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Variational quantum time evolution without the quantum geometric tensor
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Real- and imaginary-time quantum state evolutions are crucial in physics and chemistry for exploring
quantum dynamics, preparing ground states, and computing thermodynamic observables. On near-term devices,
variational quantum time evolution is a promising candidate for these tasks, as the required circuit model can
be tailored to the available devices’ capabilities. Due to the evaluation of the quantum geometric tensor (QGT),
however, this approach quickly becomes infeasible for relevant system sizes. Here, we propose a dual formulation
for variational time evolution, which replaces the calculation of the QGT by solving a fidelity-based optimization
to compute updates to the dynamics in each time step. We demonstrate our algorithm for the time evolution of
the Heisenberg Hamiltonian and show that it accurately reproduces the system dynamics at a fraction of the cost
of standard variational quantum time evolution algorithms.
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I. INTRODUCTION

Quantum time evolution is a central task in physics. Real-
time evolution provides detailed insight into properties of
quantum mechanical systems, such as phase transitions [1–3]
or thermalization [4,5]. Imaginary-time evolution is an im-
portant tool that enables the preparation of ground states or
thermal states [6–8]. These can, in turn, be used for the cal-
culation of thermodynamic observables [8,9]. In particular,
combining real- and imaginary-time evolution would allow
the direct calculation of dynamical correlation functions at
thermal equilibrium.

The range of applications of imaginary-time evolution
extends beyond the field of physics. Ground-state prepara-
tion with imaginary-time evolution for gapped, nondegenerate
Hamiltonians is guaranteed to converge in the generic case
of nonzero overlap between the ground state and the initial
trial state. This makes it a promising candidate in settings
where a good initial state can be constructed, e.g., in chemistry
applications [10] or in classical optimization problems [11].
In quantum machine learning, the preparation of Gibbs states
with imaginary-time evolution is a subroutine for quantum
Boltzmann machines, which can, for example, be used in
distribution learning or classification [12].

Since performing quantum time evolution generally re-
quires representing the exponentially large wave function of
a quantum system, quantum computers are a promising plat-
form for developing efficient algorithms [13]. In fact, in 1996,
the Trotter algorithm for real-time evolution was among the
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first proposed use cases for a quantum computer [14]. How-
ever, the complexity of the quantum circuits required for the
Trotter algorithm depends on the Hamiltonian, and the circuit
depth scales with the simulation time and accuracy [15,16].
This renders the algorithm currently unsuitable for general
time evolution on near-term devices, which are character-
ized by limited qubit connectivity and coherence times. The
imaginary-time counterpart of Trotter suffers from the same
restriction [8].

Variational algorithms for quantum time evolution, on the
other hand, allow to choose a parameterized circuit as an
ansatz to approximate the wave function that operates within
the device’s capabilities. Using a variational principle, varia-
tional quantum time evolution (VarQTE) maps the quantum
state evolution to the evolution of parameters in the model
[17], both for real-time evolution (VarQRTE) and imaginary-
time evolution (VarQITE). The parameter update rules depend
on the evaluation of the Quantum Geometric Tensor (QGT)
and gradients of the current energy and state. For an ansatz
with d variational parameters, the number of circuits required
to evaluate the QGT and gradients scale as O(d2) and O(d ),
respectively. While this does not pose a problem for small sys-
tems, the evaluation of the QGT quickly becomes a bottleneck
once the system size, and therefore the number of variational
parameters, increases.

Figure 1 shows a runtime estimate for VarQITE, assuming
current superconducting processor specifications (see Ap-
pendix A for details on the derivation). For a few parameters
the runtime is of the order of hours, however, increasing to
a mere 200 parameters already renders the algorithm im-
practical as this would require approximately one week of
computation time. In contrast, the algorithm proposed in this
work holds the potential to reduce the runtime to only a
single day. Such improvements of the quantum computational
resource requirements become increasingly crucial to find
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FIG. 1. Estimated runtimes of variational imaginary-time evo-
lution (VarQITE) and our proposed dual method (DualQITE) as a
function of the number of parameters d of the variational model, for
an exemplary Heisenberg model and 200 time steps.

practically relevant applications for quantum computers as
processor sizes keep increasing, recently achieving milestones
beyond 1000 qubits [18].

Recently, focus has shifted to optimization-based algo-
rithms, which implement partial steps or approximations of
the full Suzuki-Trotter step [19–23]. In the case of real-time
evolution, for example, the projected variational quantum
dynamics (p-VQD) algorithm [19] provides a scalable al-
ternative to VarQRTE on near term devices, if a single
Trotter step can be efficiently implemented. However, the
required quantum circuit gates in p-VQD reflect the cou-
plings of the Hamiltonian. This means that, for Hamiltonians
with long-distance interactions or numerous Pauli terms (e.g.,
in molecular dynamics), even a single step could involve
global connections or deep circuits hindering the execution on
near-term devices. Furthermore, the p-VQD algorithm is not
directly applicable to imaginary-time evolution.

Other approaches concerned with real-time evolution are
variational fast forwarding (VFF) methods [24–27] and clas-
sical pre-processing approaches [28,29]. VFF methods rely on
diagonalizing the Hamiltonian or the Trotterized time evo-
lution operator with a variational ansatz. However, finding
the diagonalizing unitary remains challenging in practice,
which limits demonstrations to very few qubits. Classical pre-
processing techniques, on the other hand, impose additional
restrictions on the simulated system, such as translational
invariance [29] or Hamiltonians with low entanglement [28].
Within such systems, these techniques scale to large systems,
but they do not allow for general quantum time evolution.

Another line of work directly focuses on the preparation of
thermal states by minimizing the free energy of a variational
ansatz [30]. This approach, however, also does not implement
general quantum time evolution.

In this paper, we propose a novel variational algorithm
for quantum time evolution based on a dual optimization
problem, which allows to replace the QGT by evaluating
the overlap of the variational ansatz for different parameter
values. This formulation applies equally real- and imaginary-
time evolution and does not require additional qubits or
connections than already present in the ansatz. We show that

this new algorithm requires significantly fewer measurements
and thereby drastically reduces the expected runtime com-
pared to VarQTE. This is summarized in Fig. 1, where, under
the same assumptions, our proposed method can reduce the
expected runtimes from several weeks for VarQTE to only
a few days. Following the naming conventions of VarQTE,
we name the algorithm DualQTE with specifiers DualQITE
for imaginary-time evolution and DualQRTE for real-time
evolution.

The remainder of this paper is structured as follows. In
Sec. II, we recap VarQTE based on variational principles,
derive the proposed dual formulation, and discuss how to
implement it on a quantum computer. Then, in Sec. III, we
demonstrate our proposed algorithm for the imaginary-time
evolution of the Heisenberg model and investigate the re-
source requirements. As a practical application, we use the
quantum minimally entangled typical thermal states method
(QMETTS) to calculate thermodynamic observables. Sec. IV
demonstrates the dual formulation for real-time evolution,
including the calculation of variational error bounds. Finally,
Sec. V concludes the paper and gives an outlook on possible
applications and further research directions.

II. DUAL FORMULATION OF VARIATIONAL TIME
EVOLUTION

For a time-independent Hamiltonian H acting on n qubits,
an initial quantum state |�0〉 and an evolution time t , the real-
time evolved quantum state is

|�(t )〉 = e−itH |�0〉 . (1)

For an imaginary-time evolution, the time evolution operator
is nonunitary, and the normalized state reads

|�(t )〉 = 1√
〈�0|e−2tH |�0〉

e−tH |�0〉 . (2)

Variational quantum time evolution maps the evolution
of the quantum state |�(t )〉 to the evolution of parameters
θ(t ) ∈ Rd of a parameterized quantum state |φ(θ(t ))〉. The
parameters’ dynamics can be derived with variational princi-
ples such as the Dirac-Frenkel, McLachlan, or time-dependent
variational principle [17]. In McLachlan’s formulation, the
derivatives of the parameters are determined by the linear
system of equations

g(θ(t )) θ̇(t ) = b(θ(t )), (3)

where the matrix g = Re(G) ∈ Rd×d is the real part of the
QGT, and we call b ∈ Rd the evolution gradient.

The QGT is defined as

Gi j (θ) = 〈∂iφ(θ)|∂ jφ(θ)〉 − 〈∂iφ(θ)|φ(θ)〉〈φ(θ)|∂ jφ(θ)〉, (4)

where we use the notation ∂i := ∂/(∂θi) and do not explicitly
state the time dependence of the parameters. The evolution
gradient for VarQRTE is given by the expression

bR
i (θ) = Im

( 〈∂iφ(θ)|H |φ(θ)〉 − 〈∂iφ(θ)|φ(θ)〉 E (θ)
)
, (5)

whereas a VarQITE evolution yields the following:

bI
i(θ) = −Re

( 〈∂iφ(θ)|H |φ(θ)〉 ) = −∂iE (θ)

2
, (6)
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with the energy E (θ) = 〈φ(θ)|H |φ(θ)〉. From hereon, we
present general equations that apply to both real and
imaginary-time evolution; thus, unless specified, we simply
use b without a specific superscript.

Note that these equations are introduced for a time-
independent Hamiltonian, but they can also be applied to the
time-dependent case H = H (t ).

A. Dual formulation

Instead of solving the linear system defined in Eq. (3), we
propose to solve the dual formulation of the problem [31,32]
given by

θ̇ = argmin
θ̇

θ̇
T

g(θ)θ̇

2
− θ̇

T
b(θ). (7)

The term ‖θ̇‖2
g(θ) = θ̇

T
g(θ)θ̇ is the squared norm of the pa-

rameter derivative in the metric of the QGT. This quantity
describes the magnitude of the derivative from an information
geometric point of view and is derived from the Fubini-Study
metric. For infinitesimal displacements δθ, we have

||δθ||2g(θ) = δθT g(θ)δθ

= 1 − | 〈φ(θ)|φ(θ + δθ)〉 |2 + O(‖δθ‖3
2), (8)

where ‖ · ‖2 is the �2 norm [32], see Appendix B for the
derivation. By writing θ̇ = δθ/δτ , for some time perturbation
δτ > 0, we can now reformulate the optimization in terms of
the fidelity F (θ, θ′) = | 〈φ(θ)|φ(θ′)〉 |2 as

δθ ≈ argmin
δθ

1 − F (θ, θ + δθ)

2(δτ )2
− δθT b(θ)

δτ

= argmin
δθ

L(δθ)

(δτ )2
, (9)

where we directly optimize for the parameter update δθ and
introduce the loss function

L(δθ) = 1 − F (θ, θ + δθ)

2
− δτ · δθT b(θ). (10)

In practice, the optimization problem can be solved without
the factor (δτ )−2, which decouples the shape of the locally
quadratic infidelity term from the time perturbation and im-
proves the numerical stability of the optimization.

Note that this dual formulation can alternatively be ob-
tained from the derivation of quantum natural gradients
[30,32], which is detailed in Appendix C. For an intuitive
understanding of the relationship of the infidelity and QGT
the effect of approximating ‖δθ‖2

g(θ) ≈ 1 − F (θ, θ + δθ) in an
illustrative example is demonstrated in Appendix D.

Instead of computing the QGT at each time step, which
requires O(d2) circuit evaluations, we now have to solve an
optimization problem where the loss function requires only
one fidelity evaluation. The required resources of DualQTE
per time step are therefore O(d ) for the computation of the
evolution gradient b, times the number of iterations in the
optimization. Thus we improve upon the direct QGT approach
if the number of iterations scales better than O(d ), which, as
we show in the following sections, is the case for the examples
we investigate in this work.

B. Evaluating the loss function

The evaluation of the loss function L, defined in Eq. (10),
requires the calculation of the evolution gradient b and the
fidelity of the ansatz |φ(θ)〉 for two different parameter sets.
For imaginary-time evolution, the evolution gradient can, for
example, be evaluated with analytic gradient rules, such as
the parameter-shift rule or a linear combination of unitaries
(LCU), or with finite difference methods [33]. In the case
of real-time evolution, however, we are restricted to an LCU
approach, as this is the only method that allows the calculation
of the imaginary part of gradients [12].

The fidelity F can, for example, be estimated using the
swap test [34] and its variants [35], where the states are
prepared in separate qubit registers followed by entangling
gates across these registers, or with the Hadamard test, which
adds only a single auxiliary qubit, but requires controlling
the state-preparing unitary [36]. A more near-term-friendly
option is the compute-uncompute method [37], which does
not introduce additional global operations. If the states are
given by |φ(θ)〉 = U (θ) |0〉 for a parameterized unitary U
and two different parameter values θ and θ′, the fidelity can
be calculated by preparing U †(θ)U (θ′) |0〉 and measuring the
probability of obtaining |0〉 on all qubits.

If the state |φ(θ)〉 has n qubits and the preparing unitary
U has depth m, the swap test variants require a circuit width
of 2n with depth of m + O(1), whereas the evaluated circuits
for the compute-uncompute method are of only width n, but
of depth 2m. The Hadamard test for fidelities between the
same circuit with different parameters can be evaluated by
controlling the parameterized gates, resulting in depth of m
and depth of n + 1, plus the overhead of controlling the gates.
For sparse device connectivities, this can be a challenge. To
avoid increasing the circuit complexity, the overlap can also be
estimated via randomized measurements of two independent
state preparations [38]. However, this technique requires an
exponential number of measurements.

Evaluating the QGT for VarQTE, however, suffers from
similar issues. The QGT can be evaluated as the Hessian
of the infidelity [39] using a parameter-shift or finite differ-
ence technique, which comes with the restrictions for fidelity
evaluations as described above. Alternatively, Eq. (4) can be
directly computed with an LCU approach, which adds two
auxiliary qubits and two entangling gates [12]. This method is
less demanding than, e.g., a Hadamard test, but still comes
with additional connectivity requirements. In practice, for
both VarQTE and DualQTE, a suitable combination of param-
eterized quantum state |φ(θ)〉 and gradient method must be se-
lected, such that the resulting circuits can be executed reliably.

Depending on the topology and coherence times of the
available hardware and the structure and size of the unitary,
either method for gradient and fidelity calculations can be
advantageous. In this work, we focus on near-term friendly
methods and use the parameter-shift rule for gradients (if
possible) and the compute-uncompute method for the fidelity,
as these do not require additional gate connections or an expo-
nential number of measurements. Note that, for systems with a
large number of qubits, this method might become unsuitable
as it measures the global zero projector. Then, approaches
using only local measurements, such as the Hadamard test,
could be the better choice.
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C. Solving for the update step

The infidelity-based loss function L is locally convex
around δθ = 0, as its Hessian at this point is ∇∇TL(0) = g/2,
and g is positive semi-definite. To leverage this property, we
use gradient descent as a local optimization routine, which
also allows the use of analytic gradient formulas that have
proven more stable in presence of shot noise. The gradient
of L with respect to the parameter update δθ is

∇δθL(δθ) = −∇δθF (θ, θ + δθ)

2
− δτ · b(θ).

The gradient of the fidelity can be evaluated with a parameter-
shift rule

∂F

∂ (δθ )i
= F (θ, θ + δθ + eis) − F (θ, θ + δθ − eis)

2 sin(s)
,

where ei is the ith unit vector and s is the parameter shift,
which can be chosen as, e.g., π/2 for single-qubit Pauli rota-
tions [33].

At each time step, the gradient descent update for the
update step δθ is

δθ(k+1) = δθ(k) − ηk∇L
(
δθ(k)),

where ηk > 0 is the learning rate at step k. This iteration is
continued until a maximum number of iterations or a conver-
gence criterion is met. An example of the latter is a minimum
tolerance in the change of the cost function or the norm of the
gradient.

An intuitive choice for the initial guess δθ(0) is the zero
vector, which corresponds to no change in the parameters.
However, a more efficient choice can be to introduce momen-
tum by warm starting the optimization with the update step
from the previous time step. This heuristic is motivated by the
idea that, especially for small time steps, we do not expect the
parameter derivatives θ̇ to change significantly.

Methods that approximate the gradient, such as finite
difference or SPSA [40], may face challenges in the optimiza-
tion. For small time steps, the fidelity is close to 1 and the
noise in the readout, e.g., from finite sampling statistics or
device noise, can easily mask changes in the cost function.
Parameter-shift gradients suffer less from this problem, as
they allow to evaluate the cost function over larger perturba-
tions, and do not amplify the noise by dividing by a small
constant.

The ideal choice of the time perturbation δτ is a trade-off:
The error in approximating the QGT scales as (δτ )3, but a
smaller perturbation amplifies any measurement noise in the
loss function as the update step is obtained as δθ/δτ . Ap-
pendix D displays this trade-off using an illustrative example.

D. Trainability

Recently, there has been a lot of research showing that,
in certain settings, the loss function gradients of variational
algorithms decay to zero exponentially and cannot be evalu-
ated efficiently, as they would require an exponential number
of measurements. These so-called barren plateaus can be in-
duced, for example, if the loss function requires measuring
a global observable [41], if the quantum circuit preparing
the parameterized state is too deep or generates too much

entanglement [41–43], or if the measurements are too noisy
[44].

Since variational quantum dynamics is driven by the evo-
lution gradient defined Eqs. (5) and (6), it can be affected
by a barren plateau and fail to track the true evolution of
the quantum state. However, it is important to note that the
gradients only vanish on average for a random initialization,
whereas in time-evolution the initial quantum state is typically
specifically chosen. Furthermore, Hamiltonians of physical
systems are usually local, as they reflect the interactions of
the quantum mechanical system, and exponentially vanish-
ing gradients can be avoided by choosing a circuit depth
scaling logarithmically in system size [41]. Alternatively, an
application-specific ansatz with few variational parameters
can help mitigate barren plateaus, such as circuits based on
Hamiltonian evolutions [45,46].

In addition to the evolution gradient, the DualQTE loss
function gradient ∇δθL depends on the gradient of the fidelity,
which relies on measuring a global observable. This can be
seen by writing the fidelity of two n-qubit states prepared by
unitaries U (θ) and U (θ′) as | 〈0|U †(θ)U (θ′)|0〉 |2 = 〈λ|P0|λ〉,
where |λ〉 = U †(θ′)U (θ) |0〉 and P0 = |0〉 〈0|⊗n is the global
projector on the all-zero state. Thus evaluating the fidelity
gradient for two randomly selected parameter sets θ and θ′

would exhibit barren plateaus at any circuit depth [41]. How-
ever, the optimization in DualQTE starts at zero perturbations,
θ = θ′ where the total state preparing unitary is the identity,
|λ〉 = U †(θ)U (θ) |0〉 = I |0〉, which is an initialization that
is proven to not exhibit barren plateaus even for global cost
functions [47]. Together with the fact that the DualQTE loss
function is locally convex, the nonvanishing gradients at the
initial point of the optimization is a strong motivation for the
efficient trainability of DualQTE.

In Appendix F 4, we provide numerical evidence that for
a local Hamiltonian and a logarithmic-depth circuit, neither
the evolution gradient or the fidelity gradients decay expo-
nentially with system size. We stress, however, that a careful
selection of the circuit and initial point are crucial even if the
gradients do not vanish exponentially. If the circuit is unable to
track the dynamics, or the evolution gradient of the McLach-
lan variational principle is zero VarQTE and DualQTE cannot
produce accurate results.

E. Sample complexity

The implementation of VarQTE on quantum hardware has
several sources of errors: the model |φ(θ)〉 could lack expres-
sitivity to capture the dynamics, the time integration scheme
introduces errors, the QGT and evolution gradient are subject
to sampling error from a finite number of measurement, and
each operation is affected by hardware noise. If we denote
the ideal VarQTE parameters without sampling or hardware
noise by θ(t ) and the noisy parameters by θ̃(t ), the error
contributions can be split as

ε(t ) = DB(φ(θ̃(t )), �(t ))

� εM (t ) + εS (t ),
(11)

where we measured the error in Bures distance

DB(ψ, φ) =
√

2(1 − | 〈ψ |φ〉 |), (12)
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and distinguish in error due to lack of model expressi-
tivity plus integration error εM (t ) = DB(φ(θ(t )), �(t )) and
error due to a noisy implementation of VarQTE εS (t ) =
DB(φ(θ̃(t )), φ(θ(t ))) [48].

Since the proposed DualQTE algorithm promises a reduc-
tion in measurement cost of VarQTE, but is not concerned
with the ansatz selection or hardware noise, we here focus
on investigating the scaling of the sampling error. The model
error εM can be bounded with a posteriori errorbounds [49],
which we also investigate for the real-time evolution case in
Sec. IV.

Deriving a concrete bound in terms of system quantities
such as the energy or the number of parameters requires an
assumption on the circuit structure. Here we assume a cir-
cuit with only Pauli rotations RP(θi ) where each parameter
θi is unique and does not have coefficients. Note that the
bounds can be adjusted for different circuit structures and
parametrizations. In addition, we assume a cutoff δc > 0 on
the smallest eigenvalue of g due to a regularization of the
linear system.

Then, we can state the following upper bound on the num-
ber of samples required to achieve a sampling error of εS ,

N � O
(

d3E2
max�

2
t

δ4
c ε

2
S

)
, (13)

where Emax is the maximal eigenvalue of the Hamiltonian.
In contrast to a similar approach described in Ref. [48], we

state the upper bound in terms of the number of parameters
in the model or the system’s Hamiltonian, instead of the QGT
and evolution gradients. Further, we are able to derive a tighter
result by leveraging Latala’s theorem from random matrix
theory to upper bound the sampling error in g [50].

Since the DualQTE algorithm does not construct the QGT
directly but only the evolution gradient, we expect a reduction
of a factor d in the complexity, and an additional factor for the
number of optimization steps K in each time step. Indeed, we
can show that the upper bound for the number of samples is

N � O
(

d2K2�2
t

ε2
S

(
1

δτ
+ Emax

)2
)

. (14)

The detailed derivation of both bounds is described in Ap-
pendix E.

While it is possible to construct circuits where each com-
ponent of these bounds are tight Sec. III shows that in practice
the actual number of required samples scales less than this
upper bound, which is further discussed in Appendix.

III. IMAGINARY-TIME EVOLUTION

In this section, we show the results of DualQITE and
investigate the circuit costs compared to VarQITE. As an
application, we use our algorithm as a subroutine to prepare
typical thermal states of the Heisenberg model, which are
then used to calculate the energy per site as a thermodynamic
observable. All circuits are constructed and simulated using
QISKIT [51].

A. Heisenberg model

We simulate the imaginary-time evolution of the Heisen-
berg model with nearest-neighbor interaction on a 12-qubit
circle in a transverse field:

H = J
∑
〈i j〉

(
XiXj + YiYj + ZiZ j

) + h
∑

i

Zi, (15)

with interaction strength J = 1/4 and transversal field
strength h = −1. As a variational ansatz, we use a circuit with
Pauli-Y and Pauli-Z single qubit rotation layers that alternate
with pairwise CNOT entangling gates. The circuit structure
is shown in Appendix F 1 and we use r = 3 repetitions. The
initial state for the evolution is the equal superposition of all
qubits, |+〉⊗n, which we prepare by setting the rotation angles
of the last Pauli-Y layer to π/2 and the remaining angles to 0.

The optimization problems in DualQITE are solved using
gradient descent with a fixed learning rate of η = 0.1 and
time perturbation δτ = 0.01. The initial iteration performs
100 update steps and the subsequent, warm-started iterations,
only 10. These values are motivated by the simulations shown
in Appendix F 2 and are partially heuristic, as a termination
criterion is challenging to define with access only to noisy
loss function and gradient evaluations. The parameters are
integrated with an explicit Euler scheme with time step �t =
0.01, i.e.,

θ(t + �t ) = θ(t ) + �t θ̇(t ) = θ(t ) + �t
δθ

δτ
.

Note that the integration time step �t , which determines the
accuracy of the time integration, can be chosen differently
from the time perturbation δτ , which affects the approxima-
tion error of the QGT metric with the infidelity.

We compare the performance to VarQITE with the same
integration scheme and use an L-curve regularization [52] for
a stable solution of the linear system. Among all regular-
ization techniques we attempted, such as adding a diagonal
shift, truncating small or negative singular values or solving
on a stable subsystem, the L-curve regularization provided the
most accurate and stable results.

In Fig. 2(a), we present the results for a varying number of
shots along with the exact time evolution based on exact di-
agonalization. Already with as little as 100 measurements per
circuit evaluation (shots) on the 12-qubit model, the dual time
evolution is able to qualitatively follow the imaginary-time
evolution and, up to time t ≈ 1, even outperform VarQITE
with 1024 shots. Increasing the number of measurements of
DualQITE to 1024 shots allows the dual method to closely
track the exact solution towards the ground state, with a higher
accuracy than VarQITE with 8192 shots.

B. Resource requirements

In the above experiment, DualQITE requires fewer circuit
evaluations to achieve the same accuracy as VarQITE. To
investigate the total resource requirements, we perform both
DualQITE and VarQITE with different resources and com-
pute the achieved error. Since we are interested in following
the imaginary-time dynamics as closely as possible at each
time step, we define the error as the average integrated Bures
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(a) (b)

FIG. 2. (a) The mean and standard deviation of DualQITE and VarQITE, each averaged over five independent experiments for a varying
number of shots. (b) The accuracy measured in integrated Bures distance IB [see Eq. (16)] for DualQITE and VarQITE, with mean and standard
deviation of five experiments. The resources are measured in total number of measurements and are shown for evaluation of gradients (and the
QGT, in the case of VarQITE) using parameter-shift rules (dashed) or a LCU approach (solid lines).

distance to the exact solution over the time evolution,

IB(T ) = 1

T

∫ T

0
DB(φ(θ(t )), �(t ))dt . (16)

The state fidelity is computed exactly, i.e., we compute the
state vector of the model |φ〉 at variational parameters θ(t ),
and take the inner product with the exact time-evolved state
|�(t )〉.

The results for an integration time of T = 2 are shown in
Fig. 2(b). We show the integrated Bures distance with respect
to the total number of measurements recorded during the time
evolution. In DualQITE, the resources can be split between
using more optimization steps in each time step or more shots
to evaluate the gradients. The algorithm settings are detailed
in Appendix F 3. The figure shows the resource counts for
gradient calculations via the parameter-shift rule (PSR) and
linear combination of unitaries (LCU). The LCU technique
requires additional auxiliary qubits and additional nonlocal
operations, but less overall circuits than PSR. For P Pauli
terms in the Hamiltonian, the total number of required circuits
C per time step

CVarQITE
LCU = d (d + 5)

2
+ Pd,

CVarQITE
PSR = 2d (d + P + 1). (17)

For DualQTE, the number of circuits is

CDualQITE
LCU = Pd + Kd, (18)

and CDualQITE
PSR = 2CDualQITE

LCU , where K is the number of
optimization steps per time step. The total number of mea-
surements N is obtained by multiplying the number of circuits
with the number of shots.

We see that, on average, DualQITE requires about one
order of magnitude fewer measurements to achieve the same
accuracy as VarQITE. With an increasing number of parame-
ters, we expect this difference to grow, since VarQITE scales
as O(d2) whereas our algorithm, with warm starting, only
computes small corrections at each time step.

C. Sample complexity

In addition to the fixed-size model with 12 qubits, we
investigate how the resource requirements scale with system
size. We compare VarQITE and DualQITE for the Heisenberg
model from Eq. (15) with varying number of spins n and the
same circuit structure as before, but with an adjusted number
of repetitions of r = 	log2(n)
 times, plus a final rotation
layer. We then tune the settings of VarQITE and DualQITE
to achieve a mean accuracy of IB � 0.1 over five experiments
and count the total number of required measurements N . This
threshold corresponds to a per-time step fidelity of 0.995.

The results are presented in Fig. 3, which show the im-
proved scaling of DualQITE compared to VarQITE. For small
system sizes and few parameters, the overhead of solving the
optimization problem in DualQITE is larger than evaluating
the QGT. However, as we increase the problem size, the
quadratic scaling of VarQITE takes over and our algorithm
becomes more efficient.

This experiment allows to validate the upper bound on the
number of measurements of Sec. II E. As shown in Fig. 3,
the model error εM is negligible in comparison to the sam-
pling error εS and we approximately have εS ≈ IB ≈ 0.1. The
maximal energy of the Heisenberg model on a periodic chain
scales with the number of spins, and can be bounded by
Emax = O(n) � O(n log2(n)) = O(d ). Inserting these values
in Eqs. (13) and (14), we expect the scaling to be upper
bounded by O(d5) for VarQTE and O(d4K ) for DualQTE.
In practice, we observe approximately a scaling of d3.77 for
VarQTE and d2.37 for DualQTE, which shows the expected
improved scaling for our algorithm. The measured scaling
also suggests that the bounds are not yet tight, which we
discuss further in Appendix E.

D. Calculating thermodynamic observables

As an application of imaginary-time evolution, we calcu-
late thermodynamic observables using the quantum minimally
entangled thermal states algorithm (QMETTS) [8,53]. While
the classical METTS algorithm has been specifically devel-
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(a)

(b)

FIG. 3. (a) Total number of measurements required to achieve a
mean accuracy of IB � 0.1 over an average of five experiments. See
Table II for the exact algorithm settings. Dotted and dashed lines
show fits for the number of measurements. The bumps in the fits
are due to the discontinuity of the circuit depth, which depends on
	log2(n)
. VarQITE is not evaluated for n = 14 qubits as it requires
too many measurements. (b) Mean accuracy and standard deviation
of each point of the top panel. The grey line indicates the infidelity
threshold of IB = 0.1.

oped for Matrix Product State simulations, the thermal state
preparation is still costly, and classical simulations fail if the
system produces macroscopic entanglement during the imag-
inary time evolution (e.g., for low-temperature, 2D systems).
Due to these restrictions, QMETTS is a promising application
for quantum imaginary-time evolution algorithms.

For an observable A and inverse temperature β, the
QMETTS algorithm generates samples {Am}m using a Markov
chain whose average approximate the ensemble average:

〈A〉ens = Tr(e−βH A)

Tr(e−βH )
≈ 1

M

M∑
m=1

Am.

The sampling process to obtain the sample Am is the follow-
ing.

(1) Start from a product state |φm(t = 0)〉.
(2) Evolve up to imaginary time t = β/2

|φm(β/2)〉 ∝ e−βH/2 |φm(0)〉 .

(3) Evaluate the observable to obtain the sample

Am = 〈φm(β/2)|A|φm(β/2)〉 .

(4) Measure |φm(β/2)〉 in some basis to obtain the next
random product state |φm+1(0)〉.

We investigate the Heisenberg model from Eq. (15) on
a chain with n = 6 spins with parameters J = 1/4 and h =
−1. As a thermodynamic observable we compute the energy

FIG. 4. Energy per site for the Heisenberg model on a six-spin
chain, comparing mean and standard deviation of QMETTS with
DualQITE (blue circle and errorbars) with a reference METTS im-
plementation (black line and grey shade).

per site, 〈H〉 /n. To reduce the auto-correlation length in the
QMETTS Markov chain, and for faster convergence to the
ensemble average, it is favorable to measure in different bases
in each step. Since the Heisenberg Hamiltonian conserves the
number of qubits in the |1〉 state, avoiding the Z basis greatly
reduces the standard deviation of the Markov chain. Thus we
here alternate between the X and Y basis for each sample.

As ansatz for DualQITE, we use problem-inspired circuits
with pairwise CNOT couplings and r = 2 repetitions of rota-
tion and entanglement layers, plus a final rotation layer, see
Appendix F 1 for a circuit diagram. For evolutions of product
states |±〉 in the X basis, the rotation layers are single qubit
RYRZ gates, and for the states |±i〉 in the Y basis, the layers
implement RXRZ gates. The initial product states |φm(0)〉 are
prepared by setting the parameters in the final layer rotation
layer of the ansatz as follows:

|±〉 → RY

(±π

2

)
RZ(0),

|+i〉 → RX

(π

2

)
RZ(π ),

|−i〉 → RX

(π

2

)
RZ(0).

Each energy sample is evaluated with 1024 measurements per
basis. The optimization problem in DualQITE is solved with
a time perturbation δτ = 0.01 and gradient descent with a
learning rate of η = 0.1 and 100 iterations in the first time
step, followed by 10 iterations in the following, warm-started
time steps. We integrate with a fixed time step of �t = 0.01.

Figure 4 shows the estimated energy per site, along with
the standard deviation of the samples, for different inverse
temperatures β. For the alternating X -Y basis, the Markov
chain converges quickly and M = 25 samples suffice for an
accurate estimate of the observable. For the imaginary-time
evolution, we compare DualQITE with the same settings as
in the previous sections to an exact evolution performed with
matrix exponentials. It shows that using the dual method al-
lows to reliably reproduce the mean and standard deviation
of the Markov chain samples compared to the exact reference
METTS.
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IV. REAL-TIME EVOLUTION

The focus of this paper is on imaginary-time evolution as,
to date, no other QGT-free time evolution algorithms exist
in this setting. For real-time evolution, p-VQD has a similar
structure as our algorithm and solves an optimization problem
rather than evaluating the QGT. However, there are key differ-
ences to the dual algorithm applied to real-time evolution.

The p-VQD algorithm [19] projects a single Suzuki-Trotter
step onto the circuit model by solving the following optimiza-
tion problem:

θ(t + �t ) = argmax
θ′

∣∣ 〈φ(θ′)|e−iH�t |φ(θ(t ))〉 ∣∣2
.

For Hamiltonians with many Pauli terms or long-range in-
teractions, such as those arising in molecular dynamics, the
single step might already lead to large circuits with nonlocal
gates. While DualQRTE requires an LCU method to evalu-
ate the imaginary part of the energy and state gradients, see
Eq. (5), this only adds a single entangling gate, compared to
a full Suzuki-Trotter step is required. Furthermore, our dual
time evolution allows the evaluation of error bounds at almost
no additional cost, which is not possible in p-VQD. Due to
these differences, this section presents DualQRTE: the dual
time evolution for real-time evolution.

A. Heisenberg model

We present the real-time evolution under the Heisenberg
Hamiltonian of Eq. (15) on a linear chain with n = 4 spins
with parameters J = 1/4, h = −1. As variational model, we
use a circuit with alternating Pauli-X and Pauli-Y rotation lay-
ers, and Pauli-ZZ entangling gates that reflect the connectivity
of the spins. The circuit structure is visualized in Appendix G
and, in this experiment, all algorithms use r = 3 repetitions
of the rotation as well as entangling gates. To prepare the
initial state, |+〉⊗4, we set the parameters of the final Pauli-Y
rotations to π/2 and the rest to 0.

During the evolution, we track the average magnetization
in the X and Z direction,

〈X 〉 = 1

n

n∑
i=1

〈Xi〉 , 〈Z〉 = 1

n

n∑
i=1

〈Zi〉 .

Since this Heisenberg Hamiltonian preserves the qubit excita-
tions, and the initial state is the equal superposition, the 〈Z〉
expectation value should remain 0 throughout the evolution.

The results of the different time evolution algorithms for
an integration time of T = 2 and time step �t = T/100 are
presented in Fig. 5. Both DualQRTE and p-VQD accurately
track the observables using only 200 shots per circuit. With
the same resources, VarQRTE, on the other hand, has lower
accuracy and we need to use 1024 shots per circuit to match
the result of the optimization-based algorithms.

B. Error bounds

In variational real-time evolution, the model error in terms
of Bures distance DB due to restriction to the variational

FIG. 5. Average magnetization in X and Z directions as tracked
by different variational algorithms.

manifold can be expressed as [49]

ε̇M :=
∥∥∥∥∥

d∑
k=1

θ̇k |∂kφ(θ)〉 + iH |φ(θ)〉
∥∥∥∥∥

2

2

= Var(H |φ(θ)) + θ̇
T

g(θ)θ̇ − 2θ̇
T

b(θ),

(19)

where we set h̄ ≡ 1. Integrating this error rate provides an
upper bound on the Bures distance, that is

DB(φ(θ(T )), �(T )) �
∫ T

0
ε̇M (t )dt,

where |�(t )〉 is the exact time-evolved state and the time
dependence of εM is due to the time-dependence of the pa-
rameters θ = θ(t ).

Up to the variance Var(H |φ(θ)) = 〈φ(θ)|H2|φ(θ)〉 −
(〈φ(θ)|H |φ(θ)〉)2, this error is proportional to the loss func-
tion used in DualQRTE. By using the same expansion θ̇ =
δθ/δτ and using the infidelity to approximate the inner prod-
uct with respect to the geometric tensor, we can rewrite the
error as

ε̇M = Var(H |φ(θ)) + 1 − F (θ, θ + δθ)

(δτ )2
− 2δθT b(θ)

δτ
+ O(δτ )

= Var(H |φ(θ)) + 2L(δθ)

(δτ )2
+ O(δτ ).

Note that the error scales linearly in time perturbation δτ as
the infidelity approximation has a cubic error term [32], which
is divided by the square of the perturbation. If we, for exam-
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×

FIG. 6. Error of the real-time evolution in Bures distance, plus
error bounds obtained with VarQRTE and DualQRTE.

ple, use a forward Euler rule with time step �t to integrate the
variational error, the integration error scales as O(�t + T δτ ).
This highlights the importance of differentiating between the
time step �t for the integration and the time-perturbation δτ

to approximate the derivative.
In Fig. 6, we show the error bounds along with the true

error for the time evolution of the Heisenberg model. The
bounds are computed for different time steps �t for VarQRTE,
and for DualQRTE for a fixed time perturbations δτ = 10−3 in
exact simulations. Firstly, we can verify that the error bounds
hold. Secondly, the larger the time step relative to the time-
perturbation, the more accurate the approximation of the dual
time evolution, as the error O(�t + T δτ ) is dominated by the
integration error.

V. CONCLUSION

In this paper, we present a novel algorithm for variational
quantum time evolution that does not require the evaluation
of the QGT, but instead solves a dual optimization problem in
each time step. The proposed dual time evolution algorithm,
DualQTE, is particularly interesting for imaginary-time evo-
lution, as there is currently no alternative variational algorithm
able to circumvent the O(d2) cost of VarQITE. For real-time
evolution, p-VQD also offers an optimization-based approach
by projecting a single Trotter step onto the variational form.
In comparison, the dual time evolution has the advantage that
no Suzuki-Trotter step has to be implemented, which could
require deep circuits or nonlocal operations, depending on the
Hamiltonian. Furthermore, our algorithm allows to evaluate
variational error bounds [49], although how accurately they
can be evaluated in the presence of shot noise remains an open
question.

We demonstrated DualQTE for the imaginary-time evo-
lution of a Heisenberg Hamiltonian on 12 qubits, and found
that, in this setting, it requires about one order of magnitude
less measurements to achieve the same accuracy as VarQITE.
As a practical application of imaginary-time evolution, we
calculated thermodynamic observables with the QMETTS
algorithm and showed that the DualQITE is suitable to re-

produce the sampling distributions. Finally, we applied our
algorithm to an illustrative example for real-time evolution,
where it produced comparable results to p-VQD for the same
amount of resources, while both algorithms outperformed
VarQRTE.

In the presented experiments, we used standard gradient
descent algorithms with a fixed learning rate. We expect
that the performance could be further improved by using
more advanced optimization schemes, or methods that also
take into account information from previous iterations. An-
other possible improvement would be a suitable termination
criterion for noisy evaluations of the loss function. As for
other optimization-based time evolution algorithms, such as p-
VQD, it remains challenging to accurately measure the fidelity
in the presence of hardware noise.

In conclusion, the proposed DualQTE is an efficient vari-
ational algorithm for quantum time evolution that does not
suffer from the quadratic complexity of evaluating the QGT.
This cost reduction enables scaling imaginary-time evolution
to larger, practically relevant system sizes and allows the
simulation and demonstration of a wide variety of important
tasks such as Gibbs state preparation, mixed time evolution, or
the evaluation of thermodynamic observables. Improving the
resource requirements for near-term algorithms is an impor-
tant step for scaling demonstrations to the full size of today’s
quantum computers and work towards practical applications.
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APPENDIX A: RUNTIME ESTIMATES OF VARIATIONAL
TIME EVOLUTION

The benchmark in Sec. III C provides a scaling for the total
number of measurements N required by VarQITE and Du-
alQITE, which allows a runtime estimation on the algorithms
on quantum hardware. In this estimation we neglect the over-
head of classical processors and assume a superconducting
quantum computer with a basis gate set including

√
X , RZ

and CX gates, as reported by several IBM Quantum backends,
for example. This gate set allows to compile any sequence
of single qubit gates into two

√
X gates and three virtual RZ

gates. For an n-qubit simulation of the Heisenberg model and
the considered circuit model (see Fig. 10) with r repetitions,
the time for a single measurement can then be approximated
as

tshot = 2rtCX + 2(r + 1)t√X + tmeas + treset, (A1)
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where tCX is the duration of a CX gate, t√X the duration of a√
X gate, tmeas the time of a measurement and treset the time to

reset the qubits for the next execution. Since the RZ gates are
virtual they do not contribute to the runtime. The total runtime
is then estimated by Ntshot.

Depending on the architecture and the gate decomposition
the duration and fidelity of single- and two-qubit operation, as
well as measurements, varies on superconducting qubit chips
[54]. Here we use gate times of tCX = 451 ns, t√X = 36 ns
and tmeas = 860 ns as reported by ibm_peekskill (v2.6.5),
which is an IBM Quantum Falcon processors [55]. For shal-
low circuits in particular, the time to reset qubits for the
following execution is a crucial bottleneck. The reset oper-
ation can, for example, be implemented by waiting 5-10 T1
times and let the qubits decay to the computational ground-
state, but with T1 times of the order of 400 μs the reset via
relaxation is orders of magnitude slower than the other circuit
operations. Active resets instead measure the qubit state and
apply an X operation conditionally if the state |1〉 is measured.
This technique allows to reduce the reset times to typically
50 to 250 μs on IBM hardware [56], which, however, still
dominates the overall runtime for the considered circuits. By

using a second excited state it is possible to implement reset
schemes with 500 ns to 2 μs [57,58] and we therefore use
treset = 2 μs in our estimation.

APPENDIX B: RELATION OF THE INFIDELITY AND THE
QUANTUM GEOMETRIC TENSOR

Based on Appendix A of Ref. [32], we explicitly derive
Eq. (8). We consider the Taylor expansion of the fidelity,
defined by

f (δθ) := F (θ, θ + δθ) = | 〈φ(θ)|φ(θ + δθ〉 |2, (B1)

where we introduce the function f for brevity. Up to second
order, the Taylor expansion of f around δθ = 0 is given by

f (δθ) = f (0) + δθT ∇ f (0) + 1
2δθT ∇∇T f (0)δθ + O(‖δθ‖3

2),
(B2)

where ∇ f (0) first differentiates f and then evaluates the
derivative at δθ = 0. Since f (0) = F (θ, θ) = 1 is the maxi-
mum of the fidelity, the second term in the expansion vanishes.
The elements of the Hessian of f are

∂δθi∂δθ j f (0) = ∂δθi∂δθ j 〈φ(θ)|φ(θ + δθ)〉 〈φ(θ + δθ)|φ(θ)〉 ∣∣
δθ=0 = 2∂δθi Re

(〈φ(θ)|∂δθ j φ(θ + δθ)〉 〈φ(θ + δθ)|φ(θ)〉)∣∣
δθ=0

= 2Re
( 〈φ(θ)|∂δθi∂δθ j φ(θ + δθ)〉 〈φ(θ + δθ)|φ(θ)〉 + 〈φ(θ)|∂δθ j φ(θ + δθ)〉 〈∂δθiφ(θ + δθ)|φ(θ)〉 )∣∣

δθ=0

= 2Re
(〈φ(θ)|∂i∂ jφ(θ)〉 + 〈φ(θ)|∂ jφ(θ)〉 〈∂iφ(θ)|φ(θ)〉), (B3)

where we explicitly state when we differentiate with respect to elements of δθ, using ∂δθi , or elements of θ, using ∂i. The first
term of Eq. (B3) can be further rewritten by considering the second derivative of 1 = 〈φ(θ)|φ(θ)〉, which is

0 = ∂i∂ j 〈φ(θ)|φ(θ)〉 = 2∂iRe
( 〈∂ jφ(θ)|φ(θ)〉 ) = 2Re

( 〈∂i∂ jφ(θ)|φ(θ)〉 + 〈∂ jφ(θ)|∂iφ(θ)〉 )
(B4)

and implies

Re
( 〈∂i∂ jφ(θ)|φ(θ)〉 ) = −Re

( 〈∂ jφ(θ)|∂iφ(θ)〉 )
. (B5)

Plugging this into the expression for the Hessian of f , we obtain

∂i∂ j f (0) = 2Re
( − 〈∂iφ(θ)|∂ jφ(θ)〉 + 〈φ(θ)|∂ jφ(θ)〉 〈∂iφ(θ)|φ(θ)〉 ) = −2gi j (θ), (B6)

for the real part of the QGT, g(θ). Hence, the Taylor expansion of the fidelity is

f (δθ) = 1 − δθT g(θ)δθ + O(‖δθ‖3
2), (B7)

which, after rearranging, yields Eq. (8).

APPENDIX C: DERIVATION VIA QUANTUM NATURAL
GRADIENT DESCENT

VarQITE is inherently connected to the quantum natural
gradient (QNG) algorithm [32]. In fact, this connection is a
motivation for the convergence of the QNG as imaginary-time
evolution is guaranteed to converge to the ground state, if there
is sufficient initial overlap with it.

With a forward Euler integration the VarQITE update rule
is

θ(t+1) = θ(t ) + �t g
−1(θ(t ) )

(
−∇E (θ(t ) )

2

)
.

This coincides with the QNG update step for the loss function
�(θ) = E (θ)/2 and a learning rate of η = �t ,

θ(t+1) = θ(t ) − ηg−1(θ(t ) )∇�(θ(t ) ). (C1)

The natural gradients step can be expressed in a dual formula-
tion as

θ(t+1) = argmin
θ

〈∇�(θ(t ) ), θ − θ(t )〉 + 1

2η
d2(θ, θ(t ) ),

with a distance metric d . In this equation, we see that the
update step is going into the opposite direction of the gradient
∇�, while the magnitude is limited by the distance metric and
the learning rate.

Standard gradient descent uses the model-agnostic �2 norm
as distance metric. Natural gradients on the other hand limit
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(a) (b)

FIG. 7. (a) Values of the loss function L for evaluation with the QGT metric, and with introduced infidelity approximation. (b) Difference
of the QGT metric and infidelity as function of the perturbation δθ .

the update step by the amount of change it induces in the
model. To measure the induced change the metric d is chosen
to be the Fubini-Study metric, which, as shown in Ref. [32],
if locally approximated, yields the QGT:

d2(φ(θ), φ(θ + δθ)) = arccos2 | 〈φ(θ)|φ(θ + δθ)〉 |
= 1 − | 〈φ(θ)|φ(θ + δθ)〉 |2 + O(||δθ||42)

= 〈δθ, g(θ)δθ〉 + O(||δθ||32).

The formulation in Eq. (C1) is then obtained by solving the
minimization problem.

To circumvent the explicit evaluation of the QGT the nat-
ural gradient update can instead be calculated without the
quadratic local approximation, and instead solve the opti-
mization problem directly. If we use the infidelity as distance
metric and replace the loss function gradient by the evolution
gradient ∇�(θ) = ∇E (θ)/2 = −b(θ), we obtain the same up-
date rule as the main text

θ(t+1) = argmin
θ

− 〈b(θ(t ) ), θ − θ(t )〉 + 1 − F (θ, θ(t ) )

2�t
.

APPENDIX D: ILLUSTRATIVE EXAMPLE

For an intuitive understanding of the approximations of
the QGT norm, we investigate an illustrative example with
the variational model |φ(θ )〉 = RZ(θ )RY(θ ) |0〉, the Hamilto-
nian H = Z and a time step of δτ = 1/2. In Fig. 7(a), we
compare the exact values of the loss function L for imaginary-
time evolution around θ = π/4 obtained by using the metric
〈δθ, g(θ )δθ〉 or the infidelity 1 − F (θ, θ + δθ ) as norm.

At δθ = 0 the approximation is exact and in the vicinity
the difference scales as (δθ )3, see also Fig. 7(b). Note, that the
infidelity is periodic and bounded in [0, 1] but the linear term
bT δθ is unbounded, which leads to the fact that the minimum
of the infidelity-based loss function close to δθ = 0 is not the
global minimum. This is well visible in Fig. 7(a) where the
infidelity-based loss function achieves lower values for large
δθ than the minimum of the QGT close to δθ = 0. Since we
aim to find the same minimum as the QGT-based loss function
using a local optimization routine, such as gradient descent, is
crucial for the dual time evolution.

1. Impact of the time perturbation

The approximation error scales with the norm of δθ and,
therefore, solving for the update step θ̇ = δθ/δτ with a smaller
time perturbation δτ should result in a smaller error in the
update step. Remembering the definition of the loss function

L(δθ) = 1 − F (θ, θ + δθ)

2
− δτ · bT (θ)δθ,

we see that a smaller δτ moves the minimum closer to the
minimum of the infidelity at δθ = 0, leading to a smaller
approximation error.

Since the fidelity is bounded but the linear part bT (θ)δθ is
not, there is a maximum feasible range for the value of δτ .
A necessary condition for the existence of the minimum is
that the gradient of the loss function vanishes, ∇L = 0, which
requires

∀i ∈ {1, . . . , d} :
1

2

∂

∂ (δθ )i
F (θ, θ + δθ) = −δτ · bi(θ).

(D1)
For a circuit with unique parameters and only Pauli rota-
tions gates, the gradient of the fidelity can be bounded via
the parameter-shift rule to be in [−1/2, 1/2] (see also Ap-
pendix E). Thus a necessary condition for the time step
perturbation is

∀i ∈ {1, . . . , d} : δτ ∈
[ −1

4|bi(θ)| ,
1

4|bi(θ)|
]
, (D2)

which can be generalized to circuits with repeated parameters
or other than Pauli gates. Note that this is only a necessary
and not a sufficient condition for the existence of a minimum
since, depending on the circuit structure, the fidelity gradient
may not support the full range [−1/2, 1/2].

In Fig. 8(a), we visualize the impact of δτ on the loss land-
scape. For small time perturbations the QGT-based and dual
loss landscapes almost coincide, but if δτ is chosen too large
the dual loss function has no minimum. If the loss function
can be evaluated exactly, choosing δτ as small as possible
therefore minimizes the approximation error. In Fig. 8(b),
we find the the error in the parameter derivative θ̇ = δθ/δτ

scales approximately as O(δτ ). In practice, however, the loss
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(a) (b)
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FIG. 8. (a) Loss landscapes and optimal solutions of the original, QGT-based loss function and the dual loss function for different δτ .
(b) Error in calculating the parameter derivative θ̇ depending on δτ and the number of measurements N .

function is subject to measurement noise and errors in the
solution δθ are amplified by 1/δτ . Hence, for a finite number
of measurements there is a trade-off between QGT approxi-
mation error and controlling the noise amplification.

APPENDIX E: BOUND THE SAMPLE
COMPLEXITY OF VarQTE

In this section, we present the derivation on the upper
bound of the sample complexity of VarQTE and DualQTE.
The target error is measured in integrated Bures distance,

εS = 1

T

∫ T

0

√
2(1 − | 〈φ(θ)|φ(θ̃)〉 |)dt . (E1)

Assuming a forward Euler integration, the Bures distance can
be formulated in terms of the QGT as

εS = 1

T

∫ T

0

√
2

(
1 −

√
1 − �2

t �θ̇
T

g(θ)�θ̇

)
dt

= 1

T

∫ T

0
�t

√
�θ̇g(θ)�θ̇dt

� 1

T

∫ T

0
�t‖g(θ)‖2‖�θ̇‖2dt

� �t

√
λmax‖�θ̇max‖2, (E2)

where we introduced �θ̇ = ˜̇θ − θ̇, λmax � 0 is a bound on
the largest eigenvalue of g for any parameter value θ and,
similarly, ‖�θ̇max‖2 an upper bound on the norm �θ̇. In the
first line, we dropped O(�3

t ) error terms, in the second line we
used a first order Taylor-expansion and in the last line we use
the definition of the operator norm to bound the inner product
of δθ in the metric of g.

1. VarQTE

In each VarQTE step, we solve a linear system for the up-
date step, where the measurements of the QGT and evolution
gradient are subject to sampling error. We define the noisy
quantities as g̃(θ) = g(θ) + �g(θ) and b̃(θ) = b(θ) + �b(θ)

and, then, solve the noisy linear system

g̃(θ) ˜̇θ = b̃(θ), (E3)

with the noisy update ˜̇θ = θ̇ + �θ̇. To stabilize the linear
system and ensure the QGT and it’s estimate are invertible,
we assume a regularization of g and g̃ in form of a diagonal
shift δc. This shift is a trade-off of stability and bias, which is
also discussed in Ref. [39], Appendix D.

We can write the error in the update step using the differ-
ence of the noisy and exact linear system solutions, as

‖�θ̇‖2 = ‖(g + �g)−1(b + �b) − g−1b‖2

≈ ‖(g−1 − g−1�gg−1)(b + �b) − g−1b‖2

= ‖g−1�b − g−1�gg−1b − g−1�g−1g−1�b‖2

≈ ‖g−1�b − g−1�gθ̇‖2

� ‖g−1‖2
(‖�b‖2 + ‖�g‖2‖θ̇‖2

)
, (E4)

where we dropped the explicit parameter dependence
for legibility. In the second line we used the Neumann
series to approximate (g + �g)−1 = g−1 − g−1�gg−1 +
O(‖�g‖2

2‖g−1‖3
2) and dropped quadratic error terms on the

fourth line. In the following, we derive upper bounds on the
maximal value of the individual contributions in the error
bound, such that we finally obtain a bound ‖�θ̇max‖ on the
error in the update step.

Spectrum of g. Each QGT entry can be computed as [39]

gi j (θ) = −1

2
∂i∂ jF (θ′, θ)

∣∣∣∣∣
θ′=θ

. (E5)

For a circuit with unique, noninteracting parameter and only
plain Pauli rotation gates RP(θ ), we can use the parameter-
shift rule [33] to write the entry as

gi j (θ) = −1

2

F (++)
i j − F (+−)

i j − F (−+)
i j + F (−−)

i j

4
, (E6)

where we abbreviated F (±±)
i j = F (θ, θ ± eiπ/2 ± e jπ/2) for

the ith unit vector ei (and jth unit vector e j). Since the fidelity
is in [0, 1] we can bound each entry by

− 1
4 � gi j (θ) � 1

4 , (E7)
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for any value of θ. Gershgorin’s circle theorem tells us that
the maximal eigenvalue of g is bounded from above by the
maximal sum over the columns or rows, which in this case is
achieved by setting all elements of a column/row to 1/4. This
gives the bound

λmax �
d∑

i=1

1

4
= d

4
. (E8)

This bound can be generalized to circuits with coefficients
or repeated parameters by applying the chain and product
rules. For example, for a coefficient-free circuit where param-
eters can be repeated up to m times, the bound becomes md/4.

Norm of the update step. The update step can be bounded
as ‖θ̇‖2 � ‖g−1‖2‖b‖2, where ‖g−1‖2 � δ−1

c . The evolution
gradient can be bounded using the parameter-shift rule, under
the circuit structure assumptions as the previous section. Each
element in the gradient is bounded by

|bi| = |E (+)
i − E (−)

i |
2

� |E (+)
i | + |E (−)

i |
2

� Emax, (E9)

where E (±)
i = E (θ ± eiπ/2) and Emax is the absolute max-

imum system energy. The norm over all elements is then
‖b‖2 �

√
dEmax, leading to an overall bound of

‖θ̇‖2 �
√

dEmax

δc
, (E10)

for any parameter value θ.
Sampling errors. Since the measurement noise is unbi-

ased, the random variable �g = g̃ − g has zero mean with
i.i.d. entries. This allows to apply Latala’s theorem [50], which
states that

E[‖�g‖2] � C

⎛⎝max
i

√√√√ d∑
j=1

E[(�g)2
i j]

+ max
j

√√√√ d∑
i=1

E[(�g)2
i j] + 4

√√√√ d∑
i, j=1

E[(�g)4
i j]

⎞⎟⎠,

(E11)

for some constant C ∈ R.
Reference [59] is concerned with the similar case of sam-

pling the matrix [F (xi, x j )]d
i, j=1 for a set of parameters {xi}d

i=1.
There, the matrix entries are Bernoulli distributed with prob-
ability F (xi, x j ). Using QGT representation as Hessian and
applying the parameter-shift rule, we can see that the entries
of gi j are Poisson binomial distributed [60] with probabilities
[F (++)

i j , 1 − F (+−)
i j , 1 − F (−+)

i j , F (−−)
i j ] over a shifted support

[0, 1, 2, 3, 4] → [−2,−1, 0, 1, 2]. Since the means of this
distribution are independent of the number of circuit parame-
ters, it can be shown analogous to Ref. [59] that

E[|(�g)i j |2] = O
(

1

N

)
and E[|(�g)i j |4] = O

(
1

N2

)
,

(E12)
which leads to a total bound of

E[‖�g‖2] = O
(√

d

N

)
. (E13)

The bound on ‖�b‖2 does not need to be tighter than
‖�g‖2‖θ̇‖2, which is straightforward to achieve via the sam-
pling error. Using the parameter-shift rule, we have

|�bi| = |b̃i − bi| = |Ẽ (+)
i − Ẽ (−)

i − E (+)
i + E (−)

i |
2

� |Ẽ (+)
i − E (+)

i | + |Ẽ (−)
i − E (−)

i |
2

= O

⎛⎜⎝
√

Var(E (+)
i ) +

√
Var(E (−)

i )

2
√

N

⎞⎟⎠. (E14)

The variance of any state |ψ〉 can be upper bounded by

Var(E ) = 〈ψ |H2|ψ〉 − E2 � 〈ψ |H2|ψ〉 � E2
max. (E15)

Summing over all gradient elements we obtain

‖�bmax‖2 = O
(√

dEmax√
N

)
. (E16)

Final bound. Plugging the bounds in the previous para-
graphs into Eq. (E4) and then into Eq. (E2), we obtain the
final bound of

εS � O
(

d3/2Emax�t

δ2
c

√
N

)
. (E17)

The same asymptotic bound can be derived by performing a
moment expansion on the expectation E[θ̇ − ˜̇θ].

As an example we investigate a simple product-state
model, which allows to show the tightness of several of the
above bounds. We look a the first time step of the n-qubit
Hamiltonian H = ∑n

i=1 Zi with an ansatz that consists of a
single layer of Pauli-Y rotations, each with an individual
parameter. The initial state is |+〉⊗n which is prepared by
setting each of the parameters to π/2. Each expectation value
is computed with N = 1000 measurements and we use a reg-
ularization of δc = 10−2. We then vary the number of qubits
from n = 2 to 10 and measure the error term contributions
over 10 averages, since �g and �b are random variables.

The QGT is measure of the correlation between the pa-
rameter derivatives and as there is no light-cone connecting
any two parameterized gates in the product state ansatz, the
QGT is a diagonal matrix. Its norm is therefore ‖g‖2 = 1/4 for
any system size. With this restriction, we observe in Fig. 9(a)
that the bound on the Bures metric in Eq. (E2) is tight as
εS ∝ ‖�θ̇‖2. While all bounds are obeyed, we observe that
in particular the bound on ‖θ̇‖2 is loose, since the bound in
Eq. (E10) scales with

√
dEmax ∝ d1.5, but we only observe a

d0.5 scaling. This bound could potentially be further improved
by taking into account that the magnitude of the update step
is bounded by the change induced of the evolution operator
exp(−�t H ), which is independent of the number of parame-
ters d .
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(a) (b)

FIG. 9. Scaling of different error bound contributions for a product state setting. The labels include the scaling with number of parameters,
i.e., ∝ α indicates a scaling with dα , where d is the number of parameters.

2. DualQTE

Assume we require K steps to converge. Then the error in the update step δθ is

‖�(δθ)‖2 = ‖�(δθ(K ) )‖2 = ‖δ̃θ(K−1) − η∇̃L(δ̃θ
(K−1)

) − δθ(K−1) + η∇L(δθ(K−1))‖2

� ‖�(δθ(K−1))‖2 + η‖∇̃L(δ̃θ
(K−1)

) − ∇L(δθ(K−1))‖2

� ‖�(δθ(K−1))‖2 + η‖�(∇L)max‖2 � ηK‖�(∇L)max‖2,

(E18)

where we used that the error at the initial point is zero,
‖�(δθ(0) )‖2 = 0. The error in the loss function gradient can
then be written as

‖�(∇L(δθ))‖2 =
∥∥∥∥�(∇F (θ, θ + δθ))

2
+ δτ�b(θ)

∥∥∥∥
2

� ‖�(∇F (θ, θ + δθ))‖
2

+ δτ‖�b(θ)‖2

� ‖�(∇F )max‖
2

+ δτ‖�bmax‖2, (E19)

where �(∇F (θ, θ + δθ)) = ∇̃F (θ, θ + δθ) − ∇F (θ, θ + δθ)
and ‖�(∇F )max‖2 is an upper bound on the maximum fidelity
gradient error for any parameter.

The error in the gradient of F can be derived via the
parameter-shift rule, as

|�∂iF | = �F (+)
i − �F (−)

i

2

= O

⎛⎝√
Var(F (+)

i )

N
+

√
Var(F (−)

i )

N

⎞⎠
= O

(
1√
N

)
,

(E20)

where we used that the variance of the fidelity can be bounded
for any state |ψ〉 as

Var(F ) = 〈ψ |P2
0 |ψ〉 − 〈ψ |P0|ψ〉2

= 〈ψ |P0|ψ〉 − 〈ψ |P0|ψ〉2 = F (1 − F ) � 1
4 . (E21)

Hence the total error of the fidelity gradient in �2 norm is

‖�(∇F )max‖2 = O
(√

d

N

)
. (E22)

The bound on ‖�bmax‖2 is already derived in the previous
subsection, which gives then a total of

‖�(δθ)‖2 = O
(√

dK (1 + δτEmax)√
N

)
. (E23)

Using the definition θ̇ = δθ/δτ , we then obtain

εS ��t

√
λmax

‖�(δθ)‖2

δτ
= O

(√
λmaxd

N

�t K (1 + δτEmax)

δτ

)
.

(E24)

FIG. 10. The hardware efficient ansatz for the imaginary-time
evolution experiments. In the QMETTS experiments the Pauli-Y
rotations is replaced by Pauli-X rotations, if the evolution starts in
the Y basis states |±i〉.
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(a) (b)

FIG. 11. (a) The number of iterations required per time step until convergence is reached with different initialization techniques. (b) The
number of iterations for the first and warm-started iterations for different numbers of qubits. The warm-started points show mean and standard
deviation of the number of iteration of all steps after the first.

APPENDIX F: IMAGINARY-TIME EVOLUTION OF THE
HEISENBERG MODEL

1. Circuit diagram

The circuit used as variational model is schematically pre-
sented in Fig. 10. Each Pauli rotation gate has an independent
parameter and the dotted box is repeated several times. For
r repetitions and n qubits, the total number of tunable pa-
rameters is thus 2n(r + 1). The CNOT entangling gates are
arranged in a pairwise manner to minimize the total depth to
2 per entangling layer.

2. Termination and warm starting

Termination criteria for gradient descent algorithms are
typically defined as achieving a minimal threshold in the
difference in the loss function between update steps or in the
gradient norm. However, if only noisy readout of the loss
function is available these criteria become unreliable as the
noise in the evaluation might prevent the termination criterion
to be fulfilled even though the algorithm converged.

One possible resolution would be to consider a moving
average over a past batch of iterations. However, depending
on the level of noise, this could require a large batchsize
and therefore many iterations until the termination can be
checked. Since the dual time evolution only has to compute
small corrections, if small time steps are performed and the
optimization are warm-started, we only expect a few iterations
and a moving average is not a resource-efficient solution.
Therefore we use a heuristic where the first optimization uses
a large number of steps and the subsequent ones perform a
fixed number of few iterations.

To demonstrate the effectiveness of warm starting and to
calibrate the number of required steps for noisy evaluations
we investigate the dual time evolution in an ideal setting with
exact statevector simulations and no finite-sampling statis-
tics. First, we perform the time evolution for a Heisenberg
Hamiltonian with periodic boundary conditions with n = 12
sites, J = 1/4, g = −1 and the initial state |+〉⊗n. As circuit

model we use the hardware efficient circuit from Fig. 10 with
r = 6 repetitions and optimize the update step with a gradient
descent routine with a fixed learning rate of η = 0.1. In each
time step we iterate until the change in loss function �L
is below the threshold of 10−4�t = 10−6. The results are
presented in Fig. 11(a), and we observe that warm starting
drastically reduces the number of required iterations until the
convergence criterion is reached.

In a second experiment we analyze how the required num-
ber of optimization steps scales with the system size. In
Fig. 11(b), we repeat the above experiment for n = 3 to 12
spins and track the number of steps in the first iteration and
the mean and standard deviation of the warm-started itera-
tions. We see that the number of steps scales sublinearly in
the number of parameters d and is almost constant for the
warm-started iterations.

3. Resource requirements for the dual time evolution

This section shows the detailed VarQITE and DualQITE
settings for the resource estimations in Sec. III. For VarQITE,

TABLE I. Detailed settings for the resource comparison of Var-
QITE and DualQITE at fixed number of qubits n = 12: the achieved
Bures distance DB, the number of shots per circuit and the total
number of measurements N . The dual method additionally shows
the number of iterations K0 in the first optimization and K>0 in
the subsequent, warm-started optimizations. Each optimization used
gradient descent with a learning rate of η = 0.1.

(a) Settings for VarQITE (b) Settings for DualQITE

IB shots N IB shots K0 K>0 N

1.601 100 ≈108 0.937 100 100 10 ≈2.5 × 107

0.558 1024 ≈109 0.735 100 100 20 ≈5 × 107

0.149 8192 ≈8 × 109 0.305 1024 100 10 ≈2.5 × 108

0.236 1024 200 20 ≈5 × 108

0.153 2048 250 25 ≈109

013143-15



GACON, NYS, ROSSI, WOERNER, AND CARLEO PHYSICAL REVIEW RESEARCH 6, 013143 (2024)

FIG. 12. The �2 norms for increasing number of qubits n of the imaginary evolution gradient, ‖b‖2, during the entire evolution and the
norm of the fidelity gradients ‖∇F (t )

k ‖2 at selected times, where t indicated the time step and k the iteration in the optimization within the time
step. Lengths for the fidelity gradients differ as the optimization were performed using a different number of steps, see Table II.

we only varied the number of shots and in the dual method we
additionally allowed to vary the number of iterations in the
optimization in each time step. Especially DualQITE has a
lot of additional degrees of freedom that could be optimized,
such as the kind of optimizer, in addition to settings shared
with VarQITE, such as time step size.

Table I shows the settings for VarQITE and DualQITE for
the resource estimation in Fig. 2(b) and Table II the settings
for the scaling with system size in Fig. 3.

4. Gradient benchmark

In this section, we measure how the norm of the loss
function gradient, defined as

∇δθL(δθ) = −∇δθF (θ, θ + δθ)

2
− δτ · b(θ)

scales with the number of qubits n in the Heisenberg Hamil-
tonian. This Hamiltonian is 2-local and since the ansatz depth
grows logarithmic with the number of qubits we do not expect
exponentially vanishing gradients for the evolution gradient b
[41]. Further, as discussed in the main text, the initial point of
each time step δθ is close to 0, which ensures the initial circuit
is close to the identity and we do not expect to encounter a
barren plateau [47].

TABLE II. Algorithm settings for the size scaling experiments of
VarQITE and DualQITE.

(a) Settings for VarQITE (b) Settings for DualQITE

n shots N n shots K0 K>0 η N

4 500 4.2 × 107 4 500 100 15 0.07 8.8 × 107

6 1500 4.2 × 108 6 600 200 25 0.07 3.3 × 108

8 2500 1.2 × 109 8 1000 100 20 0.1 6 × 108

10 6000 6.7 × 109 10 1500 200 25 0.12 1.7 × 109

12 8000 1.3 × 1010 12 2500 200 25 0.1 3.5 × 109

14 3000 250 25 0.12 4.9 × 109

Since both parts of the loss functions are not in a barren
plateau setting, we expect the loss function to be measurable
efficiently. In Fig. 12, we measure the �2 norm of both the
evolution gradient and fidelity gradients and we find that
neither gradient vanishes exponentially. Instead, the evolu-
tion gradient increases with system size, which reflects the
extensiveness of energy in the Heisenberg model. Since we
perform imaginary time evolution the system converges to-
wards the ground state and we expect the energy gradients to
vanish, once converged. In this case, we do not infer a barren
plateau as the gradient norm does not systematically decrease
faster for larger systems. Similarly, the fidelity gradients are
expected to decay as the optimal parameter update δθ is found.
Note that for system sizes of 12 qubits the exponential decay
of the gradients is typically clearly visible [42].

APPENDIX G: REAL-TIME EVOLUTION OF THE
HEISENBERG MODEL

1. Circuit diagram

In the real-time evolution of the Heisenberg model we use
the circuit sketched in Fig. 13, as used in Ref. [19].

FIG. 13. The real time evolution circuit. The dotted box is re-
peated three times and the rotation layer alternates between Pauli-X
rotations (starting from the first layer) and Pauli-Y rotations.
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