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Exceptional points (EPs), with their intriguing spectral topology, have attracted considerable attention in a
broad range of physical systems, with potential sensing applications driving much of the present research in
this field. Here, we investigate spectral topology and EPs in systems with significant nonlinearity, exemplified
by a nonequilibrium exciton-polariton condensate. With the possibility to control loss and gain and nonlinearity
by optical means, this system allows for a comprehensive analysis of the interplay of nonlinearities (Kerr type
and saturable gain) and non-Hermiticity. Not only do we find that EPs can be intentionally shifted in parameter
space by the saturable gain, but we also observe intriguing rotations and intersections of Riemann surfaces and
find nonlinearity-enhanced sensing capabilities. With this, our results illustrate the potential of tailoring spectral
topology and related phenomena in non-Hermitian systems by nonlinearity.
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I. INTRODUCTION

Exceptional points (EPs) are singularities in parameter
space at which two or more eigenvalues and their correspond-
ing eigenvectors coalesce [1–4]. Such singularities occur
exclusively in non-Hermitian systems which are subject to
gain and loss and exhibit nonorthogonal eigenvectors and
complex eigenvalues [5,6]. Compared to conventional sin-
gularities in Hermitian systems, known as Diabolic points,
EPs show intriguing properties due to the spectral topol-
ogy of their Riemann surfaces [7,8]. EPs have been widely
investigated in a variety of physical systems such as mi-
crowave resonators [9–11], atomic systems [12], plasmonic
nanostructures [13,14], optical waveguides [15], microres-
onators [16–18], and nonreciprocal systems [19]. Near an EP,
a range of counterintuitive phenomena has been reported in
optical systems due to the coalescence of the eigenvectors,
including loss- and optomechanically induced transparency
[20,21], unidirectional invisibility, and reflectivity exceeding
unity [15,22]. Moreover, sensing enhancement can be realized
close to an EP of order n where the frequency splitting scales
as the nth root of the perturbation [23–26]. This makes EPs
promising candidates for a new generation of sensors, with the
potential to outperform their Hermitian counterparts [27–30].

Recently, there has been growing interest in the interplay of
nonlinearity and non-Hermiticity. For instance, the influence
of nonlinear effects on the PT symmetry in lasing systems
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was studied [31–34]. EP-based sensors with saturable gain
[35], saturable-gain-induced energy shift [36,37], and the en-
circling of EPs in bistable domains [38] were investigated.
To systematically study the interplay of nonlinear and non-
Hermitian physics, systems with variable nonlinearity and
controllable gain and loss are required. An example of such
systems is exciton polaritons, in which rich nonlinear physics
have been reported, such as nonlinear emission [39], stimula-
tion of photoluminescence [40], angle-resonant amplification
[41,42], and strong stimulated scattering under resonant
excitation [43].

Exciton polaritons are hybrid light-matter quasiparticles
that form due to strong light-matter coupling, pairing finite
lifetimes on a picosecond scale, and thus non-Hermiticity,
with strong nonlinearity from polariton-polariton interactions.
For nonresonant optical excitation, spontaneous macro-
scopic coherence can form, known as polariton condensation
[44–46]. In that case, the significant interaction of the con-
densate and the exciton reservoir induces a repulsive potential
energy landscape, enabling optical trapping [47–51] as well
as the optical control of the polariton condensate [52–56].
Moreover, the nonlinearity of polariton condensates permits
multistabilities [57–60] and hence offers new design avenues
for all-optical transistors [61] and allows for the creation and
control of vortices [56,62,63]. The nonlinearity inside the
polariton condensate can be tuned with static electric fields
[64–66]. With their nonequilibrium nature and the possibility
of both structural and optical control, polariton systems offer
a natural playground for the study of non-Hermitian physics.
For instance, non-Hermitian topological corner modes [67],
topological interface states [68], PT symmetry [69], and EPs
[70–74] have been investigated. Moreover, the first measure-
ment of the quantum metric in a non-Hermitian system was
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conducted on exciton-polariton eigenstates [75]. However, the
interplay of nonlinearity and non-Hermiticity has not been
fully explored or exploited.

In the present work, we investigate the manipulation of
EPs and surrounding Riemann surfaces through the nonlin-
earities in the system. We find that the saturable gain shifts
the EP in parameter space, leading to a variation in the mode
coupling requirement for the observation of the EP. The re-
pulsive polariton-polariton nonlinearity (akin to a Kerr-type
nonlinearity) can induce not only an energy blueshift but also
a simultaneous rotation of the Riemann surface and movement
of the EP. We show that this also applies to higher-order
EPs where the Riemann surfaces can show complex intersec-
tion patterns. With potential applications in mind, we further
demonstrate that sensing sensitivity near the EP can be signif-
icantly enhanced by nonlinearity.

II. THEORETICAL MODEL

To study the dynamics of polariton condensates under non-
resonant excitation, we use the dissipative Gross-Pitaevskii
(GP) model [63,76]. Within this framework, the dynamics of
the coherent polariton field ψ = ψ (r, t ) and the density of the
exciton reservoir n = n(r, t ) are

ih̄
∂

∂t
ψ =

(
H0(r) + gc|ψ |2 + grn + ih̄

2
[Rn − γc]

)
ψ,

∂n

∂t
= P(r) − (γr + R|ψ |2)n. (1)

The linear operator H0(r) = − h̄2

2meff
∇2 + V (r) describes the

kinetic energy and the external potential V (r) which con-
fines the condensate spatially. meff = 10−4me is the effective
polariton mass, with me being the free electron mass. gc

is the strength of the polariton-polariton interaction (akin
to a Kerr-type nonlinearity), while gr is the strength of
the polariton-reservoir interaction. γc = 0.3 ps−1 is the loss
constant of the condensate in the quasimode approxima-
tion [77], counteracted by the stimulated in-scattering with
R = 0.01 ps−1 µm2. γr = 0.45 ps−1 is the loss constant of the
reservoir, supplemented by the incoherent pump P(r). For
stationary excitation and solution we obtain n(r) = P(r)

γr+R|ψ (r)|2 ;

the term R|ψ (r)|2 holds the saturable gain.
A system containing an EP of two coalescing eigenvec-

tors is approximated in its vicinity by a two-level effective
Hamiltonian,

HEP2 =
(

Eα + i�α μ/2
μ/2 Eβ + i�β

)
. (2)

Here, Eα and Eβ are the energies of modes α and β. The gain
and loss are included in �α and �β, and μ characterizes the
coupling strength of the two modes. The eigenvalues of the
Hamiltonian (2) read E± = [Eα + Eβ + i(�α + �β)]/2 ±√|μ|2 + [Eα − Eβ + i(�α − �β)]2/2. The second term de-
scribes the energy splitting on one side of the EP, which shows
the characteristic square-root dependence. Plotting the eigen-
values depending on the energy difference �EL = Eα − Eβ

and the loss and gain difference �� = �α − �β visualizes
the Riemann surface of the system, as shown in Fig. 1(a) for
the real part. The EP is localized at �EL = 0 and μ = ��.

FIG. 1. System and excitation setup. (a) Sketch of the Riemann
surface (real part only) of a two-level non-Hermitian system contain-
ing an EP for varying level separation �EL = Eα − Eβ and varying
relative level coupling μ/��. (b) Scheme for realization with po-
lariton condensates, including the rectangular external potential V (r)
and excitation with two nonresonant pump beams, P1(r) and P2(r).
Polariton density (top row; in µm−2) and phase (bottom row) of the
(c) third and (d) fourth modes of the potential V (r) that are chosen
here as an example for the realization of an EP. (e) Vortex-antivortex
mode at the EP. Further details are given in the text.

To study the dynamics of two coupled modes ψα,β of
a polariton condensate in the vicinity of an EP, we extend
the effective non-Hermitian Hamiltonian (2) by including
the nonlinearity of the GP model. Consequently, the two-
level non-Hermitian Hamiltonian and the effective nonlinear
Schrödinger equation (NSE) read

ih̄
∂

∂t

(
ψα

ψβ

)
=

(
H (ψα) μ/2
μ/2 H (ψβ)

)(
ψα

ψβ

)
, (3)

where H (ψ ) = H0(r) + gc|ψ |2 + grn + ih̄
2 [Rn − γc]. It

should be noted that this model can also be applied to other
nonlinear systems by substituting the Hamiltonian. In the
further course of this work, the eigenenergies of the system
are denoted by Eα,β, and their difference is denoted by
�EL. The blueshift-induced correction to this difference
is defined as �ENL, such that the energy difference in the
nonlinear regime is �E = �EL + �ENL = Eα − Eβ. In this
work, we investigate the third, α = 3, and fourth, β = 4,
modes [as shown in Figs. 1(c) and 1(d)] of a rectangular
external potential with a width of 5 µm, length of 8.9 µm,
and depth of 2 meV, as sketched in Fig. 1(b). These two
modes are chosen because their energies are close to each
other and their degeneracies can be realized in experiments.
Provided these conditions are fulfilled, the model can be
applied to arbitrary modes [70]. We use a nonresonant
pump P(r) which consists of a broad flat top pump P1(r)
[light blue cone in Fig. 1(b)] with a diameter of 12 µm
and intensity of I1 = 16 ps−1 µm−2. An additional elliptical
pump P2(r) [light pink cone in Fig. 1(b)] with a height of
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2 µm and width of 5 µm is used to tune the mode energy
difference �E . Mathematical expressions for the pump
profiles are given in Appendix A 2. The total energies Eα,β

of the two modes are obtained by solving the GP equation,
Eq. (1), on a discrete spatial grid using the Dormand-Prince
method for the time integration and time-domain Fourier
transformation for the respective steady states [Figs. 1(c) and
1(d)]. Their scalar gain and loss rates can be approximated
by �α,β ≈ N−1 h̄

2

∫
[Rnα,β(r) − γc]|ψα,β(r)|2d2r, with

N−1 = ∫ |ψα(r)|2d2r [71]. The complex eigenvalues E± of
the corresponding effective two-level system, Eq. (2), can
then be determined for a given �E = Eα − Eβ and as a
function of the mode coupling strength μ with the nonlinear
energies as input for Eα,β. For the coupled two-level NSE,
Eq. (3), with μ = �� close to the degeneracy �E = 0, the
two modes coalesce into the superposition mode in which
a vortex-antivortex pair forms [see Fig. 1(e)]. We note that
in our simulations, the superposition mode is resilient to
a random disorder potential (explicitly tested for random
external potentials with a correlation length of 1 µm and
average depth of about 0.1 meV). By encircling the EP,
supported by P2, the two vortices swap their topological
charge, which is a typical property of a topological
Riemann surface [71]. Details of the encircling are given
in Appendix A 2 in Fig. 6.

III. SENSING ENHANCEMENT

We first focus on the influence of nonlinearities on the com-
plex eigenvalues along the degeneracy of real-valued mode
energies �E = 0. The eigenvalues E± of the two-dimensional
system are determined as a function of μ by evaluating the
eigenvalues according to the method introduced above. Ex-
posed to a saturable gain, which in our case is expressed
by R|ψ (r)|2, the gain difference of the modes in a nonlin-
ear system depends on their intensities. The coupling of the
modes in our multistable system is also influenced by the
strength of the polariton-polariton interaction. Thus, the nec-
essary coupling strength μ to reach the EP in such a nonlinear
system is changed by the intensity of the modes or, in this
case, the two-dimensional polariton density. Hence, we ob-
serve a shift of the EP along the �� or μ axis as a function
of the nonlinear interaction strength (see Fig. 5). A similar
effect was recently observed in Ref. [37] in a lasing system.
For stationary solutions with |ψα,β|2 = max[|ψα,β(r)|2] and
nα,β = max[nα,β(r)], the eigenvalues of Eq. (2) with respect
to the nonlinear terms of Eq. (1) read

E±,NL ≈ [Eα + Eβ + gc|ψtot|2 + grntot + i(�α + �β)]

2

±
√

|μ|2 + (�EL + �ENL + i��)2

2
. (4)

Here, the polariton- and reservoir-polariton interactions in-
duce an energy blueshift on the Riemann surface proportional
to the total polariton |ψtot|2 = |ψα|2 + |ψβ|2 and reservoir
density ntot = nα + nβ. �ENL = gc�|ψ |2 + gr�n is charac-
terized by the density difference �|ψ |2 = |ψα|2 − |ψβ|2 and
�n = nα − nβ. We note that the expression in Eq. (4) rep-
resents a scalar approximation of the problem described in

FIG. 2. Nonlinearity-induced enhancement of sensing at the EP.
(a) Deviation of the eigenvalue splitting (real part) from the lin-
ear case at μ/�� = 2, close to the EP as a function of the
polariton-polariton interaction gc and for different polariton-reservoir
interactions gr . The values of the splitting deviation and the cor-
responding increased or decreased EP sensitivity are given as a
percentage of the energy splitting in the linear case. (b) Eigenvalues
E± along the mode degeneracy line �E = 0 for different interaction
strengths gc and gr = 0, illustrating the change in the energy splitting.
Eigenvalues are renormalized to the total mode energy E at the EP.

Eq. (3). In this framework, the density of the modes is not
subject to perturbation because the model describes the sys-
tem in the vicinity of the EP, which limits the variation of
the mode gain (see also details in Appendix A1) and hence
the density. From this discussion it follows that while the two
modes coalesce at the EP with �|ψ |2 = 0 and �n = 0, tuning
the system away from the EP also lifts the coalescence of the
two modes, resulting in nonvanishing contributions of �|ψ |2
and �n. Depending on the exact shape of the two modes, this
can lead to an increase (�ENL > 0) or decrease (�ENL < 0)
of the eigenvalue splitting. The sensitivity change κ for a given
ratio μ/�� can be derived as discussed in Appendix A1.

After Eq. (3) is solved, the eigenvalues of Eq. (2) are
calculated. Then their splitting κ is determined for μ/�� = 2,
and the percentage deviation from the splitting at the reference
value is calculated. The results are plotted in Fig. 2(a) as a
function of gc for different gr . For gr = 0, the sensitivity of the
EP can increase by up to 150% and decrease to about 10%.
For comparison, the resulting EPs are shown renormalized
by their respective mode energies at �E = 0 and their gain
differences [see Fig. 2(b)]. For gr �= 0, the oscillation of the
sensitivity decreases. For values of gr � 2gc, the sensitivity
increases monotonically as the reservoir interaction domi-
nates. It is worth pointing out that gc depends on the detuning
of the exciton and photon states and the choice of material [78]
and can be controlled during sample preparation or in certain
systems by applying a static electric field [64–66].

We note that the results shown here can also be validated
with the dissipative Gross-Pitaevskii model in Eq. (1) once
the EP is localized in the parameter space. There, the time
evolution initialized with the third or fourth mode yields the
superposition mode at the EP. In order not to duplicate re-
sults already shown in Fig. 1(e), the results of the GP model
calculation are not shown explicitly. In essence, we find that
the approximations introduced above for the derivation and
evaluation of a simplified model description and the reduction
to the third and fourth modes in the framework of the effective
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Hamiltonian in Eq. (2) can also be applied to our nonlinear
system in the vicinity of said EP, validating the model in
Eq. (3). The added value of our model, which focuses on
the relevant parameter domain and relevant modes, lies in its
simplicity and low dimension. This renders the localization
of the EP in the parameter space of the nonlinear system
easier and the analysis more systematic and less specific to
the particular physical system investigated here.

IV. RIEMANN SURFACE ROTATION

We extend our investigation from the bifurcation of the
eigenvalues at the EP along the trace of degeneracy to the
entire Riemann surface in the nonlinear regime. Here, we
determine the eigenvalues by using Eq. (4) depending on
�EL and ��. Spatially varying quantities are replaced by
scalar approximations. Thus, the flat top pump P is approx-
imated by its peak intensity I1, and the mode densities are
approximated by their average values |ψ |2 ≈ 3 µm−2 inside
the external potential. Eα is fixed to the eigenenergy of the
dipole mode, as shown in Fig. 1(c), while Eβ is varied close to
this value. The resulting energy difference is linked to the ratio
of the length and width of the rectangular potential [70]. The
mode coupling is extracted from the calculations performed
in the previous section. To construct the Riemann surface, the
gain and loss difference is varied independently. To this end,
we assume that the total density |ψtot|2 is resilient to small
variations of ��. The remaining parameters are taken from
the GP model calculations. The nonlinear correction to the
energy difference �ENL = gc�|ψ |2 is determined by deriving
an expression for the polariton density contrast resulting from
a gain and loss difference ��, which reads (details are given
in Appendix A 3)

�|ψ |2 = 2��[
h̄PR
γr

− h̄γc
] + ∑∞

m=2
h̄PRm

γ m
r

(−|ψtot|2)m−1 . (5)

The terms within the sum in the denominator follow from
the Taylor series of the average gain and loss difference � =
h̄
2 [ RP

γr+R|ψ |2 − γc]|ψ |2, including the saturable gain. For the fol-
lowing study, we consider terms up to m = 6. Note that the
density difference �|ψ |2, which mainly depends on ��, has
to be in a reasonable range for convergence. The influence of
the Kerr-type nonlinearity |ψ |2ψ and the saturable gain R|ψ |2
on the Riemann surface is illustrated in Fig. 3. Remarkably,
the Kerr-type nonlinearity causes the trace of �E = 0 not
to be parallel to the �� axis, which leads to rotation of the
Riemann surface. In the presence of the saturable gain the
rotation angle becomes density dependent and can thus be
increased even further [see Figs. 3(a)–3(c)]; the nonlinearity-
induced blueshift leads to a tilting of the �E = 0 trace and
movement of the EP. In the particular case of the polariton
condensate, the polariton-reservoir interaction gr can induce
an additional blueshift and thus a rotation of the Riemann
surface, as shown in Figs. 3(d)–3(f). The relation between
the total reservoir density and the reservoir density difference
derived from Eq. (5) is discussed in detail in Appendix A3. It
shows that the Riemann surface can even be rotated into the
opposite direction by virtue of the polariton-reservoir interac-
tion. In polariton condensates the pump intensity can control

FIG. 3. Nonlinearity-induced rotation of Riemann surfaces. Rie-
mann surfaces (real parts) resulting from the eigenvalue calculations,
Eq. (4), for (a)–(c) gr = 0 and (d)–(f) gr = 2gc for different polariton-
polariton interactions: (a) and (d) gc = 0 µeV µm2, (b) and (e) gc =
3 µeV µm2 and (c) and (f) gc = 6 µeV µm2. The eigenvalues are de-
picted against the energy difference �EL and relative gain and loss
difference ��/μ. For gc �= 0 the nonlinear correction �ENL to the
energy difference is plotted with ��. Energies are given in µeV.

both nonlinear effects by tuning the density of the polariton
condensate, which can provide an efficient method to actively
tweak the spectral topology and the corresponding EP since in
this case no other system parameters need to be varied.

From the rotation of the Riemann surface, it is worth
asking whether more complicated higher-order EPs and mul-
tiple layer Riemann surfaces can also be manipulated. Here,
we consider a parametrized and general three-level non-
Hermitian Hamiltonian (with no direct relation to the specific
modes in Fig. 1), as motivated by a linear system in Ref. [79],
which reads

HEP3 =
⎛
⎝Eα + i�α μαβ/2 0

μαβ/2 Eβ + i�β μβγ/2
0 μβγ/2 Eγ + i�γ

⎞
⎠. (6)

E = E + gc|ψ |2 denotes the mode energy with nonlinearity.
The mode energies Eα and Eβ and their coupling μαβ refer
to the values used above, while Eγ is set to 1.75 meV and
μβγ = 0.75µαβ, providing a clear picture of the resulting
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FIG. 4. Rotation of the Riemann surfaces with higher-order EPs.
Riemann surfaces (real parts) containing two EPs (a) in the linear
regime and (b) and (c) under the impact of the polariton-polariton
interaction gc = 6 µeV µm2 and the saturable gain. In (b) the total
densities of the modes forming the EPs are identical, whereas in
(c) the total densities inside each EP are distinct. The eigenvalues
are depicted against the eigenenergy difference EL and the gain and
loss difference ��. For gc �= 0 the nonlinear correction to the energy
difference is plotted with ��. The lines at the bottom of the surface
plot illustrate the orientation of the �E = 0 trace to visualize the
rotation of the Riemann surfaces. (d) Deflection angle of the two
projected lines as a function of the total densities of the adjacent
modes for a nonlinearity of gc = 6 µeV µm2. Energies are given
in meV.

Riemann surfaces. In Figs. 4(a)–4(c), the Riemann surfaces
are shown for different nonlinear contributions. Here, the
traces �E1,2 = 0 are projected onto the bottom of the surface
plots to indicate the rotation of the Riemann surfaces. Re-
markably, the Riemann surfaces can be rotated as a whole with
the two projected lines being parallel [Figs. 4(a) and 4(b)].
Due to the saturable gain, however, the two Riemann surfaces
can also be moved towards opposite directions with the two
lines crossing each other [Fig. 4(c)], leading to complicated
intersection behavior of the Riemann surfaces. Figure 4(d)
shows the displacement angle difference of the two projected
lines in Figs. 4(a)–4(c) as a function of the total densities of
the two adjacent modes. It can be seen that if the saturable
gain of the system is negligible or is identical for both EPs,
the two lines are not deflected against each other, whereas
they are deflected otherwise. It can also be inferred that if the
energy blueshift is significant for one or two modes, it may be
possible to observe coalescence of the two EPs, consequently
leading to a phase transition in the spectral topology.

V. CONCLUSION

We have investigated the influence of nonlinearity on
non-Hermitian spectral topology in microcavity polariton
condensates. The nonlinearities lead to a significant change in
the eigenvalue splitting near the EP as a function of density
difference, leading to a clear nonlinearity-induced sensing

capability enhancement. The Kerr-type nonlinearity of the
condensate (from polariton-polariton interactions) and the sat-
urable gain (from polariton-reservoir interactions) lead to a
rotation of the Riemann surfaces and shift the EP in parameter
space. This can give rise to a complex intersection pattern of
Riemann surfaces for higher-order EPs. In nonlinear mode
control this offers interesting insights for encircling higher-
order EPs and for phase transitions at EPs. These results are
generic enough to be applied to other non-Hermitian systems
with similar nonlinearities such as in nonlinear optics and
atomic systems.
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APPENDIX

This Appendix is structured as follows. In Appendix A1,
the EP shift along the �� or μ axis is presented, and the
expression for the sensitivity change κ in the vicinity of the EP
is derived and introduced. In Appendix A2, the encircling of
the EP and the resulting vortex-antivortex switching process
are discussed. In Appendix A3, the derivation of the relevant
equations for Riemann surface rotation is given.

1. EP shift and sensitivity tuning

With saturable gain, the gain difference of the modes in
a nonlinear system depends on their intensity. Since the cou-
pling of the modes in the multistable system is also affected
by the strength of the polariton-polariton interaction gc, the
necessary coupling strength μ to achieve an EP at μ = �� in
such a nonlinear system depends on the intensity of the modes
or, in this case, on the two-dimensional polariton density.
Hence, we observe a shift of the EP along the �� or μ axis, as
shown in Fig. 1(a), as a function of the nonlinear interaction
strength gc, as shown in Fig. 5. The EP position in parameter
space is shown on the x axis, and the polariton-polariton
interaction-strength parameter gc is plotted on the y axis. It
can be seen that the gain and loss difference of the two modes
not only increases or decreases but can also switch sign for
increasing (Kerr-type) nonlinearity.

In the vicinity of an EP in a system subject to a Kerr-type
nonlinearity the sensitivity change κ for a given ratio μ/��

can be derived from Eq. (4) for �EL ≈ 0 and reads

κ = ±
√

| μ

��
|2 + (gc�|ψ |2 + gr�n + i��)2

2E

∓
√

| μ

��′ |2 − ��′2

2E ′ . (A1)

Here, the ± and ∓ signs describe the eigenvalue splitting in
both directions. The first term describes the eigenvalue split-
ting under the influence of the nonlinear interactions gc and
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FIG. 5. Nonlinearity-induced shift of the required gain difference
�� to access the EP. Inverted plot to illustrate the EP-position (x-
axis) shifting in parameter space under variation of the nonlinearity
parameter gc.

gr , while the second term describes the eigenvalue splitting in
the linear case. The resulting EPs are superimposed by renor-
malizing the two scenarios with the respective mode energies
E and E ′ at �E = 0 and their gain differences �� and ��′.
Since multistability of modes is required in the system under
investigation, the eigenvalue bifurcation for a weak nonlinear-
ity of gc = 0.2 µeV µm2 is chosen as a reference value for the
sensitivity tuning in Fig. 2(a).

2. EP encircling

The encircling of an EP and the resulting state transitions,
including the accumulation of geometric Berry phases, were
originally discussed in Ref. [80]. Here, for completeness, we
show that in the system studied in the present work, the encir-
cling process can lead to a change in the topological charge
of the vortex-antivortex pair upon reentry into the EP. To this
end, the width of the rectangular potential is slightly reduced
to 8.7 µm to lift the degeneracy of the two modes. This shifts
the tripole mode [Fig. 1(d)] above the dipole mode [Fig. 1(c)]
of the system. In addition to the excitation pump P1(x, y), a
second elliptical control pump P2(r) is introduced. The total
pump profile is then given as

P(x, y) = I1exp

(
−x2 + y2

σ 2

)6

+ I2exp

(
−

∣∣∣∣∣ x2

σ 2
x

+ y2

σ 2
y

∣∣∣∣∣
)2

.

(A2)

Here, I1 =∈ [14; 16] ps−1 µm−2 and σ = 12 µm describe the
intensity and width of the excitation pump. The shape of the
elliptic pump is defined by its width σx = 5 µm in the x direc-
tion and σy = 2 µm in the y direction. I2 =∈ [0; 2] ps−1 µm−2

describes the intensity of the elliptic pump. Since the saturable
gain affects the gain difference of the two modes, the excita-
tion pump is used in the following to control these differences.
In addition, the elliptic pump induces a spatially modulated
blueshift which, due to its shape, mainly affects the dipole
mode of the system. Thus, both the energy and gain difference
of the modes can be controlled, which allows for an encircling
of the EP that is induced all optically.

We note that in this case the encircling trajectories are not
parallel to the �E and �� axes since both pumps cause an
individual blueshift and gain shift to the two modes. Fig-
ure 6 shows the first and second encircling processes. It is
emphasized that due to the nonlinearity of the system, the
states exemplified at the corners of the encircling process are
stationary before converging to the EP mode. During the first
encircling, the dipole mode gathers a −π Berry phase, while
the tripole mode and hence the EP mode remain unchanged.
Only after a second encircling does the tripole mode also
collect a geometric Berry phase, leading to the switching of
the topological charge of the vortex-antivortex pair.

3. Mathematical description of the Riemann surface rotation

To describe the rotation of the Riemann surface in the
nonlinear regime as shown in Fig. 3, the expression for �|ψ |2
depending on �� can be derived by performing the Tay-
lor expansion on the average mode gain and loss ratio � =
h̄
2 [ RP

γr+R|ψ |2 − γc]|ψ |2 at |ψ |2 = 0 given the approximation of

constant average polariton density |ψ |2 and pump intensity
P = I1. The series expansion converges for |ψ |2 < γr/R. We
note that this does not limit the strength of nonlinearity that
can be studied within this approximation, as gc can be tuned
freely to model strong nonlinear effects. The Taylor expansion
of the gain and loss ratio reads

� = h̄

2

([
RP

γr
− γc

]
|ψ |2 − PR2

γ 2
r

|ψ |4 + PR3

γ 3
r

|ψ |6 ∓ · · ·
)

.

(A3)

From this the mode density difference of the two modes, α
and β, as a function of their gain and loss difference can be
derived as

�� = h̄

2

([
RP

γr
− γc

]
(|ψα|2 − |ψβ|2) − PR2

γ 2
r

(|ψα|4 − |ψβ|4) + PR3

γ 3
r

(|ψα|6 − |ψβ|6) ∓ · · ·
)

⇔ �� = h̄

2

([
RP

γr
− γc

]
�|ψ |2 − PR2

γ 2
r

(|ψα|2 + |ψβ|2)�|ψ |2 + PR3

γ 3
r

(|ψα|4 + |ψα|2|ψβ|2 + |ψβ|4)�|ψ |2 ∓ · · ·
)

⇔ �|ψ |2[��] = 2��[
h̄RP
γr

− h̄γc
] − h̄PR2

γ 2
r

(|ψα|2 + |ψβ|2) + h̄PR3

γ 3
r

(|ψα|4 + |ψβ|2|ψβ|2 + |ψβ|4) ∓ · · ·
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FIG. 6. All-optical vortex-antivortex switching under EP encircling. Illustration of the (a) first and (b) second EP encirclings. The contours
of the stationary states are displayed at the corners of the sketched trajectory. The initial and final states are highlighted, and the phase
information of the vortex-antivortex pair at the EP is displayed at the bottom. After the first encircling the topological charge of the vortex pair
remains unchanged (highlighted by gray and yellow boxes). After the second encircling the topological charge of the vortex pair is switched
(highlighted by a red box).

⇒ �|ψ |2[��] ≈ 2��[
h̄RP
γr

− h̄γc
] − h̄PR2

γ 2
r

(|ψα|2 + |ψβ|2) + h̄PR3

γ 3
r

(|ψα|2 + |ψβ|2)2 ∓ · · ·

⇒ �|ψ |2[��] ≈ 2��[
h̄PR
γr

− h̄γc
] + ∑∞

m=2(−1)m−1 h̄PRm

γ m
r

(|ψtot|2)m−1
.

In the second step, the terms of the form (|ψα|2)m − (|ψβ|2)m

are factorized with respect to the density difference �|ψ |2,
according to

xm − ym = (x − y)
m−1∑
l=0

xlym−1−l . (A4)

In the last step, the factors of the mth-order terms are approx-
imated by the total density ψtot = |ψα|2 + |ψβ|2 to the (m −
1)th power. By this approximation, the denominator is always
larger than its exact value for the parameter range bounded
by the Taylor expansion. Accordingly, this approximation de-
scribes a lower bound for the mode density difference under
the independent variation of ��. We emphasize that this
approximation is exact for the first two terms in the denom-
inator and the strengths of the higher-order terms decrease by
one order of magnitude for each order m. In this sense this
approximation does not significantly affect our results. We
note that the denominator vanishes when the saturable gain
compensates the linear gain. For larger densities the direction
of the rotation is inverted. Keeping in mind the approxima-
tions discussed above, we collect our results away from this
divergence.

To determine the rotation and blueshift of the Riemann
surface [see Eq. (4)] induced by the excitation reservoir n in
a polariton system, we derive the expression for �n[�|ψ |2]
and ntot[|ψtot|2] from the Taylor expansion of � in Eq. (A3)
and the relation � = h̄

2 [Rn − γc]|ψ |2. The blueshift grntot of
the Riemann surface is then derived as

grntot = gr

([
2P

γr
− 2γc

R

]
+

∞∑
m=1

(−1)m PRm

γ m+1
r

(|ψtot|2)m

)
.

(A5)

The rotation induced by the excitation reservoir is given by

�n =
∞∑

m=1

(−1)m PRm

γ m+1
r

(|ψtot|2)m−1�|ψ |2. (A6)

From the given expression and the results shown in Figs. 3(e)
and 3(f) it can be seen that the rotation induced by the reser-
voir not only can increase the rotation angle of the Riemann
surface but can also switch the rotation direction, depending
on the density and reservoir differences.
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