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Mechanosensitive bonds induced complex cell motility patterns
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The one-dimensional crawling movement of a cell is considered in this theoretical study. Our active gel model
shows that a moving cell with weakly mechanosensitive adhesion complexes tends to move at constant velocity.
As the mechanosensitivity of the adhesion complexes increases, a cell with sufficiently strong myosin contractile
or high actin polymerization rate can exhibit stick-slip motion. Finally, a cell with highly mechanosensitive
adhesion complexes exhibits periodic back-and-forth migration. A simplified model that assumes that the
cell crawling dynamics are controlled by the evolution of the myosin density dipole and the asymmetry of
adhesion complex distribution captures the motility behaviors of crawling cells qualitatively. It suggests that
complex cell crawling behaviors could result from the interplay between the distribution of contractile force and
mechanosensitive bonds.
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I. INTRODUCTION

The crawling motion of eukaryotic cells is ubiquitous
in biology as it plays important roles in processes such as
embryogenesis, wound healing, cancer metastasis, and im-
munology [1]. Common if not universal features of a crawling
cell include myosin motors distributed mainly behind the cen-
ter, dominant actin polymerization in the leading edge, and
higher density of adhesion complexes in the leading region
[2]. Such polarized molecular distribution enables protrusion
in the leading edge due to actin polymerization, treadmilling
of the actomyosin cytoskeleton due to contractility, and trac-
tion force pulling the cell body. These features are included in
many theoretical models for crawling cells [3].

Besides nonmotile resting and steady-moving behaviors,
cells crawling along a one-dimensional track either on a
substrate or in a three-dimensional environment also exhibit
moving patterns that are nonstationary in time. For example,
stick-slip crawling motion due to slip between integrin and
the extracellular matrix in focal adhesions under the con-
tractility provided by myosin II has been observed in human
osteosarcoma cells [4]. Periodic back-and-forth migration has
been observed in crawling zyxin-depleted cells in a collagen
matrix [5] and dendritic cells crawling along microfabricated
channels [6].

Several theoretical models were proposed to explain some
deterministic complex moving patterns. A model with the
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mechanochemical couplings of actin promotor, actin polymer-
ization, and myosin kinetics was shown to produce periodic
back-and-forth migration [7]. On the other hand, a mechanical
model emphasizing the interplay between the mechanosensi-
tive bonds and membrane tension exhibited stick-slip motion
even for slip bonds [8]. Interestingly, it has also been
shown that stick-slip can result from the interplay between
mechanosensitive bonds, contractility, and a force that re-
stores a cell’s preferred length [9].

From the aforementioned experimental and theoretical
studies, it is natural to ask whether all of the one-dimensional
deterministic complex cell moving patterns can be found in
one theoretical model that contains only the essential mechan-
ical components related to cell crawling. Since some of the
complex cell moving patterns, for example, back-and-forth
migration, involve changes in the cell polarity, an important
goal of this model is to generate such cell polarity changes
autonomously. Furthermore, because the relevant length and
time scales of the problems under consideration are much
longer than those in the molecular scale, a hydrodynamic
model with only a few slow variables is preferred, and the
goal is to understand what cooperative effects help to generate
those complex cell moving patterns.

In this article, we present a theoretical study to show that
the coupling between mechanosensitive adhesion complexes
and myosin contractility is sufficient to generate deterministic
complex cell crawling behaviors, including stick-slip, periodic
back-and-forth, and other complex moving patterns. Since
our approach is hydrodynamical, molecular details are not
important in the two models presented in this article. The
most essential ingredients are adhesion complexes that appear
close to the cell ends, active contractile cytoplasm that con-
tains myosin motors, and actin polymerization at cell ends.
The two models we construct reproduce the following key
properties related to these components. For a cell at rest, the
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adhesion complexes aggregating close to the cell ends, the
myosin motors aggregating close to the center of the cell, and
actin polymerization at cell ends are all symmetric. When a
cell moves, this symmetry is broken as adhesion complexes
aggregate close to the leading cell end, myosin motors aggre-
gate close to the trailing end, and actin polymerization in the
leading edge dominates.

In the first model, which we call the active gel model, the
association and dissociation of the adhesion complexes are
allowed to take place anywhere in the cell, and the corre-
sponding rates are chosen to be of the simplest forms that
make the spatial distribution of adhesion complexes agree
qualitatively with experimental observations. In the second
model, which we call the simplified model, the adhesion
complexes are allowed to appear close to the cell ends only,
and the evolution of the number of adhesion complexes is
more general than what we chose in the active gel model.
In both models, we find that the distributions of adhesion
complexes and myosin motors and the polarization of actin
polymerization agree qualitatively with experimental obser-
vations. Furthermore, complex cell crawling behaviors are
found, and the mechanism for autonomous cell polarity rever-
sal is clarified. Our results show that, as long as myosin motors
are pulled toward the cell end with more adhesion complexes
as a result of contractility, and the number of adhesion com-
plexes near the cell end that is more distant from the peak
position of myosin density increases sufficiently rapidly due
to mechanosensitivity, motility behaviors that are periodic in
time can be found.

This article is organized in the following way. In Sec. II, we
present our active gel model with mechanosensitive adhesion
complexes. We show that by varying myosin contractil-
ity, actin polymerization rate, and mechanosensitivity of the
adhesion complexes, this model can exhibit complex motil-
ity behaviors other than rest and constant-velocity moving
states. A moving cell with weakly mechanosensitive adhe-
sion complexes exhibits constant velocity motion, while a
cell with highly mechanosensitive adhesion complexes ex-
hibits periodic back-and-forth movement. Stick-slip and other
complex motility patterns can be observed by increasing the
mechanosensitivity of the adhesion complexes for a moving
cell with high contractility or actin polymerization rate.

To understand the physical mechanisms that produce these
complex motility patterns, a simplified model is constructed
in Sec. III. This model shows that, in general, the dynamics of
a slow-moving cell can be determined by the dipole moment
of myosin density yc, the total number of adhesion complexes
N , and the difference in the number of adhesion complexes
near the two cell ends �N . It shows that the coupled dynamics
of these physical quantities can produce the complex motility
behaviors found in our active gel model. The motility phase
diagram of the simplified model is qualitatively similar to
that of the active gel model. This suggests that the complex
motility behaviors can result from the interplay of the dynam-
ical organization of the mechanosensitive adhesions and the
myosin motors.

In Sec. IV, we discuss the relation between our findings and
existing experimental moving cell studies. Possible extensions
of our model and future works are also discussed. Detailed
discussions on modeling the mechanosensitivity of adhesion

complexes, the numerical methods and choices of parameters,
and the construction of the simplified model are presented in
Appendices.

II. ACTIVE GEL MODEL

In this model, the cytoplasm of the cell is treated as an
active gel [10,11] enclosed by the cell membrane, the adhe-
sion complexes are treated as reversible bonds with specific
binding-unbinding rates, and actin polymerization is assumed
to happen only at the cell ends. The forces acting on the
cytoplasm include the stress in the gel, the drag force from
the substrate, and the force due to the adhesion complexes.

Our model only considers the cell’s moving direction. The
stress in the cytoplasm obeys the constitutive equation σ =
η∂v/∂x + χc, where η is the effective one-dimensional vis-
cosity of the cytoplasm, v is the flow field of the gel, χ is the
strength of contractility provided by myosin motors (χ > 0),
and c is the concentration of myosin attached to the actin
network. For simplicity, compressibility is not included [11].
Thus, pressure does not appear in the constitutive relation. The
cytoplasm also experiences drag forces from the substrate and
the adhesion complexes. On the molecular scale, an adhesion
complex sticking to the extracellular substrate is attached
to actin bundles by specific proteins, and it experiences a
contractile force of myosin through the actin bundles [12].
However, actin bundles do not appear explicitly in our active
gel model, and the effect of myosin motors is described by
contractile stress in the gel. Therefore, the intracellular force
on the adhesion complexes at this level of description is mod-
eled as an effective drag between the moving gel and the fixed
adhesion complexes. This leads to a total drag force density
that is the sum of the drag between the gel and the adhesion
complexes, and the drag between the gel and the substrate, i.e.,
Fdrag = −αnbv − ξv. Here nb is the density of the adhesion
complexes, α is a constant that characterizes the drag from
the adhesion complexes, and ξ is the drag coefficient from the
drag of the substrate. Putting the force density due to the stress
gradient and the force density from drag together, the resulting
force balance equation is

η
∂2v

∂x2
− (αnb + ξ )v = −χ

∂c

∂x
. (1)

Myosin motors attached to actin filaments move with the
cytoplasm, while those detached from actin filaments diffuse
freely. At timescales longer than that for myosin attach-
ment/detachment, the density of the motors can be effectively
described by an advection-diffusion equation [13]

∂c

∂t
= D

∂2c

∂x2
− ∂ (cv)

∂x
, (2)

where D is the effective diffusion coefficient of myosin mo-
tors. Note that c denotes the total local myosin density in our
model. Therefore, the above equation contains the contribu-
tion from the free diffusing motors and the motion of myosin
motors bound to the actin filaments. This also indicates that
the coefficient χ is the contractile stress exerted by a motor av-
eraged over timescales large compared to the myosin turnover
time.
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On the molecular scale, adhesion complexes are molecular
aggregates composed of linkers (e.g., integrins) that provide
anchorage to the extracellular matrix and other associated pro-
teins [14]. Adhesion complexes are attached to actin bundles
and pulled by the myosin motors on the actin bundles. It
is known experimentally that an adhesion complex matures
when a proper pulling force is applied, and dissociates when
the pulling force vanishes [12]. In Appendix A, we present an
analysis of the force dependence of the chemical potential of
an adhesion complex from the thermodynamic point of view
[12,14,15]. This analysis shows that the chemical potential
of an adhesion complex depends on the total force (which
is proportional to local gel flow v) and the tension (which
is proportional to ∂xv) acting on it. This means that if the
association/dissociation of an adhesion complex is a passive
process, the chemical potential of an adhesion complex should
be a nonmonotonic function of v, and it should decrease as
∂xv increases. On the other hand, besides being mechanosen-
sitive, the growth of adhesion complexes is also regulated by
molecules not included in our active gel model [16]. Therefore
a model including all these features will contain quite a lot of
details. Another possible approach is to compose a minimal
model inspired by the above information and validate such a
minimal model by comparing the resulting spatial distribution
of adhesion complexes with the experimental observations.
This is the approach taken by our active gel model.

Since the chemical potential of an adhesion complex de-
pends on v and ∂xv, we assume that the dissociation rate of
an adhesion complex is also a function of v and ∂xv. In a
previous study, we assumed that the association rate of an
adhesion complex is a constant, and we modeled the dissocia-
tion rate as functions of v only [17]. The resulting distribution
of adhesion complexes did not resemble the experimental
observations. In this work, we assume the dissociation rate
of an adhesion complex to be a decreasing function of ∂xv,
and the association rate to be a constant. We show that this
model produces spatial distributions of adhesion complexes
qualitatively agreeing with experimental observation. Since
the effect of adhesion complexes on cell movement only ap-
pears in the αnbv term of the force balance Eq. (1), our model
is sufficient to study how mechanosensitive bonds affect the
motility behaviors of a cell. In our model, once an adhesion
complex is formed, it can be stretched by the cytoplasmic
flow, but it does not flow with it [18]. Furthermore, we neglect
the force dependence of the association rate but allow the
stretching of cytoplasmic flow to increase the lifetime of an
adhesion complex. The resulting evolution for nb is

∂nb

∂t
= −k0 e−k1∂xvnb + kon, (3)

where kon is a constant. k0 is the dissociation rate at ∂xv =
0, and k1 tells us how the dissociation rate is affected by the
stretching effect of the cytoplasmic flow.

Besides being regulated by the force on the cell ends
against actin polymerizations, actin polymerization at the
cell ends also depends on the distribution of actin activators
[19–22]. In the presence of environmental cues, a gradient
of actin activator concentration within the cell is established,
and actin polymerization is polarized due to this concentra-
tion gradient. In the absence of such external influence, the

cell can nevertheless polarize itself by spontaneous symmetry
breaking. Once the cell starts to move, the actin activators are
redistributed in the cell such that the net actin polymerization
rate at the cell ends becomes asymmetric. In our model, we
assume fast redistribution of actin activators in a moving cell
such that the net actin polymerization velocity v±

p at the ± end
of the cell is affected by the motion of the cell immediately.
Furthermore, v±

p also depends on the length of the cell because
the cell has a restoring force to prevent it from collapsing
under contractility or being stretched unlimitedly by actin
polymerization [9,23,24]:

v±
p = 2 e−v(1)

p (L−L0 )

1 + exp
[ ∓ dl±

dt /v
(2)
p

]v(0)
p , (4)

where v+
p (v−

p ) is the net rate of extension due to actin poly-
merization at the cell end located at x = l+ (l−), and L =
l+ − l− is the length of the cell. v(0)

p represents the base poly-
merization velocity; v(1)

p comes from the effect of free energy
cost for polymerization when the cell length is different from
its natural length L0; it slows down actin polymerization when
L is large because of the force that tries to bring L back to L0

(notice that the dimension of v(1)
p is inverse length). The term

with v(2)
p makes the net polymerization rate in a moving cell

higher in the leading end and lower in the trailing end.
The numerical solution of our model shows that both the

mechanosensitivity of adhesion complexes and actin poly-
merization affect the possible complex cell motility patterns.
Furthermore, the analysis in our simplified mode in Sec. III
suggests that the main physical picture of our study is re-
lated to the symmetry properties of the dynamics of adhesion
complexes and actin polymerization. Thus, the details of the
association/dissociation rates of the adhesion complexes and
the polymerization rate in our active gel model are unimpor-
tant.

The evolution of cell-end positions is determined by the
velocity of the gel and actin polymerization,

dl±
dt

= v± ± v±
p , (5)

where v+ (v−) is the velocity of cytoplasm at the + (−) end.
Experimentally, it has been shown that a cell tends to

restore its length L to L0 [23]. We model this effect by the
following force balance condition at cell ends:

σ± =
[
χc + η

∂v

∂x

]
l±

= −γ (L − L0). (6)

Here, γ is a constant associated with the restoring force that
brings the cell length L to L0.

Because no myosin motors can leave or enter the cell, the
total flux of myosin motors across a cell end should vanish;
i.e.,

[cv]l± − [c]l±
dl±
dt

− D

[
∂c

∂x

]
l±

= 0. (7)

The first two terms are the advective flux relative to the mov-
ing cell end, and the third term is the diffusive flux at the cell
end.

We introduce effective drag coefficient ξeff = ξ + αkon/k0

and choose l0 = √
η/ξeff as the unit length, t0 = η/(ξeffD) as
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FIG. 1. Normalized densities of myosin motors and adhesion
complexes for a cell (a) at rest and (b) undergoing constant veloc-
ity motion toward the +x direction. The parameters are K = 100,
ξ̃ = 1/3, kon = 6, k0 = 3, v(0)

p = 0.2, v(1)
p = 0.5, and v(2)

p = 2, and
(a) k1 = 0.25, χ̃ = 16, (b) k1 = 0.1, χ̃ = 16.

the unit time, σ0 = ξeffD as the unit stress, n0 = ξ/α as the
unit density for adhesion complexes, and c0 = M/

√
η/ξeff as

the unit myosin concentration, where M is the total number of
myosin motors in the cell. Therefore the dimensionless drag
coefficient ξ̃ = ξ/(ξ + αkon/k0), contractility χ̃ = c0χ/σ0,
and cell elastic constant K = γ l0/σ0 are used in the following
discussion.

Numerical solutions of the active gel model. In general, our
active gel model cannot be solved analytically. We numeri-
cally integrate the equations of motion by a finite-difference
method. The details of our numerical methods and our choice
of parameters are presented in Appendix B. For simplicity, we
drop all the overbars of the dimensionless rate constants in the
following. The numerical solutions show that, by varying the
mechanosensitivity k1 of the adhesion complexes, the strength
of contractility, or the actin polymerization velocity, a cell can
be at rest, moving with constant velocity, performing stick-
slip, back-and-forth, or other periodic complex patterns.

Before discussing the motility behaviors of the cell, let us
first check whether our active gel model produces qualita-
tively reasonable myosin and adhesion complex densities in
rest and moving cells. Figure 1 shows that when the cell is
at rest, myosin motor distribution is symmetric around the

center of the cell, and the number of adhesion complexes
near both cell ends is the same; for a cell moving at constant
velocity, myosin motors aggregate behind the center of the
cell and adhesion complexes are mainly close to the leading
end. Indeed, the evolution Eq. (3) of the adhesion complexes
and the net actin polymerization at the cell ends Eq. (4) in our
model leads to reasonable distributions for the key molecules
in a cell. Notice that from the equations of motion and the
boundary conditions, in the absence of actin polymerization,
i.e., when v(0)

p = 0, nb and c are constants when the cell is at
rest. This is also found in our numerical solutions (data not
shown). Since such distributions of adhesion complexes and
myosin motors do not resemble real cells, in this article we
only consider cells with actin polymerization (i.e., v(0)

p �= 0).
Figure 2 shows the motility phase diagram for a cell with

parameters chosen to be compatible with typical cells. The
following motility behaviors are found: rest, constant velocity,
unidirectional stick-slip movement, back-and-forth motion
with stick-slip, and periodic back-and-forth movement. For
a cell with weakly mechanosensitive adhesion complexes,
as contractility increases, a cell at rest starts to move at
constant velocity. As the adhesion complexes become more
mechanosensitive, a moving cell shows other complex motil-
ity behaviors: for example, stick-slip motion and (at high
contractivity) back-and-forth motion with stick-slip. Finally,
the cell performs periodic back-and-forth motion when the
adhesion complexes are highly mechanosensitive.

The distributions of myosin motors and adhesion com-
plexes for a cell that undergoes stick-slip and periodic
back-and-forth movements are shown in Fig. 3. It is clear
that even for these complex moving patterns, when the cell
has a definite moving direction, myosin motors aggregate in
a regime behind the center of the cell, and more adhesion
complexes form near the leading end than the trailing end.

Figure 4 shows the phase diagram in the plane spanned
by v(0)

p and k1. From this figure, we can see how the actin
polymerization rate affects the motility behavior of the cell.
The moving state of a cell with small k1 is that with a constant
velocity, while the moving state of a cell with large k1 is

FIG. 2. (a) Motility phase diagram for a cell with K = 100, ξ̃ = 1/3, kon = 6, k0 = 3, v(0)
p = 0.2, v(1)

p = 0.5, and v(2)
p = 2. Rest state

(squares), constant-velocity motion (diamonds), stick-slip movement (triangles), back-and-forth with stick-slip motion (empty circle), and
periodic back-and-forth motion (filled circles) are found. (b) Trajectories of the cell ends for χ̃ = 18, k1 = 0.05; the cell performs constant
velocity motion. (c) Trajectories of the cell ends for χ̃ = 17.5, k1 = 0.1; the cell performs stick-slip motion. (d) Trajectories of the cell ends
for χ̃ = 19, k1 = 0.15; the cell performs complex motility pattern which is periodic back-and-forth with stick-slip. (e) Trajectories of the cell
ends for χ̃ = 18, k1 = 0.25; the cell performs periodic back-and-forth motion.
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FIG. 3. Distribution of adhesion complexes and myosin mo-
tors for K = 100, ξ̃ = 1/3, kon = 6, k0 = 3, v(0)

p = 0.2, v(1)
p = 0.5,

v(2)
p = 2, and (a), (b) k1 = 0.12, χ̃ = 18; (c), (d) k1 = 0.25, χ̃ = 17.

periodic back-and-forth. This agrees with the phase diagram
in Fig. 2. Furthermore, there are several complex motility pat-
terns between these two states, including stick-slip motion and
behaviors that can be seen as combinations of back-and-forth
and stick-slip movement. The trajectories for stick-slip move-
ment and periodic back-and-forth movement with stick-slip
are similar to Figs. 2(c) and 2(d). The trajectories for zigzag
movement with stick-slip and double-period back-and-forth
motion are shown in Figs. 4(b) and 4(c). These complex motil-
ity patterns are found in the region where v(0)

p is large. Note
that Fig. 2(a) shows that complex motility patterns are found
in regions with strong contractility. These results suggest that
as v(0)

p or χ̃ increase, the cell becomes more polarized and it
is less easy to reverse its moving direction.

III. SIMPLIFIED MODEL

To obtain an intuitive physical picture of the complex
motility behaviors, especially the origin of the periodic back-
and-forth movement, it is helpful to describe the dynamics
of the system in terms of a system of ordinary differential
equations [25]. To achieve this, a simplified model is con-
structed. In this model, the adhesion complexes are assumed
to appear close to the cell ends only, and a cell close to the
rest/moving transition is considered such that the myosin mo-
tors are located close to the center of the cell. This simplified
model allows the dynamics of the cell to be described by a

FIG. 4. (a) Phase diagram for the motility behavior in the v(0)
p -k1

plane. χ̃ = 14, v(1)
p = 0.5, v(2)

p = 0.2. The cells show the follow-
ing motility behaviors: constant velocity motion (green diamonds),
periodic back-and-forth movement (blue circles), stick-slip move-
ment (orange triangles), periodic back-and-forth movement with
stick-slip (empty gray circles), zigzag movement with stick-slip
(empty purple diamonds), and double-period back-and-forth motion
(brown squares). (b) Zigzag with stick-slip, and (c) double-period
back-and-forth movement from the active gel model with K = 100,
χ̃ = 14, kon = 6.0, k0 = 3.0, v(1)

p = 0.5, v(2)
p = 0.2. In (a), v(0)

p = 1.2,
k1 = 0.9; in (b), v(0)

p = 1.1, k1 = 0.9. The blue curves represent the
trajectories of the cell ends.

few degrees of freedom, and it becomes possible to study
the physical mechanism of autonomous cell polarity change
analytically. In this section, we present the basic ideas for
constructing our simplified model. Details of the derivations
are presented in Appendix C.

Let Nf (Nb) be the total number of adhesion complexes
close to l+ (l−); it is convenient to introduce N = Nf + Nb

and �N = Nf − Nb as �N describes the spatial polarization
of adhesion complex distribution. With this simplification, the
simplified model allows more general forms of mechanosen-
sitivity for the adhesion complexes than our active gel model.
Furthermore, the flow field in the cell can be solved as a
function of the distribution of myosin motors [Eq. (C6)].
By substituting the flow field into the advection term of
the myosin evolution equation, the evolution equation for
myosin density becomes a nonlocal integral-differential equa-
tion [Eq. (C7)]. According to the discussion in the previous
section, the actin polymerization rates are functions of the
velocity of the cell and the length of the cell; i.e., v±

p =
v±

p (dl±dt, L). Thus the equation for Vcell [Eq. (C8)] and the
evolution equation for L [Eq. (C9)] can be obtained from v±

p
and the flow velocity at l±.

Further simplification can be made by focusing on slow-
moving cells, in which the maximum myosin motor density
is close to the center of the cell. In this regime, the stress and
flow in the cell can be expressed in terms of the moments of
the myosin density. For simplicity, we introduce the monopole
Ctot and dipole yc of the myosin motor distribution; higher
moments are approximated by powers of yc.

To express the velocity of the cell Vcell and the evolution
of cell length dL/dt in terms of variables like Ctot, yc, N ,
and �N , the flow velocity at l± is expressed in terms of N ,
�N , and yc. Let v±

p ≡ vp ± �vp/2, where �vp (vp) is the
contribution to v±

p that is odd (even) under spatial inversion;
Vcell and dL/dt become functions of vp, �vp, N , L, �N , and
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yc, as shown in Eqs. (C12) and (C14). Since vp and �vp are
functions of L, dL/dt , and Vcell, our remaining task is to derive
the evolution equations for N , �N , and yc.

Unlike our active gel model, in our simplified model, we do
not assume any specific force dependencies of the evolution
equations for Nf (Nb). Using the assumption that the adhesion
complexes are located near the cell ends and the evolutions
of Nf , Nb are functions of |v| and ∂xv, for a slow-moving
cell, symmetry analysis discussed in Appendix C 5 leads to
the following evolution equations of N and �N ,

dN

dt
= (

2k(0)
on − k(0)

off N
) − k(1)

off yc �N − k(�)
off �N2,

d�N

dt
= −(

k(0)
off + k(�)

on + k(�)
off N

)
�N − (−k(1)

on + k(1)
off N

)
yc.

(8)

In principle, the coefficients in the above equations depend
on N and L. The yc-dependent term in d�N/dt indicates that
to agree with the experimental observations of adherent cells,
one should have k(1)

on + k(1)
off N > 0 such that the number of

adhesion complexes at the cell end farther from (closer to) the
center of the myosin distribution tends to increase (decrease).

The evolution equation for yc for a slow-moving cell can
be derived from the evolution equation of myosin density.
In principle, the evolution of the moments of the myosin
distribution should depend on higher moments; the resulting
coupled equations can only be solved by truncating at some
order. In our simplified model, the mth moment of the myosin
distribution is approximated by ym

c , and the resulting evolution
of yc takes the form

dyc

dt
= −


[−(χ̃ − χ̃c)yc − a�N�N + a3y3
c

]
. (9)

The coefficients 
, χ̃c, a�N , and a3 are positive, and they de-
pend on L and N . This equation tells us that under sufficiently
strong contractility, yc becomes nonzero as the distribution of
myosin motors is spontaneously polarized. Furthermore, the
term that contains �N tends to drive myosin motors toward
the cell end with more adhesion complexes. One can imagine
this as an attraction that adhesion complexes at the cell ends
exert on the myosin motors.

The simplified model suggests that the dynamics of slow-
moving cells with mechanosensitive adhesion complexes can
be described by a few variables. Although the final system
of equations is derived by assuming the cytoplasm to be a
contractile gel, the simplified model can also be regarded
as a general model for slow-moving cells because it can be
constructed from symmetry considerations alone.

Analytical study of the bifurcation from a cell at rest, i.e.,
yc = 0, �N = 0, to a cell in motion for the simplified model
can be carried out in the limit of large K , i.e., L ≈ L0. In this
limit, all the coefficients in Eqs. (8) and (9) depend only on
N . Since N is not essential in determining the polarity of the
cell, we neglect this N dependence and treat all coefficients as
constants. As one can see from Eq. (C26), solutions with time-
independent nonzero �N and yc correspond to a cell moving
at a constant velocity; solutions with time-periodic �N and
yc are stick-slip (periodic back-and-forth) movement if the
time averages of �N and yc are nonzero (zero). The linear

FIG. 5. Phase diagram for the motility behavior predicted by the
simplified model with k�

off = 0. The following motility patterns are
found: a cell at rest (red squares), a cell moving at constant velocity
(green diamonds), a cell performing stick-slip movement (orange
triangles), a cell performing back-and-forth movement with stick-slip
(at k(1)

off /k(0)
off slightly greater than those orange triangles, so that we

cannot show this), and a cell performing periodic back-and-forth
movement (blue circles). The boundary between the rest and constant
velocity movement is Eq. (C29). The boundary between the rest and
periodic back-and-forth movement states is Eq. (C31).

stability analysis of the rest state shows that as the contractility
increases, a cell at rest starts to move as the system undergoes
a bifurcation, and the moving state is the constant-velocity
state when k(1)

off is small; when k(1)
off is sufficiently large, the

bifurcation leads to a periodic back-and-forth moving state.
Figure 5 shows that the model Eqs. (8) and (9) with

constant coefficients exhibit a motility phase diagram qual-
itatively similar to the numerical solutions of our active gel
model. The minor differences come from those simplifica-
tions made when constructing the simplified model, as, for
example, assuming a constant cell length should affect the
detailed shape of the phase boundaries. Furthermore, how
the symmetry properties and the couplings of the key driv-
ing variables lead to the observed cell motion can be seen
from the simplified model. For example, from Eq. (8), �N
tends to increase when yc is sufficiently negative, and Eq. (9)
states that yc tends to move toward the cell end with more
adhesion complexes. Therefore, at sufficiently large k(1)

off , the
number of adhesion complexes in the leading end of a moving
cell increases sufficiently fast such that at some point, the
myosins are pulled to the other half of the cell, reversing
the sign of yc, then reversing the sign of �N , and eventually
the direction of cell motion is reversed. This is how a cell
with highly mechanosensitive adhesion complexes exhibits
periodic back-and-forth movement, as illustrated in Fig. 6(a).
On the other hand, as shown in Fig. 6(b), yc(t ) and �N (t ) in
a cell that undergoes stick-slip movement have nonzero time-
average values, and they oscillate with similar phase relations
as a cell undergoes periodic back-and-forth movement. This
is because the mechanosensitivity of the adhesion complexes
is sufficiently strong to induce an oscillation of �N and yc,
but not sufficiently strong to change the polarity of the cell.
Figures 6(c) and 6(d) show that in our active gel mode, yc(t )
and �N (t ) (defined as the difference of the total number of
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FIG. 6. (a), (b): Normalized yc(t ) and �N (t ) in the simplified
model with kon/k(0)

off = 1, a�N = 1, and a3 = 1. In (a), k(1)
off /k(0)

off = 0.6,

(χ̃ − χ̃c )/k(0)

off = 1.2; in (b), k(1)
off /k(0)

off = 0.62, 
(χ̃ − χ̃c )/k(0)
off = 5.5.

(c), (d): Normalized yc(t ) and �N (t ) in the active gel model with
K = 100, ξ̃ = 1/3, kon = 6, k0 = 3, v(0)

p = 0.2, v(1)
p = 0.5, v(2)

p = 2.
In (c), k1 = 0.55, χ̃ = 16; in (d), k1 = 0.1, χ̃ = 18. The cells in
(a) and (c) perform oscillatory back-and-forth movement, and the
cells in (b) and (d) perform stick-slip movement.

adhesion complexes in the leading and trailing halves of the
cell in the numerical simulations) behave similarly to the sim-
plified model; this further indicates that the aforementioned
physical picture for the origin of time-periodic motility pat-
terns is general.

IV. DISCUSSION

In this article, we present two models to study how
mechanosensitive adhesion complexes affect the motility pat-
terns of a cell. Although these two models are related, they
have different assumptions and approximations. This allows
us to study the same system from different viewpoints. The
fact that both models show similar cell motility behaviors
suggests that the underlying mechanisms are not sensitive to
the differences in these two models.

We find that a cell with highly mechanosensitive adhesion
complexes can exhibit periodic back-and-forth movement
similar to what was observed in zyxin-depleted cells in a
collagen matrix. Since zyxin proteins act as mechanosen-
sors in mature adhesion complexes [26], the difference in
the mechanosensitivity of the adhesion complexes in zyxin-
depleted and wild-type cells could be the origin of the periodic
back-and-forth movement observed in [5]. Future experiments
can be designed to examine this prediction. Our study also
suggests that, besides rest, constant-velocity motion, stick-
slip movement, and back-and-forth movement, in general,
more complex one-dimensional cell motility behaviors can be
found, and these complex cell motility behaviors appear in
regimes with strong contractility or high actin polymerization
velocity, like stick-slip motion.

When modeling the association/dissociation dynamics of
the adhesion complexes, information from experimental ob-
servations is used very differently. In the active gel model,
the association rate of the adhesion complexes is constant,
and the dissociation rate decreases as the velocity gradient

increases. This special choice is justified by the resulting
spatial distribution of adhesion complexes in the numerical
solutions. On the other hand, the simplified model assumes
that adhesion complexes only appear near the cell ends, as
observed experimentally. This allows our simplified model to
describe more general force dependence in the evolution of
the number of adhesion complexes. We find that for the cell
to have more adhesion complexes near the leading cell end,
one should have −k(1)

on + k(1)
off N > 0. Note that if we loosely

regard Nf and Nb as the total number of adhesion complexes
in the two halves of the cell in the active gel model, our active
gel model should behave similarly to a simplified model with
k(1)

on = 0 and k(1)
off > 0. This helps us to understand why our

active gel model can produce reasonable spatial distributions
of adhesion complexes.

Another place where information from experimental ob-
servation is important is the actin polymerization velocity in
our models. To have actin polymerization at the cell ends
regulated by cell length and cell motion, like what happens
in real cells, our active gel model introduces coefficients
v(0)

p , v(1)
p , and v(2)

p . In the numerical studies, the value of the
coefficient v(1)

p , which characterizes the effect of cell length
restoring force on actin polymerization, is chosen to be con-
sistent with experimental observations. On the other hand, we
report how the overall actin polymerization ability v(0)

p affects
the cell motility pattern. Although the numerical solutions of
the active gel model do not explore whether the symmetry-
breaking coefficient v(2)

p plays a significant role in determining
the motility behavior of the cell, in our simplified model,
the equation for cell velocity Eq. (C26) shows that when the
symmetry-breaking part of the actin polymerization velocity
�vp is a nonlinear function of Vcell, polymerization-induced
spontaneous cell polarization, or bistability, can happen. Thus,
while so far we restrict our attention to the case when
polymerization-induced spontaneous cell polarization does
not happen, further research on the roles played by polarized
actin polymerization in complex cell motility behaviors is
needed.

Our models focus on the effect of spatial distributions of
adhesion complexes and myosin motors on cell motility pat-
terns. Our assumption of the fast turnover of myosin motors
neglected the possible effects of finite myosin turnover time.
Although such an effect has not been considered in most
cell motility models, it is interesting to see its relation with
complex cell motility patterns, as models of active matter
with turnover have been shown to generate spontaneous os-
cillations that are related to observations in other biological
active matter systems [27]. Finally, it is important to note that
although the physical mechanisms for symmetry-breaking
transitions, such as rest/periodic back-and-forth transition and
rest/constant-velocity transition, can be understood from the
dynamics of yc and �N , it would be an interesting future work
[28] to study how other important physical observables, such
as the multipoles of the traction force [29,30], behave in cells
with different moving patterns.
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APPENDIX A: CHEMICAL POTENTIAL
OF AN ADHESION COMPLEX

Experimentally, the association/dissociation of an adhesion
complex shows nontrivial force dependence. Only when the
force per linker is within a specific range does an adhesion
complex grow to a characteristic size la ∼ O(µm) [14]. The
physical mechanism behind this behavior has been under in-
tensive theoretical study in recent decades [12]. Since our
main focus is how mechanosensitive adhesion complexes in-
duce complex cell motility behaviors, we will not assume
detailed molecular mechanisms for the force dependence of
the growth/dissociation of adhesion complexes. Instead, in
this Appendix, thermodynamic arguments similar to [15] are
applied to analyze the chemical potential of a mechanosensi-
tive adhesion complex.

Let us model an adhesion complex as an elastic object
adhered to the substrate. In the presence of the flow of the
active gel, it experiences total force fa and a tension γ . Its
internal energy is

ua = T s + μa + γ δl, (A1)

where T is the temperature of the environment and s is the
entropy. The chemical potential μa of the adhesion complex
depends on the total force fa acting on the adhesion complex.
The last term is the elastic energy of the adhesion complex; δl
is the change of the length la of the adhesion complex due to
the tension γ . Since the linkers provide the anchorage, we as-
sume that the molecules in the adhesion complex do not flow
with the cytoplasm. Therefore, fa is the total drag force due
to the flow of cytoplasm; it tries to pull the adhesion complex
away from the substrate. That is, fa = ξa

∫
v(x, t )dx ≈ ξalav,

where v is the average flow field at the adhesion complex, the
integral is performed over the adhesion complex, and ξala = α

is the drag coefficient in Eq. (1) of the main text. On the other
hand, when v(x, t ) is not uniform in space, the adhesion com-
plex also experiences a tension γ ∼ ∂xv that tries to change
its linear dimension, where ∂xv is the average flow gradient at
the adhesion complex. From Eq. (A1), the following relation
is obtained:

∂μa

∂γ
= −δl. (A2)

Since δl and γ have the same sign, this equation tells us that
μa decreases as ∂xv increases.

When the association/dissociation of the adhesion com-
plexes is completely driven by the change of chemical
potential, to have the force-dependent adhesion complex
growth, μa should be small for a range of v. Furthermore,
from Eq. (A2), adhesion complexes are favored in regions
where ∂xv is large because the chemical potential is lower.

TABLE I. Definitions of physical parameters and characteristic
quantities in our model.

Physical meaning Symbol

effective drag coefficient ξeff = ξ + αkon/k0

unit length l0 = √
η/ξeff

unit time t0 = η/ξeff D

unit stress σ0 = ξeff D

unit myosin motors concentration c0 = M√
η/ξeff

unit density of cell-substrate bonds n0 = ξ/α

APPENDIX B: DIMENSIONLESS EQUATIONS
AND PARAMETERS; NUMERICAL METHOD

In the dimensionless form, the equations of motion are

∂2v

∂x2
− ξ̃ (1 + nb)v = −χ̃

∂c

∂x
, (B1)

∂c

∂t
= ∂2c

∂x2
− ∂ (cv)

∂x
, (B2)

∂nb

∂t
= −k̄0e−k̄1∂xvnb + k̄on. (B3)

The boundary conditions are
dl±
dt

= [v]l± ± v±
p , (B4)[

c

(
v − dl

dt

)
− ∂c

∂x

]
l±

= 0, (B5)

σ± = −K (L − L0) =
[
∂v

∂x

]
l±

+ χ̃cl± . (B6)

Here, all variables and x, t are dimensionless. The definitions
of the parameters and important physical quantities are listed
in Table I. The dimensionless parameters in our model are
listed in Table II. Notice that, for simplicity, in the figures and
figure captions, we drop the overbars from the dimensionless
rates.

In our numerical scheme, each iteration updates all dynam-
ical variables by integrating the evolution equations over a
small time interval �t with a finite-difference method. First,
[v]l± and v±

p from the previous iteration were substituted
into Eq. (B4) to obtain the new positions of the cell ends.
The densities of the adhesion complexes and myosin mo-
tors are updated from the flow field of the previous iteration
by integrating the evolution Eq. (B3) of nb and the myosin
advection-diffusion Eq. (B2). The force balance Eq. (B1) with
the updated bond density and myosin concentration is then
solved to obtain the new flow field.

The numerics were carried out by dividing the cell into
Nx = 100 segments and approximating the spatial deriva-
tives by the finite-difference method with the size of a time
step �t = 10−6. The typical material parameters are D ∼
0.1–1 µm2/s for proteins in a cell [31], and the length of
a cell is in the range 10–100 µm. From the traction force
measurement of a cell, the typical drag force that a cell exerts
on the substrate is of the order of 10 nN [32], and the typical
magnitude of cytoplasmic flow ∼102 nm/s. The effective
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TABLE II. Definitions of dimensionless parameters in our model.

Physical meaning Symbol Magnitude

unbinding rate k̄0 = t0k0 3

coefficient for strain-rate-dependent unbinding k̄1 = k1/t0 �O(1)

binding rate k̄on = kont0/n0 6

base actin polymerization speed v̄(0)
p = v(0)

p l0/t0 �O(1)

coefficient for stress-dependent actin polymerization v̄(1)
p = v(1)

p l0 0.5

coefficient for cell polarization effect on actin polymerization v̄(2)
p = v(2)

p t0/l0 2

contractility χ̃ = c0χ/σ0 ∼O(10)

cell elastic constant K = γ l0/σ0 100

drag coefficient ξ̃ = ξ/(ξ + αkon/k0 ) 1/3

drag coefficient ξeff can be estimated by dividing traction
force per unit length by typical cytoplasmic flow speed. The
result is ξeff ∼ 103–104 kg/(m s). The one-dimensional vis-
cosity of the actin gel can be estimated by multiplying the
three-dimensional viscosity of the actin gel ∼104 Pa s by the
cross-sectional area A0 of a cell perpendicular to the moving
direction. The cross section of a cell has a height of a few
hundred nanometers and a width of a few tens of microns.
This leads to η ∼ 10−7 kg m/s, and the order of magnitude of
our unit length

l0 =
√

η

ξeff
∼ 10 µm. (B7)

Since this is close to the length of a cell, in our numerical
studies we conveniently choose the dimensionless cell natural
length to be unity. The unit time is roughly [33]

t0 = η

ξeffD
∼ 103 s, (B8)

and the unit stress

σ0 = ξeffD ∼ 10−9 to 10−10 kg m/s2. (B9)

Now we can estimate the magnitudes of the dimensionless
parameters listed in Table II. The typical speed of a crawling
cell is about a few cell body lengths per hour [34]; therefore
the base active polymerization speed in the numerics is in the
range

v̄(0)
p � O(1). (B10)

The cell-length-dependent actin polymerization parameter
v(1)

p comes from the free energy cost of actin polymerization
against cell-length restoring force. Because adding a new actin
monomer to the plus end of an actin filament effectively
pushes the cell membrane by a distance a0 of the order of a
nanometer, v(1)

p (L − L0) in Eq. (4) is Wa, the work done by
adding one actin monomer to an actin filament at the cell end,
divided by kBT , i.e., the thermal energy. Wa is the average
cell-length restoring force on each filament times a0. Since
the average distance between two actin filaments close to a
cell end d0 is a few tens of nanometers [35],

v̄(1)
p ∼ γ l0a0(

A0/d2
0

)
kBT

∼ 0.1–1, (B11)

in our numerical studies, we choose v̄(1)
p = 0.5. From Eq. (4),

the effect of the asymmetric actin polymerization parameter
v̄(2)

p is significant when v̄(2)
p is small. In this limit, the actin

polymerization speed at the cell leading end is enhanced by a
factor ∼2, and the actin polymerization speed at the trailing
end becomes almost zero. In the numerics, we choose v̄(2)

p to
be of order unity so that the asymmetry of actin protrusion in
a typical moving cell is neither negligible nor extreme.

Next, we discuss the rates related to the associa-
tion/dissociation of adhesion complexes. k0 is the dissoci-
ation rate of a mature focal adhesion; its typical value is
∼0.1−1/min [36]. Thus we chose

k̄0 = 3. (B12)

In the dimensionless force balance Eq. (B1), nb denotes the
contribution of adhesion complexes to the local cell-substrate
drag relative to the rest of the cell-substrate interface. Simi-
larly to a previous numerical model for cell crawling [37], we
choose our parameters such that the average of nb over the cell
is in the range 1–10; this is achieved by choosing

k̄on = 6, (B13)

and varying the parameter k̄1 in the numerics within the range

k̄1 � O(1). (B14)

From the measurement of the elastic constant of living
cells in Ref. [32], the Young’s modulus of a cell is Y ∼
500 Pa. Multiplying Y by the thickness of a cell, we obtain
γ ∼ 10−4 kg/s2. This leads to the dimensionless cell elastic
constant

K = γ l0
σ0

∼ O(10–100). (B15)

Following previous studies on the actin gel model of cell
motility [11], in our numerical studies we choose K = 100.
We choose ξ̄ = 1/3 so that the resulting drag force in the
cell is of the same order as [11]. Since the dimensionless
contractility χ̃ = χc0/σ0 is a parameter that we vary in the nu-
merics, we choose the dimensionless total number of myosin
motors in the cell to be c0L0 = 1 for simplicity. As a result,
the rest/moving transitions happen when χ̃ is of the order of
10, similarly to [11].

The magnitudes of all the dimensionless parameters are
summarized in Table II.
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APPENDIX C: DERIVATION OF THE SIMPLIFIED MODEL

Since in the experiments, the adhesion complexes are dis-
tributed close to the cell ends, our derivation of the simplified
model begins with the assumption

nb(x, t ) = Nf δ(x − x f ) + Nbδ(x − xb), (C1)

where x f = l+ − ε, xb = l− + ε, and ε is a very small length.

1. Stress field and flow field

Because there are no adhesion complexes in xb < x < x f ,
the dimensionless momentum equation in this region is

∂xσ = ξ̃v, σ = ∂xv + χ̃c, xb < x < x f . (C2)

Integrating the full momentum equation from l+(−) to x f (b),
we find

σ f =−K (l − l0)−ξ̃Nf v f , σb =−K (l − l0)+ξ̃Nbvb. (C3)

Here v f = v(x f , t ) ≈ dl+/dt − v+
p , and vb = v(xb, t ) ≈

dl−/dt + v−
p . The resulting solution of the mechanical stress

in the cell is [13]

σ (x, t ) = σ f
sinh[ξ̃ 1/2(x − xb)]

sinh[ξ̃ 1/2(x f − xb)]
+ σb

sinh[ξ̃ 1/2(x f − x)]

sinh[ξ̃ 1/2(x f − xb)]

+ χ̃ ξ̃ 1/2
∫ x f

xb

G(x, x′)c(x′, t )dx′, (C4)

where

G(x, x′) = sinh[ξ̃ 1/2(x f − x)] sinh[ξ̃ 1/2(x′ − xb)]

sinh[ξ̃ 1/2(x f − xb)]

−(x′ − x) sinh[ξ̃ 1/2(x′ − x)]; (C5)

(x) is the Heaviside step function. This leads to the follow-
ing expression for the flow field,

v(x, t ) = 1

ξ̃ 1/2

{
σ f

cosh[ξ̃ 1/2(x − xb)]

sinh[ξ̃ 1/2(x f − xb)]

− σb
cosh[ξ̃ 1/2(x f − x)]

sinh[ξ̃ 1/2(x f − xb)]

+ χ̃

∫ x f

xb

∂xG(x, x′)c(x′, t )dx′
}
. (C6)

2. Myosin concentration

Substituting Eq. (C6) into the advection-diffusion for myosin concentration, one obtains an equation that does not explicitly
depend on the velocity field:

∂t c(x, t )=D∂2
x c− 1

ξ̃ 1/2
∂x

{[
σ f

cosh[ξ̃ 1/2(x − xb)]

sinh[ξ̃ 1/2(x f − xb)]
− σb

cosh[ξ̃ 1/2(x f − x)]

sinh[ξ̃ 1/2(x f − xb)]

]
c(x, t )+χ̃

∫ x f

xb

c(x, t )∂xG(x, x′)c(x′, t )dx′
}

. (C7)

3. Velocity and length of the cell

The velocity of the cell Vcell = 1
2 ( dl+

dt + dl−
dt ) is

Vcell = 1

2ξ̃ 1/2

cosh(ξ̃ 1/2L) + 1

sinh(ξ̃ 1/2L)
(σ f − σb) + χ̃

2

∫ x f

xb

sinh[ξ̃ 1/2(x f − x′)] − sinh[ξ̃ 1/2(x′ − xb)]

sinh(ξ̃ 1/2L)
c(x′, t )dx′

+v+
p − v−

p

2
. (C8)

The evolution of the length of the cell dL
dt = dl+

dt − dl−
dt obeys

dL

dt
= 1

ξ̃ 1/2

cosh(ξ̃ 1/2L) − 1

sinh(ξ̃ 1/2L)
(σ f + σb) − χ̃

∫ x f

xb

sinh[ξ̃ 1/2(x f − x′)] + sinh[ξ̃ 1/2(x′ − xb)]

sinh(ξ̃ 1/2L)
c(x′, t )dx′

+(v+
p + v−

p ). (C9)

4. Symmetry-related variables

It is helpful to introduce the following variables:

N = Nf + Nb, �N = Nf − Nb,

vp = v+
p + v−

p

2
, �vp = v+

p − v−
p ,

σS = σ f + σb

2
= −K (L − L0) − ξ̃

2

[
N

(
dL/dt

2
− vp

)
+ �N

(
Vcell − �vp

2

)]
,

σA = σ f − σb

2
= − ξ̃

2

[
N

(
Vcell − �vp

2

)
+ �N

(
dL/dt

2
− vp

)]
, (C10)
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and

y = x − l+ + l−
2

,

(
−L

2
� y � L

2

)
. (C11)

Here dL/dt , N , vp, and σS are symmetric under spatial inversion (y → −y), while Vcell, �N , �vp, and σA are antisymmetric
under spatial inversion.

Next, we show that the velocity of the cell Vcell and the evolution of the length of the cell dL/dt can be expressed in terms
of variables in Eq. (C10). To achieve this, we focus on the regime close to rest-moving transitions. In this regime, we can
assume that the myosin motors are weakly polarized. As a result, the zeroth and first moments of the myosin density distribution
dominate the contribution of contractility to the cell motility behaviors [Eq. (C8)].

Because only the part of c(y) that is antisymmetric under y → −y contributes to the χ̃ -dependent term of Eq. (C8), and for
a slow-crawling cell this part is significant only in the small-|y| region, therefore by expanding the χ̃ -dependent term of Vcell to
the leading order in y, and using Eq. (C10), we obtain

Vcell = �vp

2
− ξ̃ 1/2

[
1 + ξ̃ 1/2

2

cosh(ξ̃ 1/2L) + 1

sinh(ξ̃ 1/2L)
N

]−1
[

1

2

cosh(ξ̃ 1/2L) + 1

sinh(ξ̃ 1/2L)

(
1

2

dL

dt
− vp

)
�N + χ̃

cosh
(
ξ̃ 1/2L/2

)
sinh(ξ̃ 1/2L)

yc + · · ·
]
,

(C12)

where

yc ≡
∫ L/2

−L/2
y c(y, t ) dy (C13)

is the first moment of myosin distribution, and “· · · ” represents higher-order terms in this expansion. This expression tells us
that Vcell is nonzero when �N (asymmetry in the distribution of adhesion complexes) or yc (asymmetry in the distribution of
myosin motors) is nonzero. Note that, in principle, �vp is a nonlinear function of Vcell; this indicates that Eq. (C12) can describe
cell movement induced by spontaneous symmetry breaking in actin polymerization velocity. Although studying this possible
situation with our simplified model is not the main focus of this study, as pointed out in Sec. IV, it is a future research direction.

Similar calculation leads to the following expression for the evolution of the length of the cell:

dL

dt
= 2vp +

[
1 + ξ̃ 1/2

2

cosh(ξ̃ 1/2L) − 1

sinh(ξ̃ 1/2L)
N

]−1

×
{

ξ̃−1/2 cosh(ξ̃ 1/2L) − 1

sinh(ξ̃ 1/2L)

[
−2K (L − L0) + �N

(
Vcell − �vp

2

)]
− 2χ̃

sinh
(
ξ̃ 1/2L/2

)
sinh(ξ̃ 1/2L)

Ctot + · · ·
}

, (C14)

where

Ctot ≡
∫ L/2

−L/2
c(y, t )dy ≡ 1 (C15)

is the total amount of myosin motors in the cell, which is unity in our dimensionless expression. Note that all terms on the
right-hand side of dL/dt are even under y → −y.

5. Further simplifications

As discussed in the main text, the actin polymerization
velocity v±

p can be modeled as functions of L and dl±/dt
[Eq. (4)]. Hence, from Eqs. (C12) and (C14), Vcell and dL/dt
are functions of L, N , �N , and yc. If a set of evolution
equations for N , �N , and yc can be derived, a few variables
can specify the cell’s dynamics. This subsection explains how
this is done.

It is convenient to introduce

cS (y) = c(y) + c(−y)

2
, cA(y) = c(y) − c(−y)

2
, (C16)

and

vS (y) = v(y) − v(−y)

2
, vA(y) = v(y) + v(−y)

2
. (C17)

From Eq. (C6),

vS (y) = vSσ (y)σS + χ̃

ξ̃ 1/2

∫
∂yG(y, y′)cS (y′)dy′,

vA(y) = vAσ (y)σA + χ̃

ξ̃ 1/2

∫
∂yG(y, y′)cA(y′)dy′, (C18)

where vSσ (y) and vAσ (y) can be obtained by straightforward
algebra. From Eqs. (C10), (C12), and (C14), expand G(y, y′)
around y′ = 0 and integrate over y′, use the approximation∫

ymc(y, t )dy ≈ ym
c for all m, and σS and σA can be expressed

as

σS = σS0 (L, N ) + σSy (L, N )y2
c + σS�

(L, N )�N2

+ σSy� (L, N )yc�N + · · · ,

σA = σAy (L, N )yc + σA�
(L, N )�N + · · · . (C19)
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The functions of (L, N ) in the above equations can be obtained
by straightforward algebra. Their detailed expressions are not
important for the rest of our analysis. The main point is that,
with Eqs. (C18) and (C19), the time derivatives of N , �N , and
yc can be expressed in terms of power series of �N and yc.

First, from the evolution equations of Nf and Nb

dNf

dt
= k( f )

on − k( f )
off Nf ,

dNb

dt
= k(b)

on − k(b)
off Nb,

one can introduce

dN

dt
= k( f )

on + k(b)
on − k( f )

off + k(b)
off

2
N − k( f )

off − k(b)
off

2
�N,

d�N

dt
= k( f )

on − k(b)
on − k( f )

off − k(b)
off

2
N − k( f )

off + k(b)
off

2
�N.

(C20)

Because of mechanosensitivity, the rates k( f )
on , k(b)

on , k( f )
off , k(b)

off
should depend on the magnitude of drag force and stress
acting on an adhesion complex. This means that they are func-
tions of |v|y f ,yb | and [∂yv]y f ,yb . By symmetry, when vA(y) = 0,

we have k( f )
on = k(b)

on and k( f )
off = k(b)

off . Therefore both k( f )
on − k(b)

on

and k( f )
off − k(b)

off are proportional to vA for a weakly polarized
cell. Since we assume myosin motors are located close to the
center of the cell, the χ̃ -dependent part in Eq. (C18) can be
expanded around y′ = 0. The resulting expression for vA(y)
takes the form

vA(y) = χ̃vAy(y)yc + vA�(y)�N + · · · ,

where functions vAy(y) and vA�(y) can be obtained from
straightforward algebra. As a result, we can write

k( f )
on − k(b)

on = k(1)
on yc + k(�)

on �N + · · · ,

k( f )
off − k(b)

off

2
= k(1)

off yc + k(�)
off �N + · · · , (C21)

where k(1)
on , k(�)

on , k(1)
off , and k(�)

off depend on N and L only. It
can be shown that k(1)

off is always positive, but the sign of k(�)
off

depends on dL/dt − 2vp(L), which may change with time. A
similar analysis leads to

k( f )
on + k(b)

on = 2k(0)
on + · · · ,

k( f )
off + k(b)

off

2
= k(0)

off + · · · , (C22)

where k(0)
on and k(0)

off are coefficients which depend on N and L,
and · · · are terms of the order y2

c , �N2, and yc�N . Putting
Eqs. (C23), (C21), and (C22) together, the evolution equa-
tions of N and �N obey

dN

dt
= (

2k(0)
on − k(0)

off N
) − k(1)

off yc �N − k(�)
off �N2,

d�N

dt
= −(

k(0)
off + k(�)

on + k(�)
off N

)
�N − (−k(1)

on + k(1)
off N

)
yc.

(C23)

This is Eq. (8) of the main text.

The evolution of yc is considered next. From its definition,

dyc

dt
= d

dt

∫ x f

xb

(
x − x f + xb

2

)
c(x, t )dx

=
∫

x[D∂2
x c − ∂x(cv)]dx

+ dx f

dt
[xc]x f − dxb

dt
[xc]xb − Vcell

2
Ctot

= −
∫

(D∂yc − cv)dy − Vcell

2
Ctot.

To derive the last expression from the second expression, we
performed integration by parts and used the boundary condi-
tions for myosin motor density. The first term in the integral
of the last expression is a surface term; it is vanishingly
small because in a slow-moving cell myosin motors are not
presented at the cell ends. By symmetry, the contribution of
the second term in the integral of the last expression can be
reexpressed in terms of cS , cA, vS , and vA, and we find

dyc

dt
=

∫
(cAvS + cSvA)dy − Vcell

2
Ctot. (C24)

Substitute Eqs. (C18) and (C19) into Eq. (C24), and use the
approximation

∫
ymc dy ≈ ym

c ; the resulting evolution equa-
tion for yc takes the form

dyc

dt
= −


[−(χ̃ − χ̃c)yc − a�N�N + a3y3
c + · · · ].

(C25)

Here 
, χ̃c, a�N , and a3 depend on L and N . This is Eq. (9) of
the main text. It describes a cell that becomes polarized (yc �=
0) when χ̃ is sufficiently large. a�N tells us how nonzero �N
affects the evolution of yc, and a3 > 0 such that yc is always
finite.

The above discussion leads to a set of closed equations de-
scribing the dynamics of a cell in terms of L, N , �N , and yc.

6. Transitions between different motility behaviors

The set of equations for dN/dt , d�N/dt , dyc/dt , dL/dt ,
and Vcell in the previous subsection are derived by assuming
the cytoplasm as a contractile gel. However, it is quite clear
that these equations can also be written down by symme-
try considerations alone. Since we would like to focus on
the physics most relevant to the transitions between different
motility behaviors, we take this approach by treating the co-
efficients in these equations as independent model parameters
in the rest of our analysis.

For simplicity, we neglect the L dependencies of all co-
efficients in our simplified model by considering the large-K
regime such that L → L0. The N dependencies in χ̃c and a�N

are also neglected as they do not change the symmetry of the
evolution equation of yc. This approximation is expected to be
suitable for slow-moving cells, where N takes a value close to

013164-12
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2k(0)
on /k(0)

off . In this regime,

Vcell = �vp

2
+ ξ̃ 1/2

1 + ξ̃ 1/2

2
cosh(ξ̃ 1/2L0 )+1

sinh(ξ̃ 1/2L0 )
N

×
{[

vp

2

cosh(ξ̃ 1/2L0) + 1

sinh2(ξ̃ 1/2L0)

]
�N

−
[
χ̃

cosh(ξ̃ 1/2L0/2)

sinh(ξ̃ 1/2L0)

]
yc

}

≡ �vp

2
+ (vpλν1�N − χ̃λν2 yc). (C26)

Here λν1 and λν2 are non-negative parameters. Note that Vcell

tends to take the same (opposite) sign with �N (yc).
Many interesting features of the system described by

Eqs. (C23) and (C25) can be studied analytically. To com-
pare to our active gel model, we choose k( f )

on = k(b)
on = k(0)

on a
constant. We also choose k(�)

off = 0 because it does not play
an important role in the polarization of the cell. The resulting
steady-state solutions include the rest-state solution

�N = yc = 0, N = 2k(0)
on

k(0)
off

≡ N0, (C27)

and solutions for a cell moving in the ±x direction with a
constant velocity,

yc = ∓

√√√√ p4 + p2
1 p2 −

√(
p4 + p2

1 p2
)2 − 4p2

1 p4(p2 − p1 p3N0)

2p2
1 p4

,

�N = − p1N0

1 + (p1yc)2 yc,

N = N0

1 − (p1yc)2 , (C28)

where p1 = k(1)
off /k(0)

off , p2 = 
(χ̃ − χ̃c)/k(0)
off , p3 = 
a�N/k(0)

off ,
and p4 = 
a3/k(0)

off . Further checking the linear stability of
the rest state shows that the transition from the rest state
to the state with constant velocity is a pitchfork bifurcation.
On the other hand, the transition from the rest state to
the periodic back-and-forth movement is a Hopf bifurca-
tion: Pitchfork bifurcation (rest/constant-velocity transition)
happens when

χ̃ = χ̃c + 2a�N
k(0)

on k(1)
off(

k(0)
off

)2 (C29)

and


(χ̃ − χ̃c) − k(0)
off < 0. (C30)

Hopf bifurcation (rest/back-and-forth-motion transition) oc-
curs when

χ̃ = χ̃c + k(0)
off /
 (C31)

and

χ̃ −
[
χ̃c + 2a�N

k(0)
on k(1)

off(
k(0)

off

)2

]
< 0. (C32)
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