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Detecting hidden states in stochastic dynamical systems
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Inferring the number of states of a stochastic system from partial measurements is a fundamental problem
in physics, for which methodological tools remain scarce. It is sometimes difficult to distinguish the stochastic
dynamical states from measurements, deceiving us into incorrect models and flawed understanding of natural
phenomena. Here, we propose a model-free statistical framework, grounded in network and control theory, to
estimate the number of states of a stochastic system from perceptible dynamics. The framework extends previous
techniques for deterministic systems, based on the rank of ancillary matrices. We show applications of our
approach to a variety of physics domains, such as statistical mechanics, biophysics, physical chemistry, and
epidemiology.
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I. INTRODUCTION

The study of network dynamical systems has fascinated
scientists for centuries [1,2]. From climate networks [3] to fish
schooling [4] and human mobility [5], physicists, mathemati-
cians, biologists, and social scientists have sought to describe
and understand the complex, emergent behaviors that arise
from interactions of individual units.

The advent of large-scale data acquisition systems has
allowed the development of new techniques for the study of
network dynamical systems [6]. Starting from the time-series
of the dynamics of individual units, these tools offer a potent
lens through which one can reveal and detail their interactions.
However, these techniques often rely on the assumption that
the number of states of the considered system is known, a
condition seldom verified in practice. For example, neurosci-
entists can reconstruct interneuronal connections in the brain,
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but may not have an accurate estimate of the number of neu-
rons involved [7].

Several methodological advancements have been made in
recent years to address the problem of inferring the number of
states of a system from measurements on a subset of its units.
Haehne et al. [8], Porfiri [9], and Tang et al. [10] proposed the
assembly of representative matrices from the time series of the
unforced dynamics of perceptible nodes, whose rank would be
related to the size of the largest observable component of the
system. Tyloo and Delabays [11] reconstructed the size of a
network system by probing it with sinusoidal inputs and mea-
suring the response of selected units. These approaches are
exclusively applicable to deterministic dynamics. Only recent
efforts have started leveraging noise-induced stochasticity to
estimate the size of an otherwise deterministic system [12], for
very specific collective dynamics that are only seen in some
real-world systems.

While the dichotomy between a deterministic or a ran-
dom world still exists in theoretical physics, randomness is
unavoidable, as the failed attempt to establish orderliness in
celestial mechanics by Poincaré taught us. Since the work
of Poincaré, randomness has been embraced in many fields
of physics [13–16], from statistical mechanics [17] to quan-
tum mechanics [18] and nuclear physics [19], which led to
greater understanding of the physical word. For example, the
classical experiments of Perrin [20] that led to the estimation
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of the Avogadro’s number involved the Brownian motion of
a particle suspended in a liquid, building on the theories of
Einstein [21] and Smoluchowski [22].

Here, we propose a statistical framework to infer the num-
ber of states of systems that are stochastic by nature and
have hidden states. Our approach makes very general as-
sumptions about the dynamics of the system as a hidden
Markov chain [23,24], which are satisfied by many real-world
stochastic phenomena, from thermodynamics to epidemi-
ology [25,26]. We extend previous work on deterministic
dynamics [8–10] by relating the number of states of a stochas-
tic system to the rank of a detection matrix, assembled from
realizations of the system. Due to the noisy nature of the
matrix, we design a statistical test to correctly reconstruct its
rank. The proposed approach can be used in denoising any
matrix corrupted by noise with known structure, considerably
overperforming state-of-the-art techniques for matrix denois-
ing [27]. The proposed framework combines and builds on
techniques from statistics, control theory, and perturbation
theory to contribute to the fields of general Markovian pro-
cesses and stochastic network systems. We first demonstrate
our methodology with the classical Ehrenfest urn model of
diffusion in statistical mechanics [28], and then show appli-
cations to other domains of physics, including biophysics,
physical chemistry, and epidemiology.

The remainder of this paper is organized as follows. In
Sec. II, we present the mathematical formulation of the detec-
tion matrix and introduce a statistical test designed to identify
the accurate rank of a noisy matrix. Moving on to practical ap-
plications, Sec. III A demonstrates our approach in the context
of the classical Ehrenfest urn model problem. In Sec. III B,
we showcase the application of our method to unveil hidden
behavioral states of bacteria through their swimming motion.
Therein, we also validate the noise model employed in our sta-
tistical test. In Sec. III C, we highlight how our approach can
effectively detect the number of chemical compounds in an
enzyme reaction using partial measurements of enzyme states.
We also provide numerical evidence supporting the applicabil-
ity of our approach to perturbed Markov chains. In Sec. III D,
we illustrate the potential of our approach to identify hid-
den exposed states in an epidemic, even in scenarios where
some properties of Markov chains are violated. Section III E
presents a numerical comparison between our proposed sta-
tistical test for denoising matrices and state-of-the-art method
developed by Gavish and Donoho [27]. Finally, Sec. IV brings
the paper to a close, summarizing limitations and key findings.

II. THEORY

Let Xk be a first-order, time-homogeneous Markov chain,
where k indicates the discrete time step (k = 1, . . . , K ). The
Markov chain has N ∈ N+ states, such that Xk has a finite
alphabet s1, . . ., sN . We define the probability mass function
(pmf) of Xk as πk = [Pr(Xk = s1), . . . , Pr(Xk = sN )]

T
. The

time evolution of the pmf is governed by

πk+1 = PTπk, (1)

where P ∈ [0, 1]N×N is the row-stochastic transition matrix.
We do not have access to realizations of Xk , but only to

an output stochastic process Yk with M < N states and finite

alphabet s̄1, . . ., s̄M . The perceptible dynamics Yk is not neces-
sarily a first-order Markov process, but its probability depends
on Xk only, such that Pr(Yk | Xk, Xk−1, . . . , X1) = Pr(Yk | Xk ).
We define the pmf of Yk as φk = [Pr(Yk = s̄1), . . . , Pr(Yk =
s̄M )]

T
. Without loss of generality, we consider cases in which

the realizations of Yk are deterministically related to those of
Xk . In this vein, we establish

φk = Cπk, (2)

where C ∈ {0, 1}M×N is a column-stochastic, Boolean emis-
sion matrix, with each column containing only one “1.” We
note that the emission matrix can generally have real elements
(C ∈ [0, 1]M×N ) without any modification to the approach (the
proof in the Methods does not impose any conditions on C),
so that the realizations of Yk can be stochastically related to
those of Xk . Each row of C corresponds to a symbol of Yk ,
such that the nonzero elements in the row identify the states of
Xk mapped into that Yk symbol. When more than one nonzero
element is present in the row, the mapping cannot be inverted
and the corresponding states of Xk are indistinguishable from
each other from the measurement of Yk .

As a prototypical example, we consider the classical
Ehrenfest urn model of diffusion [28], which has long served
as a benchmark for statistical mechanics concepts [29,30]. At
each time step, a ball is independently picked from one urn
and moved to the other, resulting in a Markovian process.
As a thought experiment, we hypothesize that there are three
balls in the urns (N = 4) and only a simple, binary sensor
in one of the urns that can reveal whether that urn is empty
or not [Figs. 1(a) and 1(b)]. The sensor cannot distinguish
between one, two, or three balls in that urn (M = 2). The
corresponding matrices are

P =

⎡
⎢⎢⎣

0 1 0 0
1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0

⎤
⎥⎥⎦, C =

[
1 0 0 0
0 1 1 1

]
.

(3)
The alphabet of the hidden Markov chain is {s1 = 0, s2 =
1, s3 = 2, s4 = 3}, while the alphabet of the observed process
is {s̄1, s̄2}. s1 always provide s̄1 as output, while s2, s3, and
s4 are indistinguishable from the output since they are all
mapped to s̄2 [Fig. 1(b)].

The system in (1) and (2) constitutes a discrete-time, linear
shift-invariant (LSI) system with unmeasured states. Taking
inspiration from deterministic systems [8,9], we assemble a
detection matrix T ∈ RMK×L

+ of the evolution of φ
(l )
k from

different initial pmfs π
(l )
0 , l = 1, . . . , L,

T =

⎡
⎢⎢⎢⎢⎢⎣

φ
(1)
1 φ

(2)
1 · · · φ

(L)
1

φ
(1)
2 φ

(2)
2 · · · φ

(L)
2

...
...

. . .
...

φ
(1)
K φ

(2)
K · · · φ

(L)
K

⎤
⎥⎥⎥⎥⎥⎦. (4)

Proposition 1. Under loose assumptions on the size of
T, the rank of the detection matrix is equal to the size of
the largest observable subspace of the LSI system [9], that
is, rank(T) = rank(O), O ∈ RNM×N

+ being the observability
matrix of the LSI system [31].
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FIG. 1. Illustration of the approach. (a) Representation of the Ehrenfest urns with a binary sensor in one urn that detects whether there are
balls in the urn and the corresponding hidden Markov diagram [system (3)]. Subsets of states that map to the same output symbol are indicated
with the same color. (b) Sampled time series of the output process. (c) Illustration of the inference of rank(T) through the statistical test for the
singular values. (d) Number of states detected from the statistical test for different values of R; the error bar represents the standard deviation
over 50 trials.

Proof. We consider the LSI system in (1) and (2). Let
us define the vector of the initial probability distribution of
the hidden Markov chain as � = [π1

1 , . . . , π
(L)
1 ], which we

assume to be full rank. Through (1) and (2), the detection
matrix can be expressed in terms of the initial probability
distributions π

(l )
1 as

T =

⎡
⎢⎢⎢⎢⎢⎣

Cπ
(1)
1 Cπ

(2)
1 . . . Cπ

(L)
1

CAπ
(1)
1 CAπ

(2)
1 . . . CAπ

(L)
1

...
...

. . .
...

CAK−1π
(1)
1 CAK−1π

(2)
1 . . . CAK−1π

(L)
1

⎤
⎥⎥⎥⎥⎥⎦, (5)

where A = PT. Thus, we can rewrite the detection matrix in
the form

T = OK�, (6)

where

OK =

⎡
⎢⎢⎣

C
CA
...

CAK−1

⎤
⎥⎥⎦. (7)

Given that � is full row rank, we have

rank(T) = rank(OK ). (8)

By invoking the Cayley-Hamilton theorem [32] and assuming
K � N , the rank of OK is equal to that of ON . Hence, we
determine

rank(T) = rank(ON ), (9)

where

ON =

⎡
⎢⎢⎣

C
CA
...

CAN−1

⎤
⎥⎥⎦, (10)

which proves that the ranks of the detection matrix and the
observability matrix are equal. �

Contrary to the deterministic case, we do not have access to
the detection matrix, but only to a noisy estimate T̂ = T + E

from realizations of Yk [Fig. 1(b)], where E is the noise matrix.
Matrix T̂ has almost surely a higher rank than the corre-
sponding T for a finite number of realizations, such that we
cannot directly infer the number of states from singular values
(for example, by using the largest gap between them [8]).
Preliminary evidence pointing at a chief challenge in correctly
assessing the rank of T can be found in [33].

A. Statistical test

The problem is equivalent to that of identifying the correct
number of nonzero singular values of a matrix corrupted by
noise. The optimal hard thresholding method to overcome
such a problem was discussed in [27]. A critical assumption
of the optimal threshold is the independence between the
elements of the noise matrix. In our case, these elements are
correlated with others in the same column. To overcome such
an issue and leverage these correlations in the denoising pro-
cess, we propose a statistical test based on eigenperturbation
theory.

Let σi(·) be the ith singular value of a matrix, sorted
in a nonincreasing order. According to Weyl’s additive in-
equality [34,35], σi+ j−1(T̂) � σi(T) + σ j (E), for 1 � i, j �
min(MK, L), i + j � min(MK, L) + 1, so that

σi(T) � Gi, with Gi := max
j

{σi+ j−1(T̂) − σ j (E)}. (11)

The probability density function fGi of Gi is numerically es-
timated through Monte Carlo simulations [36], using a model
of the noise matrix (established in what follows) and the
pertinent σ j (T̂)s computed from the estimate of the detection
matrix [37].

We compute a p value corresponding to the probability of
Gi being nonpositive,

p = Pr(Gi � 0) =
∫ 0

−∞
fGi (λ) dλ. (12)

A small p value (below a significance level that we set at
0.05) is used to reject H0—the null hypothesis that σi(T) =
0—given the observations [Fig. 1(c)] and conclude that the
rank of T is at least i. By executing the statistical test for each
i, we estimate the rank of T.
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Noise model. Let us focus on the lth column of matrices
T̂, T, and E, dropping the index l for ease of notation. The
element (k − 1)M + m of the lth column of each matrix (that
is, the mth element of the kth time-step block) is denoted as
(·)km . In particular, T̂km is the estimate of Tkm = Pr(Yk = s̄m)
from the lth initial probability distribution. This element can
be approximated through a plug-in estimator from R realiza-
tions Y r

k of the output stochastic process.
To this end, we define an indicator variable Zr

km
, which

is one when Y r
k = s̄m and zero otherwise. Zr

km
is a Bernoulli

random variable with probability Tkm of being one, and 1 − Tkm

of being zero, such that E[Zr
km

] = Tkm and Var[Zr
km

] = Tkm (1 −
Tkm ), where E[·] and Var[·] are the expected value and vari-
ance operators, respectively. Thus, the plug-in estimator can
be written as T̂km = ∑R

r=1 Zr
km

/R, while the noise is Ekm =∑R
r=1 Zr

km
/R − E[Zr

km
]. Since the Zr

km
are independent iden-

tically distributed random variables, Ekm −→ N (0, Tkm (1 −
Tkm )/R) as R −→ ∞ according to the central limit theo-
rem [38]. Hence, the noise matrix elements are marginally
Gaussian with zero means.

In practice, the elements within each column of the error
matrix are correlated, as elements at the same kth time step
should sum to zero and elements at future time steps depend
on elements at previous ones. Columns of E are uncorrelated
when different realizations are used to estimate each column.
One can utilize the same realizations for estimating multiple
columns of T̂, at the price of correlating the columns of E. The
covariance between any two elements of the same column can
be expressed as

Cov
(
Ekm , Epq

)
= E

[
Ekm Epq

]
= E

[( ∑R
r=1 Zr

km
− RTkm

)( ∑R
r=1 Zr

pq
− RTpq

)
R2

]

= E

[( ∑R
r=1 Zr

km

)( ∑R
r=1 Zr

pq

)
R2

]
− E

[( ∑R
r=1 Zr

km

)
RTpq

R2

]

− E

[
RTkm

(∑R
r=1 Zr

pq

)
R2

]
+ E

[
RTkm RTpq

R2

]

= 1

R2

R∑
r=1

R∑
ρ=1

E
[
Zr

km
Zρ

pq

] − Tkm Tpq ,

(
since Zr

km
and Zρ

pq
are independent for r �= ρ

)
= 1

R2

(
(R2 − R)Tkm Tpq +

R∑
r=1

E
[
Zr

km
Zr

pq

]) − Tkm Tpq

= 1

R2

R∑
r=1

E
[
Zr

km
Zr

pq

] − 1

R
Tkm Tpq

= 1

R

(
Pr

(
Y r

k = s̄m,Y r
p = s̄q

) − Tkm Tpq

)
, (13)

where we used the fact that E[Ekm ] = 0 for any k and m. As a
first approximation for Monte Carlo simulations, we generate
the random noise matrices by assuming that the first M-1

elements of each time-step k are jointly Gaussian, with co-
variance matrices estimated from realizations through plug-in
estimators, since the covariance is a function of T [as given
in (13)] to which we do not have access. The Mth elements
are found by imposing that all elements at the same kth time-
step sum to zero. In the numerical experiment, the empirical
distributions of the singular values of the noise matrix were
generated from 5000 random noise matrices (see below for
numerical evaluation of the noise model and validation of the
joint normality assumption).

III. RESULTS AND DISCUSSION

A. Ehrenfest urn model

We simulate (3) to generate realizations of the output vari-
able. We assemble an estimate T̂ of the detection matrix with
a varying number of realizations R for each initial probability
distribution. When enough realizations are used to estimate T̂,
we can conclude that rank(T) = 4 according to the statistical
test [Fig. 1(d)]. The same experiment was repeated for two
balls (N = 3) and four balls (N = 5) where our approach was
able to detect the total number of balls in the urns, by using
only binary readings from a sensor in one of the urns that tells
whether that urn is empty or not. At each time step, a ball is
independently picked from one urn and moved to the other.
The resulting process is a Markov chain with the number of
states N equal to the number of particles plus one, and reads
as follows

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0 0
1
N 0 N−1

N 0 · · · 0 0 0 0

0 2
N 0 N−2

N · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · N−2
N 0 2

N 0

0 0 0 0 · · · 0 N−1
N 0 1

N

0 0 0 0 · · · 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)
Under the assumption that we rely on binary sensor telling us
whether there exist at least one ball in one urn or not, the C
matrix would read

C =
[

1 0 0 · · · 0 0
0 1 1 · · · 1 1

]
. (15)

The numerical experiments were performed with L = 15 and
K = 30 for all three cases (Fig. 2).

B. Biophysics

Hidden Markov chains are a fundamental mathematical
model for several microscopic processes of interest in the bio-
physics community, including ion channels [39] and genetic
sequences [40]. An example of the use of hidden Markov
chains in biophysics involves the swimming behavior of Es-
cherichia coli (E. coli), the cornerstone of our understanding
of how peritrichous bacteria with flagella all above their bod-
ies move in a fluid [41]. Recent work [42] has studied surface
exploration of a pathogenic strain of E. coli resulting in a
complex interplay between motility and transient surface ad-
hesion events. These experimental results hint at the presence
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FIG. 2. Number of detected states from the statistical test as a
function of the number of realizations R. Results of the Ehrenfest
model with two (blue circles), three (orange square), and four (green
diamonds) balls in the system. The error bars represent the standard
deviation over 50 trials.

of hidden states, in addition to the two states that could be seen
by the naked eye: running and stopping. The third, hidden
state is suggested to be a tethered state where the bacterium
use adhesion events to the surface to regulate the surface
motion. The presence of a hidden state was inferred from a
combination of model fitting and survival analysis; however,
this approach is model based and not scalable.

To explore the possibility of employing our approach to
discover such a hidden state, we consider numerical simu-
lations of a hidden Markov chain model where we cannot
distinguish between the stopping state and the tethered state.
The corresponding Markov chain consists of three states: the
bacterium is not moving and is in a nontethered state (S := 1);
the bacterium is in a tethered state (T := 2); and the bacterium
is running (R := 3). The transition probability matrix reads

P =
⎡
⎣q11 q12 q13

0 q22 q23

q31 0 q33

⎤
⎦. (16)

If one cannot distinguish between the non-running states, the
C matrix is

C =
[

1 1 0
0 0 1

]
. (17)

Our approach successfully detects the hidden, tethered
state (Fig. 3). The numerical experiments were per-
formed with L = 15, K = 30, q11 = 0.2, q12 = 0.3, q13 =
0.5, q22 = 0.3, q23 = 0.7, q31 = 0.8, and q33 = 0.2.

Validation of the noise model. To validate our noise model,
we compared the empirical probability density function of
the singular values of the true noise matrix against those of
our noise model, for the biophysics example. To this end,
we computed 1000 true noise matrices by taking the differ-
ence between 1000 estimates of the detection matrix from
R = 1000 realizations and the exact detection matrix (with
L = 4 and K = 2). Second, we generated 1000 noise matrices

FIG. 3. Number of detected states from the statistical test as a
function of the number of realizations R. Results of the inference of
three behavioral states from the motion of the bacteria. The error bars
represent the standard deviation over 50 trials.

from our noise model. For all of these matrices, we computed
their singular values to obtain their empirical distributions.
Figure 4 compares the true noise singular values with the
modeled noise singular values. Kolmogorov-Smirnov statis-
tical tests [43] on each couple of distributions failed to reject
the null that the empirical distributions are sampled from the
same distributions (p > 0.12 for all pairwise comparisons).

Testing the assumption of joint Gaussianity. We showed
that the elements in each column are marginally Gaussian.
However, to generate realizations of the noise matrix for
Monte Carlo simulations, we assumed that the elements in
each column are also jointly Gaussian. Given that the elements
are not independent, the accuracy of this assumption should be
verified.

For a jointly Gaussian multivariate distribution of dimen-
sion d , the Manhabolis distance (between each sample of
the distribution and the distribution) follows a χ2 distribution
with d degrees of freedom [44]. Hence, to test for multi-
variate Gaussianity, we first generated 1000 noise samples of
dimension two. We compared the exact detection matrix for
the biophysics example with 1000 estimates from a plug-in
estimator, based on R = 5000 realizations with L = 1 (since
we are only interested in the multivariate distribution within
one column) and K = 2. Then, we computed the associated
Manhabolis distances and compared them with a χ2 distri-
bution with d = K (M − 1) = 2, using a Quantiles-Quantile
(Q-Q) plot, a common way to quantify the similarity between
two distributions, observed and theoretical.

Figure 5 shows the Q-Q plot comparing the theoretical
quantiles from the χ2 distribution and the empirical quantiles
from the measured Manhabolis distances. The quantiles match
perfectly over the whole range, with small deviations toward
the tails. This indicates that the assumption of joint normal-
ity is reasonable, at least for small errors. We acknowledge
that the assumption of joint normality could be violated in
other scenarios, beyond the examples considered in this work.
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FIG. 4. Comparison between the probability density function
(pdf) of the singular values of the true noise matrix and of the singular
values from our noise model for the biophysics problem with L = 4
and K = 2.

In principle, failing to satisfy the assumption may generate
random matrices that do not capture the underlying noise
distribution. The extent to which an inaccurate representation
of the noise would strain the algorithm is presently unknown.

C. Physical chemistry

Chemical reactions are often characterized and understood
through the lens of stochastic models [45]. Enzyme reactions,
for example, are modeled as Markov chains [46], where the
state of an enzyme molecule varies stochastically between
free enzyme and enzyme attached to different molecules, such
as substrates or products. We consider the simplest example
where there is only one subtract and one product, such that the
Markovian states are E := 1 (free enzyme), EP := 2 (enzyme
attached to product), and ES := 3 (enzyme attached to sub-
strate). In some cases, an experimentalist can only distinguish
if an enzyme is free or bonded to another molecule, so that ES
and EP are indistinguishable, such that the model is written as

P =
⎡
⎣r q p

p r q
q p r

⎤
⎦, (18)

and the C matrix is

C =
[

1 0 0
0 1 1

]
. (19)

FIG. 5. Q-Q plot comparing the Manhabolis distances distri-
bution and the χ 2 distribution for the biophysics example (L = 1
and K = 2). The Manhabolis distances were empirically computed
between samples of the noise and their estimated multivariate distri-
bution. The theoretical quantiles are the probability point functions
of the χ 2 distribution with two degrees of freedom. The dashed line
has a slope equal to one.

Our approach allows to infer the presence of substrate and
product within the reaction (Fig. 6). The framework can be
extended to other enzyme kinetics, where multiple substrates
and products interact with the enzyme [47]. The numeri-
cal experiments were performed with L = 15, K = 30, p =
0.5, q = 0.2, and r = 1 − p − q.

Oscillating enzyme reactions. In practice, the dynamics
of chemical reactions may be prone to random fluctuations
that might change the transition probabilities. While our

FIG. 6. Number of detected states from the statistical test as a
function of the number of realizations R. Results of the inference of
the presence of substrate and product within an enzyme chemical
reaction. The error bars represent the standard deviation over 50
trials.
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FIG. 7. Number of states detected using our approach on a
time-inhomogeneous Markov chain describing a perturbed enzyme
reaction. The error bar represents the standard deviation over 50
trials.

framework was derived for time-homogenous Markov chains,
it can be applied to time-inhomogeneous chains, drawing in-
spiration from previous efforts on time-varying deterministic
systems [9] that showed that detection matrix-based meth-
ods would work even for linear time-varying systems. We
numerically tested our approach to the enzyme reaction with
perturbations to the transition matrices that will render the
Markov chain time inhomogeneous. At each time step, we
perturbed matrix P in (18) by adding noise from the uniform
distribution U (0, 0.5) and normalizing the rows to ensure row
stochasticity, thus rescaling differently the different transition
probabilities. Our approach is able to detect the presence of
a hidden state as shown in Fig. 7. The numerical experi-
ments were performed with L = 15, K = 30, p = 0.5, q =
0.2, and r = 1 − p − q.

D. Epidemiology

We seek to understand whether our methodology can un-
ravel the presence of unobserved states in a compartmental
model of a disease. This task is useful in the early stages
of new epidemics, when the infectious disease is still un-
known; for example, during the first wave of COVID-19, the
possibility of infections from asymptomatic individuals was
overlooked [48].

We focus on understanding whether a disease has an “ex-
posed” epidemic state, where a subject is contagious but does
not show symptoms, such that it is indistinguishable from a
susceptible individual by only monitoring symptoms. We con-
sider a susceptible-exposed-infected-susceptible (SEIS) [49]
model, in which exposed and susceptible epidemic states map
to the same output (that is, no symptoms).

The corresponding hidden Markov chain has three states
(N = 3). Only two states are distinguishable from measure-
ments of the symptoms (M = 2), such that the output process
would resemble a susceptible-infected-susceptible (SIS) epi-
demic spreading [49]. The Markovian states of the SEIS

FIG. 8. Number of detected states from the statistical test as a
function of the number of realizations R. Results for the inference
of exposed states in epidemic models. Blue circles correspond to
observing SIS from SEIS dynamics, while orange squares corre-
spond to observing an actual SIS chain. The error bars represent the
standard deviation over 50 trials.

model are defined as follows: S := 1, E := 2, and I := 3. The
corresponding transition matrix reads

P =
⎡
⎣1 − β β 0

0 1 − α α

λ 0 1 − λ

⎤
⎦. (20)

When only observing the symptoms, we cannot distinguish
between the susceptible and the exposed states, such that the
matrix C is

C =
[

1 1 0
0 0 1

]
. (21)

Since the system is fully observable for any α �= 0
[rank(O) = 3], we can infer the presence of the exposed epi-
demic state. With R ≈ 103 realizations, one can safely claim
that the process is not an SIS and that there is some hidden
state (Fig. 8). We also applied our statistical framework to a
true SIS model, in which all states are distinguishable (Fig. 8),
to ensure that the test would not overestimate the size of the
system. The SIS Markovian states are defined as S := 1 and
I := 2. The corresponding transition matrix is

P =
[

1 − β β

λ 1 − λ

]
, (22)

and the corresponding C is the identity of dimension two,
since both states are observable. Both numerical experiments
were performed with L = 15, K = 30, α = 1/7, β = 0.3,

and λ = 0.1.
Nongeometrically distributed waiting time. The waiting

time between states in a Markov chain is geometrically dis-
tributed [50]. To illustrate the robustness of the method with
respect to other distributions of waiting time (and thus to other
stochastic models), we consider an epidemic model where
the waiting time has a Zipf distribution. The corresponding
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FIG. 9. Number of states detected using our approach on the epi-
demic models where the transition time does not follow a geometric
distribution. Blue circles correspond to observing SIS from SEIS
dynamics, while orange squares correspond to observing an actual
SIS chain. The error bar represents the standard deviation over 50
trials.

stochastic process can be regarded as a renewal process, that
is, “a Markov chain whose time scale is randomly trans-
formed” [51]. In particular, we impose that the waiting times
between transitions follow a Zipf distribution. Specifically, we
set

Pr(W T(·) = N ) = 1

N

1∑k(·)
n=1 1/n

, (23)

where Pr(W T(·) = N ) is the probability that the system will
remain N ∈ {1, . . . , k(·)} time steps in state (·), and k(·) is
the maximum waiting time in state (·). For the numerical
experiment, we set L = 15, K = 30, k(S) = 5, k(E ) = 10, and
k(I ) = 15. Similar to the regular Markov chains, we tested both
SEIS and SIS models. We were able to detect a hidden state
in the SEIS model while no hidden states were detected from
the SIS one, as shown in Fig. 9.

E. Comparison of our approach and hard thresholding to
denoise matrices with structured noise

In our framework, we proposed a method to detect the
correct rank of a matrix corrupted by structured noise. Here,
we numerically demonstrate that our method outperforms
the state-of-the-art, optimal hard thresholding method de-
veloped by Gavish and Donoho when considering Markov
systems [27]. The comparison is performed by generating
random square matrices D ∈ Rd×d of rank N̄ < d . We then
corrupt them with structured noise to obtain matrices D̂ ∈
Rd×d , on which we apply the two denoising techniques. To
generate a random matrix of specific rank, we first sample
a random matrix D̃ ∈ Rd×d with elements from independent
uniform distributions ∼U (0, 1), which in general has rank
d . We performed the SVD to get D̃ = U
̃VT. The diagonal
matrix 
̃ contains the ordered singular values. We define a
new diagonal matrix 
̄ by setting to zero all the singular

TABLE I. Comparison of our approach and hard thresholding to
denoise matrices with structured noise.

Our approach Gavish and Donoho [27]

Overestimation rate 0.037% 5.700%
Underestimation rate 0.000% 70.000%

values of 
̃ after the largest N̄ ones. The resulting matrix
D = U
̄VT is a random matrix of rank N̄ .

After generating a random matrix with a specific rank, we
add a noise matrix with a specific structure to obtain the final
noisy matrices D̂. The columns of the additive noise matrix
are sampled from a multivariate normal distribution with zero
means and R̄R̄T covariance matrix, where R̄ ∈ Rd×d is a
random matrix whose elements are generated from indepen-
dent uniform distributions ∼U (−c, c), where c modulates the
degree to which the element are correlated. To simulate the
structure of noise of a hidden Markov chain with N̄ states of
which only M̄ are distinguishable, we set subsequent blocks
of length M̄ in each column of the noise matrix to sum to zero
(that is, the first M̄ elements of each column sum to zero, the
following M̄ elements in the column sum to zero, and so on).

For our numerical experiments, we set N̄ = 4, M̄ = 3, and
d = 18. We ran 8000 simulations while varying c from 0.01
to 0.3 in 200 equidistant steps, such that for each c we ran
40 experiments. Out of the 8000 experiments, our method
overestimated the rank only three times and never underes-
timated it. The hard threshold overestimated the rank in 456
experiments (mostly in low correlation settings) and underes-
timated it in 5600 experiments (in high correlation settings),
see Table I. The major difference in the performance is due
to the assumption of independence between the elements of
the additive noise matrix for the optimal hard thresholding
method, an assumption that is not valid for detection matrices.

FIG. 10. Inference of the rank of random matrix D, of true rank
equals to four, from D̂ (D corrupted by white noise of level σ ). The
orange line represents our approach while the blue line represents
Gavish and Donoho’s [27]. The shaded region corresponds to the
95% confidence interval.
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While the detection matrix we are interested in will always
have a correlated noise structure, the proposed statistical test is
versatile to other noise structures. We offer a fair comparison
between the proposed approach and the hard thresholding
method of Gavish and Donoho [27] where we do not violate
their assumptions. Specifically, to generate a noisy matrix D̂,
we corrupt a matrix D with independently sampled elements
from a normal distribution N (0, σ 2). For these numerical
experiments, we keep N̄ = 4 and d = 18, where we ran 8000
simulations while varying σ from 0.1 to 0.3 in 200 equidistant
steps, such that for each σ we have 40 experiments. The
results show that our method outperforms state-of-the-art for
moderate and high levels of noise (σ � 0.15) as illustrated in
Fig. 10.

IV. CONCLUSIONS

Inferring the number of states of a stochastic system
is a fundamental problem in physics, for which method-
ological tools are still lacking. In this work, we propose
a statistical technique to estimate the number of states of
a hidden Markov chain from perceptible dynamics. This
approach offers a viable framework not only to infer the
number of states of a stochastic system, but also to de-
noise any matrix corrupted by known structured noise.
Potential extensions of our work could address problems
in quantum mechanics, such as quantum communication
channels [52].

We showed through examples that we can detect the pres-
ence of a hidden state with about R ≈ 102 realizations. To
reliably infer the total number of states, more realizations are
sometimes needed (typically, R ≈ 103). We acknowledge that
these figures might not be easy to get from observational data,
but, for example, are feasible in laboratory conditions with
automated experimental apparatuses that allow for generating
independent realizations. We recognize that the number of
realizations needed for convergence is not readily available
since it depends on the degree of observability of the hid-
den system (that is, even if the system is observable, some
states are harder to reconstruct than others). The degree of
observability can be quantitatively evaluated in different ways,
such as the observability Gramian [32] and radius [53]. All
the examples considered herein suggest that convergence is
monotonic, so that, even if the number of needed realizations
is unknown, the algorithm never overestimates the number of
states. Despite these limitations, our work constitutes a critical
first step toward solving a foundational issue in stochastic
dynamical systems.
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