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Controlling quantum many-body systems using reduced-order modeling
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Quantum many-body control is among the most challenging problems in quantum science due to its out-
standing computational complexity in a general case. We propose an efficient approach to a class of many-body
quantum control problems, where time-dependent controls are applied to a sufficiently small subsystem. The
method employs a tensor-network scheme to construct a reduced-order model of a subsystem’s non-Markovian
dynamics. The resulting reduced-order model serves as a digital twin of the original subsystem. Such twins allow
significantly more efficient dynamics simulation, which enables the use of a gradient-based optimization toolbox
in the control parameter space. This approach to building control protocols takes advantage of non-Markovian
dynamics of subsystems by design. We validate the proposed method by solving control problems for quantum
spin chains. In particular, the approach automatically identifies control sequences for exciting and guiding
quasiparticles to recover and transmit quantum information across the system. In addition, we find generalized
spin-echo sequences for a system in a many-body localized phase enabling significant revivals. We expect our
approach can be useful for ongoing experiments with noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Recent progress in the field of quantum technologies has
raised many challenging engineering, mathematical, and com-
putational problems. Among those problems is the problem
of quantum optimal control. Despite tremendous progress
in this field [1–8], quantum optimal control methods are
extremely challenging to scale to many-body systems. The
crucial challenge is that the underlying quantum many-body
dynamics simulation problem requires resources, which grow
exponentially with the number of degrees of freedom in the
general case. Optimization methods used to adjust a control
signal require repeating this simulation many times, making
the problem even harder.

Despite the difficulty of the quantum many-body con-
trol problems, in general, there are several instances where
this problem can be resolved at least partly. For example,
gradient-free optimization methods combined with tensor-
networks-based dynamics simulation were applied to many-
body ground state preparation [9–12]. Recently, methods
using reinforcement learning techniques have been proposed
[13,14]; such approaches can also be viewed as gradient-
free optimization since they do not use the gradient of the
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reward function. The gradient-free optimization-based control
methods, however, are generally expected to be less effi-
cient than gradient-based methods [15]. Recently, Ref. [16]
demonstrated the advantage of gradient-based methods for the
problem of ground-state preparation by crossing the super-
fluid to Mott-insulator phase transition in the Bose-Hubbard
model.

Here we propose a different approach to a class of prob-
lems where a sufficiently small (target) subsystem of a
many-body system is subject to time-dependent control. We
start by building a reduced-order [17–20] model (ROM) that
describes the dynamics of a subsystem as accurately as the
complete model, but contains no information that is irrelevant
to the subsystem dynamics. This is on par with the information
bottleneck method [21,22] when one tries to build a predictive
model of some phenomenon based on a minimal number of
parameters. Such a reduction effectively keeps track of the
relevant degrees of freedom in the environment, discarding
those that have little or no effect on the dynamics of the target
subsystem.

Reduced order modeling allows one to reduce the dimen-
sion of the Hilbert space to the effective one, which can be
orders of magnitude smaller than in the original problem.
This opens the possibility to engage a powerful toolbox of
gradient-based optimization methods and make, in particular,
the calculation of the gradient of the loss function using auto-
matic differentiation techniques [23] usable.

To build a ROM, we employ tensor-network techniques
that are widely used for dimensionality reduction in quan-
tum many-body physics [24,25] and applied mathematics
[26,27]. Combining the developed order reduction scheme
with gradient-based optimization yields an efficient yet simple
method for quantum many-body control.
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We use our approach to automatically design protocols for
manipulating information propagation in strongly interacting
systems. First, we consider a 1D XYZ quantum Heisenberg
chain with extra fields that break integrability. For simplicity,
we choose a single spin as the subsystem where time-
dependent controls are applied. Our algorithm is able to find
sequences that restore quantum information locally or trans-
mit it to another end of the chain. Physically, the identified
sequences of local operations inject and reabsorb long-lived
quasiparticles optimally. Further, we apply the optimization
method to the many-body localized (MBL) phase. We can
find control protocols for local dynamics inversion that out-
perform existing spin-echo-type protocols for MBL systems
[28]. Thus, our approach enables the automated discovery
of optimal generalized spin-echo sequences in interacting
systems.

The method described here can be readily applied in exper-
iments with the current generation of noisy intermediate-scale
quantum devices [29–31]. Various quantum computing plat-
forms, including programmable Rydberg simulators, trapped
ions, isolated spin impurities in solids, and superconduct-
ing circuits arrays realize 1D spin chains [32–39] with the
possibility to control qubits individually by means of op-
tical or microwave pulses. Our approach shows that the
non-Markovianity of a many-body environment can generate
excitations and information spreading across the system. We
expect that a modification of our approach may also be used
for many-body state preparation, environment cooling, etc.

Here we are focused on the the realization of the control
method in the coherent phase of quantum many-body systems
assuming specific techniques to avoid fast thermalization. In
the thermalized phase, one can use an influence matrix ap-
proach [40–42] that is a similar technique aimed at thermal
environments compression in the thermodynamic limit.

Our paper is organized as follows. In Sec. II, we describe
our general approach to ROM building. We illustrate this
approach with the example of a quantum spin chain, our
primary quantum many-body model of interest, in Sec. III A.
In Sec. III B, we discuss ways to build control protocols on the
basis of ROMs. We illustrate several control protocols using
the proposed method: in Sec. IV A, we discuss controllable
information propagation across the system; in particular, we
show the possibility of adjusting the quantum information
transmission from Alice to Bob located at different ends of the
chain. In Sec. IV B, we demonstrate the time reversal of the
system dynamics. We summarize and discuss potential next
steps in developing the proposed approach in Sec. V.

II. BUILDING A REDUCED-ORDER MODEL

Consider a many-body quantum system that consists of
two parts. Assume that the dynamics of the first part are of
interest while the dynamics of the second part are not. This
induces a natural separation of a many-body system into the
target system (S) and the environment (E ) in the spirit of the
theory of open quantum systems. The system-environment
Hilbert space reads H = HS ⊗ HE , where dim(HS ) = dS ,
dim(HE ) = dE . Our first goal is to build a low-dimensional
effective model of the target system dynamics, whose
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FIG. 1. (a) Two-step decomposition: (i) singular value decompo-
sition of U , (ii) contraction of the lower isometric block with the
diagonal matrix �. (b) Orthogonality relation for Ai. (c) Orthogonal-
ity relation for Bi.

numerical simulation is much simpler in comparison with the
original model.

For the sake of simplicity, we consider discretized time
tn ∈ {t0, ..., tN }, where N consecutive time steps are equally
spaced by τ . Generalization of the proposed technique to
the case of continuous time is also possible. For simplic-
ity, we denote time-dependent quantities by the time-step
index. Discrete-time dynamics of the joint system is driven
by a unitary transformation U : HS ⊗ HE → HS ⊗ HE , i.e.,
|ψ (N )〉 = U N |ψ (0)〉, where |ψ (0)〉 is an initial joint system-
environment state. For simplicity, |ψ (0)〉 is supposed to
factorize |ψ (0)〉 = |ψSE 〉 = |ψS〉 ⊗ |ψE 〉, nevertheless the
generalization of the suggested approach to entangled initial
states is straightforward.

Since the dynamics of the environment are not of interest,
one can reduce its dimension in such a way that the dynamics
of the target system remain almost the same. One needs to
split U into two parts to separate the system and environment.
A unitary transformation U can be represented as a four-way
tensor, and its splitting between subsystems is determined by
the dyadic decomposition

U =
∑

i

Ai ⊗ Bi, (1)

which is defined via diagrammatic representation in Fig. 1(a).
Both objects Ai and Bi are seen as three-way tensors, i.e., both
have input and output physical indices and one internal index
i induced by decomposition. Note that one has the following
orthogonality relation for Ai:

Tr(AiA
†
j ) = δi j, (2)

where δi j is the Kronecker delta. Diagrammatic representation
of Eq. (2) is given in Fig. 1(b). One also has orthogonality
relations for Bi, ∑

i

B†
i Bi =

∑
i

BiB
†
i = dSI, (3)

where I is the identity matrix. The diagrammatic interpreta-
tion of the expression Eq. (3) is given in Fig. 1(c). For the
complete derivation of Eqs. (2) and (3), see Appendix A. The
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FIG. 2. (a) Representation of a coupled system and environment dynamics as a tensor network. (b) The same tensor network after decom-
position. The entire network breaks up into a system network and an environment network shaded by red and grey regions correspondingly.
(c) The truncated tensor network that approximates the exact system-environment dynamics.

most important consequence of these relations which we use
further is that operator Ki = 1√

dS
Bi forms Kraus representation

of a quantum channel, i.e., completely positive (CP) and trace-
preserving (TP) map

�[·] =
∑

i

Ki · K†
i , (4)

where the CP property is guarantied automatically and∑
i K†

i Ki = I guaranties the TP property.
Now let us use the dyadic decomposition Eq. (1) to repre-

sent the joint system and environment final state |ψ (N )〉 =
U N |ψ (0)〉 as a tensor network necessary to proceed with
the environment dimensionality reduction. The straightfor-
ward representation in terms of a tensor network is given
in Fig. 2(a). Applying the decomposition Fig. 1(a) to all U
tensors in Fig. 2(a), one ends up with the tensor network
Fig. 2(b). This tensor network can be split into two parts, a
system network and an environment network; they read

|Si1...iN 〉 = AiN AiN−1 . . . Ai2 Ai1 |ψS〉 ,

|Ei1...iN 〉 = BiN BiN−1 . . . Bi2 Bi1 |ψE 〉 . (5)

The final joint system and environment state in terms of net-
works |Si1...iN 〉 and |Ei1...iN 〉 can be written as follows:

|ψ (N )〉 =
∑

i1,...,iN

|Si1...iN 〉 ⊗ |Ei1...iN 〉 . (6)

Note that both networks have a form almost identical to a ma-
trix product state (MPS) [24,43], with the only difference in
the last dangling edge. The environment network by construc-
tion describes all the environmental effects in the system’s
dynamics. By reducing its dimension, we end up with an
effective low-dimensional environment network that leads to
almost the same dynamics of the target system.

Due to the relations Eq. (3), the environment network
is automatically in a so-called left-canonical form, which is
the starting point of the standard MPS truncation algorithm
[26,27,44]. This gives rise to an efficient environment network
truncation technique equivalent to the standard MPS trunca-
tion algorithm. It is easy to formulate this technique purely
regarding the environment dynamics induced by the quantum
channel � introduced in Eq. (4). Consider the dynamics of the
environment, starting from initial state �E (0) = |ψE 〉 〈ψE |,
under the action of the quantum channel �, i.e.,

�E (n) = �[�E (n − 1)]. (7)

The central and most important object is the spectrum
λ1(n), λ2(n), . . . , λdE (n) of �E (n), where eigenvalues are ar-
ranged in the nonascending order. If the spectrum of �E (n)

is mostly concentrated in r(n) largest eigenvalues, then �E (n)
can be effectively represented by its projection on a principal
subspace that is the span of r(n) dominant eigenvectors, i.e.,
eigenvectors with largest eigenvalues. This leads to the trun-
cated version of the density matrix that reads

�̃E (n) = π (n)�E (n)π (n), (8)

where π (n) is the orthogonal projector on the prin-
cipal subspace. Introducing a desirable error threshold√∑dE

j=r(n)+1 λ j (n) � εn, one determines the principal sub-
space dimension r(n) and the principal subspace itself as the
column space of the matrix ω(n) whose columns are r(n)
dominant eigenvectors. The principal subspace is considered a
low-dimensional effective environment Hilbert space at time
step n. The details about the truncation technique and time-
varying truncation effects are available in Appendix B. A
formal algorithm with its reasoning is given in Appendix C.

To obtain the truncated environment network, it is enough
to insert projection operators π (n) = ω(m)ω†(m) in between
neighboring blocks Bin+1 and Bin for all n. This results in
truncated blocks that read

B̃(n)
i =

{
ω(n)Biω

†(n − 1), for n > 1
ω(1)Bi |ψE 〉 , for n = 1,

(9)

and in the truncated environment, the network

|Ẽi1...iN 〉 = B̃(N )
iN

B̃(N−1)
iN−1

. . . B̃(2)
i2

B̃(1)
i1

. (10)

By taking the convolution between the effective environ-
ment network and the system network, as it is sketched
in Fig. 2(c), we get the effective low-dimensional model
of the target system dynamics of time-depended dimension
d̃n = dSr(n). ROM is defined by effective gates Ũm of size
dSr(n) × dSr(n − 1), driving joint dynamics of the system and
the effective environment; they read

Ũn =
∑

i

Ai ⊗ B̃(n)
i . (11)

The dynamics of the system with the use of ROM can be
calculated as follows:

�̃S (n) = TrE

⎛⎝ n∏
i=1

Ũi |ψS〉 〈ψS|
[

n∏
i=1

Ũi

]†
⎞⎠. (12)

Note also that it is allowed to apply arbitrary control gates
to the system. The presented approach requires operating
with the exact environment, which could be computation-
ally expensive for large systems. Indeed, the complexity of
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truncation scales as O(Nd3
E ) since it involves matrix decom-

positions and matrix multiplications per each time step. Thus,
it is possible to truncate an environment whose dimension
is about several thousand. To scale beyond this dimension,
one can alternate the environment truncation described in this
section and the iterative expansion of an environment. When
an environment reaches a certain dimension, for example,
several thousand, one truncates it and continues expanding
it afterward. This allows us to avoid explicit operations with
the exact environment. The iterative expansion procedure for
chainlike environments is discussed in Sec. III A.

It is worth noting that the environment network is closely
connected to an influence functional [45,46] that has been
recently applied to a numerical simulation of quantum dy-
namics in a variety of contexts. The most widely spread use
case of the influence functional is the numerical simulation
of the dynamics of an open quantum system coupled with a
harmonic bath. The early approach to this problem [47,48]
cuts off long-time memory effects by removing multipliers
from the exact analytical form of the influence functional of a
harmonic bath, making it tractable for numerical treatment.

More recent approaches such as TEMPO [49] and its
variations and improvements [50,51] use a low-rank tensor-
network representation of the influence functional to improve
accuracy and include long-time memory effects in the con-
sideration. Another recent approach [52] aimed at replacing a
complex harmonic bath with a simple one allowing numerical
simulation of the system’s dynamics. The core idea of the
approach is to find such a surrogate bath, which has the same
two-time correlation functions. In the case of a Gaussian bath,
this is equivalent to the equality of influence functionals.

The combination of tensor network methods with influence
functional theory is used to develop analytical and numer-
ical methods for analyzing and modeling correlated spin
systems. In particular, the self-consistency equation for the
influence functional [40,42,53] allows one to study the long-
time thermalized dynamics of spin systems both analytically
and numerically. It has been shown that the influence func-
tional admits exact disorder averaging [54], making it possible
to study MBL phases rigorously.

Approaches based on the influence functional are espe-
cially successful in the case of irreversible processes with
weak memory effects. In these cases, temporal entanglement
is weak and a low-rank MPS can efficiently approximate an
influence functional. Whereas such systems are fundamen-
tally very interesting, they are not well controllable due to
the high information loss rate. Systems with long memory
effects and weak information loss are better controllable and
more interesting from the optimal control perspective. For
describing environmental effects in such kinds of problems,
the environment network is better. To justify this claim, let
us consider the connection of the environment network with
the influence functional that is represented in Fig. 3. The
environment network with bond dimension r corresponds to
the influence functional with bond dimension r2. This means
that the environment network can describe higher temporal
entanglement and more complex memory effects. On the other
hand, the environment network cannot efficiently describe
irreversible loss of information. Any loss comes at the cost

In uence functional

∗∗∗∗
|ψE

|ψ∗
E

Influence functional

FIG. 3. Influence functional is a convolution of the environment
network with the conjugated version of itself.

of increasing the bond dimension. Therefore, the environment
network is well suited to describe processes that are well
controllable, i.e., with small information loss and high tempo-
ral entanglement, and complements the influence functional
based approaches. This motivates our choice of the environ-
ment network for optimal control purposes.

III. MANY-BODY OPTIMAL CONTROL: METHODOLOGY

A. Reduced-order modeling of a quantum spin chain

We begin validation of the proposed reduced-order mod-
eling technique by building a ROM of XYZ quantum
Heisenberg chain with an external magnetic field and open
boundary conditions. The corresponding Hamiltonian is rep-
resented as a sum of local terms

H =
L−1∑
j=1

Hj, j+1, (13)

where each local term includes spin-spin and local magnetic
field interaction terms:

Hj, j+1 =
∑

α∈{x,y,z}
Jασα

j σα
j+1 + h jσ

α
j + h j+1σ. (14)

Here σα
j , α ∈ {x, y, z} stands for Pauli matrix acting on a spin

number j, Jα is a coupling constant, and hα is a component
of the external magnetic field. Spin chain dynamics can be
discretized by a Suzuki-Trotter decomposition [55] and repre-
sented as a brickwork quantum circuit where each odd/even
gate layer reads

UO =
�(L−1)/2	∏

j=1

exp
(−iτH2 j,2 j+1

)
,

UE =
�L/2	∏
j=1

exp
(−iτH2 j−1,2 j

)
, (15)

where τ is a discretization step. This decomposition approx-
imates the genuine Hamiltonian dynamics of a spin chain
and becomes exact when τ → 0, τN → T . Applying odd
and even layers one after another to the initial state |ψ (0)〉 =⊗L

i=1 |ψi〉 of the spin chain leads to the final state shown in
Fig. 4(a).

We can choose any spin in the chain as the target system,
and consider the rest of the spin chain as an environment.
Throughout the paper, we use l to denote the target spin
index. For large spin chains, the ROM building technique
presented in Sec. II is not directly applicable, since it requires
manipulations with the exact environment, whose dimension
grows exponentially with the number of spins. However, the
structure of the environment can be used, i.e., in this case,
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FIG. 4. (a) Tensor diagram of the Trotterized unitary evolution of spin chain. (b) Unitary evolution of spin chain after dyadic decomposition
Eq. (1). (c) Unitary evolution of spin chain in terms of odd/even temporal MPOs.

it is either a chain connected to the edge spin or two chains
connected to a spin inside. A key property of chainlike envi-
ronments is that new spins can be recurrently added to the
environment by simply inserting them between the current
environment and the target system. This allows us to build
an effective environment iteratively by adding one spin to the
environment at a time and truncating the environment network
using the algorithm from the Sec. II when the dimension
reaches a threshold value. This approach is similar to the
time-evolving block decimation algorithm [56], but instead
of expanding the corresponding tensor network in the time
domain, we expand it in space.

The procedure for constructing a ROM for a chainlike envi-
ronment starts with the trotterization of the unitary dynamics
of the joint system Fig. 4(a). Applying the dyadic decomposi-
tion Eq. (1) to a brickwork unitary circuit enables us to switch
to another representation of joint system dynamics shown in
Fig. 4(b). This representation makes it possible to identify a
set of operators responsible for the dynamics of each spin in
the chain separately. In this case, the interaction of spins is
represented as a convolution of the corresponding operators
resulting from Eq. (1).

Natural separation into even and odd layers in Suzuki-
Trotter decomposition, after dyadic decomposition, leads to
the appearance of two tensor subnetworks. These subnetworks
are denoted |Oi′1...i

′
N

i1...iN
(k)〉 for spin index k = 1, 3, . . . , �(L −

1)/2	 and |Ei′1...i
′
N

i1...iN
(k)〉 for spin index k = 2, 4, . . . , �L/2	.

These subnetworks describe the dynamics of the environmen-
tal spins and can be represented as convolutions of operators
resulting from the dyadic decomposition of the following
form:

|Ei′1...i
′
N

i1...iN
(k)〉 = A(k)

i′N
B(k)

iN
. . . A(k)

i′1
B(k)

i1
|ψk (0)〉 ,

|Oi′1...i
′
N

i1...iN
(k)〉 = B(k)

iN
A(k)

i′N
. . . B(k)

i1
A(k)

i′1
|ψk (0)〉 . (16)

Introducing two different types of elementary tensors A(k)
i′n

B(k)
in

and B(k)
in

A(k)
i′n

, we can represent the joint system dynamics as
shown in Fig. 4(c). We note that in this representation, sub-
networks |Oi′1...i

′
N

i1...iN
(k)〉 and |Ei′1...i

′
N

i1...iN
(k)〉 can be seen as matrix

product operators (MPOs) with only differences in the final
dangling edge.

Using the introduced MPOs, we can describe the iterative
procedure for constructing a ROM of a spin chain. First, we
fix the dynamical subnetwork of the edge environmental spin.
Because of the open boundary conditions, for the edge spin,
this subnetwork has an MPS structure and can be interpreted

as an environment network. Next, we iteratively add more
subsystems to the environment network by performing MPS-
MPO contraction,

|Ei1...iN (k + 1)〉

=

⎧⎪⎪⎨⎪⎪⎩
∑

i′1,...,i
′
N

|Ei′1...i
′
N

i1...iN
〉 ⊗ |Ẽi′1...i

′
N

(k)〉 , k + 1 − even∑
i′1,...,i

′
N

|Oi′1...i
′
N

i1...iN
〉 ⊗ |Ẽi′1...i

′
N

(k)〉 , k + 1 − odd,
(17)

resulting in a new environment network |Ei1...iN (k + 1)〉, which
is fed into the truncation algorithm (Sec. II) if the environ-
ment dimension exceeds a threshold. The complete iteration
of adding spin to the effective environment is illustrated in
Fig. 5. Such an iterative approach does not require explicit
manipulations with the complete environment and is therefore
scalable and applicable to large chainlike environments. We
also note that such an approach is applicable for general
treelike interaction graphs.

We perform an iterative order reduction procedure and end
up with an effective low-dimensional model describing the
dynamics of the target spin. Such a construction can be built
for the case of the arbitrary location of the target spin in the
chain. The dynamics of the target spin l within the ROM reads

|ψ̃ (n)〉 = Ũn . . . Ũ2Ũ1 |ψl (0)〉 ,

�̃l (n) = TrE
(|ψ̃ (n)〉 〈ψ̃ (n)|), (18)

where |ψ̃l (k)〉 is the joint target spin and effective environment
state at discrete time n and �l (n) is the state of the target spin.
Note that in general case, the dimension d̃n = 2r(n) of |ψ̃ (n)〉
increases with time because of the entanglement growth with

E
i1...iN
i1...iN

(k)

Ei1...iN
(k)

Ei1...iN
(k + 1)

O
i1...iN
i1...iN

(k)

Ei1...iN
(k)

≈

≈

FIG. 5. Illustration of an elementary environment expanding
step. Environment network in MPS form is contracted with an MPO
of an additional (even/odd) spin. Next, if the threshold dimension is
reached, truncation is performed, which gives a new MPS.
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Input
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FIG. 6. (a) ROM describing dynamics of the edge spin. Varying
edge thicknesses represent an increase of the effective environment
dimension d̃ (n) = 2r(n) with time. (b) Tensor diagram showing how
one applies control signal {u1, . . . , uN } to the target spin. (c) Tensor
diagram representing the quantum channel driving the dynamics
of the target spin in terms of ROM. Asterisk stands for complex
conjugate.

time between target spin and spins of environment Fig. 6(a).
Thus, the dynamics of the target spin, taking into account
external control, in terms of ROM, can be represented as in
Fig. 6(b), corresponding quantum channel shown in Fig. 6(c).

In the following section, we move forward and apply the
developed reduced-order modeling scheme to various optimal
control problems.

B. Reduced-order modeling based optimal control

ROM techniques are well-suited for optimal control meth-
ods in many-body quantum physics. Indeed, the main diffi-
culty towards efficient quantum many-body optimal control is
the necessity of running dynamics simulations thousands of
times. This difficulty is substantially mitigated via reduced-
order modeling. The overall optimal control scheme breaks
up into two steps:

(1) Build ROM of a quantum many-body system.
(2) Formulate an optimal control problem as an optimiza-

tion problem in terms of ROM and solve it using some
optimization algorithm.

It remains unclear what kind of optimization method to
use. A typical control problem written in terms of the opti-
mization problem takes the following form:

min
{ui}�n

i=1

L(u1, . . . , u�n),

s.t. u†
i ui = I, (19)

where L is the loss function in terms of ROM and measures
how good a control signal is, {ui}�n

i=1 is a �n-step sequence of
unitary control gates applied to the system, i.e., it is a control
signal that needs to be optimized, and I is the identity operator.
Note that Eq. (19) is the constrained optimization problem.
Since control gates are unitary, an optimization technique of
our choice must preserve u†

i ui = I for all gates.
To solve the given optimization problem, we found a

Riemannian optimization algorithm [57,58], namely, the Rie-
mannian ADAM optimizer [59,60], to be efficient. It performs
a gradient-based search of the optimal point on a manifold
defined by the constraints, in our case on the manifold of

Φ(n)(k, m) =
1
dS

×Ω(n)(k, m) =

1 − st subsystem

2 − nd subsystem

1(k, m) = Tr2[Ω(n)(k, m)] =
1
dS

×

2(k, m) = Tr1[Ω(n)(k, m)] =
1
dS

× =
I

dS

k − th spin input

m − th spin output

Φ(n)(k, m) =

n
ti

m
es

te
ps

∗∗∗∗∗
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∗
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∗
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(a) (b)

(c)

FIG. 7. (a) Diagrammatic representation of the quantum channel
�(n)(k, m). (b) Diagrammatic representation of the corresponding
Choi matrix �(n)(k, m). The only difference between �(n)(k, m) and
�(n)(k, m) is in the multiplier 1/dS . (c) Diagrammatic representation
of �

(n)
1 (k, m) and �

(n)
2 (k, m). Note that due to the TP property of

�(n)(k, m), �
(n)
2 (k, m) is proportional to the identity operator.

unitary matrices (a special case of the complex Stiefel man-
ifold [61–64]). We calculate the gradient of L with respect o
{ui}�n

i=1 utilizing the automatic differentiation technique [23].
The Riemannian ADAM optimizer performs a descent pro-
cedure towards the optimal point on the manifold of unitary
matrices until convergence, evaluating the gradient of L typ-
ically around 104 times. Note that without the use of ROM,
even a single calculation of the gradient becomes extremely
memory demanding since automatic differentiation requires
keeping all intermediate data in memory.

C. Information flows computation and visualization

To validate optimal control results and gain intuition be-
hind them, it is instructive to visualize how information about
the initial state of a certain spin propagates across a spin chain.
For this purpose, we introduce a quantum channel �(n)(k, m)
that maps the initial state of the kth spin to the state of the
mth spin at time step n. Its diagrammatic representation is
given in Fig. 7(a). This quantum channel fully characterizes
correlations between the initial state of the kth spin and the
state of the mth spin at the nth discrete time moment. To
quantify correlations by a single value, one can turn to the
corresponding Choi matrix �(n)(k, m) that is represented in
terms of tensor diagrams in Fig. 7(b). This Choi matrix is seen
as the density matrix of a two-component quantum system,
and thus the mutual information between those components
I (n)(k, m) is well-defined and reads

I (n)(k, m) = S
(
�

(n)
1 (k, m)

) + S
(
�

(n)
2 (k, m)

)
−S

(
�(n)(k, m)

)
,

(20)

where S stands for von Neumann entropy, �
(n)
1 (k, m) is the

first component density matrix and �
(n)
2 (k, m) is the second

component density matrix. Both �
(n)
1 (k, m) and �

(n)
2 (k, m) are

represented in terms of tensor diagrams in Fig. 7(c). Mutual
information I (n)(k, m) is well-suited for our visualization pur-
poses, showing how information about the kth spin propagates
in discrete time n and space m. Note that there are other quan-
tities that maybetter suit for this role, e.g., quantum capacity
[65–67], but mutual information is much easier to calculate.
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FIG. 8. Density plots representing dynamics of mutual information I (n)(l, m) on a spin chain with turned ON/OFF control for l being
equal to 1 (left panel) and n−1

2 + 1 (right panel).

IV. MANY-BODY OPTIMAL CONTROL: NUMERICAL
EXPERIMENTS

In this section, we describe several numerical experiments
to demonstrate the performance of the approach. However, the
possible applications of the proposed approach are not limited
to those presented here.

A. Controllable information propagation
in a quantum spin chain

We start with examples of controllable information propa-
gation in the XYZ model discussed in Sec. III A. We choose
the following parameters of the model: Jx = 0.9, Jy = 1, Jz =
1.1, hx = 0.2, hy = 0.2, hz = 0.2, τ = 0.15, and the following
initial states of the target spin and the environment:

|ψS〉 = |↑〉 , |ψE〉 =
L⊗

i=1

|↓〉 . (21)

Chosen model parameters correspond to weakly noninte-
grable dynamics in the continuous in time case. Although we
choose a special environment initial state, it is natural to ex-
pect qualitatively similar results after averaging over random
environment initial states.

Within the first task, we consider a bit artificial but com-
plicated control problem causing nontrivial information flow
under optimal control. The problem is formulated as follows:
Find a control sequence {u1, . . . , uN } applied to the target
spin that �l (0) = �l (N ) and �l (N/2) = I

2 , where �l is the
density matrix of the target spin. In other words, we want
the information about the initial state of the target spin to be
completely absorbed by the environment at time τN/2 and

completely reconstructed back at the end of the time interval.
This control problem has the following formulation in terms
of optimization:

min
{ui}N

i=1

∥∥∥�
(N/2)
|u1,...,uN/2

(l, l ) − �

∥∥∥2

F

+∥∥�
(N )
|u1,...,uN

(l, l ) − I
∥∥2

F

s.t. u†
i ui = I, for i ∈ {1, . . . , N}, (22)

where �n
|u1,...,un

(l, l ) is a quantum channel that maps the initial
state of a target spin l to the state of the target spin at discrete
time step n, I is the identity quantum channel, � is a quantum
channel that maps any state to the completely mixed state 1

2 I ,
and subscript F stands for the Frobenius norm. We resolved
this optimization problem using the technique from Sec. III B.
We built ROM using an environment truncation scheme with
truncation threshold rmax = 512 and truncation accuracy ε =
0.01 (see Appendixes B and C for details).

We conduct the exact dynamics simulation under optimal
control and without control to study how the information
about the initial state of the target spin propagates in the spin
chain. The information flow in all cases is visualized in Fig. 8.

One can see that the optimal control sequence achieves the
desired information flow, i.e., at the intermediate time, infor-
mation about the initial state of the target spin dissolves in the
rest of the spin chain; however, at the end of the dynamics, it
is concentrated back in the target spin. Note that the optimal
control sequence uses reflection of the information flow from
borders of the spin chain as a resource when possible, i.e.,
when the information flow has enough time to reflect from
a border and get back. Note that this is an effect of many-
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FIG. 9. Comparison of the exact and ROM-based dynamics for
XYZ chain of L = 27 spins.

body echo, that is recognized and utilized by the optimization
algorithm with only the use of the ROM. We also compare the
exact dynamics of the target spin with the dynamics simulated
by the use of the ROM in the case of a random external control
signal to show that the ROM is capable of predicting the
response to the external control signal. The results are given
in Fig. 9.

We also study how the dimension of the ROM, i.e., 2r(k),
scales with time for various numbers of spins. Figure 10 qual-
itatively demonstrates the effect of dimensionality reduction
for the case of target spin fixed to be the edge spin. One can see
that the dimension of the ROM grows much slower compared
to the light-cone-based estimation of the effective dimension.
While the ROM dimension for 27 spins reaches ≈104 at the
final time step, the light cone covers the entire spin chain.
This is evidence of the proposed ROM technique efficiency
because the naive light-cone-based estimation of the effective
dimension results in d̃N ≈ 227 ≈ 1.3 × 108 while the ROM
technique results in d̃N ≈ 104.

Model reduction becomes intractable with increasing sim-
ulation time, since r(k) grows exponentially, and one cannot
simulate thermalization of the target spin. Nevertheless, the

5 15 25 35 45
Time step, n

101

102

103

104

r(
n
)

Light cone

L = 9

L = 15

L = 21

L = 27

FIG. 10. Comparison of the ROM dimension with the light cone-
based estimation of the effective dimension for different numbers of
spins.

reduction technique is well-suited for different control prob-
lems simplification.

Within the second control problem, we apply the proposed
method to design a control protocol for quantum informa-
tion transfer through a spin chain. Let us assume that Alice
prepares one of the spins in some state. The goal of Bob,
who has access to one of the other spins, is to apply such
a control sequence {u1, . . . , uN } to his spin, that after time
τN Bob has his spin in the state as close as possible to the
initial state of Alice’s spin. In other words, Bob has to catch
information propagating from Alice and reconstruct the initial
state. To formulate this task as an optimization problem, let us
fix four quantum states of Alice’s spin {|φq〉 〈φq|}3

q=0. Corre-
sponding Bloch vectors lie at the vertices of the tetrahedron,
i.e., |φq〉 〈φq| = 1

2 (I + ∑
k s(q)

k σk ), where s(q)
k are components

of vectors {s(q)}3
q=0 that read

s(0) = (0, 0, 1), s(1) =
(

2
√

2

3
, 0,−1

3

)
,

s(2) =
(

−
√

2

3
,

√
2

3
,−1

3

)
, s(3) =

(
−

√
2

3
,−

√
2

3
,−1

3

)
.

The ability to pass these four states, which define SIC-
POVM, through the chain of spins from Alice to Bob is
enough to pass an arbitrary spin state. For the fixed initial
state of Alice’s spin (in our case, |↓〉) one can formulate the
problem of transferring states {|φq〉 〈φq|}3

i=0 through the spin
chain as the following optimization problem:

min
{ui}N

i=1

3∑
i=0

‖ |φq〉 〈φq| − �
(N )
|u1,...,uN

(lA, lB)
[|φq〉 〈φq|

]‖2
F ,

s.t. u†
i ui = I for i ∈ {1, . . . , N}, (23)

where �
(N )
|u1,...,uN

(lA, lB)[|φq〉 〈φq|] is the final state of Bob’s
spin given the initial state of Alice’s spin and the control
sequence, lA, lB—indices of Alice’s and Bob’s spins corre-
spondingly.

For each initial state |φq〉 of Alice’s spin, we build a sep-
arate ROM describing dynamics of Alice’s spin and utilize it
to compute �

(N )
|u1,...,uN

(lA, lB)[|φq〉 〈φq|]. The optimization prob-
lem Eq. (23) as previous ones is solved by using the technique
from Sec. III B. To address the performance of the obtained
optimal control sequence {u1, . . . , uN }, we compare the initial
states of Alice’s spin with the final states of Bob’s spins and
study how the information about the initial state of Alice’s
spin propagates through the spin chain. The results are given
in Fig. 11. An optimal control sequence applied to Bob’s spin
is able to partly reconstruct the initial state of Alice’s spin.
One can also observe how Bob catches the light cone that
propagates from Alice’s spin and preserves the information
up to the end of the dynamics by using the optimal control
sequence.

B. Dynamics inversion via optimal control

Here we consider another quantum many-body optimal
control problem. Suppose that one has access to a disordered
spin system in the MBL phase [68–71] and it is allowed to
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FIG. 11. Density plots represent how information about Alice’s
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apply a control signal to a dedicated single spin. One needs
to design such a control protocol that runs dynamics of this
spin backward in time. A typical example of such a protocol
is a spin-echo protocol [28,72] that runs dynamics backward
in time in a sense that the controlled spin recovers information
lost in the rest of the spin system after the spin-flip operation.
Our goal is to design an alternative control protocol that leads
to better information recovery. We start with a brief introduc-
tion to the origins of the spin-echo protocol in MBL systems.
Following Refs. [72,73], this effect can be explained by the
use of the phenomenological model of the MBL phase.

The MBL phase in the thermodynamic limit can be char-
acterized by an infinite number of local integrals of motion,
which can be thought of as effective spin-half operators τ z

i . In
these terms, the MBL Hamiltonian takes the following form:

HMBL =
∑

i

h̃iτ
z
i +

∑
i j

Ji jτ
z
i τ

z
j

+
∑
i jk

Ji jkτ
z
i τ

z
j τ

z
k + . . . ,

(24)

where couplings Ji j, Ji jk, . . . fall off exponentially with sep-
aration with a characteristic localization length ξ . All terms
of this Hamiltonian commute with each other. Therefore, the
total evolution operator UMBL(t ) = exp(−itHMBL) factorizes
into the product of commuting exponents of individual terms.
Considering one of those exponents that includes the partici-
pation of the first spin, it takes the following form:

exp
(−itJ1,i2,...,imτ z

1τ
z
i2

. . . τ z
im

) = cos (tJ1,i2,...,im )

− i sin (tJ1,i2,...,im )τ z
1τ

z
i2

. . . τ z
im
. (25)

Taking into account the following relation:

exp
(− itJ1,i2,...,imτ z

1τ
z
i2

. . . τ z
im

)
τ x

1

= τ x
1 exp

(
itJ1,i2,...,imτ z

1τ
z
i2

. . . τ z
im

)
,

(26)

which follows from the Pauli algebra, one finally ends up with

UMBL(t )τ x
1UMBL(t )τ x

1 = UMBL/1(2t ), (27)

where UMBL/1 denotes the MBL evolution operator that de-
scribes the MBL dynamics of all spins but the first spin and
acts trivially (as the identity operator) on the first spin. If
the MBL system evolves for some time t , then one applies
the spin-flip control gate τx to the first spin, then the system
evolves for the same time t again, and finally one applies the
spin-flip control gate τx to the first spin again, and ends up
with the completely same state of the first spin as its initial
state, i.e., the recovery of the information about the initial
state of the first spin takes place. This is the essence of the
spin-echo protocol. The same consideration is valid for an
arbitrary spin from the system.

However, the phenomenological model Eq. (24) works
well for the deeply localized phase. For the weakly local-
ized phase, spin echo may barely be observed. Nevertheless,
one can use the ROM-based optimal control technique from
Sec. III B to design an alternative multistep spin-echo protocol
suitable for a weakly localized phase. The multistep spin-echo
protocol consists of the application of a sequence of unitary
gates {u1, . . . , u�n} instead of a single σx gate, where �n is
the duration of the protocol (number of control gates), to the
target spin at the middle of the dynamics observation. We
designed this protocol for one of the models experiencing
MBL dynamics. The dynamics of this model are driven by
the following Floquet operator [74]:

F = exp

[
i

L∑
i=1

hiσ
z
i + Jσ z

i σ z
i+1

]
exp

[
iJ

L∑
i=1

σ x

]
, (28)

where per-spin magnetic fields are random and sampled from
the uniform distribution Uniform(0, 2π ). The state of the
whole system at discrete time n reads |ψ (n)〉 = F n |ψ (0)〉.

It is known that this model is in the localized phase for
J < J∗ ≈ 0.4 [74]. In this numerical experiment, we con-
sider a system consisting of n = 21 spins, with coupling
J = 0.3 corresponding to the localized phase, the target spin
being the middle/edge spin, and compare the spin-echo-based
dynamics inversion with a multistep spin-based dynamics
inversion designed by the proposed technique. We set a
particular quenched disorder, i.e., we picked a particular con-
figuration of external magnetic fields from the distribution
Uniform(0, 2π ).

We slightly generalized the spin-echo protocol to make it
more suitable for a particular quenched disorder. Instead of the
instant swap of the spin by σx in the middle of the observation,
we apply an instant unitary gate u that is optimized to achieve
the best performance by using the proposed method. In other
words, the generalized version of the spin-echo protocol is
the multistep spin-echo protocol of duration �n = 1. As the
initial state of the environment (all spins but the target spin),
we take |ψE(0)〉 = ⊗n−1

i=1 |↓〉. For the total number of discrete
time steps N = 151, we built a ROM describing the dynamics
of the target spin. For the multistep spin-echo protocol, we
turn control ON in the time interval from kstart = 50 to kstop =
101, i.e., the total protocol duration is �n = 51 discrete time
steps. For the spin-echo protocol, we turn the control ON only
for the single discrete time moment n = 76.

To adjust the control signal to get the best echo ef-
fect at the end of the dynamics, one needs to formulate
the control problem as the optimization problem. The
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FIG. 12. Mutual information dynamics for J = 0.3. The top panel shows the results for the first spin being the target and the multi/single-
step spin-echo protocol. The bottom panel shows the same with the middle spin being the target. Density plots represent how the rescaled
mutual information ln(I (n)(l, m) + 10−2 ) propagates across the spin chain. The vertical red band represents a region in the time domain where
the control sequence is applied.

initial and the final states of the target spin are connected
via the quantum channel �

(N )
|u1,...,u�n

(l, l ) that can be defined

by means of the ROM. The closer �
(N )
|u1,...,u�n

(l, l ) is to some
unitary channel, the better echo effect one has. The mutual
information I (N )

|u1,...,u�n
(l, l ) between subsystems of the corre-

sponding Choi matrix �
(N )
|u1,...,u�n

(l, l ) reaches its maximum

when �
(N )
|u1,...,u�n

(l, l ) is a unitary channel. Thus, maximizing

I (N )
|u1,...,u�n

(l, l ), one maximizes the echo effect. Therefore, the
solution of the following optimization problem provides the
optimal control signal:

max
{u1,...,u�n}

I (N )
|u1,...,u�n

(l, l ),

s.t. u†
i ui = I. (29)

This optimization problem is solved by using the technique
from Sec. III B.

After getting the optimal control sequence, for both pro-
tocols, we also run an exact simulation of the entire spin
chain to study the information flow under control and compare
protocols with each other and with the case of control absence.
Using the results of the exact simulation, we visualized in-
formation flow showing how the information about the initial
state of the target spin spreads across the spin chain. The
results are given in Fig. 12.

The three main conclusions could be made out of Fig. 12.
First, we observe the information revival at the end of the evo-
lution for both spin-echo and multistep spin-echo protocols.
This means that information about the initial target spin state
is being reconstructed at the end of the evolution. Second, by
looking at the density plots, we note that in the second half
of the evolution, information about the initial target spin state
starts to propagate backward toward the target spin for both
control protocols. This implies that the dynamics inversion

takes place. Finally, one can see that the multistep spin echo
protocol outperforms the spin echo protocol in terms of revival
amplitude. Therefore, the multistep spin-echo protocol works
better than the standard spin echo protocol.

To check that the conclusions above are still valid after
averaging over disorder, we performed averaging over ten
different disorder realizations for J = 0.2 and all other pa-
rameters being the same. The same plots but for averaged
quantities are shown in Fig. 13. All the features we observed
for a particular disorder realization are also valid on average.

As opposed to the model considered in Sec. IV A, many-
body dynamics in the localized phase do not exhibit ballistic
trajectories. For this reason, the truncation procedure leads to
an even slower dimension growth of the ROM. ROM dimen-
sion scaling is shown in Fig. 14.

V. DISCUSSION AND OUTLOOK

In the present paper, we have proposed a method for many-
body quantum control that is based on the ROM scheme
accelerating a numerical simulation of many-body quantum
systems in many orders of magnitude. This acceleration
makes it possible to run tens of thousands of iterations of a
gradient-based control signal search in a reasonable total time.
We have validated the proposed method on the number of con-
trol problems, including controllable information spreading
across a spin chain and dynamics inversion in the MBL phase.

The proposed method gives rise to a unique class of many-
body control methods. Their field of applications varies from
the development of methods of error mitigation and noise
suppression in quantum technologies to an automatic search
for unique quantum materials, phases of matter, and collective
effects in many-body physics.

The proposed method can be generalized in various ways.
For instance, instead of the iterative scheme for building the
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FIG. 13. Mutual information dynamics averaged over 50 disorder realizations for J = 0.2 Top panel shows the results for the first spin
being the target and the multi/single-step spin-echo protocol. The bottom panel shows the same with the middle spin being the target. Density
plots represent rescaled averaged mutual information ln(〈I (n)(l, m)〉 + 10−2). The vertical red band represents a region in the time domain
where the control sequence is applied. Blue and red plotted regions represent the dispersion of mutual information over disorder realizations.

effective environment proposed in the paper, one can use
tensor network renormalization techniques such as those in-
troduced in Refs. [75–79]. Such methods potentially can be
used to obtain ROMs of environments with 2D interaction
graphs by renormalization instead of iterative growing.

Another possible generalization lies in the transition from
the control of local observables and partial density matrices to
macroscopic observables, e.g., total energy, total polarization,
etc. Indeed, together with the environment dimensionality
reduction one can renormalize macroscopic observables lead-
ing to ROMs of macroscopic observables dynamics. This
opens possibilities for steering quantum many-body systems
between different phases of matter via external control. The
transition from local to macroscopic is possible not only for
observables but also for control signals. For instance, instead
of applying a control signal to a single spin, one may want to
apply the same time-dependent magnetic field to all spins. In
this case, the design of the ROM is definitely more involved,

0 20 40 60 80 100 120 140
Time step, n

101

102

103

104

r(
n
)

Jx = hx = 0.35

Jx = hx = 0.3

Jx = hx = 0.2

FIG. 14. ROM dimension vs time behavior for different cou-
plings. The model becomes more complex approaching the transition
at J∗ ≈ 0.4.

but with the great development of the tensor networks toolbox,
it may be possible.

The next interesting generalization consists of the ex-
traction of a ROM from observed experimental data. It is
often the case that one has access to an experimental setup
with the possibility to measure the response of a quantum
system of interest on an external control signal. The question
is whether it is possible to build the ROM of a system of
interest in this case based purely on observed data. With use
of algorithms such as tensor-train cross approximation [26],
one can try to do that efficiently and adaptively. Finally, the
presented approach can be improved by unifying it with the
influence matrix approach [40–42], allowing one to simu-
late long-time subsystem dynamics. The great development
of tensor networks and dimensionality reduction techniques
makes it possible to unify all further generalizations of the
proposed method into a universal framework opening great
possibilities for the automatic discovery of unique quantum
devices, phases of matter, and quantum collective phenomena.

The code for all the numerical experiments is available via
[80].
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APPENDIX A: BUILDING A REDUCED-ORDER MODEL:
ORTHOGONALITY RELATIONS

This Appendix is dedicated to giving the complete deriva-
tion of the introduced orthogonality relations. First, let us
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FIG. 15. (a) A typical spectrum of the environment density matrix. The tail of this spectrum contains only a tiny fraction of the total
eigenvalues “mass” and thus can be truncated. (b) The environment truncation scheme: (i) One inserts projectors ω(n)ω†(n) on the principal
subspace in between of blocks forming the environment network. (ii) One contracts tensors in dashed red boxes and ends up with new yellow
blocks that form a truncated environment network. (c) A typical time evolution of the environment density matrix spectrum. It gets wider in
time and therefore the principal subspace dimension r(n) grows in time.

discuss the orthogonality relation for Ai, Eq. (2). Indeed,
the core of the decomposition Fig. 1(a) is the singular value
decomposition (SVD) and Eq. (2) follows directly from the
definition of SVD. To determine orthogonality relations for
Bi, we consider the following relation:

TrS(UU †) = TrS(I ⊗ I ) = dSI, (A1)

where TrS is the partial trace over the system and I is the
identity matrix. On the other hand, one can make use of the
decomposition Fig. 1(a) and Eq. (2) and rewrite TrS(UU †) as
follows:

TrS(UU †) =
∑

i j

TrS(AiA
†
j ⊗ BiB

†
j )

=
∑

i j

Tr(AiA
†
j )BiB

†
j

=
∑

i j

δi jBiB
†
j =

∑
i

BiB
†
i .

(A2)

Gathering all together, one ends up with∑
i

BiB
†
i = dSI. (A3)

Considering TrS(U †U ) instead of TrS(UU †), one also ends up
with ∑

i

B†
i Bi = dSI, (A4)

completing the proof of Eq. (3).

APPENDIX B: BUILDING A REDUCED-ORDER MODEL:
TRUNCATION

In this section, we discuss the details of the environment
dimensionality reduction. To gain more intuition about how
the principal subspace is determined, we schematically plotted
a typical spectrum in Fig. 15(a). The relative error of the
projection (truncation) reads

‖�̃E(n) − �E(n)‖F

‖�E(n)‖F
=

√√√√ dE∑
j=r(n)+1

λ j (n), (B1)

where F stands for the Frobenius norm. In other words, it
means that the error is equal to the square root of the “mass”
of eigenvalues in the spectrum tail that is cut and colored by
red in Fig. 15(a).

Typically, �E(n) gets noiser in time, i.e., its spectrum gets
wider. To preserve the truncated spectrum tail mass the same,
one needs to increase r(n) with time. Therefore, r(n) typically
grows in time. This is schematically illustrated in Fig. 15(b),
where one can see how r(n) grows with n due to the widening
of the spectrum.

The error introduced by the whole truncation procedure is
bounded above as follows (see Appendix C and Ref. [27]):∥∥|Ẽi1...iN 〉 − |Ei1...iN 〉∥∥F

‖|Ei1...iN 〉‖F

�

√√√√ N∑
n=1

ε2
n . (B2)

Therefore, if one requires the error to be less or equal to some
upper bound ε it is enough to set εn = ε√

N
, which leads to∥∥|Ẽi1...iN 〉 − |Ei1...iN 〉∥∥F

‖|Ei1...iN 〉‖F

� ε. (B3)
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Varying the value of ε, one achieves a trade-off between accuracy of approximation and effective environment dimension
r(n).

Algorithm 1 Environment dimensionality reduction

Require: CPTP map �, tensor Bi forming the environment network, initial state |ψE〉 of the environment, accuracy ε of the algorithm
Ensure: The set of tensors {B̃(m)

i }N
m=1 forming the reduced environment

1: Set the initial density matrix of the environment �(0) = |ψE〉 〈ψE| and the initial isometry w(0) = |ψE〉
2: for m ← 0 to N − 1 do
3: Propagate the density matrix of the environment forward in time: �(m + 1) = �[�(m)]
4: Perform eigendecomposition of �(m + 1): U (m + 1)�(m + 1)U †(m + 1) = �(m + 1)
5: Calculate the minimal environment dimension r(m + 1) that suits the given error upper bound ε: r(m + 1) = f (ε, {λ j (m + 1)}dE

j=1)
6: Truncate the density matrix rank �(m + 1) ← Ur(m+1)(m + 1)�r(m+1)(m + 1)U †

r(m+1)(m + 1)
7: Calculate the next isometry w(m + 1): w(m + 1) = Ur(m+1)(m + 1)
8: Calculate the next tensor B̃(m+1)

i : B̃(m+1)
i = w†(m + 1)Biw(m)

9: end For

APPENDIX C: BUILDING A REDUCED-ORDER MODEL:
ALGORITHM AND ITS RATIONALE

In this Appendix, we justify the proposed environment
network dimensionality reduction algorithm and provide its
precise formulation.

First, we discuss the dimensionality reduction of the en-
vironment network at a specific discrete time moment. Let
|E (m)

i1...iN
〉 be the environment network whose dimension at a

discrete time moment m has been reduced, i.e.,∣∣E (m)
i1...iN

〉 = BiN . . . Bim+1w(m)w†(m)Bim . . . Bi1 |ψE〉 , (C1)

where w(m) is a trial isometric matrix of size dE × r(m), and
r(m) is a new environment dimension such that r(m) < dE. A
natural choice of w(m) is the one that leads to the minimal
error, i.e., we require w(m) to be the solution of the following
optimization problem:

min
w(m)

∥∥∣∣E (m)
i1...iN

〉 − |Ei1...iN 〉∥∥2

F
,

s.t. w†(m)w(m) = I, (C2)

where the Frobenius norm is taken over all indices, i.e., the
“physical” index and the set of indices {i1, . . . , iN }. The objec-

tive function F (ω(m)) = ‖ |E (m)
i1...iN

〉 − |Ei1...iN 〉 ‖2

F
dramatically

simplifies if one makes use of the property Eq. (3) and the
introduced in Eq. (4) quantum channel �. The simplified
objective function takes the following form:

F (ω(m)) = dN
S

(
1 − Tr

(
w†(m)�E(m)w(m)

))
, (C3)

where �E(m) = �m[|ψE〉 〈ψE|]. Under the given constraints,
this optimization problem is equivalent to the problem of
finding r(m) eigenvectors of �(m) corresponding to r(m)
maximal eigenvalues, i.e., the optimal w(m) is the matrix
whose columns are eigenvectors of �E(m) corresponding to
r(m) largest eigenvalues. In other words, the optimal orthog-
onal projector π (m) = w(m)w†(m) is the projector on r(m)
leading eigenvectors of �(m).

Another question that arises here is how one can one
determine r(m). In practice, one usually has some desirable
approximation accuracy (admissible error). Let us connect

this accuracy and r(m). The relative error induced by the
dimensionality reduction reads

εm =
∥∥|E (m)

i1...iN
〉 − |Ei1...iN 〉∥∥

F

‖|Ei1...iN 〉‖F

=
√√√√ dE∑

j=r(m)+1

λ j (m).

(C4)

The above relation for the error allows one to determine the
minimal value of r(m) that suits some desirable accuracy εm as
a function r(m) = f (εm, {λ j (m)}dE

j=1) of eigenvalues and εm.
We do not provide a concrete form of f here for the case of a
single time step dimensionality reduction but do this later for
the case of all time steps.

This scheme can be applied to the environment network
multiple times leading to an algorithm allowing dimensional-
ity reduction for all time steps. The overall algorithm reads

This algorithm results in the truncated environment net-
work |Ẽi1...iN 〉 that reads

|Ẽi1...iN 〉 = w(N )B̃(N )
iN

B̃(N−1)
iN−1

. . . B̃(2)
i2

B̃(1)
i1

(C5)

Note, that one can omit w(N ) in the expression above. Indeed,
we are not interested in the final state of the environment,
we only care about the action of the environment on the
system, i.e., the exact coincidence of environment networks is
redundant; it is enough to have a coincidence of discretized
Feynman-Vernon influence functionals [40–42,45] that are
easily expressed through environment networks:

〈Ẽ j1... jN |Ẽi1...iN 〉 ≈ 〈E j1... jN |Ei1...iN 〉 . (C6)

Due to the property w†(N )w(N ) = I matrix w(N ) does not
affect the value of 〈Ẽ j1... jN |Ẽi1...iN 〉 and can be safely omitted.

It is important to note that the algorithm above is equivalent
to the standard algorithm for MPS truncation [26,27,44]. The
orthogonality relation

∑
i B†

i Bi = dSI means that the environ-
ment network is in the left-canonical form that is the starting
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FIG. 16. Example of typical unitary control sequence.

point of the standard MPS truncation algorithm. By forward-
ing the environment density matrix in discrete time via CPTP
map �, we push the orthogonality center from the right side
to the left. The projection on the leading eigenvectors of the
environment density matrix is equivalent to the SVD-based
truncation.

Finally, let us determine the function f . The error intro-
duced by the entire algorithm is bounded above as follows
[27]:

ε =
∥∥|Ẽi1...iN 〉 − |Ei1...iN 〉∥∥F

‖|Ei1...iN 〉‖F

�

√√√√ N∑
n=1

ε2
m, (C7)

where εm is the error of mth time step dimensionality reduc-
tion. Therefore, restricting the one-time-step dimensionality
reduction error εm � ε√

N
, we guarantee that the error intro-

duced by the entire algorithm does not exceed ε. This leads
to the concrete form of the function f guaranteeing a given
accuracy ε of the algorithm,

r(m) = f
(
ε, {λ j (m)}dE

j=1

)
= dE −

dE∑
r=1

η

⎛⎝ ε√
N

,

√√√√ dE∑
j=r+1

λ j (m)

⎞⎠, (C8)

where η is defined as follows:

η(x, y) =
{

1, if x > y
0, otherwise. (C9)

APPENDIX D: OPTIMAL UNITARY CONTROL

In this Appendix, we supplement the details of the results
of the control optimization procedure. Control sequence op-
timization ends up with the sequence {u1, ..., u�n} of unitary
control gates. Discarding the global phase, each unitary in this
sequence can be written as

u = cos(E0t )I − i sin(E0t )(�n, �σ ), (D1)

where �n = (nx, ny, nz ), ||�n|| = 1, and �σ = (σx, σy, σz ). In
the Bloch sphere picture, this corresponds to a rotation around
the axis �n at rate E0. Since our control technique can be viewed
as an instantaneous action of unitary control on each time step,
we show E0t and �n in Fig. 16 to bring more information. The
plotted control sample corresponds to the case of controllable
information propagation considered in Sec. IV A, with results
shown in Fig. 8 in the left panel.
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