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Stability of PT and anti-PT -symmetric Hamiltonians with multiple harmonics

Julia Cen ,1,* Yogesh N. Joglekar ,2,† and Avadh Saxena 1,‡

1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA

(Received 11 February 2023; revised 13 December 2023; accepted 10 January 2024; published 14 February 2024)

Hermitian Hamiltonians with time-periodic coefficients can be analyzed via Floquet theory, and have been
extensively used for engineering Floquet Hamiltonians in standard quantum simulators. Generalized to non-
Hermitian Hamiltonians, time periodicity offers avenues to engineer the landscape of Floquet quasienergies
across the complex plane. We investigate two-level non-Hermitian PT and anti-PT -symmetric Hamiltonians
with coefficients that have multiple harmonics using Floquet theory. By analytical and numerical calculations,
we obtain their regions of stability, defined by real Floquet quasienergies, and contours of exceptional point
(EP) degeneracies. We extend our analysis to study the phases that accompany these cyclic changes with
the biorthogonality approach. Our results demonstrate that these time-periodic Hamiltonians generate a rich
landscape of stable (real) and unstable (complex) regions.
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I. INTRODUCTION

Time-dependent Schrödinger equations are in general diffi-
cult to solve analytically, and usually one has to resort to using
perturbation or numerical methods. One of the few analyti-
cally solvable time-dependent models is the Rabi model [1],
which is a two-level system driven by an oscillatory classical
field. Its key feature is that when the field frequency is close to
the energy-level gap of the two-level system, the system un-
dergoes complete population inversion at an arbitrarily small
field strength. Following the Rabi model, Shirley developed a
formalism for periodically driven systems using Floquet the-
ory [2–4]. Over the years, there has been an increasing interest
in studying time-periodic driven systems for applications in
control and sensing. Examples can be found in the engineering
of quantum materials [5], topological structures [6–8], con-
trolling interwell tunneling of a Bose-Einstein condensate [9],
and detecting low-frequency magnetic fields [10].

During the past quarter of a century, research on non-
Hermitian systems incorporating parity-time inversion or
PT -symmetries has also seen tremendous growth [11,12].
Such open systems with balanced, spatiotemporally sepa-
rated gain and loss are described by effective, non-Hermitian
Hamiltonians H with PT symmetry, [H,PT ] = 0 [13]. This
antilinear symmetry implies that the Hamiltonian eigenvalues
are either real or occur in complex-conjugate pairs, with the
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PT -symmetry breaking transition occurring at exceptional
point (EP) degeneracies where corresponding eigenmodes
also coalesce. These remarkable properties have allowed com-
plex extensions of quantum theory [14–18]. The realization
of PT -symmetry as a pair of optical waveguides [19–22]
further fueled the growth of work on the experimental side in a
wide range of areas including unidirectional invisibility [23],
electrical circuits [24–26], photonic lattices [27], mechanics
[28], optical resonators [29], acoustics [30], as well as in
minimal quantum systems [31–35].

A decade ago, new symmetry called anti-PT -symmetry
(APT symmetry) was introduced in non-Hermitian systems
and was realized as balanced negative and positive refractive
index materials [36]. A system is said to have APT symme-
try if the PT operator anticommutes with the Hamiltonian
H ′, i.e., {H ′,PT } = 0. Although, prima facie, the two sym-
metries appear distinct, it is easy to check that H is PT
symmetric if and only if the Hamiltonian H ′ = iH has the
APT symmetry. Such Hamiltonians have been realized in fly-
ing atoms [37], optical waveguides with imaginary couplings
[38], optical four-wave mixing in cold atoms [39], Lorentz
dynamics [40], diffusive systems [41], qubits [42], nonlinear
dimers [43], and trapped ions [44,45].

When PT symmetries were introduced for Floquet sys-
tems, this brought numerous novel phenomena that funda-
mentally arise due to the interplay between periodic gain-loss
variation and oscillatory, unitary dynamics introduced by a
static, Hermitian Hamiltonian. For PT -symmetric Hamilto-
nians with a single drive—an oscillatory gain-loss term or
an oscillatory Hermitian term, but not both—this led to a
rich landscape of PT symmetric, stable regions, and PT
broken unstable regions separated by contours of EPs. This
landscape contains PT -broken regions at vanishingly small
gain-loss strengths, as well as PT -symmetric regions at
arbitrarily large gain-loss strengths, at specific modulation fre-
quencies [46–48]. Non-Hermitian Floquet dynamics with PT
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symmetries have been investigated in ultracold atoms [49],
nitrogen-vacancy (NV) centers [50], superconducting qubits
[51,52], electrical circuits [53,54] and [55,56] which also
includes systems without PT symmetries. These extensive
investigations, however, have been limited to single-frequency
drives. Work on multitone drives has mainly been in the Her-
mitian setting, for instance, looking at realization of Floquet
model as a Creutz ladder [57] and Floquet engineering in
optical lattices [58]. The models explored are multifrequency
drives in a single direction. We consider the effects of two
noncommuting terms in the Hamiltonian with different har-
monics in the non-Hermitian scenario, thereby distinguishing
our work.

In particular, we investigate PT -symmetric and APT -
symmetric Hamiltonians where the Hermitian or gain-loss
terms have multiple harmonics, by using the Floquet for-
malism. We determine the stable (real Floquet eigenvalues)
and unstable (complex conjugate Flqouet eigenvalues) regions
numerically by using the frequency-domain Floquet Hamilto-
nian HF and analytically from eigenvalues of the nonunitary,
one-period time-evolution operator G(T ) ≡ exp(−iHF T ).
Subsequently, we use the cyclic variations of the non-
Hermitian Hamiltonians to obtain the biorthogonal Berry
phase [59–61] for our models. The plan for the paper is as
follows. In Sec. II we set out the formalism and establish
the notation for both PT -symmetric and APT -symmetric
models that we consider. We present the stability phase dia-
grams for the PT -symmetric case, and discuss their common,
salient features, followed by corresponding results for the
APT -symmetric models. In Sec. III, we present the results
for the geometric phases acquired during cyclic variations. We
conclude the paper with a brief discussion in Sec. IV.

II. FLOQUET FORMALISM

For a two-level system, a general Hamiltonian is given by
H (t ) = A(t ) · σ + iB(t ) · σ, where A(t ), B(t ) are real vectors
and σ = (X,Y, Z ) denotes the vector with the Pauli matrices.
Since all 2 × 2 matrices are encoded here, the requisite anti-
linear symmetry imposes a further constraint of A · B = 0. We
emphasize that since the Pauli matrices form an orthogonal
basis for all 2 × 2 matrices, arbitrary PT symmetric and
APT -symmetric Hamiltonians can be written in this form.

For a time-periodic Hamiltonian, the instantaneous
eigenvalues λk (t ) of H (t ) = H (t + T ) do not determine the
dynamics. The long-term dynamics of the system, instead,
are determined by the spectrum of the corresponding Floquet
Hamiltonian HF = H (t ) − i∂t (h̄ = 1), represented as an
infinite-dimensional, nondiagonal matrix in the frequency
space. If H (t ) contains sinusoidal time dependence, then
the frequency-space Floquet Hamiltonian HF is tridiagonal
[46,47], whereas if H (t ) has piecewise constant entries with
sharp changes, the matrix HF has nonzero entries throughout.
The spectrum of the Floquet Hamiltonian HF (ω, βω),
comprising Floquet quasienergies εnα = εα + nω, changes
from purely real to complex conjugate pairs as a function of
the non-Hermiticity strength γ and frequency ω ≡ 2π/T of
modulation. An alternate method is to obtain the one-period
time-evolution operator G(T ) = T exp(−i

∫ T
0 H (t ′)dt ′),

where T denotes time-ordered product that takes into account

the noncommuting nature of Hamiltonians at different
instances of time. The 2 × 2 nonunitary operator G(T ) can
also be used to define the Floquet Hamiltonian within the
folded-zone scheme [46,47] with two Floquet eigenenergies
εα . If one uses piecewise constant Hamiltonian H (t ), the
operator G(T ) can be analytically calculated [51,62].

There are in total three nontrivial cases of PT - and APT -
symmetric double-driven models, where by nontrivial we
mean models with both stable and unstable regions, charac-
terized by real and complex-conjugate Floquet quasienergies,
respectively. Trivial cases are those with no finite threshold;
one either has purely real or purely imaginary Floquet eigen-
values. In the following paragraphs, we will explore the salient
features of each nontrivial case.

A. PT -symmetric models

Without loss of generality, we consider PT -symmetric
models where A is in the x-y plane while B is along the z axis.
We start with the following cosineY-cosineZ driven model,

H (t ) = JX + γ {cos (ωt )Y − i cos (βωt )Z}, (1)

where an integer β � 1 denotes that the gain-loss term oscil-
lates faster than the Hermitian term. In the following, we use
J = 1 to set the energy scale, thereby using γ ≡ γ /J and ω ≡
ω/J to denote the dimensionless amplitude and frequency of
the Floquet drive. For analytical calculations, we replace the
cosine with a step function taking values ±1, thereby creating
a sequence of constant Hamiltonians H� for the 1 � � � 4β

equal intervals that span the period T . The piecewise constant
Hamiltonians are given by

H� = JX + γ (vy · l)Y − iγ (vz · l)Z, (2)

vy = (1 · · · 1︸ ︷︷ ︸
β

−1 · · · − 1︸ ︷︷ ︸
2β

1 · · · 1︸ ︷︷ ︸
β

), (3)

vz = (1,−1,−1, 1︸ ︷︷ ︸
β copies

, · · · , 1,−1,−1, 1), (4)

l = (0, · · · 1︸︷︷︸
� th entry

· · · , 0). (5)

Taking Hamiltonian (1) and utilizing Floquet theory, we
are able to transform our time-dependent problem into an
effective time-independent one in which we can find the
Floquet quasienergies, and then obtain their phase diagrams.
Constructing the corresponding piecewise version of the
driven model (2) allows for analytical calculations to find
the phase boundaries more commonly known as the excep-
tional lines, dividing unbroken (stable) and broken (unstable)
PT -symmetric regions. In the analytical approach, the time-
evolution operator G is a 2 × 2 matrix, and therefore can
always be written as exp(−iH�T ) where H� will be a 2 × 2
matrix. Then, every 2 × 2 matrix can be written as ε0I +
εF nF · σ where εα = ±εF denote the two Floquet quasiener-
gies, nF is a unit vector. Note that there is a nontrivial identity
piece ε0 = 1 but one can show that ε0(T ) = 0 or π . Simi-
larly, by comparing the components of G versus the matrix
expansion of exp(−iH�T ), one can get implicit equations for
components nF and the value of εF . The reader can refer to
[51], which has an example of such a calculation. Hence, the
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FIG. 1. Stability of doubly driven non-Hermitian Hamiltonian with β = 3. (a) Plot of max Imεα in the parameter space of ω and γ

for Hamiltonian (1) shows stable deep-blue regions punctuated by unstable regions at γ � 1 at specific frequencies. The resonance at
ω = 2J/β is clearly seen. (b) EP contours obtained from G(T ) for the piecewise constant Hamiltonian (2) also show qualitatively similar
features, particularly at small γ values. Note that stable regions at large gain-loss strengths γ � 1 are more robust for the piecewise constant
Hamiltonian, Eq. (2), than its continuous counterpart, Eq. (1).

single-period time evolution operator is given by

G(T ) =
4β∏
�=1

e−iH�T/4β, (6)

= cos (εF T )I2 − i sin (εF T )(nF · σ ). (7)

Under this parametrization, the reality of Floquet eigenval-
ues, which is also the requirement for stability, is equivalent
to |cos(4βεF τ )| � 1. The EP contours, thus, are given by
cos(4βεF τ ) = ±1.

Figure 1 shows the representative results of such analysis.
The left-hand panel, plotting the maximum imaginary part
of Floquet quasienergies max Imεα (ω, γ ) for β = 3, shows
deep blue stable regions (max Imεα = 0) at small gain-loss
strengths, punctuated by unstable, PT -symmetry broken re-
gions (max Imεα �= 0) that occur at vanishingly small γ when
the modulation frequency ω takes specific values. We also
see thin slivers of stable regions that extend to arbitrarily
large gain-loss strengths γ � 1. These results are obtained
from an 82 × 82 truncated-matrix HF (ω, βω) but remain the
same when the matrix size is doubled, thereby confirming
that the results are valid in the infinite-Floquet-matrix limit.
The right-hand panel shows the EP contours that are obtained
from the analytical constraint |cos(εF T )| = 1. We have two
main commonalities for small γ . At high frequencies, the two
models reduce down to static models with averaged values for
the drives, giving a good match for the main resonances. At
low frequencies, in the ω = 0 limit, piecewise and continu-
ous models have matching potentials. The resonances/Arnold
tongues are expected to match here, however, it is graphically
hard to produce a perfect match due to the dense, thin nature
of the Arnold tongues and numerical computation limits. On
the other hand, the structure of the EP contours at mod-
erate to large values of γ is different, although its salient
features—such as the existence of PT -symmetric, stable re-
gions at arbitrarily large values of γ —are retained by the

analytically tractable model. Similar results are obtained for
other integer values of β, and the phase diagram remains
qualitatively similar for rational βs as well.

Resonances, where unstable regions emerge, come from
the interference between the Hermitian and anti-Hermitian
drive in Eq. (1). The rate at which the Arnold tongues in Fig. 1
decay depends on how constructive/destructive the interfer-
ence of drives is. Our subsequent APT -symmetric models
have two anti-Hermitian drives and we will observe two pri-
mary resonances, one from each drive. This is a distinguishing
feature of systems with different frequency drives. It is also
important to point out that when β = 1, the time-dependent
part of the Hamiltonian (1) is proportional to (Y − iZ ). Since
the matrix (Y − iZ ) is defective, i.e., it has doubly degenerate
zero eigenvalue with only one eigenvector, the eigenvalues of
the corresponding Floquet Hamiltonian, with the static JX
term, are always real. The nontrivial phase diagram, seen in
Fig. 1 arises only when β �= 1.

B. APT -symmetric models

Next, we consider two nontrivial models that are best
thought of as APT symmetric, because they have two anti-
Hermitian drives and a constant Hermitian term. We call
them cosineX-cosineY and cosineX-sineY models. The sinu-
soidally varying Hamiltonians for the two cases are given by

Hcc(t ) = iγ {cos (ωt )X + cos (βωt )Y } + JZ, (8)

Hcs(t ) = iγ {cos (ωt )X + sin (βωt )Y } + JZ. (9)

As before, the analysis of the frequency-domain, truncated
Floquet Hamiltonian HF (ω, βω) is supplemented by ana-
lytical calculations using piecewise constant Hamiltonians
Hl = iγ {(vx · l)X + (vy · l)Y } + JZ . Here, the corresponding
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(a) (b)

(c)

FIG. 2. Stability of cosineX-cosineY APT -symmetric Hamil-
tonian, Eq. (8), with β = 3. (a) max Imεα (γ , ω) shows triangular
unstable regions near resonances ω = 2, 2/β and their subhar-
monics. (b) Corresponding EP contours from piecewise-constant
Hamiltonian show same qualitative features, including the absence
of stable regions at large gain-loss strengths. (c) Boundaries for the
two main resonances from perturbation theory.

4β-dimensional vectors vk for the cosineX-cosineY model are
given by

vx = (1 · · · 1︸ ︷︷ ︸
β

−1 · · · − 1︸ ︷︷ ︸
2β

1 · · · 1︸ ︷︷ ︸
β

), (10)

vy = (1,−1,−1, 1︸ ︷︷ ︸
β copies

, · · · , 1,−1,−1, 1), (11)

and those for the cosineX-sineY model are given by

vx = (1 · · · 1︸ ︷︷ ︸
β

−1 · · · − 1︸ ︷︷ ︸
2β

1 · · · 1︸ ︷︷ ︸
β

), (12)

vy = (1, 1,−1,−1︸ ︷︷ ︸
β copies

, · · · , 1, 1,−1,−1). (13)

Figure 2 shows representative results of such analysis for
the Hamiltonian (8) with β = 3. The left-hand panel shows
that max Imεα is zero at small γ � 1 except for the trian-
gular regions of instability (max Imεα > 0) that arise near
resonances ω = 2J , ω = 2J/β, and their lower resonances.
We also note, in contrast to the two-drive PT -symmetric
case, there are no regions of stability, with real Floquet
eigenvalues, at large γ � 1. The right-hand panel in Fig. 2
shows the corresponding analytical EP contours, thereby con-
firming the salient, common features of cosineX-cosineY
APT -symmetric Hamiltonian. We note that a perturbation
theory approach at small γ near the resonances can be used to
obtain the slopes and corrections to linearity of the triangular
unstable regions seen in Fig. 2(c) [46,47]. In particular, we
compare the two main resonances ω = 2J from the effective
Hamiltonian: (

J − γ 2

32J
iγ
2

iγ
2 ω − J + γ 2

32J

)
, (14)

(a) (b)

FIG. 3. Stability of cosineX-sineY Hamiltonian, Eq. (9), with
β = 3. (a) max Imεα (γ , ω) shows a large triangular unstable region
near ω = 2 and a small sliver near ω = 2/β, along with their sub-
harmonics. (b) Corresponding EP contours from piecewise-constant
Hamiltonian show same qualitative features. The clustering of EP
contours at low frequencies ω � 1 to the static threshold γEP = 1 is
also clear.

and ω = 2J/β from(
J + 3ω − 11γ 2

32J − γ

2
γ

2 6ω − J + 11γ 2

32J

)
. (15)

Results for the cosineX-sineY model, Eq. (9), are shown in
Fig. 3. As in the previous cases, the stable regions, indicated
by max Imεα = 0 are seen at small gain-loss strengths except
in the vicinity of primary resonance at ω = 2J . The key fea-
tures of the stability diagram are shared by the EP contours
obtained from the piecewise-constant Hamiltonian model. In
addition to the large, stable region at high frequencies and
moderate gain-loss strengths, the cosineX-sineY model also
includes clustering of the low-frequency domain EP contours
to the static threshold value of γPT = J .

III. BERRY PHASES UNDER NON-HERMITIAN,
CYCLIC DYNAMICS

In Hermitian systems, when the single-drive Rabi problem
is generalized to two drives, the system Hamiltonian traces out
a closed, two-dimensional loop in the parameter space. Berry
phases result from the adiabatic evolution of eigenstates of
the Hamiltonian on a closed cycle in the parameter space. The
standard Berry-phase expression for Hermitian Hamiltonians
is given by

θBα = i
∫ T

0
ds〈ψα (s)|∂s|ψα (s)〉, (16)

where the Hamiltonian H (s) = H (s + T ) has eigenstates
|ψα (s)〉 with eigenvalues εα (s), and Eq. (16) is valid as long
as the time T is much longer than inverse of the smallest
energy gap min |εm(s) − εn(s)| [59–61]. Due to the unitary
evolution generated by H , the eigenstates remain normalized,
∂s〈ψα (s)|ψα (s)〉 = 0, and therefore the Berry phase defined in
Eq. (16) is a real number.

One interesting feature of doubly driven non-Hermitian,
Floquet models compared with single-driven ones is that we
are now able to investigate the analog of Berry phases under
cyclic evolution. Due to left and right eigenvectors that are
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Real and imaginary parts of the complex Berry phase, Eq. (17), for the non-Hermitian PT -symmetric system (18). Er denotes the
real eigenvalues region, Ea is alternating real-imaginary eigenvalues region and HSA is the abbreviation for “half the solid angle.” (a)–(c) Top
panel shows results for β = 1, i.e., same frequency drives. Blue, red and orange, purple are the real and imaginary parts of the Berry phases
from the two different initial eigenstates of the system. Black dash-dotted denote half the solid angle subtended by the closed curve evolved
by the eigenstates. Here, γc = ±1 denotes the threshold above which the instantaneous eigenvalues become complex for some range of
s ∼ T/4, 3T/4. (d)–(f) Bottom panel shows corresponding results for β = 3.

not related by Hermitian conjugation, nonorthogonality of
the (left) eigenstates of H (s), the presence of EPs where the
minimum energy gap vanishes, and the chiral mode switch
that such systems undergo during cyclic evolution [50,52],
the notion of Berry phases can be defined in several different
ways. We use the biorthogonality approach, where the Berry
phase for an eigenstate is defined by

θBα = i
∫ T

0
ds〈ψLα (s)|∂s|ψRα (s)〉, (17)

where |ψLα〉 and |ψRα〉 denote the biorthonormalized left and
right eigenstates of the Hamiltonian H (s) with eigenvalue
εα [63–66]. In standard Hermitian quantum mechanics, we
have a complete set of orthonormal eigenstates to give a well-
defined Hilbert space. In the non-Hermitian scenario, because
we do not have an orthogonal set of eigenstates, introducing
biorthogonality creates a set of biorthogonal left and right
eigenstates for its Hilbert and dual space, replacing orthog-
onality. Since the two eigenstates are not related by Hermitian
conjugation, 〈ψL| �= |ψR〉†, the quantity defined by Eq. (17) is
a complex number, in general. The real part remains the Berry
phase, and the imaginary part is the dissipative/growth effect
from the non-Hermiticity of our models. Hence, we define
the regions of real and complex Berry phases as stable and
unstable, respectively. An example of realizing complex Berry
phases has been shown in [65] with optical waveguides.

First, we consider the PT -symmetric, cosineY-sineZ
model with the Hamiltonian

H (s) = JX + γ

[
cos

(
2πs

T

)
Y + i sin

(
2πβs

T

)
Z

]
. (18)

As previously, we use J = 1 as the relevant energy scale,
and therefore γ ≡ γ /J denotes the dimensionless strength
of the sinusoidal modulation. The top panel in Fig. 4 shows
the dependence of the complex Berry phase obtained from
Eq. (17) as a function of γ at β = 1. Note that the in-
stantaneous eigenvalues of H (s), Eq. (18), are given by
±

√
J2 + γ 2 cos(4πs/T ), and are therefore purely real when

|γ |/J � 1. In contrast, for |γ | > J , the instantaneous eigen-
values become complex-conjugate pairs near s = T/4, 3T/4.
The bottom panel in Fig. 4 shows the corresponding results for
the complex Berry phase when β = 3. We see that although
the behavior at large |γ /J| � 1 is the same in both double-
drive cases, details at moderate values of |γ /J| ∼ O(1) are
different. Furthermore, with the same frequencies, we can
see that the real part of Berry phase tends to the value of
half the solid angle very rapidly. For different frequencies, it
never reaches the value of half the solid angle. Comparing
the imaginary parts for the same frequencies, we observe they
tend to zero in the real eigenvalues region, but oscillate for
different frequencies.

013167-5



CEN, JOGLEKAR, AND SAXENA PHYSICAL REVIEW RESEARCH 6, 013167 (2024)

(a) (b)

(c) (d)

FIG. 5. Real and imaginary parts of the complex Berry phases
θBα for the APT -symmetric Hamiltonian (19). Er, Ea, HSA are as in
Fig. 4, and Ei denote the imaginary eigenvalues region. (a), (b) Top
panel shows results for β = 1, i.e., same frequency drives. Blue, red
and orange, purple are the real and imaginary parts of the Berry
phases from the two different initial eigenstates of the system. (c),
(d) Bottom panel shows results for β = 3. Here, γc, γc1, γc2 denote
the transition of eigenvalue regions between real (blue region), pure
imaginary (pink region), and alternating real and pure imaginary
(purple region) cases.

Lastly, we consider an APT -symmetric model with two
anti-Hermitian drives,

H (s) = iγ

[
cos

(
2πs

T

)
X + sin

(
2πβs

T

)
Y

]
+ JZ. (19)

When the drives are of the same frequency, β = 1, the in-
stantaneous spectrum of Eq. (19) is real for |γ |/J � 1 while
at larger drive strengths, |γ |/J > 1 the eigenvalues are com-
plex conjugates. The top panel in Fig. 5 shows the real and
imaginary parts of the complex Berry phase across the thresh-
old γc = ±1 when β = 1. In this case, the anti-Hermitian
drives sweep a circle and therefore we find that the real part
of the Berry phase is fixed at ±π when |γ |/J > 1. On the
other hand, for smaller drive strengths, the imaginary part of
Eq. (17) is zero. The bottom panel in Fig. 5 shows corre-
sponding results when β = 3. Once again, we see the common
features where ReθBα = ±π when the instantaneous eigenval-
ues are complex conjugates, whereas ImθBα = 0 when they
are purely real. In addition, different frequencies introduce
a new eigenvalue region, Ea, of alternating real-imaginary
values. Here, Berry phases are again complex conjugates, with
more jagged changes.

IV. DISCUSSION

In this paper, we have analyzed the stability of several
PT and APT -symmetric, non-Hermitian Hamiltonians with
multiple harmonics. We determined the stable and unstable
regions using frequency-domain Floquet Hamiltonians for
sinusoidal variations, and complemented the analysis by an-
alytical determination of the EP contours by using piecewise
constant Hamiltonians.

Compared with single harmonic models, we observe richer
dynamics and have more control over the regions of broken
PT symmetry. There are in total only three arrangements
of drives with nontrivial Floquet quasienergies. Although the
phase diagrams of Floquet quasienergies obtained have a lot of
similarities with single driving, there are some novel proper-
ties. A particular property that emerges when we have driving
with different frequencies, is the additional observation of
the interlacing of wisps or resonances of the two different
harmonics. When we introduce a Hermitian drive into an
anti-Hermitian driven system, wisps from the phase diagram
do not merge at finite driving strength, γ . Furthermore, by
studying the Berry phases arising from adiabatic cyclic evolu-
tion, we find complex structures with non-Hermitian models.
Non-Hermiticity brings about an imaginary part to the Berry
phases, and in different regions of the Hamiltonian’s instanta-
neous eigenvalues, the behavior of the complex Berry phase
for PT -symmetric and APT -symmetric models is markedly
different.

We can classify our models into two categories. All our
models have a static Hermitian term and we complement it
either with two anti-Hermitian or one Hermitian plus one
anti-Hermitian periodic driving. The latter is experimentally
more easily implemented, particularly in the semiclassical or
quantum platforms where both gain-loss Z drive and the Her-
mitian Y drive are tunable [31,32,35,49,50,52]. The former,
corresponding to gain-loss Y and Z drives, is challenging: the
first one corresponds to the Hatano-Nelson model [67] while
the second one corresponds to the “standard” gain-loss dimer
case. However, non-Hermitian Floquet engineering offers a
way to implement both Y and Z anti-Hermitian drives [51].

A straightforward extension of this work entails replacing
the Pauli operators by higher-dimensional representations of
SU(2) [68,69]. In the static and single-drive Floquet problems,
this replacement does not qualitatively change the Floquet
results, except that the degree of EPs—the number of eigen-
modes that coalesce together at the degeneracy—is given
by the dimensionality of the representation. Other possible
extensions include irrational values of β where the total
Hamiltonian H (t ) is only quasiperiodic.
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