negligible positive and negative parts of slopes and the second
one demands that the overall frequency shift in the tempera-
ture range is not so small. The tolerance values, 0.1 and 5, are
empirically chosen and can be adjusted for different systems.

APPENDIX D: FITTING PROCEDURE FOR FIGURE 2

In Fig. 2 of the main text we give a comparison of theory
and the PIRS experiment of Undseth et al. [18] in which
� f was measured for each of six qubits in a row. We found
that the best fit is obtained by taking the case that Tr 	 Tint,
which amounts to a noninteracting model. We used a trap
picture, but the other two pictures could also have been used
for the fit. The parameters are the same as those in the de-
scription of the trap picture in the main text except for the
z coordinates of the TLSs, which are now taken as z j = 36
nm following Refs. [1,18], and �E0 = 5 × 104 V/m. The six
samples are generated by varying the conversion factor cq,y

and the positions of TLSs in the x-y plane, which are randomly
assigned within circles whose centers are TLS positions of a
reference sample and radii are 5 nm. The applied magnetic
field is assumed to be in the y direction. As we showed in
Appendix A, the order of magnitude of the effect is consistent
between theory and experiment. The best fit for the conversion
factors for the qubits Qi, with i = 1, 2, 3, 4, 5, 6, was in the
ratio 0.105:0.114:0.072:0.077:0.103:0.059. All fit parameters
are available from the authors on request.

APPENDIX E: MONTE CARLO SIMULATIONS

〈Fq(T )〉, the quantity plotted in Figs. 1 and 2 in the main
text, is calculated by Monte Carlo simulations. We use Eq. (1),
where one averages over sets of spin configurations s j which
are drawn from thermal ensembles generated by the sim-
ulation. The spatial positions r j of the spins form random
lattices in accord with the probability distributions specified
in Sec. IV for the three pictures envisioned. The probability
distribution of the random field E j is a Gaussian for each
component with zero mean, and its standard deviation is
5 × 103 V/m for Tr ∼ 0.1K and 5 × 104 V/m for Tr ∼ 1K.
For each point in Figs. 1 and 2 we average over 104 samples.
The number of TLSs in each sample is 30. Free boundary
conditions are used, which is necessary for the geometries
investigated. The Metropolis algorithm is used. The simu-
lations are started at the given temperature and equilibrated
with a “spin-up” period to let the energy converge. We require
that the system energy has leveled off (converged), and the
convergence criterion is that the excursions of the total energy
of the system are of the order of the change in energy caused
by a single spin flip. The data from the spin-up period are
discarded. The spins are flipped at random rather than cycling
through the spins in order. A flip is accepted with proba-
bility exp(−�H/kBT )/[1 + exp(−�H/kBT )], where �H is
the change in energy caused by the spin flip. The number
of Monte Carlo steps (attempted number of flips divided by
the number of spins) for each sample is S = 3333. These
relatively short simulation times make it possible to analyze
the large number of samples needed for disorder averaging.
The short times give reliable results because the number of
spins is small.
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