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Using quantum annealing to design lattice proteins
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Quantum annealing has shown promise for finding solutions to difficult optimization problems, including
protein folding. Recently, we used the D-Wave Advantage quantum annealer to explore the folding problem
in a coarse-grained lattice model, the HP model, in which amino acids are classified into two broad groups:
hydrophobic (H) and polar (P). Using a set of 22 HP sequences with up to 64 amino acids, we demonstrated
the fast and consistent identification of the correct HP model ground states using the D-Wave hybrid quantum-
classical solver. An equally relevant biophysical challenge, called the protein design problem, is the inverse of the
above, where the task is to predict protein sequences that fold to a given structure. Here, we approach the design
problem by a two-step procedure implemented and executed on a D-Wave machine. In the first step, we perform
a pure sequence-space search by varying the type of amino acid at each sequence position, and seek sequences
which minimize the HP-model energy of the target structure. After mapping this task onto an Ising spin-glass
representation, we employ a hybrid quantum-classical solver to deliver energy-optimal sequences for structures
with 30–64 amino acids, with a 100% success rate. In the second step, we filter the optimized sequences from
the first step according to their ability to fold to the intended structure. In addition, we try solving the sequence
optimization problem using only the quantum processing unit (QPU), which confines us to sizes �20, due to
exponentially decreasing success rates. To shed light on the pure QPU results, we investigate the effects of
control errors caused by an imperfect implementation of the intended Hamiltonian on the QPU, by numerically
analyzing the Schrödinger equation. We find that the simulated success rates in the presence of control noise
semiquantitatively reproduce the modest pure QPU results for larger chains.
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I. INTRODUCTION

Quantum annealing (QA) [1–4] is a promising method for
finding good solutions to difficult optimization problems. In
this method, one aims to find the solution to an optimization
problem by encoding it into the ground state of a spin Hamil-
tonian. The approach of mapping optimization problems to
spin systems is not new. It was used already in the 1980s in
the context of neural networks [5,6]. By exploiting quantum
fluctuations and quantum tunneling, QA offers a potentially
much faster method for minimizing spin system energies.
Technological advances like the D-Wave Advantage quantum
annealer, with over 5000 quantum bits (qubits) and an average
connectivity of 15 [7], permit exploration of the QA approach
for a wide range of scientifically interesting problems, as illus-
trated by recent polymer and spin-glass studies [8,9]. While
most of the problems studied concern optimization, attempts
are also being made to use quantum annealers for sampling
[10–12].
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We have recently employed this machine for protein fold-
ing using the lattice-based HP (H: hydrophobic, P: polar)
model [13] as a test bed [14]. Earlier attempts to use quan-
tum computing for similar folding problems were based on
chain growth, or turn-based, algorithms [15,16], with which
nonlocal interactions like chain self-avoidance are challeng-
ing to implement unless the chain length N is very short
(N � 10). In Ref. [14], we developed a scalable field-like
representation, with qubits at all lattice sites, which made
it possible to tackle chain lengths up to N = 64 using the
D-Wave hybrid quantum-classical solver. To ensure proper
chain configurations, the approach requires penalty terms with
Lagrange parameters but is robust with respect to the choice
of these parameters.

Another equally relevant problem from the biosector is the
inverse folding problem [17–19], known as protein design,
where one seeks to identify a priori unknown sequences
which fold into a given structure. Since the structure of a
protein is crucial for its function, this problem is highly rel-
evant for drug design. It represents a computational challenge
because it involves the exploration of both sequence and struc-
ture spaces.

Here, we tackle the design problem for lattice proteins
using QA. We use the HP model as a test bed for which exact
results are available for chain lengths N � 30 [20,21]. As is
commonly done, we split the design problem into two steps.
First, we generate candidate sequences that minimize the en-
ergy in the target structure, which we refer to as sequence
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optimization. Second, we determine whether the optimized
sequences actually fold into the target structure by either fold-
ing the sequence using our aforementioned folding method,
or by checking in the data bank of all solutions [20,21]. Prior
work proposed both QA [22] and gate-based [23] schemes for
the first of these subproblems, sequence optimization. Here,
we present and test a complete QA approach to lattice protein
design, comprising both of the above steps.

We find that the hybrid D-Wave annealer can efficiently
handle both steps, and thus provides a fast and robust ap-
proach to the HP design problem. By contrast, relying entirely
on the quantum processing unit (QPU) yields modest per-
formance for larger chains. To understand this limitation,
we develop and perform time-dependent Schrödinger equa-
tion simulations for the sequence optimization problem, using
classical high-performance computing clusters. One potential
cause of the decrease in success rate with problem size is
control errors in the Hamiltonian, which may alter the ground
state and thereby lead to incorrect solutions. Indeed, when
adding control noise with its strength guided by hardware
data, we obtain results that qualitatively reproduce the modest
D-Wave pure QPU results.

The approach throughout this work has been evaluated
using the D-Wave Advantage as the latter is, currently, the
only available quantum annealer with an adequate qubit count.
However, our methods should be valid for any quantum
annealer.

II. METHODS

In protein design, one seeks a sequence s = (s1, . . . , sN )
that folds into a given target structure Ct . In general, multiple
such sequences can exist, and any such sequence constitutes
a valid solution. The probability of finding the chain with
sequence s in the state Ct can be written as

Pβ (s) = e−βE (Ct ,s)
/ ∑

C

e−βE (C,s), (1)

where E (Ct , s) is the energy of the sequence s in state Ct

(see Sec. II B), β is inverse temperature and the sum runs
over all possible structures C. The design problem therefore
translates to finding sequences near the maximum of Pβ (s).
Methods for this task have been developed [24,25]. However,
maximizing Pβ (s) involves a generally time-consuming search
in both sequence and structure spaces. Therefore, a common
approach is to first minimize the energy in the target structure
over s, E (Ct , s), followed by a filtering step to reject candidate
sequences which have a higher probability for a different
structure Cu. Running folding computations, which determine
the most probable structure for a given sequence, is sufficient
for this purpose. In this work, we address the design problem
by this two-step procedure rather than directly maximizing
Pβ (s).

A. HP lattice proteins

We consider the minimal two-dimensional (2D) lattice-
based HP model for protein folding [13] in which the protein
is represented by a self-avoiding chain of N hydrophobic (H)
or polar (P) beads that interact through a pairwise contact

potential. A contact between two beads is said to occur if they
are nearest neighbors on the lattice but not along the chain.
The energy function can be written as EHP = −NHH, where
NHH is the number of HH contacts [13]. This definition renders
the formation of a hydrophobic core energetically favorable.
The ground state may be degenerate or unique. For a 2D
square lattice, it is known from exhaustive enumerations that
about 2% of all HP sequences with N � 30 have a unique
ground state [20,21]. The availability of exact results for all
sequences with N � 30 makes the 2D HP model a useful test
bed for novel computational approaches.

Despite their simplicity, coarse-grained HP models are still
relevant for the qualitative insights they provide into com-
putationally challenging problems, such as protein folding
and design (explored here), liquid-liquid phase separation of
intrinsically disordered proteins [26,27], and protein evolution
modeling [28,29].

B. HP sequence optimization in quadratic unconstrained
binary optimization form

Given a target structure, Ct , we wish to minimize the
energy EHP(Ct , s) over sequence, s, using a D-Wave quan-
tum annealer. To this end, the problem must be recast in
quadratic unconstrained binary optimization (QUBO) form,
or, equivalently, into an Ising spin glass format. Furthermore,
an auxiliary energy term needs to be included, to control the
total number of H beads, NH, in a candidate sequence of length
N , since the all-H homopolymer sequence constitutes a trivial
solution for unbiased EHP(Ct , s) minimization.

The only information needed about the target structure in
order to compute EHP(Ct , s) is its connectivity matrix wi j ,
which indicates whether two arbitrary beads i and j are in
contact (wi j = 1) or not (wi j = 0). This holds for any model
with pairwise contact interactions, irrespective of the dimen-
sionality and the size of the amino acid alphabet. When using
the HP model, a suitable choice of total energy E (s) to mini-
mize is given by

E (s) = −
∑

1�i< j�N

wi j sis j + λ

(
N∑

i=1

si − NH

)2

, (2)

where si describes whether bead i is of type P (si = 0) or
H (si = 1). In Eq. (2), the first term represents EHP(Ct , s),
whereas the second term biases the total number of H beads
toward a preset value, NH. The balance between the two terms
is set by the parameter λ. The 0,1 spins of Eq. (2) can be easily
transformed into Ising ±1 spins without losing the desired
quadratic structure of E . This energy function has a much
simpler structure than the corresponding one for the folding
problem in Ref. [14], requiring only one Lagrange parameter
λ instead of the three in the folding study.

This Lagrange parameter λ must be sufficiently large for
the generated sequences to acquire the desired composition,
as set by NH. On the other hand, if λ is too large, the energy
landscape becomes rugged. Examples of how the efficiency
of the hybrid quantum-classical solver varies with λ can be
found in Sec. III A. All hybrid production runs were carried
out using λ = 2.5. For the pure QPU computations, which are
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FIG. 1. The 30-, 50-, and 64-bead target structures T30, T50, and T64 used in the sequence design computations with the hybrid solver.

limited to smaller systems, it was possible to use a smaller
value, set to λ = 1.1 (Sec. III B).

Minimizing E (s) in Eq. (2) can be seen as a graph bisection
problem. Unlike a spin glass with nearest-neighbor interac-
tions, it is a fully connected system. Note also that, compared
with the HP-folding problem [14], much fewer spin variables
are needed, since only the H or P identity of the beads (whose
locations and contacts are fixed for the target structure) needs
to be encoded.

For all instances studied in the present paper, it is possible
to infer the minimum EHP for a given NH, by inspection of
the bead-bead contacts present in the target structure (see
Appendixes A and B). Hence, it is possible to decide whether
a proposed solution is correct, even without additional
calculations.

C. Hybrid quantum-classical computations

As an alternative to pure QPU computation, the D-Wave
Advantage system also offers access to a hybrid quantum-
classical solver [30]. The hybrid approach uses classical
solvers while sending suitable subproblems as queries to the
QPU, to speed up the execution and improve the solutions of
challenging QUBO problems. Given the limited connectivity
(15) within the D-Wave Advantage architecture, the hybrid
approach is particularly relevant. With the hybrid solver, it is
possible to tackle problem sizes much larger than with pure
QPU computation.

Using the hybrid solver, we performed sequence optimiza-
tion for three target structures with N = 30, N = 50, and
N = 64 (see Fig. 1). For each target structure Ct , we searched
for minimum-EHP(Ct , s) sequences s, for several fixed compo-
sitions, NH. For each combination of Ct and NH, we conducted
a set of 10 runs, thus generating a set of up to 10 optimized
sequences.

In the hybrid approach, the runtime needs to be chosen with
some care. Indeed, in our previous HP folding study [14], the
success rate of the hybrid solver for N > 30 was poor for short
runtimes, while rapidly increasing to values close to 100%
once the runtime passed a system size dependent threshold.
To determine runtimes for the sequence optimization prob-
lem, we performed a set of preliminary runs for our largest
target structure (N = 64), using NH = 42. The hybrid solver
consistently returned sequences with the known minimum
EHP (Appendix A) for runtimes ranging from 15 s down to the
shortest possible time of 3 s, which is also the default runtime

for the D-Wave Advantage hybrid solver. Therefore, all the
production runs were carried out using this default runtime.

To test whether the generated sequences actually fold to the
desired target structures, we need to perform folding calcula-
tions. To this end, we also employ the D-Wave hybrid solver
given its demonstrated power for the folding problem [14].
Here, for a given optimized sequence so, the energy EHP(C, so)
was minimized over chain structure C, using the methods
and parameters in Ref. [14] and a 10 × 10 grid. Based on
the findings in Ref. [14], the runtime was set to 4, 120, and
300 s for N = 30, N = 50, and N = 64, respectively. These
runtimes are larger than the threshold times, above which the
success rate was shown to be high [14].

D. Pure quantum processor unit computations

The Pegasus topology of the D-Wave Advantage QPU con-
nects each of its qubits to 15 others [7]. Problems requiring
higher connectivity have to be embedded into the Pegasus
graph. This embedding is done by forming “chains” of qubits
which act as single qubits. The strength of the coupling be-
tween the qubits within a chain is a tunable parameter, called
the chain strength. This parameter is typically chosen slightly
larger than the minimum chain strength needed to avoid hav-
ing too many chain breaks (see Sec. III C).

D-Wave offers several so-called samplers for finding em-
beddings into the QPU topology and performing the QPU
computation. We used the DWAVECLIQUESAMPLER, designed
for dense binary quadratic models [31]. It has the property that
the chains representing logical qubits share a common length,
which facilitates the analysis in Sec. III C. With this method,
the number of physical qubits was three times the number of
logical qubits in almost all instances studied. For the smallest
system (with N = 10), this ratio was two instead of three. All
the computations used a chain strength between 2.25 and 4.25
(Appendix B). The annealing time was set to t f = 2000 µs,
its maximum allowed value. The number of output reads per
run (annealing cycles), which must be <106 µs t−1

f , was set to
100.

E. Time-dependent Schrödinger equation simulations

As will be seen in Sec. III B, the pure QPU performance
deteriorates rapidly with system size. In an attempt to
understand this phenomenon, we perform quantum-
mechanical simulations with the time-dependent Schrödinger
equation.
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Similarly, the pure QPU performance was also meager in
the folding case [14]. With its simple form [Eq. (2)], the
sequence design problem is better suited for analyzing the
shortcomings of the pure QPU performance as compared with
the folding case.

We consider an N-qubit system governed by a time-
dependent Hamiltonian

H (t ) = a(t )HD + b(t )HP, (3)

where HD and HP are the driver and problem Hamiltonians,
respectively. On a D-Wave annealer, these two terms take the
forms

HD =
∑

i

σ x
i , HP =

∑
i

hiσ
z
i +

∑
i< j

Ji jσ
z
i σ z

j , (4)

where σ x
i and σ z

i denote Pauli matrices. For specificity, we
assume a linear annealing schedule given by a(t ) = 1 − t/t f

and b(t ) = t/t f , where t f is the annealing time. We integrate
the Schrödinger equation with this Hamiltonian in time t
(with h̄ = 1) using the formalism and algorithm described in
Appendix C. The units for time and energy are arbitrary but
related through {unit of time} × {unit of energy} = h̄.

In addition to the driver Hamiltonian HD in Eq. (4), we also
consider the so-called XY -mixer [32], given by

HXY
D = 1

2

∑
i< j

(
σ x

i σ x
j + σ

y
i σ

y
j

)
, (5)

which is currently not available on D-Wave’s annealers. Tran-
sitions generated by this mixer have the property of leaving
the constrained sum in Eq. (2) unchanged. Hence, if the HXY

D
mixer is used, and the initial state is a uniform superposition
of all states satisfying the constraint, it would be possible to
minimize EHP at a fixed NH without including the constraint
term.

F. Test bed: HP target structures

We seek HP sequences that fold to given target structures
with 10–30, 50, and 64 beads. For N � 30, all HP sequences
with unique ground states and the corresponding structures
are known from exhaustive enumerations [20,21]. This data
can be used to decide whether a generated sequence actually
folds to the desired structure. To evaluate 50- and 64-bead
sequences, for which no such data are available, we deter-
mine minimum-energy structures by using the D-Wave hybrid
solver as described in Ref. [14].

III. RESULTS

Given a target structure Ct and a composition NH, we wish
to find minimum-EHP sequences by minimizing the energy E
in Eq. (2) on a quantum annealer. In all instances studied,
the minimum EHP is known (Appendixes A and B), so it is
possible to decide whether an obtained sequence is a correct
solution to the sequence optimization problem.

A sequence that minimizes EHP in Ct may, however, have
the same or even lower energy in other structures Cu �= Ct .
Whether or not this is the case can be checked against existing
exact results if N � 30 [20,21], or by performing an energy

minimization in the structure space using the hybrid quantum-
classical computations, as described in Ref. [14].

D-Wave offers solvers based entirely on quantum anneal-
ing, as well as a hybrid quantum-classical scheme. In this
section, we first try out the hybrid quantum-classical approach
with success, even for large chains (Sec. III A). After that, in
Sec. III B, we examine the effectiveness of pure QPU cal-
culations, without the classical preprocessing involved in the
hybrid approach, using smaller target structures. We observe
a rapid decrease in the pure QPU hit rate when increasing
the size of the structures. In Sec. III C, we attempt to explain
this observation by numerically solving the Schrödinger equa-
tion on classical computers.

A. Hybrid quantum-classical computations

Using the hybrid solver, we conducted sequence design
for the three target structures shown in Fig. 1 with N = 30,
50, and 64, which will be referred to as T30, T50, and T64,
respectively. For each target structure, we used a few different
compositions, NH (Appendix A).

With no exceptions, the hybrid solver generated sequences
with the known minimum EHP (Appendix A) in the target
structure, with a 100% success rate.

Of note, there are sequences that minimize EHP in the
target structure without folding to this structure. For such a
sequence, the target structure may be one of multiple struc-
tures in a degenerate ground state. Alternatively, there exists
at least one other structure in which EHP is lower than it is in
the target structure, so that a subsequent energy minimization
in the conformation space yields a different structure. In such
cases, those sequences are not solutions of the design problem
for the target structure, and are discarded, even when they are
valid solutions for the first step of our two-step approach. This
is the price we pay for foregoing an expensive simultaneous
search in sequence and structure spaces in favor of a sequence
space search as the first step. The sequences emerging from
sequence space minimization must be filtered by their ability
to fold to the target structure.

Note also that our search for candidate sequences below is
not exhaustive; further minimum-energy sequences may exist.
Our goal is to find some sequence that folds into the target
structure, not all such sequences.

1. Target structure T30

Our first target structure, T30 (Fig. 1, left panel), is known
from exact results [21] to be the unique ground state of >800
HP sequences. Using the hybrid solver, we minimized E in
Eq. (2), with λ = 2.5, for this structure for several com-
positions, 12 � NH � 17. For every NH, 10 hybrid runs all
successfully returned sequences with the known minimum
EHP.

While most of the thus generated sequences had T30 as
their unique ground state [21], some of them (all with NH =
12, 13, or 16) did not. For each of the latter, a search for
possible structures with lower energy was performed, using
the hybrid solver (Sec. II C). No such structure was found,
which suggests that the ground states for those sequences are
degenerate, and T30 is one of the structures having the lowest
energy.
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2. Target structure T50

The second target structure, T50 (Fig. 1, middle panel),
comes from a study of a Monte Carlo-based sequence design
algorithm [24], which actually optimizes the target popula-
tion, Eq. (1), rather than the energy in this structure. The best
sequence found in that study contained 31 H beads [24].

Here, we searched for sequences minimizing the energy
EHP of the T50 structure for NH = 29, 30, and 31, using Eq. (2)
with λ = 2.5 and the hybrid solver. For NH = 31, the solution
to the EHP-minimization problem is unique (Appendix A) and
given by the sequence identified in Ref. [24].

As in the T30 case, for every NH, all 10 hybrid runs
successfully gave sequences with the known minimum EHP

(Appendix A). For NH = 29 and 30, where the minimum-
EHP level is degenerate (Appendix A), the number of distinct
sequences obtained from the 10 runs were six and four,
respectively.

For each of the 11 distinct optimized sequences, we sub-
sequently minimized EHP over structure by a set of 10 hybrid
runs (Sec. II C). Six of the sequences turned out to have T50

as one of the structures at the lowest lying EHP minimum. For
the remaining five sequences, T50 was the only structure at the
global minimum of EHP. Among them, was the sequence with
NH = 31 from Ref. [24]. The results obtained here support the
conclusion that T50 is the unique ground state of the sequence
found in Ref. [24], while at the same time finding several new
solutions to the design problem for T50.

3. Target structure T64

The target structure T64 (Fig. 1, right panel) has the lowest
known energy for an HP sequence with 42 H beads that has
been extensively studied [14,33,34]. Although not a unique
energy minimum, all known structures sharing the same en-
ergy (EHP = −42) have a similar shape. The structures differ
only within the entirely hydrophobic core, where the chain can
be rearranged without altering EHP.

Using Eq. (2) with λ = 2.5 and the hybrid solver, we min-
imized EHP in the target structure T64 for NH = 36, 40, and
42. As for the previous two target structures, the hybrid solver
consistently found sequences with the known minimum EHP

(Appendix A) for all NH values. In the NH = 36 and 42 cases,
where multiple solutions exist (Appendix A), the returned
sequence varied from run to run.

As in the case of T30 and T50, we searched for possi-
ble structures with lower EHP using a set of 10 hybrid runs
(Sec. II C) per optimized sequence. For every sequence, all
runs returned structures with the same EHP as the target struc-
ture. The results thus suggest that T64 is a minimum-EHP

structure for all these sequences. However, the minimum is
not unique for any of the optimized sequences with NH = 40
or 42. For all these sequences, the core of the T64 structure
is entirely hydrophobic, which makes it possible to rearrange
the chain without changing EHP.

Interestingly, the situation appears to be different for one of
the optimized NH = 36 sequences, shown in Fig. 2, which has
P beads at four core positions. For this sequence, all 10 hybrid
folding runs returned the target structure. Changing these four
beads to P in the otherwise hydrophobic core appears to lift
the degeneracy of the minimum-EHP level.

FIG. 2. An optimized HP sequence that appears to have the target
structure T64 as its unique ground state. The sequence is composed
of 36 H (filled) and 28 P (open) beads. For the sequence with 42 H
beads studied in Refs. [33,34], this structure is one of several with
minimum energy. The degeneracy arises because, for that sequence,
the chain can be rearranged in the core of the structure without
altering the energy.

The above results show that the hybrid quantum-classical
method efficiently solves the sequence optimization problem
for all the systems studied. All these computations were done
with the Lagrange parameter in Eq. (2) set to λ = 2.5. To
gauge the sensitivity of the success rate to changes in λ, we
conducted additional sets of hybrid runs for the three systems
(T30, T50, and T64 with NH = 15, 31, and 36, respectively),
using the default runtime. We found that λ > 0.25 was nec-
essary for any correct solutions to be found in all three cases.
The lower limit on λ is problem-dependent but not larger than
2.0 for any of the systems studied in this paper. As shown in
Fig. 3(a), large values for λ also lead to performance degra-
dation, although there is a wide window of λ values having a
100% hit rate, showing that no excessive fine tuning of λ is
required.

The low hit rates at large λ in Fig. 3(a) can be improved at
the cost of increasing the runtime. Figure 3(b) shows the run-
time required to attain a 50% success rate τ1/2 plotted against
λ. For the two larger problems with N = 50 and N = 64,
respectively, at λ = 7, the hit rate is tiny when using a runtime
of 3 s [Fig. 3(a)], but can be improved to 50% by increasing
the runtime to about 100 s [Fig. 3(b)]. Note that τ1/2 grows
faster with λ for the two larger systems than it does for the
N = 30 system. Not unexpectedly, Figs. 3(a) and 3(b) both
show that the N = 30 problem is significantly easier than the
other two.

To summarize, here we have designed sequences for three
target structures using a two-step procedure involving en-
ergy minimization in the sequence and structure spaces. With
this widely used approach, a pure sequence space search is
performed first, where the types of the amino acids at each
position in the target structure are treated as the optimiza-
tion parameters. An optimized sequence from the first stage
is accepted as a solution to the design problem only if a
subsequent minimization in the conformation space finds the
target structure to be the global minimum for that sequence.
We stress that, for both tasks, the hybrid solver gave reliably
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FIG. 3. Dependence of the hit rate on the Lagrange parameter λ [Eq. (2)] when solving the sequence optimization problem by hybrid
quantum-classical computations for the target structures T30, T50, and T64 (Fig. 1) with NH = 15, 31, and 36, respectively. (a) Hit rate as a
function of λ when using the default runtime, which was 3 s for all systems. Each data point represents an average over 100 runs. (b) The time
required to attain 50% hit rate, τ1/2, plotted on a log scale against λ. The horizontal dotted line indicates the default runtime (3 s).

good results, with robustness with respect to the Lagrange
parameter settings.

B. Pure quantum computations

In this section, rather than using the D-Wave hybrid solvers
as in the previous section, we explore the ability of pure QPU
computations to solve the sequence optimization problem for
10 � N � 20 target structures. We pick, as our target, the
most designable structure for a given N denoted by TN , where
the designability of a structure is defined as the number of
sequences sharing it as their unique ground state. This number
is known for all structures with N � 30 from exhaustive enu-
merations [21]. The same data bank [21] also provides exact
answers to whether the generated sequences actually fold to
the target structures.

For each of the target structures T10−T20, we performed
pure QPU computations for one or a few choices of NH

(Appendix B), using the DWAVECLIQUESAMPLER. As in the
case of the structures in Sec. III A, the minimum EHP, given
NH, can be inferred from the contacts present in the tar-
get structure, and the solution may be unique or degenerate
(Appendix B).

The pure QPU computations recovered all possible solu-
tions to the sequence optimization problem for every (TN , NH)
pair. To quantify the success rate of the pure QPU com-
putations, 10 000 annealing cycles were generated for each
combination of TN and NH. The fraction of these yielding a
correct solution is referred to as the hit rate as was done in
Sec. III A. For this purpose, a correct solution is a solution se-
quence whose energy matches the previously known minimal
EHP for the (TN , NH) pair. The hit rates obtained in the pure
QPU runs can be found in Fig. 4(a).

As noted previously, a sequence that minimizes the energy
in the target structure, for a given NH, may not fold to that
structure. However, for every (TN , NH) combination studied
here, there is at least one solution to the sequence optimization
problem that has the target structure TN as its unique ground
state. The precise number of such solutions for different (TN ,
NH) pairs can be found in Appendix B.

For the generated sequences that did not have the target
structure as its unique ground state, we minimized EHP over

structure using the hybrid solver (Sec. II C). In these runs,
for almost all the sequences, we found other structures with
the same energy as the target structure but none with lower
energy, suggesting that the target structure is part of a degen-
erate ground state. The only exceptions occurred for the target
structure T13 and NH = 6. In this case, five of 18 minimum-
EHP sequences attained a lower energy in other structures.
Nothing in our procedure precludes the existence of lower-
energy structures for a sequence obtained by minimizing the
target structure energy. However, had such situations been
more common, the recipe used here (sequence space optimiza-
tion followed by filtering based on folding runs) would not
be effective. Note that, for T13 and NH = 6, the existence of
lower-energy alternatives is intuitively unsurprising, consid-
ering that the target structure has a relatively high energy for
the given NH (Appendix B).

Although the pure QPU computations recovered all pos-
sible solutions to the sequence optimization problem, the hit
rate was strongly problem-dependent [Fig. 4(a)]. While also
depending on NH, the hit rate shows a clear decreasing trend
with the problem size N , which limits the range of N which is
meaningful to study.

There are several factors that may contribute to the rapid
decay of the pure QPU hit rate with problem size as seen in
Fig. 4(a). These include (i) finite-t f effects, (ii) chain breaks,
(iii) thermal noise, and (iv) control errors. Here, we briefly
comment on factors (i)–(iii), whereas factor (iv), which relates
to the implementation of the couplings Ji j and hi in Eq. (2),
will be discussed in Sec. III C below.

(i) Finite t f . An obvious potential source of error is the use
of a finite annealing time t f (� 2000 µs). The t f dependence
of the pure QPU hit rate is illustrated in Fig. 5(a) by data
obtained for the target structure T12 and two values of NH (4
and 6). In both cases, the hit rate does increase with t f for
small t f . However, it levels off around t f = 400 µs for NH = 4
and already before t f = 100 µs for NH = 6, at values well
below unity. This behavior suggests that there must be other,
more important error sources than the upper limit on t f . This
conclusion is further supported by results from numerically
integrating the Schrödinger equation (Sec. II E). Here, we
computed the ground-state probabilities Pg for the different
systems at t = t f , for a fixed t f [Fig. 5(b)]. With our choice
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FIG. 4. (a) Hit rate when minimizing E (s) in Eq. (2) by pure QPU computation for systems with 10 � N � 20 and different NH

(Appendix B). The value of NH is indicated by the plot symbol, and the Lagrange parameter was set to λ = 1.1. For each system, a set of
10 000 annealing cycles was generated using the DWAVECLIQUESAMPLER, and the hit rate is the fraction of these that gave a correct solution.
The annealing time was set to its maximum value, t f = 2000 µs. The chain strength was chosen individually for each system among the
values 2.25, 2.50, ..., 4.25 for best performance. A circle around the plot symbol indicates that the system has a large energy gap, �E � 1.0
(Appendix B). The dashed line is a least-square fit to the encircled data points. (b) Same as panel (a) after restricting the analysis to a filtered
dataset without chain breaks (77% of the full dataset) and removing systems with a small energy gap (�E < 1.0).

of t f = 20 a.u., the Pg data roughly match the measured pure
QPU hit rates for small N [Fig. 4(a)] but not the rapid decay
with N seen in the latter case.

(ii) Chain breaks. When embedding the problems into the
Pegasus graph, the pure QPU solver creates chains of strongly
coupled physical qubits collectively behaving as a single
qubit. In computations, it may happen that such chains, rep-
resenting logical qubits, break. To check how our results are
affected by such chain breaks, we recomputed the pure QPU
hit rates using data only from annealing cycles in which no
chain break occurred (77% of the full dataset). A scatter plot
comparing the original and recomputed pure QPU hit rates can
be found in Appendix D. In many cases, the removal of chain
breaks leads to a statistically significant change of the mea-
sured hit rate, although the overall agreement between the two
datasets is quite good (Pearson correlation coefficient 0.94),

(iii) Thermal noise. The effects of thermal noise are likely
to be more severe if the energy gap �E between the ground

state and the first-excited state of the problem Hamiltonian is
small. In our systems, it turns out that �E takes on one of
three possible values, namely, 0.1, 1.0, and 1.1 (Appendix B).
In Fig. 4(a), there are three systems with markedly lower hit
rates than the others, all of which have a small energy gap
�E = 0.1. It is conceivable that the low hit rates for these
systems, at least in part, is due to thermal noise. However,
modeling thermal effects is difficult without extensive details
of the underlying physics of the D-Wave processors.

In what follows, we remove from the analysis systems
where thermal effects are potentially much stronger than in
the others by focusing on systems with �E � 1.0. Further-
more, we use the filtered dataset without chain breaks, for
a cleaner comparison with results from Schrödinger simula-
tions. Redrawing Fig. 4(a) after making these two restrictions,
we obtain Fig. 4(b), where the pure QPU hit rate falls
off roughly exponentially with N , albeit still with some
scatter.

FIG. 5. Effects of using a finite annealing time t f in solving the sequence optimization problem [Eq. (2) with λ = 1.1]. (a) Hit rate against
t f in pure QPU computations for two of the problems in Fig. 4 (target structure T12, NH = 4 and 6). (b) Ground-state probability Pg at t = t f

when numerically integrating the Schrödinger equation (Sec. II E) for systems with 10 � N � 20 (Appendix B) using a fixed finite t f (t f = 20
a.u.), plotted against system size, N . The value of NH is indicated by the plot symbol. The Hamiltonian is H (t ) = a(t )HD + b(t )HP [Eqs. (3)
and (4)].

013162-7



IRBÄCK, KNUTHSON, MOHANTY, AND PETERSON PHYSICAL REVIEW RESEARCH 6, 013162 (2024)

C. Probing the effects of control noise on the success
rate of a pure quantum processor unit

One potentially limiting factor in the pure QPU compu-
tations is analog control errors in the fields hi and couplers
Ji j [35,36] of the Ising Hamiltonian HP [Eq. (4)], which are
referred to as integrated control errors in D-Wave’s documen-
tation [31]. The presence of control errors δhi and δJi j leads
to a perturbed Hamiltonian

H̃P =
∑

i

(hi + δhi )σ
z
i +

∑
i< j

(
Ji j + δJi j

)
σ z

i σ z
j , (6)

whose ground state may not coincide with that of the intended
Hamiltonian HP [Eq. (4)]. Previous work showed that small
errors in individual parameters collectively can cause an ex-
ponential decay of the success rate with problem size [35,36].

To be able to explore the effects of control errors in our
pure QPU computations, we have to make some simplifying
assumptions. First, following Refs. [35,36], we assume that all
errors δhi and δJi j are statistically independent and normally
distributed, with zero mean and standard deviations σh and σJ

for all δhi and δJi j , respectively. Second, for computational
reasons, we consider only logical qubits, thus essentially
ignoring the auxiliary qubits needed when embedding the
problems into the QPU topology. However, we take the QPU
embedding into account in setting the values of σh and σJ (see
below).

In D-Wave QPU computations, all couplers and fields are
rescaled to ĥi = hi/r and Ĵi j = Ji j/r, where r is the smallest
number such that all rescaled parameters fall in given inter-
vals, |ĥi| � hmax and |Ĵi j | � Jmax. In all systems studied here,
the rescaling factor r is set by the chain strength Jcs (see
Sec. II D) and given by r = Jcs/Jmax. In particular, this im-
plies that the energy gap of the rescaled problem Hamiltonian
scales as 1/Jcs, which should lead to a decrease in success rate
with increasing Jcs.

The strength of the control noise on D-Wave’s systems
has been investigated [31]. D-Wave Support suggests using
σh = x max |hi| and σJ = x max |Ji j | with x = 0.015, where
the maxima are taken over all fields and couplers of the
Hamiltonian, including those associated with auxiliary qubits.
As indicated above, in our systems, the largest |Ji j | is the chain
strength Jcs. Following the suggestion above, we therefore
set σJ = xJcs. Each logical qubit is represented by a chain
of k physical qubits (Sec. II D), where k = 2 for the N =
10 system and k = 3 for all other systems studied. As the
physical qubits representing a logical qubit with field hi have
fields hi/k, we set σh = √

kx max |hi|/k, where the square root
comes from summing over k physical qubits. Summarizing,
we then have

σh = x max |hi|√
k

and σJ = xJcs. (7)

Using Eq. (7) with k and Jcs as in the pure QPU com-
putations and x = 0.015, we generated 10 000 perturbed
Hamiltonians H̃P [Eq. (6)] for each of the systems in Fig. 4(b),
and determined the fraction of these, Pg, that shared ground
state with the intended Hamiltonian HP. For the two sys-
tems with (N, NH) = (10, 4) and (N, NH) = (20, 11), we

FIG. 6. The dependence of the hit rate on the chain strength,
Jcs, in pure QPU computations and in Schrödinger simulations
with control noise of strength x = 0.015, for two systems with
(N, NH) = (10, 4) (black) and (N, NH) = (20, 11) (red), respectively
(Appendix B). Full lines represent data from the Schrödinger simu-
lations. Plot symbols show pure QPU hit rates, calculated over the
full dataset (plus) or the filtered dataset without chain breaks (circle).
Dotted lines are drawn to guide the eye. Data presented elsewhere
in the paper for these systems were obtained using Jcs = 2.25 for
(N, NH) = (10, 4) and Jcs = 4.25 for (N, NH) = (20, 11).

performed additional sets of pure QPU computations to elu-
cidate how the hit rate depends on Jcs.

Figure 6 shows the Jcs dependence of the pure QPU hit
rate for these two systems, along with the simulated ground-
state probability Pg. Clearly, Jcs must be sufficiently large to
ensure chain stability. On the other hand, we expect the hit
rate to drop if Jcs gets too large, due to the 1/Jcs scaling of
the energy gap (see above). The data confirm that Jcs must be
neither too small nor too large for good performance (Fig. 6),
and therefore needs to be chosen with some care. It can also
be seen that the hit rate depends only weakly on whether the
full dataset or the filtered one without chain breaks is used.
As chain breaks do not occur in the simulated systems with
only logical qubits, Pg does not drop at small Jcs. At large Jcs,
Pg decreases at a rate similar to what is observed for the pure
QPU hit rate.

Figure 7(a) shows the simulated hit rates Pg, for the sys-
tems studied in Fig. 4(b), plotted against N . As in the pure
QPU computations [Fig. 4(b)], the hit rate falls off roughly
exponentially with N . The scatter plot in Fig. 7(b) com-
pares simulated hit rates Pg [Fig. 7(a)] with pure QPU hit
rates [Fig. 4(b)]. The pure QPU hit rate appears to decrease
somewhat more slowly than Pg with N . Nevertheless, at a
semiquantitative level, the pure QPU hit rates agree quite well
with the Pg values obtained using the suggested noise strength
x = 0.015. While refraining from attempts to fine-tune x, we
note that using x = 0.003 or x = 0.030 leads to, respectively,
too high or too low Pg values, compared with the QPU hit
rates.

In conclusion, the results presented here are consistent
with the hypothesis that control errors are an important factor
behind the strong N dependence of the pure QPU hit rates.
To fully account for the measured hit rates, and in particular
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FIG. 7. (a) N dependence of hit rates from Schrödinger simulations with control noise of strength x = 0.015. The function optimized is
E (s) in Eq. (2) with λ = 1.1 and different NH, as indicated by the plot symbol. The systems studied are the same as in Fig. 4(b). For each
system, 10 000 perturbed Hamiltonians H̃P [Eq. (6)] were generated, and the hit rate is the fraction of these that share ground state with the
noise-free Hamiltonian HP. The dashed line is a least-square fit. (b) Scatter plot comparing hit rates from the Schrödinger simulations in panel
(a) with the pure QPU hit rates in Fig. 4(b).

their NH dependence, additional factors need to be considered,
including thermal noise.

There are complementary methods, not explored here, to
improve on modest pure QPU hit rates. One is to add a
postprocessing step, in which the QPU output state is sub-
ject to a local optimization with a greedy classical algorithm
[37], to drive approximately correct solutions to the desired
minimum-energy level. However, in most systems studied
here (Fig. 7), all first-excited states are local minima left
unchanged by this method, which suggests that it is of limited
use for our systems. Another approach, called “shimming,” is
to refine the calibration of the Hamiltonian by using symme-
tries of the system [38]. These symmetries typically assume
zero fields, and coupler values related by a sign flip (±J).
These conditions are not met in our systems, which makes
useful symmetries hard to find.

Let us finally mention that we also investigated whether the
XY -mixer offers an advantage in our problem, by comparing
the time evolution of the Schrödinger system when using
respectively HD and HXY

D in Eqs. (4) and (5) as drivers. In
the cases studied, we found that the improvement is at most
marginal.

IV. SUMMARY AND OUTLOOK

Protein design, determining sequences corresponding to
a given structure, is a highly relevant biophysical problem.
Since both sequence and structure space have to be explored,
the problem is very challenging, especially for large chains.
We have approached this problem for the HP lattice protein
model using quantum annealing by first minimizing the target
structure energy to generate sequences and then checking if
the generated sequences do in fact fold to the target structure.

The approach was evaluated by using the D-Wave Advan-
tage hybrid quantum-classical solver for three structures with
chain lengths N = 30, N = 50, and N = 64. Without excep-
tions, the D-Wave hybrid solver swiftly solves the sequence
optimization problem, for which the ground-state energy can
be deduced (Appendix A). These solutions were then tested
for their ability to fold to the target structure, a problem

that can also be efficiently tackled using the hybrid solver
[14]. The two-step procedure was successfully applied to all
three target structures. In particular, we identified a previously
unknown sequence that appears to have the N = 64 structure
as its unique ground state.

In addition, we tested using the D-Wave pure QPU for se-
quence optimization problems with 10 � N � 20, for which
solutions exist in the data bank. For all structures, sequences
that had the desired structure as their unique ground state were
found. However, in line with previous results for the folding
problem [14], when using only the QPU for the sequence
optimization problem, the performance deteriorates with sys-
tem size. To understand this behavior, which very likely is
due to hardware-induced phenomena (noise), we solved the
time-dependent Schrödinger equation numerically for differ-
ent scenarios.

Two possible sources of error are inadequate annealing
time and control errors in the couplers and fields of the prob-
lem Hamiltonian. Whereas inadequate annealing time turned
out not to be the problem, our results suggest that control
errors have a significant impact on the success rate. Here,
we computed the fraction of perturbed Hamiltonians sharing
ground state with the original Hamiltonian and compared with
the pure QPU results. Employing the same rescaling as on the
D-Wave machine and using standard deviations of the noise
supplied by D-Wave, we found a semiquantitative agreement
with the observed pure QPU hit rates [Fig. 7(b)]. A more
detailed error model should also incorporate thermal noise.
The latter would have to be based on deeper knowledge about
the inner workings of the D-Wave architecture, which is, at
present, not accessible.

These noise investigations were exclusively probing the D-
Wave QPU properties for the simple reason that D-Wave is the
only available annealer for realistic computations. However,
our approach to elucidate the problem by comparing with the
time-dependent Schrödinger equation is of wider relevance.

Overall, it is clear that the quantum annealer naturally lends
itself to protein design. Using the hybrid quantum-classical
annealer, both generating sequences, and subsequently filter-
ing them based on their folding ability, work very well. When
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using just the QPU, without leveraging D-Wave’s hybrid
solver, we found that generating sequences with the lowest
HP energy for the target structure becomes difficult for larger
structures. The results presented lend support to the notion
that, at least in part, this difficulty originates from imperfect
implementation of the problem Hamiltonian.

Replacing the X driver with an XY driver in the
Schrödinger simulations, which has been suggested for quan-
tum annealing in general [32], did not improve the results for
the sequence optimization problem. This is somewhat surpris-
ing since in our case it would remove the only constraint term
in Eq. (2).

Toward more realistic protein models, one could replace
the binary HP encoding spins si by discrete multistate spins Si

encoding both amino acid type, e.g., in the canonical 20-letter
alphabet, and the corresponding side-chain conformations,
or rotamers [22]. Assuming an energy with the quadratic
structure E = ∑N

i=1 A(Si ) + ∑
i< j B(Si, S j ) and a given target

backbone conformation, one could then determine the amino
acid sequence and rotamers by minimizing E over the Si vari-
ables. Given all possible values of all one- and two-body terms
A(Si ) and B(Si, S j ), which would have to be predetermined,
this minimization could in principle be carried out using QA
and a one-hot encoding of the spins Si. However, checking
whether the optimized sequences fold to the intended and
real, rather than lattice-based, backbone conformation would
require classical computing. One possibility would be to use
the AlphaFold structure prediction method [39,40].
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APPENDIX A: MINIMUM EHP FOR THE TARGET
STRUCTURES T30, T50, AND T64

Given a target structure Ct , we determine sequences s by
minimizing EHP(Ct , s) at different fixed compositions NH,
with EHP defined as minus the number of HH contacts. In all
instances studied in this paper, the solution to this problem can
be inferred from a contact map showing all contacts present in
the target structure. Figure 8 shows contact maps for the three
largest target structures studied: T30, T50, and T64 (Sec. III A).

To illustrate how the minimum EHP can be found, consider
the contact map for T64 (Fig. 8, right panel) for the three
NH values used (Sec. III A), namely, 36, 40, and 42. In this
structure, 10 of the beads do not form any contact, and can
therefore be ignored. The remaining beads can be divided
into 12 distinct clusters: seven two-bead clusters, three four-
bead clusters and two larger clusters with 12 and 16 beads,
respectively. The five clusters with more than two beads con-
tain 40 beads in total. It is easy to see that taking these 40
beads as H represents a unique EHP minimum for NH = 40
(EHP = −41). For NH = 42, the minimum EHP is obtained by
adding any of the seven two-bead clusters to the set of H beads
(EHP = −42). Finally, by instead removing one of the three
four-bead clusters from the NH = 40 solution, one finds the
minimum EHP for NH = 36 (EHP = −37).

The T30 and T50 problems can be analyzed in a similar
way. In Table I, we summarize minimum EHP values and the
degeneracy of the solutions for all problems considered in our
hybrid computations.

APPENDIX B: MINIMUM EHP FOR THE TARGET
STRUCTURES WITH N � 20

Table II shows the minimum EHP and the degeneracy of
the solution to the sequence optimization problem for the sys-
tems studied using pure QPU computations and Schrödinger
simulations, all with N � 20. How many of the solutions
that actually have the target structure as their unique ground
state is indicated within parentheses. This number is known
from exact enumerations for these system sizes [20]. Finally,
Table II also shows the energy gap �E between the ground
state and the first-excited state of the problem Hamiltonian.
All target structures TN with N � 20 can be found in Fig. 9.

FIG. 8. Contact maps showing all contacts present in the 30-, 50-, and 64-bead target structures T30, T50, and T64 (Fig. 1). Two beads are
said to be in contact if they are nearest neighbors on the lattice but not along the chain.
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TABLE I. Minimum EHP and the degeneracy of the solution for
all sequence optimization instances studied in Sec. III A, using the
target structures T30, T50, and T64 and different compositions NH.

Target structure NH Minimum EHP Degeneracy

T30 12 −11 14
13 −12 14
14 −14 1
15 −15 1
16 −15 18
17 −16 4

T50 29 −28 10
30 −29 4
31 −30 1

T64 36 −37 3
40 −41 1
42 −42 7

APPENDIX C: NUMERICAL INTEGRATION OF THE
TIME-DEPENDENT SCHRÖDINGER EQUATION

To numerically integrate the Schrödinger equation, we first
split the time evolution into M steps with length ε (t f = Mε),
yielding

ψ
(
t f

) = U (tM, tM−1) · · ·U (t1, t0)ψ (0), (C1)

where ψ (t ) is the wave function corresponding to the Hamil-
tonian in Eq. (3), tm = mε (m = 0, . . . , M), and

U (tm+1, tm) = T exp

[
−i

∫ tm+1

tm

dtH (t )

]
(C2)

TABLE II. Minimum EHP, the degeneracy of the solution, the
energy gap �E , and the chain strength Jcs used, for all sequence op-
timization instances studied in Sec. III B, using the target structures
T10−T20 and different compositions NH. Also included is the system
used for verification in Appendix C (T8). The number of the solutions
that have the target structure as its unique ground state is given within
parentheses. �E is the gap between the two lowest values of E (s)
[Eq. (2)], when using λ = 1.1.

Target structure NH Minimum EHP Degeneracy �E Jcs

T8 4 −3 1 (1) 1.0
T10 4 −4 1 (1) 1.1 2.25
T11 5 −4 1 (1) 1.0 2.25
T12 4 −4 1 (1) 1.1 2.25
T12 6 −5 1 (1) 1.0 2.75
T13 6 −4 18 (1) 0.1 2.75
T13 8 −6 1 (1) 1.0 2.75
T14 6 −5 5 (1) 0.1 3.00
T14 8 −7 1 (1) 1.0 3.00
T15 5 −4 6 (1) 0.1 3.25
T15 6 −5 5 (1) 0.1 3.00
T16 6 −6 1 (1) 0.1 3.00
T16 7 −7 1 (1) 1.0 3.00
T16 8 −7 10 (5) 0.1 3.25
T17 6 −6 1 (1) 1.0 3.50
T17 7 −6 14 (5) 0.1 3.50
T18 8 −8 1 (1) 0.1 3.50
T18 9 −9 1 (1) 1.0 3.75
T19 8 −8 1 (1) 0.1 3.75
T19 9 −9 1 (1) 1.0 4.00
T20 8 −8 1 (1) 0.1 4.25
T20 9 −9 1 (1) 1.0 4.00
T20 11 −10 1 (1) 1.0 4.25

FIG. 9. The target structures used for the sequence optimization in Sec. III B and the structure used for verification in Appendix C (T8).
The different compositions used can be found in Table II.
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FIG. 10. Step size dependencies when using Eq. (C4) to integrate the Schrödinger equation of an eight-qubit system [T8 (Fig. 9) with
NH = 4 (Table II)] for two choices of the annealing time, t f = 10 and t f = 50. (a) The probability Pg of finding the final system in the ground
state of the problem Hamiltonian HP plotted against the step size ε. The lines are drawn to guide the eye. (b) The ε dependence of the
finite-difference ratio χ (ε) = [Pg(ε) − Pg(ε/2)]/[Pg(2ε) − Pg(ε)], which approaches 2−k for small ε if the integrator is kth-order accurate. The
data for χ (ε) fall close to 0.25 for small ε, as expected for the second-order integrator in Eq. (C4).

(with h̄ = 1). Assuming a linear t dependence of a(t ) and
b(t ) (Sec. II E), a leading-order Magnus expansion [42] yields
ln U (tm+1, tm) ≈ −iεHm + O(ε3), where Hm = H (tm + ε/2).
It follows that

Ũ (tm+1, tm) = exp (−iεHm) (C3)

provides a unitary, second-order accurate integrator (cubic
local error). With this approximation, the evolution from time
tm to time tm+1 is governed by the constant Hamiltonian Hm.
Still, due to the Hilbert-space dimensionality (2N ), the nu-
merical implementation requires care. To this end, we replace
Ũ (tm+1, tm) [Eq. (C3)] by the Crank-Nicolson integrator [43]

˜̃U (tm+1, tm) = (
T†

)−1
T where T = 1 − iε

2
Hm, (C4)

which is implicit but still feasible, thanks to the sparseness
of Hm. Like Ũ (tm+1, tm), ˜̃U (tm+1, tm) is unitary and second-
order accurate. The sparseness of Hm can be easily exploited
by rewriting the relation ψ (tm+1) = ˜̃U (tm+1, tm)ψ (tm) as

Av = u with A = TT† and u = T2ψ (tm), (C5)

and solving this linear system of equations for v = ψ (tm+1)
by the conjugate gradient method [44]. In Eq. (C5), both
sides of the equation were multiplied by T, in order to have
a Hermitian and positive-definite matrix A, as required by the
conjugate gradient method. We implemented this algorithm,
based on the Crank-Nicolson and conjugate-gradient meth-
ods, into a C++ program. Figure 10 shows results from a test
of the program on an eight-qubit system, using two choices of
annealing time, t f = 10 and t f = 50, and different step sizes
ε. From Fig. 10(a) it can be seen that the value t f = 50 is suffi-
ciently large for the ground-state probability Pg at t = t f to be
close to one, which is not case for t f = 10. Figure 10(b) shows
data for a finite-difference ratio, χ (ε), which confirm that, for

fixed t f , Pg displays the expected quadratic dependence on ε

for small ε.

APPENDIX D: PURE QUANTUM PROCESSING UNIT HIT
RATES WITH AND WITHOUT CHAIN BREAKS

In our pure QPU computations, using the DWAVECLIQUE-
SAMPLER, each logical qubit is represented by a chain of two
or three physical qubits. It may happen that such chains break.
The pure QPU hit rates shown in Fig. 4(a) represent averages
over all generated annealing cycles, irrespective of whether
all chains were intact. Figure 11 compares these hit rates with
those obtained when omitting from the analysis all annealing
cycles in which any chain break occurred (23% of the data).
The results obtained with and without this filter are similar
(Pearson correlation coefficient 0.94).

FIG. 11. Scatter plot comparing pure QPU hit rates computed
using all data [Fig. 4(a)] to those obtained after filtering out all
annealing cycles in which any chain break occurred.
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