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Emergence of directed motion in a crowded suspension of overdamped particles
with different effective temperatures
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In this work, we focus on the behavior of a single passive Brownian particle in a suspension of passive
particles with short-range repulsive interactions and higher effective temperature. While the forces affecting
the single particle are thermal-like fluctuations and repulsion, due to other particles in the suspension, our
numerical simulations show that on intermediate timescales directed motion on a single-particle level emerges.
This emergent directional motion leads to a breakdown of the Einstein relation and nonmonotonic augmentation
of the measured diffusion coefficient. Directional tendency increases with the density of the suspension and leads
to growth of the diffusivity with the density of the suspension, a phenomenon recently observed for a system
of hard spheres by Ilker, Castellana, and Joanny. Counterintuitively, the directional flow originates from the
tendency of different particles to push each other out of their way. Due to such strictly repulsive interactions,
nearby particles form into temporally correlated pairs and move cooperatively, thus creating a preferred direction
of motion on intermediate timescales. We show that directional motion emerges when the ratio of the effective
temperatures of the tracked particle and suspension constituents is below a critical value.
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I. INTRODUCTION

Active particles are defined by the ability to perform di-
rected motion while consuming energy from the environment
and dissipating it back [1–4]. This signature of directional
transport of active particles contrasts with the passive motion
of Brownian particles, which are driven by thermal fluc-
tuations. Active matter, like the cytoskeleton, relies on the
presence of systematic motion of the basic ingredients, e.g.,
molecular motors [5]. The presence of directionality in the
movement can be exploited; for example, bacteria’s run and
tumble property was utilized to operate micromachines [6,7].
Heat engines that are designed to use fluctuations on a single-
particle level [8–10] experience an increase in efficiency when
the surrounding reservoir includes active ingredients [11].
While active particles are naturally present in the biological
world, e.g., bacteria and molecular motors, numerous artificial
examples are based on chemical reactions [1] or manipulation
by external fields [12]. For example, directed propulsion can
be achieved for Janus spherical particles by unequally coating
the surface with platinum [13]. In this work we focus on
the appearance of directional motion for overdamped passive
Brownian particles.
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The appearance of macroscopic and asymmetric space-
time states (namely, directional flows) was the focus of the
dissipative structures theory [14]. The most frequently used
example of a dissipative structure is the Rayleigh-Bénard
instability [15] where macroscopic convection starts when
a critical temperature difference of the confining plates is
reached. The existence of a point, beyond which a novel
nonequilibrium dynamic state is formed, is the sole idea
behind dissipative structures on the macroscale. Does such
point exist when a single particle (SP) is considered? Can
directed motion of a SP, be an emergent phenomenon when
a passive Brownian particle (PBP) is pushed far enough into
the nonequilibrium realm of a thermal system? Namely, can
a sufficient difference between the effective temperature of
the SP and other constituents of the suspension be a trig-
ger for directional motion of the SP? In theoretical studies
of binary mixtures of PBPs with different temperatures, a
demixing transition (for sufficiently high concentration) was
observed [16,17]. Such demixing into phases with low and
high temperature resembles the motility-induced phase sep-
aration to slow and fast active particles present in active
systems [18]. Moreover, a system consisting of two particles
in contact with different thermostats and a binding potential
reaches a steady state that does not satisfy Boltzmann statis-
tics [16,19–21]. The nonequilibrium properties of two PBPs
in contact with different thermostats, and pairwise quadratic
interactions, were utilized to identify broken detailed balance
on a mesoscopic scale [22] and to quantify dissipation [23].
Nonequilibrium steady states were also studied when three
PBPs with different temperatures are considered [24]. It was
shown that PBPs with higher diffusivity (“hot” particles) ef-
fectively attract each other when immersed in a suspension of

2643-1564/2024/6(1)/013156(8) 013156-1 Published by the American Physical Society

https://orcid.org/0000-0003-2240-2687
https://orcid.org/0000-0003-1065-174X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013156&domain=pdf&date_stamp=2024-02-12
https://doi.org/10.1103/PhysRevResearch.6.013156
https://creativecommons.org/licenses/by/4.0/


DEBORAH SCHWARCZ AND STANISLAV BUROV PHYSICAL REVIEW RESEARCH 6, 013156 (2024)

PBPs with lower diffusivity (“cold” particles) [25]. Moreover,
the effective temperature of a “hot” tracer decreases due to
interaction with a bath of “cold” particles [26]. Recently, it
was found that the long-time diffusivity of a single cold PBP
in a solution of hot PBPs, increases as a function of hot PBPs
self-diffusivity and density [27,28].

In this paper, we explore the microscopic mechanism that
leads to the enhancement of the long-time diffusion coefficient
of a cold PBP in a bath of hot PBPs. We observe that once
the temperature, i.e.. self-diffusion coefficient, ratio of the
cold and hot PBPs crosses a specific value, a presence of
directional motion appears in the transport of the cold PBP.
The timescales when the cold PBP moves in a directed fash-
ion depend on the density of the surrounding particles. Our
numerical simulations show a rich behavior of the tracked
SP. We reveal a transition to directed motion, breakdown of
the Einstein relation, and nonmonotonic behavior of the long-
time diffusion coefficient as a function of the density of the
solution.

The paper is organized as follows: In Sec. II we present
our model: a two-dimensional suspension of hot PBPs and
a single cold PBP that is immersed into this suspension. In
Sec. III, we analyze the mean-square displacement of the
cold PBP and demonstrate the enhancement of the long-time
diffusion coefficient. In Sec. IV, we utilize the behavior of the
distribution of the relative angle of the cold PBP to observe
the appearance of directed motion. In Sec. V we show that the
cold PBP tends to interact with a single hot PBP, i.e., nearest
neighbor, forming a temporarily correlated pair. Our findings
strongly suggest that the spontaneous directional symmetry
breaking of cold PBPs is associated with the formation of such
temporarily correlated pairs. The discussion and summary of
our findings are provided in Sec. VI.

II. THE MODEL

We perform simulations of a two-dimensional solution of
PBPs. The position of every particle i, �ri, is governed by the
overdamped Langevin equation [29]

d�ri

dt
= 1

γ

∑
j

�F (ri, j ) +
√

2Di�ηi(t ), (1)

where �F (ri, j ) is the force due to interaction with particle j and
ri, j = |�ri − �r j | is the distance between particle i and particle
j. Di is the diffusion coefficient of particle i and �ηi(t ) =
ηx

i x̂ + η
y
i ŷ, while ηx

i (and η
y
i ) is the random δ-correlated Gaus-

sian noise, i.e., the integral
∫ t

0 ηi(t ′)dt ′ is the Wiener process
Wt (t ) where 〈Wi(t )Wj (t ′)〉 = δi, j min(t, t ′) and 〈Wi(t )2〉 = t .
The infinitesimal increment of Wi(t ), Wi(t + dt ) − Wi(t ) =
�(t )

√
dt , is used to implement the Euler-Maruyama integra-

tion scheme, where �(t ) is a zero-mean Gaussian process
with unit variance [30]. Coefficient 1/γ plays the role of
inverse friction coefficient, and in this work, we use γ =
1. The force �F (ri, j ) is determined by the Weeks-Chandler-
Andersen (WCA) potential [31] (the purely repulsive part of
the Lennard-Jones potential):

Vi, j =
{

4ε[(σ/ri, j )12 − (σ/ri, j )6], ri, j � 21/6σ

0, ri, j > 21/6σ.
(2)

The diffusion coefficient of all the particles in the solution
is Da. A single PBP with diffusion coefficient Db < Da is
immersed into the solution. The particles in the solution and
the immersed particle have the same mobility but different
diffusion coefficients, hence different effective temperatures.
The immersed SP has the same size as the other particles in
the solution, and it interacts with other particles via similar
WCA potential.

All the particles are positioned on a two-dimensional box
of size S = 20σ × 20σ and periodic boundary conditions are
implemented. For all particles, Eq. (1) is advanced in time by
the Euler-Maruyama method while we use ε = 0.01, σ = 1,
and the discrete-time step δt = 0.005. The density of the
solution, φ, is determined by the total number of particles with
diffusion coefficient Da in the solution, Na,

φ = Naπr2
0/S, (3)

where 2 × r0 = 21/6σ is the minimal distance at which two
particles start to repel each other. During the simulation, the
position of the SP with diffusion coefficient Db is recorded.

III. MEAN-SQUARED DISPLACEMENT

The first characteristic that we explore is the time- and
ensemble-averaged mean-squared displacement (MSD), of
the tracked SP (with Db) during time frame 
,

MSD(
) = 1

t − 


∫ t−


0
〈[�rb(t ′ + 
) − �rb(t ′)]2〉dt ′, (4)

where �rb(t ′) is the position of the tracked particle at time t ′ and
t is the measurement time. Figure 1(a) displays MSD(
) for
the case of Db/Da = 0.1. The MSD grows linearly for short
times as 2Db
 and experiences a transition to a diffusive be-
havior with a higher long-time diffusion coefficient at longer
times, i.e., MSD(
) ∼ 2D∞

b 
, where D∞
b /Db = 2.2 for the

particular case of Fig. 1(a). The MSD enhancement is fitted by
a phenomenological formula for the MSD of an active particle
[1,13]:

MSD(
) = [2Db + A]
 + AB[e−
/B − 1], (5)

where A and B are constants [see Supplemental Material (SM)
[32] for further details].

The increase of diffusion of a cold particle (low diffusion
coefficient) moving between hot particles (high diffusion co-
efficient) was previously observed [27,28]. In these previous
studies, a system of hard spheres [27] and a system of soft par-
ticles [28] were used. In [27] the diffusion was enhanced when
the ratio of the diffusivity of slow particles and the diffusivity
of fast particles was below 1/3 (see also [28]). Our results
[Fig. 1(b)] support these findings for sufficiently low φ. We
note that enhancement of transport was recently observed in
active systems as well [33,34]. Several questions are in place.
What is the microscopical mechanism that leads to such en-
hancement of effective diffusion coefficient? Is the observed
enhancement of the diffusion coefficient also associated with
directional motion? While the increase in MSD can occur due
to a series of large and uncorrelated “kicks”/bombardments
[35] (see SM for additional details), it is also possible that the
microscopic mechanism leads to a directed, activelike motion.
Finally, what happens to the effect when the density of the
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FIG. 1. (a) MSD of a SP with self-diffusion coefficient Db =
0.01 in a solution of PBPs with Da = 0.1, while the density φ =
0.47. Gray circles represent simulated data, the blue line represents
short period diffusion 2Db
. The pink line represents long-time
diffusion 2D∞

b , where the logarithmic time diffusion coefficient is
D∞

b = 0.022. The black line represents the fit to the MSD of an active
particle, Eq. (5), where A = 0.0245 and B = 0.375. Inset: MSD/


with parameters of panel (a) and semilogarithmic scale. The black
line represents the fit to the MSD of an active particle. (b) D∞

b /Db as
a function of the density of the solution. The squares represent the
calculation of D∞

b via the MSD of unperturbed SP [Eq. (4)]. Inset:
The measured mobility μ∞

b = vd/F of the SP measured at different
densities, divided by the mobility μb measured at φ = 0. vd is the
measured terminal velocity of the SP measured for external force;
the value F = 0.1 was used. For both panels 6 × 105 simulation
steps were performed. Averaging over time and 40 ensembles was
performed.

suspension is further increased? We address these questions
below.

When the long-time effective coefficient D∞
b is measured

for different values of the suspension density φ, a nonmono-
tonic dependence is observed [Fig. 1(b)]. D∞

b increases with
φ up to φ ≈ 0.45, i.e., crowded is faster. Similar behavior
for different ratios of diffusion coefficients is presented in
Fig. S1(a) in the SM. Recently, diffusion enhancement via
crowding was observed for an active system of strongly inter-

acting stiff self-propelled filaments [36] and enzyme diffusion
driven by chemical reactions [37–40]. For PBP, D∞

b will stop
increasing for sufficiently high solution density. The intuitive
reduction of D∞

b as a function of density appears when φ �
0.45. Such nonmonotonous behavior of the diffusion coeffi-
cient was observed in glassy systems [41–44]. The cause of
the eventual decrease of the long-time diffusion coefficient,
and therefore the overall nonmonotonic behavior, is the cage
effect: an obstruction of motion due to nearby particles that
lead to the appearance of negative correlation of displace-
ments [45].

In addition to the described extraction of the diffusion coef-
ficient by measurement of the MSD of unperturbed particles,
we calculate the mobility of the cold SP. A small external
force F was applied on the SP and the long-time drift veloc-
ity vd was measured. The mobility, μ∞

b = vd/F , was found
to monotonically decrease with growing φ, as is intuitively
expected for a growing crowdedness of the system [see the
inset in Fig. 1(b)]. The difference between the behavior of the
long-time diffusion coefficient and the mobility shows that the
Einstein relation is broken. Such failure of the Einstein rela-
tion is a signature of the nonequilibrium state of our system
(see also [46]).

IV. RELATIVE ANGLE

To answer the question whether the enhancement is ac-
companied by directed motion, we search for directional
properties in the motion of the PBP with D = Db and use
the correlations between successive displacements [45,47,48].
Specifically, we use the distribution of directional change by
employing the relative angle θ (t ; 
) [49], previously utilized
for analysis of myosin dynamics [49], Lagrangian trajectories
in turbulence [50], swarming bacteria [51], football players
[52], and active Brownian particles [53]. θ is the angle be-
tween two successive steps of time span 
 performed by the
tracked SP:

cos θ (t ; 
) = �vb(t ; 
) · �vb(t + 
; 
)

|�vb(t ; 
)||�vb(t + 
; 
)| , (6)

where �vb(t ; 
) = �rb(t + 
) − �rb(t ). For a given 
, θ (t ; 
) is
computed for all different t’s in a trajectory. P(θ ; 
) is the
distribution of directional change obtained for all 0 � θ � π .
The P(θ ; 
) of a noninteracting PBP attains a uniform shape
[Fig. 2(a)], for any lag times 
, since every step is indepen-
dent of the other steps. There is a preference for the retraction
of steps when the particle is caged and 
 is large enough. In
such case P(θ ; 
) will have a peak at θ = π [Fig. 2(a)]. When
there is a directed motion, P(θ ; 
) will show a peak at θ = 0
for 
’s that correspond to timescales for which directionality
exists [49]. The peak at θ = 0 means that if the particle moved
for a lag time 
 in the direction of �a, for the next 
, the
preferred direction of motion will be again �a. In Fig. 2(a) the
P(θ ; 
) is plotted for three different values of the density φ of
the solution. When φ = 0, P(θ ; 
) is uniform as is expected
for a noninteracting PBP. When φ is sufficiently large, a peak
at θ = π is observed, as is expected for a particle caged by its
neighbors. Finally, there is a regime when the solution is not
very dense, and P(θ ; 
) peaks at θ = 0. For example, when
φ = 0.47 [see Fig. 2(a)]. The PBP has not simply performed
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FIG. 2. (a) Relative angle distribution P(θ ; 
) for the SP with D = Db. Three different solution densities φ are presented: 
 = 200δt ,
Da = 0.1, and Db = 0.01. (b) Mean relative angle 〈θ〉 of the tracked SP as a function of φ for three different ratios of Db/Da (
 = 200δt).
Values of 〈θ〉 < π/2 correspond to directed motion. (c) Phase diagram of directed vs uncorrelated motion of the tracked SP. For every Db/Da

the minimal value of 〈θ〉 (〈θ〉min) was found (searched for different 
’s and φ). π/2 − 〈θ〉min = 0 states that the behavior is passive, when
π/2 − 〈θ〉min > 0 directed motion is observed. When Db/Da > 0.3 the correlations were either nonexistent or negative, therefore the zero
value of the parameter π/2 − 〈θ〉min. Da was always set to 0.1. For all panels, 6 × 105 simulation steps were recorded, and averaging over 50
ensembles was performed.

bigger jumps that increased the MSD; it moved in a directed
style for a period 2
.

The behavior of the relative angle also reveals that direc-
tional motion emerges only if the ratio Db/Da is sufficiently
smaller than 1. The behavior of 〈θ (
)〉 = ∫ π

0 θP(θ ; 
)dθ can
be utilized as a measure of the directional motion. When the
motion is uncorrelated and nondirectional, the distribution of
θ is uniform [Fig. 3(a)] therefore 〈θ〉 = π/2. In Fig. 2(b)
we present 〈θ〉 as a function of φ for three different val-
ues of Db/Da. When 〈θ〉 attains values below π/2 it means
that P(θ ; 
) is peaked around θ = 0 and the particle moves
directionally for a time frame of 2
. Alternatively, when
〈θ〉 > π/2, P(θ ; 
) is peaked around θ = π , and the parti-
cle is caged. Therefore, directed motion emerges when the
minimum measured 〈θ〉, i.e., 〈θ〉min, is smaller than π/2.
Figure 2(b) displays a monotonic growth of 〈θ〉 as a function
of φ when Db/Da = 0.5. Such behavior is what is naively ex-
pected from a system that becomes more and more crowded,
and SP becomes increasingly caged [45]. On the other hand,
for small enough Db/Da, 〈θ〉 behaves nonmonotonically as
a function of φ, with minimum values below π/2. We use
π/2 − 〈θ〉min as an order parameter for the directed mo-

tion of the tracked SP. When the movement is nondirected,
i.e., the displacement is either noncorrelated or negatively
correlated, π/2 − 〈θ〉min is always 0. When directed motion
occurs this parameter can produce nonzero values. For a
given Db/Da, 〈θ〉min is calculated for all different 
’s and
φ’s. The results are displayed in Fig. 2(c). When Db/Da is
above ≈0.3, π/2 − 〈θ〉min was always 0 and behaved sim-
ilarly to the case of Db/Da = 0.5 in Fig. 2(b), irrespective
of the size of 
. We conclude that no directed motion is
detected when Db/Da > 0.3. For Db/Da < 0.3, a minimum
value of 〈θ〉min was always found to be below π/2 and 〈θ〉
behaves similarly to the cases Db/Da = 0.2 and Db/Da = 0.1
in Fig. 2(b). Therefore for Db/Da < 0.3 there is always a time
span 
 for which the PBP moves in a directed fashion. In
Fig. S1 of the SM we show that the long-time diffusion co-
efficient D∞

b is also enhanced when Db/Da < 0.3. Therefore
a sufficiently low ratio of diffusivities is needed in order to
obtain directed motion which gives rise to the enhancement
of the diffusion coefficient. This enhancement of the diffusion
coefficient of a cold particle in a bath of hot particles was
previously observed [27,28]. Our observation is in line with
the original statement of [27] where it was predicted that the

FIG. 3. (a) Weighted impact: The portion of temporal span 
 during which the tracked SP simultaneously interacted with n particles, as a
function of n = 1, 2, 3, 4, 5, 6. Da = 0.1, Db = 0.01, φ = 0.475, and 
 = 200δt . (b) G(α,
): The probability density function of the angle
α(t ; 
) [Eq. (7)] between the direction traced by the tracked SP during 
 and the direction traced by a particle with which the tracked SP
mostly interacted during 
. Such two particles form a temporally correlated pair. 
 = 200δt and two ratios of Db/Da = 1 (©), Db/Da = 0.2
(�) are presented. (c) Average α(t ; 
) (〈α〉) as obtained from G(α,
) in panel (b). 6 × 105 simulation steps and averaging over 40 ensembles
was performed.

013156-4



EMERGENCE OF DIRECTED MOTION IN A CROWDED … PHYSICAL REVIEW RESEARCH 6, 013156 (2024)

FIG. 4. (a) Nonmonotonic evolution of the mean relative angle 〈θ〉 as a function of 
 for four different densities. (b) 
∗ is the 
 for which
the minimum value of 〈θ〉 was obtained [see panel (a) for a given φ and Db/Da]. Plotted as a function of the suspension density φ. (c) Order
parameter π/2 − 〈θ〉, when the mean relative angle 〈θ〉 is computed at 
 = 
∗ [panel (b)]. Higher values of the order parameter describe
more pronounced directed motion. For all panels, Da = 0.1 and Db = 0.01; 6 × 105 simulation steps and averaging over 100 ensembles was
performed.

long-time diffusion coefficient of a tracer particle increases
if the ratio of temperatures, i.e., Db/Da, is smaller than 1/3.
The presented analysis of relative angle reveals the reason for
the enhancement: at intermediate timescales during which the
cold particle moves persistently and experiences a memory
of the traced direction. At sufficiently long timescales this
memory is lost and the effective displacements become un-
correlated. But since on intermediate timescales the motion
was directed, i.e., positively correlated, these effective un-
correlated displacements are larger, in size, as compared to
displacements on smaller timescales. This increase in the size
of a single uncorrelated displacement leads to the observed
enhancement of the long-time diffusion coefficient. Therefore
we can state that the observed directed motion on intermediate
timescales leads to the enhancement of the diffusion coeffi-
cient on long timescales. In the next section, we address the
mechanism that is responsible for the observed spontaneous
directional symmetry breaking, i.e., directional motion.

V. TEMPORALLY CORRELATED PAIRS

To elucidate the origin of directional motion, we measure
the fraction of time that the traced SP spent simultaneously
interacting with 1, 2, 3, . . . , neighbors. The weighted impact
is the portion of time 
 that the SP simultaneously interacted
(i.e., experienced nonzero force) with a number of other PBPs.
Panel (a) of Fig. 3 shows that the majority of the interactions
are two-body encounters. We focus on two-particle encounters
and define the angle α:

cos α(t ; 
) = �vb(t ; 
) · �va(t + 
; 
)

|�vb(t ; 
)||�va(t + 
; 
)| , (7)

i.e., the angle between the displacement of the tracked SP
during 
 and the displacement of a neighbor SP with which it
mostly interacted during 
. We tally the interactions between
the tracked SP and each of its neighbors and then compute
the value of α while using the neighbor SP with whom the
tracked SP had the highest number of interactions during 
.
When particles do not interact with each other, the probability
density function of G(α,
) is uniform, as one would expect
for a typical PBP. However, if there is a peak in the probability
density function of G(α,
) around α = 0, it suggests that

the particles tend to move in the same direction. On the other
hand, if the peak is at α = π/2, this indicates that the particles
tend to move in opposite directions. Figure 3(b) displays the
probability density function of α, G(α,
), computed for all
possible displacements of the tracked SP along the trajectory.
Even when Db = Da, the distribution G(α,
) is peaked at
α = 0. Meaning that there are timescales when two neighbors
prefer to move in the same direction (on average), even when
their temperatures are equal. This effect is achieved due to the
presence of other PBPs in the vicinity of the pair. These PBPs
do not let particles in the pair separate and create effective
temporal coupling for the pair. We term such a pair a tem-
porally correlated pair (TCP). When we decrease the fraction
Db/Da, this effect of correlated motion of neighbor particles
is enhanced. Panel (c) of Fig. 3 shows how the average α is
decreasing with decreasing Db/Da. The preference to move in
a cohort manner increases when Db/Da → 0.

This phenomenon of TCP creation is what leads to
spontaneous directional symmetry breaking. On intermediate
timescales, the preferred direction of motion becomes the
line of interaction between the constituents of the TCP pair.
In Fig. 4(a) we plot the temporal evolution of the average
relative angle 〈θ〉 as a function of 
. The lower the value
of 〈θ〉, the greater the directional preference of the motion.
〈θ〉 behaves nonmonotonically with 
. It decreases for short
and intermediate timescales and grows when 
 is sufficiently
large. Since the interaction between the different SPs is purely
repulsive, it takes time for the effective interaction, which
involves the surrounding particles in the suspension, to build
up and create a TCP. Therefore the decrease of 〈θ〉 on short
timescales. A given TCP cannot survive for a very long time
since the role of the partner with which a given SP interacts
the most will switch from one particle to another. This leads
to the observed growth of 〈θ〉 for large 
. We call the 


for which 〈θ〉 obtains its minimal value, 
∗, and associate it
with the average lifetime of a TCP. 
∗ is the timescale on
which the SP moves most persistently in a specific direction
defined by the orientation of the TCP. For 
’s smaller/larger
than 
∗ 〈θ〉 is closer to π/2, meaning the motion is less
directional, which occurs due to switching of most interacting
partners and breaking of the TCP. We expect two different
behaviors of 
∗ and 〈θ (
∗)〉 as a function of the density of
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the suspension φ. (i) The denser the suspension, the faster
the effective interaction will build up and cause the faster
formation of TCPs. But, since the suspension is denser, it will
also be expected to cause a faster dissociation of partners and
dissociation of TCPs. A decrease of 
∗ with φ is expected.
(ii) The denser the suspension the closer the different SPs are;
therefore, the created TCP will be tighter. Meaning, the SPs
have less free space, and the directional motion will be more
pronounced. This will show itself in a smaller 〈θ (
∗)〉. An
increase of π/2 − 〈θ (
∗)〉 is expected with φ, i.e., the peak
around θ = 0 of P(θ,
∗) grows with φ. Both (i) and (ii) are
observed in Figs. 4(b) and 4(c).

The effect of the surrounding media is thus twofold. The
presence of surrounding particles provides the means for di-
rectional symmetry breaking by temporal coupling of nearby
particles. But exactly the same surrounding particles ran-
domize this coupling, thus destroying the formed TCP and
restoring the directional symmetry on longer timescales. A
sufficiently long time 
∗ between the reorientation events is
needed to observe the effect of directional motion.

VI. DISCUSSION

The results presented in this work show that directional
motion on the SP level can emerge due to differences in ef-
fective temperatures. The motion of a single PBP, surrounded
by other PBPs with a higher temperature becomes directed.
When the density is sufficiently low, the SP with a lower
temperature, i.e., lower diffusion coefficient Db, temporally
couples to one hot SP with diffusion coefficient Da and creates
a TCP. As φ grows, the coupling becomes more prominent,
the persistence of directed motion is enhanced on intermediate
timescales, and so is the long-time diffusion coefficient D∞

b .
But this occurs only if the interactions on the TCP level are
not randomized by interactions with other particles in the
immediate neighborhood of the TCP. When the density φ

is sufficiently high, the caging effect takes place, i.e., the
growing peak for θ = π of P(θ,
) (Fig. 2). The rise of
caging implies that the tracked SP frequently encounters many
surrounding PBPs. The lifetime of the TCP, or the time while
the directional symmetry breaking holds, 
∗, decreases with
density [Fig. 4(b)]. The tracked SP simply switches partners
too frequently thus effectively randomizing its motion and
preventing persistence in a specific direction.

Thus the picture that emerges from our study is of effective
directed motion that is a consequence of TCP creation for
sufficiently prolonged time periods. While TCP can occur also
when the tracked SP has exactly the same temperature as the
nearby PBPs, the interaction and the cooperative motion on

the TCP level increase as the ratio of the effective tempera-
tures decreases. The density of the suspension also facilitates
the creation of TCP and the time for which a given TCP
survives. While the tracked SP is a part of a given TCP it
has a preferred direction of motion, dictated by the location
of the other part of the TCP. Therefore, the survival time of a
given TCP defines the timescale over which the motion of the
tracked SP is directional. When this timescale is long enough,
the effective displacements become large enough and leads to
the observed enhancement of the long-time diffusion coeffi-
cient D∞

b . But the effect of the growth of φ is twofold. While
the interaction on the TCP level increases, the encounters with
other nearby particles become more frequent (caging effect)
and so the lifetime of a given TCP will eventually start to
decrease when φ is high enough. This leads to the dimin-
ishing of the long-time diffusion coefficient and the overall
nonmonotonic behavior of D∞

b observed in Fig. 1.
The observed breakdown of the Einstein relation [Fig. 1(b)]

is consistent with the described mechanism of enhancement
of diffusion coefficient due to the spontaneous creation of
TCPs. The existence of an external field (applied only upon
the cold SP) and its direction is uncorrelated with the sponta-
neous direction that emerges due to the creation of TCP. The
dragged SP already has a preferred direction of motion (i.e.,
the direction of the external force), and the creation of a TCP
only obstructs the dynamics in this preferred direction; while
for the case when no external force is present, the TCP en-
forces a preferred direction of motion. When an external force
is applied the nearby particles (potential partners of a TCP)
only “stand in the way” of the preferred direction of motion,
i.e., the direction of the external force. Therefore the MSD,
obtained via the Einstein relation, monotonically decays as
a function of the density; unlike the observed nonmonotonic
behavior of D∞

b with φ, when no external force is present.
In this work, we do not observe a macroscopic motion

of many particles. Instead, we have seen that for the SP,
directional motion occurs only when Db/Da � 0.3 [Fig. 2(c)],
which is consistent with previous studies that observed en-
hancement of long-time diffusion coefficients [27,28]. On the
SP level, this emergent spontaneous directional symmetry
breaking can be addressed as an SP analog of dissipative struc-
ture, and Db/Da (i.e. the temperatures ratio) is the parameter
that must be modified in order to enhance TCP creation that
facilitates the directed motion of a single PBP.
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