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Exploring phononlike interactions in one-dimensional Bose-Fermi mixtures
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With the objective of simulating the physical behavior of electrons in a dynamic background, we investigate a
cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons. The bosons,
residing in the deep superfluid regime, inherit the periodicity of the optical lattice, subsequently serving as
a dynamic potential for the polarized fermions. Owing to the atom-phonon interaction between the fermions
and the condensate, the coupled system exhibits a Berezinskii-Kosterlitz-Thouless transition from a Luttinger
liquid to a Peierls phase. However, under sufficiently strong Bose-Fermi interaction, the Peierls phase loses
stability, leading to either a collapsed or a separated phase. We find that the primary function of the optical
lattice is to stabilize the Peierls phase. Furthermore, the presence of a confining harmonic trap induces a diverse
physical behavior, surpassing what is observed for either bosons or fermions individually trapped. Notably, under
attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration,
reflecting the dynamic nature of the underlying lattice potential. Conversely, for repulsive interaction, the trap
destabilizes the Peierls phase, causing the two species to separate.
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I. INTRODUCTION

Over the past decades, we have witnessed a rampant
growth of experimental methods devised to cool and control
dilute gases. The attainment of Bose-Einstein condensates
(BECs) [1] was soon to be followed by in-depth explorations
of BEC dynamics in light-induced periodic potentials [2,3],
paving the way for the groundbreaking demonstration of
the Mott-superfluid phase transition. This exemplary quan-
tum phase transition was predicted by the Bose-Hubbard
model [4,5] for an atomic gas loaded into an optical lattice [6].
Since then, trapped and cooled dilute atomic gases have devel-
oped into a versatile laboratory where quantum matter can be
studied in a controlled and detailed fashion, constituting one
of the most promising platforms for the realization of analog
quantum simulators [7–9].

Many of the open questions in the field of quantum phase
transitions, especially those revolving around the formation
and characterization of exotic quantum phases of matter, can-
not, however, be directly addressed by the Bose-Hubbard
model per se. Although the classical laser field forming the
optical lattice is, in principle, dynamic, the back-action be-
tween the trapped particles (modeled as beam splitters) and
the lattice is typically very weak [10,11]. One may then, to a
very good approximation, treat the lattice as the outcome of
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applying a periodic static potential. Certainly, this approxima-
tion would be sufficient to emulate many paradigmatic lattice
models. However, such classical potentials do not take into ac-
count any back-action between the lattice and the conducting
matter, which we know is essential to explain several phenom-
ena like the Peierls distortion [12] [see Figs. 1(a) and 1(b)]
and superconductivity [13]. In solids, effects of that kind
result from electron-phonon interactions emerging from the
very nature of a dynamical lattice.

A central theme in our analysis is that assigning tractable
degrees of freedom to the lattice renders its description
dynamic and enables the simulation of some analog of
phononlike interactions. One possibility is to couple the atoms
to the light field of an optical resonator [14,15], where sub-
stantial Stark shifts are observed even in the presence of a
few photons. However, in current experiments, only a few
modes of the resonator actively participate in the light-matter
interaction, and it is, therefore, not possible to locally modify
the dynamical lattice. Instead, one must turn to multimode
cavities [16], which still pose difficulties in reaching con-
figurations similar to those encountered in real solids [17].
A viable alternative arises when considering atoms directly
interacting with an ionic crystal [18]. Here, harmonically
trapped ions form a Wigner crystal, while additional neutral
atoms move within this lattice. This ion-atom system bears
obvious similarities to a real solid, albeit being experimentally
challenging. In fact, the crystalline structure is not necessary
for exploring phononlike interactions. In mixtures of different
atomic species—either different atoms or different internal
states of the same atomic species—the interplay between sub-
systems can lead to intriguing effects.

Coming now to single atomic species, the use of Feshbach
resonances allows experimenters to control the strength, and
even the sign, of all involved interactions [19–24], aiming
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FIG. 1. Schematic description of the Peierls distortion. At a
fermion filling corresponding to a wave number kF , opening up a
gap of the dispersion at kF will lower the kinetic energy of the
fermions, as depicted in (a). The gap opening results from a lattice
distortion of the dynamical lattice, as shown in (b). Here, the period
has been doubled through shifting every second atom by a distance
δ, and consequently, the size of the Brillouin zone has been halved.
Thus, for half filling, we encounter a realization of the Su-Schrieffer–
Heeger (SSH) model, while for other fillings, the lattice distortion
will generate another periodicity. In the normal phase, the condensate
will share the same periodicity as the lattice and predominantly
populate the lattice minima (c). In the Peierls phase, for half filling,
the bosonic density will alternate between every second site (d).
Upon comparison of (b) and (d), we note that the periodicity has been
broken in two different ways: in (b), the densities are held fixed, but
the locations of the sites have been shifted, while in (d), the locations
are fixed and the densities have been altered. The former can be seen
as a ‘phase modulation,’ and the latter as an “amplitude modulation”
of the densities. Finally, in (e), we depict the collapsed phase where
all atoms, bosons, and fermions have been compressed to a small
region of the lattice.

to probe the resulting phase diagram. In mixtures of bosons
and spin-polarized fermions (hereinafter referred to as BF
mixtures), it is well known that an attractive BF interaction
leads to a so-called pairing phase in the strongly correlated
regime. This phase has been studied for weak BF interactions,
gbf , in one dimension (1D) [25–27], as well as in two [28,29]
and three dimensions [30]. The phase in question collapses
if the interaction becomes too strong, resulting in clumping
of the atoms and breaking of translational invariance. The
effect of optical lattices on BF mixtures has also been in-
vestigated in Refs. [31–37]. For deep lattices and/or very
strong interaction, such systems can be described by a BF
Hubbard model as they enter an insulating phase of composite
fermions [38,39]. The physical behavior is typically described
within a Wannier-basis expansion for both species, where the

bosons can be construed as agents of effective onsite energy
shifts for the lighter fermions. The imposed approximations
in such a scheme omit certain back-action between the two
subsystems in comparison to the self-consistent analysis we
employ here. Nevertheless, it is still possible to encounter
Peierls phases, supersolids, and charge density waves [28,38].
Furthermore, if the repulsive boson-boson interaction is weak,
the system can enter a regime of phase separation where the
bosons and fermions completely avoid each other [40].

Reporting from the experimental front, an early study fo-
cused on how the coherence of an atomic condensate—held in
place by a cubic optical lattice—is affected by the presence of
fermionic atoms [41]. Quantum degeneracy for both bosons
and fermions was attained in Ref. [23], where the two species
were treated on equal footing, a trend followed in a series of
subsequent papers [42–45]. Further experimental investiga-
tions have also considered a particular regime emerging for
a condensate in weak contact with much lighter fermionic
atoms [24,44,46]. Here, the fermions effectively induce a so-
called Ruderman–Kittel–Kasuya–Yosida (RKKY) long-range
boson-boson interaction [47]. For attractive Bose-Fermi in-
teraction, it was demonstrated that a self-sustained trap may
emerge for those fermions located inside the bosonic conden-
sate [44], an effect which may as well lead to the formation
of soliton trains [24]. The fermion-mediated spin-spin inter-
action in a spinor condensate has also been recently observed
by means of microwave spectroscopy [46].

Carrying on with the thread of recent investigations on
collective phenomena brought about by a coherent interaction
between Bose-Fermi atomic clouds, in this paper, we study
a 1D atomic BF mixture where only the bosons are subject
to an optical lattice. The motivation for considering such a
configuration is drawn from the resemblance to an actual
solid—the optical lattice orders the bosons in a crystalline
structure. Our spin-polarized fermions experience only the
periodic potential arising from the boson atomic density but
no externally imposed static potential, with the occasional
exception of a harmonic trap. A similar idea, although ex-
perimentally more challenging, was proposed in Ref. [48],
where the crystalline order for the bosons was established
from a rapidly rotating condensate that created a triangular
Abrikosov vortex lattice. We focus on the limit of a weak
boson-boson (BB) interaction and an optical lattice of am-
plitude � 20ER (ER is the recoil energy), where the bosonic
gas is expected to form a superfluid, see Fig. 1(c). In this
regime, we can work within a mean-field approximation for
the condensed bosons, which act as a classical dynamical
lattice felt by the fermions. The coupled system is solved
self-consistently such that every back-action, at the mean-field
level, is taken into account (without imposing, for instance,
any single-band nor tight-binding approximations). At this
hybrid mean-field level, the mixture displays a rich phase
diagram. For strong BF interaction, with a coupling rate gbf ,
the system either experiences a collapse (gbf � 0), in which
the two species overlap and populate only a small fraction of
the lattice, or a separation (gbf � 0) where instead the two
species avoid each other and populate different parts of the
lattice. These are first-order transitions, even though transla-
tional invariance is spontaneously broken in both cases. For
a nonzero interaction beyond a critical coupling gbf = gc

bf ,
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an instability occurs such that the period of the state is dif-
ferent from that of the underlying lattice; for example, for
half-filling, a periodic doubling is found. The system then
transitions from a Luttinger liquid (LL) phase into a Peierls
phase via a Berezinskii-Kosterlitz-Thouless (BKT) transition.
The Peierls phase manifests itself through a nonzero gap �P

at the Fermi wave number kF, i.e., �P �= 0 for gbf beyond the
critical interaction strength gc

bf .
We further present an account of the effects arising due to

the presence of a confining harmonic trap. For a sufficiently
strong repulsive boson-fermion interaction, it has already been
demonstrated that, at the mean-field level, the trap induces
a separation of the two species [49]. This instance suggests
ruling out a Peierls-like phase when a trap breaks the trans-
lational invariance. Inside a trap, the atomic densities vary in
space, which, in a local density approximation, translates to a
local Fermi wave number. A spatially varying wave number
has a direct impact on the phases, such as by smoothing the
discontinuous transition between the (possible) Peierls and
collapsed/separated phases. Naturally, the presence of a trap
entails a larger number of involved wave numbers and thereby
a broadening of the Bragg peaks in a time-of-flight detection.
Additionally, we find that the interplay between the trap, the
dynamical boson field, and the fermions results in an insulator
bearing a clear fermionic “wedding cake structure,” which
differs from the density profile obtained for a static periodic
potential.

Our narrative is structured as follows. Section II introduces
the Bose-Fermi system under study and the model we employ
for its description. There we also discuss some basic concepts
and known results pertaining to the properties of the involved
phases. The numerical methods are developed in Sec. III,
while the associated results are presented in Sec. IV, first for
the translationally invariant case IV A, and subsequently in the
presence of a harmonic trap, Sec. IV B, where we focus on
the quantum coherence registered in the one-particle density
matrix and on the decay of spatial correlations. Concluding re-
marks in Sec. V close our paper out, while the two Appendixes
present two possible paths to the derivation of effective model
Hamiltonians taking quantum fluctuations into account for
both species, alongside some details underlying the employed
hybrid mean-field method.

II. BACKGROUND: MODEL HAMILTONIAN AND PHASES

A. The Hamiltonian

The physical system we study is a mixture of two atomic
gases, one bosonic and one fermionic. Owing to tight trans-
verse confinement (in the sense of ω⊥ � ω‖), excited states
of the transverse modes can be neglected and the low-energy
physical description is quasi-one dimensional [26,50]. To be-
gin with, we will take the gas to be of infinite extent in the
longitudinal direction, and later consider the effect of a trap.
We work with dimensionless quantities, where energies are
scaled by the boson recoil energy, ER = h̄2k2/2mb with k the
lattice wave number and mb the atomic boson mass, such
that half the optical lattice wavelength sets the characteristic
length scale of the problem. The behavior of such a system is

modeled by the Hamiltonian

Ĥ =
∫

dx ψ̂
†
b

(
− ∂2

∂x2
+ Vb(x) + gb

2
ψ̂

†
b ψ̂b

)
ψ̂b

+
∫

dx ψ̂
†
f

(
−1

r

∂2

∂x2
+ Vf (x) + gbf ψ̂

†
b ψ̂b

)
ψ̂ f , (1)

where r = m f /mb is the mass ratio between the two species,
gb is the effective 1D boson-boson (BB) interaction strength,
and gbf is the effective 1D BF interaction strength. Later on,
we will assume the bosons to be harmonically confined and
subjected to an optical lattice, while the fermions will be har-
monically confined but assumed to have negligible interaction
with the optical lattice,

Vb(x) = 1
2ω2

bx2 + V0 sin2(x), (2)

Vf (x) = r 1
2ω2

f x2. (3)

The last term on the RHS of Eq. (2) is the optical-lattice
potential, also denoted as VOL = V0 sin2(x), where the distance
between potential minima is a = π in dimensionless units. At
first, we remove the harmonic confinement and keep only the
periodic optical lattice. To ensure that the lattice interacts only
with the bosonic atoms, the light frequency should be such
that it is not quasiresonant with any of the dipole transitions—
dictated by selection rules—of the fermionic atoms. The
atomic field operators ψ̂b, f (x) and ψ̂

†
b, f (x) obey the standard

commutation relations for bosonic and fermionic creation and
annihilation operators. Note that the Hamiltonian commutes
with both particle number operators (α = b, f ),

N̂α =
∫

dx ψ̂†
α (x)ψ̂α (x). (4)

For further use, we define the average particle number of
bosons/fermions as

n̄α = lim
L→∞

1

L

∫ L/2

−L/2
dx 〈ψ̂†

α (x)ψ̂α (x)〉, (5)

and the density να = an̄α = π n̄α as the filling of
bosons/fermions per lattice site.

Hereinafter, we assume that the bosonic gas is dense
enough to form a (quasi) condensed state, but not so dense
that the interaction energy becomes dominant. In terms of the
1D and 3D scattering lengths as,1D and as,3D this implies

as,3D 
 ξ 
 as,1D, (6)

where the healing length of the condensate is defined as ξ =
(8πas,3Dρb)−1/2, with ρb the condensate density. Furthermore,
our approximations are consistent with limiting our attention
to optical lattice strengths satisfying V0 � 20ER. We take the
fermions to be lighter than the bosons, i.e., r = m f /mb < 1,
which is typically the case for the relevant experiments, e.g.,
for a Li6-Li7 mixture [23] one has r = 0.86 and for a Li6-Cs133

mixture [44,51] one instead gets r ≈ 0.04. We will assume
gb > 0 but allow any sign and magnitude of gbf . Both the
BB and BF interactions should be possible to vary in the
experiment by deploying Feshbach resonances [19–23].
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B. Pairing phase and Peierls instability

For low bosonic densities, the occurrence of a so-called
pairing phase for BF mixtures with attractive BF interaction is
well known. For weak interaction strength and light fermions,
the development of modulated densities can be understood
from the fact that the fermion-mediated long-range interac-
tion between two bosons is an ultracold atomic analog to
the RKKY interaction [47,52,53]. These spatial modulations
of the boson density alter the potential landscape for the
fermions, and subsequently instigate back-action between the
two species. The spatial modulations will occur at the wave
number 2kF if we assume an RKKY interaction from a “flat”
background of fermions with a Fermi wave vector kF . In [25],
a 1D BF mixture without optical lattice was investigated us-
ing bosonization and a transition was identified between a
two-component gapless LL phase and a gapped pairing phase
with periodic density modulations. The transition was found
to “flow” towards the BKT fixed point with the gap opening
as

� ∼ exp
( − 1/

√∣∣gbf − gc
bf

∣∣)�(
gbf − gc

bf

)
, (7)

where �(x) is the Heaviside step function, and gc
bf is the

critical Bose-Fermi coupling strength. A study using dis-
cretization of the spatial coordinate and the numerical DMRG
method also predicted a stable LL phase for small negative
gbf [27]. For repulsive interaction (gbf > 0), the aforemen-
tioned works found no pairing phase. However, in Ref. [26],
a pairing phase was indeed reported upon employing the
method of a random phase approximation.

A gap opening at 2kF and the corresponding periodic mod-
ulation in the density are reminiscent of the Peierls distortion.
As first demonstrated by Peierls [12], a metal is unstable
towards lattice distortions, i.e., a small displacement of the
atoms. This phenomenon can be understood by treating the
atomic displacements on the mean-field level in the well-
known SSH model. Opening up a gap �P in the fermion
dispersion at the Fermi wavevector kF , as depicted in Fig. 1(a),
lowers the total energy and corresponds to a lattice modulation
of wave number kP = 2kF , as sketched in Fig. 1(b). There are
however also some discrepancies. The gap �P was derived
from a mean-field treatment of the ions, while the pairing
gap � is the gap of excitations in the full quantum system.
Still, it is interesting to observe that the gap in the SSH model
also has an exponential form similar to (7). Moreover, in the
original work of Peierls, the instability was demonstrated for
any nonzero interaction [12], while the pairing effect arises
as a consequence of a phase transition occurring at finite
interaction strength.

An optical lattice is, on intuitive grounds, expected to sta-
bilize the pairing phase against a collapse, since it renders
the bosons less mobile by generating a larger effective mass.
On the other hand, using the same argument, the lattice may
also extend a possible metallic phase to larger regions in the
phase diagram. We may note that for BF mixtures where both
species are subject to an optical lattice, it has been reported
that the pairing phase appears for both repulsive as well as
attractive BF interactions [35]. Furthermore, one could in
principle expect a beating between the involved length scales,
the Fermi wave number kF and the optical lattice wave num-

ber k, that could, in principle, give rise to so-called Devil’s
staircase structures [54].

A last remark on the periodically modulated Peierls phase
is in order. We have envisioned the boson superfluid as the
agent creating a dynamical lattice for the fermions. We may
consider the opposite viewpoint of a condensate living in a
partially dynamic background. Within this perspective, the
Peierls phase is reminiscent of a supersolid [28,30], i.e., a
superfluid state that has spontaneously broken the periodicity
of the Hamiltonian. Somewhat similar scenarios have been
studied in atomic condensates confined within optical res-
onators [55,56].

C. Stability of the Bose-Fermi mixture

For sufficiently strong BF interaction, the system is un-
stable towards long-wavelength fluctuations. The stability of
BF mixtures without an optical lattice has already been in-
vestigated in, e.g., Refs. [26,50]. Applying a hydrodynamic
(mean-field) description of both fermions and bosons, a linear
stability analysis yields the condition

n̄ f �
g2

bf

2g f gb
, (8)

where the constant g f = π2/r appears as an effective fermion
interaction strength. Note that the different definition com-
pared to Ref. [50] is due to our use of rescaled dimensionless
units. The fact that a high fermion density stabilizes the mix-
ture is particular to the 1D case. Attractive interaction leads
to a collapse of both species, while a repulsive interaction in-
duces a phase separation where the bosons and fermions either
avoid each other or lump together to form BF soliton mix-
tures [34,57,58]. More precisely, for repulsive boson-fermion
interaction, the bosons can form a dark soliton (density dip),
filled by a bright fermionic soliton. For attractive interaction,
both species form a bright soliton. This is reminiscent of the
Townes solitons predicted for electromagnetic waves [59],
and recently demonstrated in ultracold atomic Bose-Bose
mixtures [60,61]. Soliton solutions are known to be unstable
beyond the mean-field approach [62,63] but BF mixtures can
form stable self-bound systems (e.g., in Ref. [64],) which in
1D are stable within the mean-field approximation as well as
to higher order [65]. In the course of our analysis, we will find
out that an optical lattice increases the range of gbf values for
which the mixture is stable.

III. METHODS

A. Hybrid mean-field approximation

To investigate the pairing phase, we employ a “hybrid”
approach that intertwines quantum and classical dynamics,
a method which has already been followed in Refs. [66,67].
We note that this path bears similarities to the mean-field
approximation employed to derive the SSH model. It is also
akin to the DFT method [66]. Due to its affinity with the
SSH model, we will refer to the gapped phase in the hybrid
approximation as the Peierls phase. For the ground state, we
adopt the ansatz

|〉 = |ψb〉 ⊗ | f 〉, (9)
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where | f 〉 is a general state of Nf fermions, and |ψb〉 is a
(generalized) coherent state of the bosons satisfying [68]

ψ̂b(x)|ψb〉 = ψb(x)|ψb〉, (10)

with the complex variable ψb(x) called the condensate wave
function or order parameter. We impose the normalization∫ L

0 dx |ψb(x)|2 = 1 for a finite system and thereby factor
out the total boson number Nb. If m f /mb = r 
 1, it is
justified to assume an adiabatic evolution, similar to the Born-
Oppenheimer approximation in molecular physics [69], where
the lighter fermions adjust approximately instantaneously ac-
cording to the heavier bosons. Under such conditions, any
gauge potential [70], characterizing nonadiabatic corrections
and arising due to back-action between the condensate and
the fermions, can be neglected. The fermionic part of the
Hamiltonian can then be diagonalized while keeping the
bosonic degrees of freedom fixed, thus acting as an “adiabatic
potential.” The approximation is equivalent to replacing the
bosonic field operators with the condensate wave function in
the Hamiltonian, yielding the hybrid operator

Ĥ[ψb] = Eb[ψb] +
∑

n

ε f ,nψ̂
†
f ,nψ̂ f ,n, (11)

where the mean-field energy functional of the bosonic part is

Eb[ψb] = Nb

∫ L

0
dx ψ∗

b

(
− ∂2

∂x2
+ Vb + gbNb

2
|ψb|2

)
ψb,

(12)
and the second part is just the fermionic part of the Hamilto-
nian written in diagonal form, ε f ,n being the eigenvalues of
the Hartree equation for the fermion orbitals,(

−1

r

∂2

∂x2
+ gbf Nb|ψb|2

)
φ f ,n = ε f ,nφ f ,n, (13)

and hence, the fermion operators have been expanded
as ψ̂ f (x) = ∑

n φ f ,n(x)ψ̂ f ,n. Note that the solution of this
Hartree equation exhibits a functional dependence on the bo-
son density, hence from now on we will be writing ε f ,n =
ε f ,n[ψb]. From Eq. (11), a nonlinear Schrödinger equation for
ψb can be derived,

iψ̇b =
(

− ∂2

∂x2
+ Vb + gbNb|ψb|2 + gbf n f

)
ψb, (14)

where the expectation value of the fermion density can be
calculated as

n f (x) = 〈ψ̂†
f (x)ψ̂ f (x)〉 =

Nf∑
n=1

|φ f ,n(x)|2. (15)

To determine the ground state, we resort to Eq. (14) and
numerically propagate an initial condensate wave function in
imaginary time, employing the split-operator method [71].
This procedure amounts to solving the eigenvalue prob-
lem (13) at each time step.

To assess the Peierls phase for a system of infinite ex-
tent, we will use the following prescription: assume a filling
ν f = 1/2, so that we expect density modulations with a pe-
riod of two sites. Since the modulations are commensurate
with the optical lattice, the entire problem is periodic and
the solutions of the Hartree equation are Bloch waves, with

a reduced unit cell in reciprocal space due to the doubled
periodicity in the Peierls phase. Again, for the system evo-
lution, we propagate in imaginary time, solving the Hartree
equation at each time instant. The case of incommensurate
fermion filling is interesting in its own right, as it may lead
to coexisting spatially separated regions of commensurable
and incommensurate phases [72]. However, our method does
not allow for an incommensurate filling at present, whence we
leave the problem aside for later investigation.

For the Peierls phase, we appeal to the same order param-
eter as in the SSH model, namely the energy gap of fermionic
excitations above the Fermi surface,

�P := lim
ε→0+

(E f (kF + ε) − E f (kF − ε)), (16)

which in turn is identical to the gap of the hybrid Hamilto-
nian (11). As we discuss in Sec. II B, this quantity should
approximate the excitation gap of the entire system.

B. Thomas-Fermi model for the fermions

To ascertain the transition to the collapsed or separated
phases, we resort to a Thomas-Fermi model for the fermions
(not to be confused with the Thomas-Fermi approximation);
for an introduction, see Refs. [73,74] and for applications,
see Refs. [64,75,76]. We define a classical field ψ f (x) =√

n f (x)/Nf , called the Thomas-Fermi wave function, where
n f (x) has been defined in Eq. (15) under the normalization∫

dx |ψ f |2 = 1. The kinetic energy is approximated as a func-
tional

T [ψ f ] =
∫

dx
π2N3

f

3r
|ψ f |6. (17)

This form can be motivated by means of a dimensional
analysis, and is derived in detail in [73,74]. We obtain the
Thomas-Fermi energy functional as

E[ψb, ψ f ] = Eb[ψb] + E f [ψb, ψ f ], (18)

where the first term on the right is given by (12) and the second
by

E f [ψb, ψ f ] = Nf

∫
dx

(
π2N2

f

3r
|ψ f |6 + 1

r

∣∣∣∣∂ψ f

∂x

∣∣∣∣
2

+ gbf Nb|ψb|2|ψ f |2
)

. (19)

Taking the functional derivative, we find an equation of a two-
component Gross-Pitaevskii type,

i∂tψb =
(

− ∂2

∂x2
+ VOL + gbNb|ψb|2 + gbf Nf |ψ f |2

)
ψb,

i∂tψ f =
(

−1

r

∂2

∂x2
+ π2N2

f

r
|ψ f |4 + gbf Nb|ψb|2

)
ψ f . (20)

Employing once more the split-operator method [71], we
then evolve an initial state in imaginary time to determine
the ground state. Due to the mass separation between the
two species, one may argue that an adiabatic elimination
of the fermion field should be justified. This would result
in an effective bosonic model where the fermion-mediated
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FIG. 2. Phase properties in the absence of a trap. (a) Phase diagram in the (gbf , gb) plane, marking the different phases: LL, Peierls,
collapsed, and separated. The solid black lines mark the boundaries of first-order transitions, while the solid red lines represent the BKT
transitions. The mean-field prediction (8) is plotted with dotted black lines. The critical coupling gc

bf for the LL-to-Peierls transition is calculated
from a least square fit of the Peierls gap to the expression (7), using the hybrid mean-field method. (b) Same as for (a) but in the (gbf ,V0) plane.
Here it becomes clear that the presence of the optical lattice alters the phase diagram quantitatively, in particular through stabilizing the Peierls
phase. (c) The Peierls gap as a function of gbf , once more calculated using the hybrid code, for V0 = 0 (yellow), 4 (green), and 16 (blue), fitted
to the BKT formula (7) (dotted lines). (d) Boson and fermion densities in the Peierls phase for the parameters V0 = 1, gb = 0.4, and gbf = −1.
In all plots, we consider half filling, ν f = 1/2.

RKKY-like boson-boson interactions would appear. Such an
approximation, however, has a negligible benefit to the nu-
merical solution, whence we solve the full mean-field model
formulated by Eqs. (20).

IV. RESULTS

A. Translation-invariant BF mixture

We first focus on the periodic case in the absence of a trap,
where we set Vtrap = 0. This idealization targets the thermo-
dynamic limit in the system response, which is meaningful
when assessing the universal properties of the phase transi-
tions reported herein. A Bose-Fermi mixture with no lattice
was studied in Ref. [25], where it was found that, for negative
gbf , a BKT transition separates a LL from a Peierls phase; that
gap had the form dictated by Eq. (7).

In the upper two frames of Fig. 2, we depict the numeri-
cally extracted phase diagrams; frame (a) shows a region in
the (gbf , gb) plane when keeping V0 = 0 and r = 0.04 con-
stant, while frame (b) displays a region in the (gbf ,V0) plane
for gb = 0.4 and r = 0.04 constant. Both (a) and (b) show the
region of stability of the Peierls phase towards collapse or sep-
aration (black solid lines), located via a calculation using the
Thomas-Fermi approximation and compared to the mean-field

prediction (8) (black dotted lines). The transition is identified
by detecting the discontinuity in the overlap between boson
and fermion densities. The LL-to-Peierls transition (red solid
lines) is calculated via the hybrid method, and the critical
coupling gc

bf is obtained from a least square fit of the expres-
sion (7) to the numerical data. From frame (a), we conclude
that the region of stability has an extent which abides by the
inequality (8), but more importantly that our method predicts a
Peierls (i.e., pairing) phase for gbf > 0, in disagreement with
Ref. [25]. The reason for such a disparity could be simply
attributed to the fact that the hybrid method entails the unphys-
ical assumption that the solution is periodic, which hinders the
detection of long-wavelength fluctuations. From the literature
on Bose-Fermi-Hubbard systems, where both gases are sub-
ject to an optical lattice, we expect however an optical lattice
to stabilize the Peierls phase for repulsive interaction [77].
From frame (b), we infer that this is indeed the case: the
optical lattice stabilizes the Peierls phase beyond the boundary
set by condition (8) for a homogeneous configuration. More
precisely, the extent of this phase is growing with the optical
lattice potential while the LL, collapsed, and separated phases
are shrinking for the shown parameter ranges. Furthermore,
the Peierls gap also grows with increasing lattice amplitude,
meaning that it should be easier to observe in an experiment
with a stronger optical lattice, provided the full system does
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not enter an insulating phase due to the inclusion of an optical
lattice.

To illustrate the type of transition occurring between the
LL and Peierls phases, Fig. 2(c) shows three examples of
the Peierls gaps as a function of gbf , for V0 = 0, 4, and 8,
keeping gb = 0.4 constant. As demonstrated by the dotted
curves, close to the critical value, the numerically extracted
gaps fit very well the analytical expression (7) for the gap of a
BKT transition. Away from the critical point, there is a notable
“knee” feature, which occurs when the bosons only populate
every other site, and solely for V0 �= 0.

Figure 2(d) displays the density of bosons and fermions
within the unit cell, as a typical example for a particular point
picked in the phase diagram: V0 = 1, gb = 0.4, and gbf = −1.
The doubling of the periodicity is in evidence. Contrary to
most earlier studies, our method is capable of capturing both
amplitude and phase modulations, however, we only find
modulations in amplitude. For the repulsive case, gbf > 0,
the situation is similar to that shown in (d), but with the two
densities being “out-of-phase” instead.

In order to experimentally probe the phase diagram, one
must detect the order parameter or any other quantity capable
of telling the different phases apart. The gap could, in princi-
ple, be extracted via pump-probe experiments [78,79], while
one could also imagine transport experiments to differentiate
insulating and conduction phases, i.e., Peierls versus LL. As
will be evident in the next section, the trap induces a varying
Fermi wave number kF which makes the Peierls gap opening
not that pronounced. In a time-of-flight detection, for instance,
the Bragg peaks are smeared out, and the particular one cor-
responding to the gap is almost invisible. Hence, in a realistic
setup, including the trap, time-of-flight measurements might
not turn out to be the most optimal scheme. Instead, the onsite
densities, which display alternating variations, could be ac-
cessed via single-site resolution detection [80]. This technique
has been successfully implemented for cold fermionic gases,
including even detection of higher order correlators [81–83].

B. BF mixture in a harmonic trap

Current experiments rely on the application of harmonic
potentials for the attainment of sufficiently long trapping
times. However, the trap may have a relatively small fre-
quency yet still confine the atoms, such that the system locally
experiences a periodic potential. To study these more realistic
situations, we include a harmonic trap in our analysis but still
consider a very tight transverse confinement and consequently
a quasi-1D configuration. We have used the hybrid method to
investigate the different phases in the aforementioned setup.
Figure 3 presents the numerical results obtained for the den-
sities, along the main diagonal of the one-particle density
matrix. In the upper row, we present the real-space densities,
and in the lower row, the fermion density per site is depicted,
which could, in principle, be accessed in an experiment, as
mentioned in the last section. Illustrated in the left column
is a novel insulating state not present in the translationally
invariant system. We refer to this profile as a “wedding cake,”
drawing an analogy to the wedding cakelike structure found in
the harmonically confined Bose-Hubbard model [5] and also
in fermionic systems [84,85]. In this state, the fermions form

plateaus (or “layers of the cake”) with an integer number of
fermions per site. In the figure, a plateau of three fermions
per site is observed in the center of the trap, transitioning
in a steplike fashion to two and finally one fermion per site
as we move further out from the center. The wedding cake
pattern results from the interplay between kinetic, potential,
and interaction energies and only appears when an optical
lattice is present. It cannot be accurately modeled using a local
density approximation due to the abrupt changes in density.

In the central column of Fig. 3, we elaborate on the cor-
respondence to the Peierls phase occurring in the absence
of a trap. Generally, the boson and fermion clouds form a
region of a size determined by the trapping strength along-
side the BB and BF interactions. The optical lattice induces
a spatial variation in the bosonic profile, imparted to the
fermions via the BF interaction. The Friedel oscillations of
the fermions in this potential are then imprinted on the bosons
via the RKKY interaction. Because the Peierls phase is a
compressible supersolid, the wavelength varies continuously
over the width of the trap. Therefore, in the trapped system,
the Peierls modulations are generally not commensurate with
the lattice. These modulations may be detected using single-
site addressing, leading to a spatial variation in density that
cannot be attributed to the profile of the trap or that of the
optical lattice. We note here that the beating between the
fermion and the optical lattice wave numbers may give rise to
local commensurate-incommensurate transitions in which the
fermionic wave number of an atomic density wave spatially
adjusts to the optical lattice period [72].

For any positive value of gbf and any strength of the optical
lattice, we have observed that the system phases separate. The
rightmost column of Fig. 3 displays the separated state, where
the heavier atoms occupy the center of the trap, surrounded
by regions of the lighter species. Perhaps the most surpris-
ing feature of Fig. 3 is the emergence of the wedding cake
phase where we would expect a collapsed phase. The integer
filling per site clearly indicates a fermionic Mott insulator
state [86–88]. One way to ascertain whether this instance is
something more than a coincidence is to examine the off-
diagonal elements of the one-particle density matrix, given by

〈ψ̂†
f (x)ψ̂ f (x′)〉 =

Nf −1∑
n=0

φ∗
f ,n(x)φ f ,n(x′). (21)

To derive the above expression, we have written

ψ̂ f (x) =
∑

n

φ f ,n(x)ψ̂ f ,n, (22)

where ψ̂ f ,n are fermionic operators and the orbitals φ f ,n(x) are
solutions of the Hartree equation (see Appendix B)(

−1

r

∂2

∂x2
+ gbf Nb|ψb|2

)
φ f ,n = ε f ,nφ f ,n. (23)

An insulating state is expected to have an exponentially de-
caying one-particle density matrix [89,90]. However, it turns
out that this is not the case for the BF mixture in a harmonic
trap.

In Fig. 4, we focus into a more detailed comparison
between the wedding cake [frame (a)] and Peierls [frame
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FIG. 3. Density profiles in the presence of a harmonic trap. The top row shows the boson density (magenta) and the fermion density
(green), while the bottom row shows the fermion density per site. Only x > 0 is shown since the densities are symmetric around x = 0.
Both plots pertain to the ground state in a BF mixture in a trap, obtained using the hybrid method. (a) “Wedding-cake” structured fermionic
insulator, with parameters V0 = 4, gbf = −48, ωb = 0.03, and ω f = 0.3. (b) Peierls phase, with parameters V0 = 1, gbf = −4, ωb = 0.072, and
ω f = 0.0072. The inset in the upper plot zooms on the density profile in the region 0 � x/a � 8, evincing density modulations in the bulk,
with their origin in the Peierls instability. (c) Separated phase with parameters V0 = 4, gbf = 4, ωb = 0.08, and ω f = 0.8. In all simulations,
we have set the remaining parameters to gb = 0.4, r = 0.04, Nf = 32, and Nb = 400.

FIG. 4. From a Mott to a Peierls insulator with extended eigenstates in a trap. One-particle density matrix, |〈ψ̂ f (x)ψ̂†
f (x′)〉|2, where only

the top-right quadrant is plotted owing to the symmetry about x = 0. Two cases are shown: (a) a trapped mixture in the wedding cake phase,
for the same state as the one presented in the left column of Fig. 3; (b) Peierls phase for the same state as in the central column of Fig. 3. The
nondiagonal part of the one-particle density matrix is significantly suppressed in the wedding cake phase, where the decay is Gaussian and on
a length scale similar to the characteristic length of the optical lattice. In the Peierls phase, there are instead periodic oscillations signifying
coherence.
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FIG. 5. Scaling of the two-point density matrix with the width of
the harmonic trap. The one-point density matrix n(x, x′) is calculated
for x′ = −x and plotted with x scaled with a

√
k. The oscilla-

tions of the one-point density matrix are fitted to the expression
n(x, −x) = Csinc(bx) in line with Eq. (C2). Left column: normal
phase (gbf = 0, ω0,b = 0.005, ω0, f = 0.07). Right column: Peierls
phase (gbf = −1.5, ω0,b = ω0, f = 0.0036). The harmonic confine-
ments have been set as ωb/ f = kω0,b/ f , with k = 1, 2, 4 for the top,
middle and bottom rows. In all simulations, we have fixed the re-
maining parameters to gb = 0.1 and V0 = 0.25.

(b)] phases, showcasing the corresponding one-body density
matrix. As seen in Fig. 3(a), the wedding cake is distin-
guished by having an integer number of fermions per site.
The one-particle density matrix provides an additional way
of distinguishing the phases. In the wedding-cake phase, it
displays a Gaussian decay on a length scale similar to the
characteristic length of the optical lattice. This feature, in turn,
signals the opening of a more pronounced gap in the spectrum
and the presence of an insulating phase. On the other hand,
the spatial decay of the matrix elements in the Peierls phase
reveals a sustained coherence originating from the individual
trapped-particle wave functions, which we will attempt to
elucidate.

A characteristic example of the spatially decaying one-
point density matrix n(x, x′) is plotted in Fig. 5 for x′ = −x.
It is evident that in the normal phase, the “wavelength” of
the fitted sinc function scales with

√
k, while the relation is

not so direct in the Peierls phase. To motivate the mechanism
underlying the periodically decaying oscillations, we start by
setting gbf = 0, in which case the fermions are free from their
interaction with the bosons in the same trap. In this case, we
find (see Appendix C for further details)

n(x,−x) = 1

π

sin(
√

2N 2x)

2x
. (24)

Equation (24) explicitly reveals an algebraically decaying
envelope and a

√
Nf -dependence of the spatial frequency,

with Nf being the number of fermions confined in the trap,
both attributes evidenced in the left plots of Fig. 5. While
gapped phases might suggest an exponential decay of the

single-particle density [91], the spatial confinement imposed
by the trap implies that the extent of excitations is typically
of the same order as the characteristic trap length (unless very
weak trap frequencies are considered). Thus we observe an
algebraic decay instead of an exponential one. Turning on
an attractive Bose-Fermi interaction gbf to access the regime
of Peierls instability in the right frames of Fig. 5 marks the
departure from the sinc profile and the

√
Nf scaling, yet the

periodicity is still evident, and the frequency carries on in-
creasing with the extent of the trap. The counterdiagonal now
defines a particular cut through ripples visible in Fig. 4(d)—
remnants of quantum interference developing symmetrically
to the main diagonal and signifying a Peierls phase with a
larger spatial extent than the normal. The overall amplitude
of the density matrix along the counterdiagonal, depicted in
the right frames of the figure, also increases with Nf , in line
with the prediction of Eq. (C2). Taking Nf → ∞, we obtain
the delta function as the familiar limit of the sinc function,
writing n(x,−x) ∝ δ(x).

V. CONCLUDING REMARKS

In this work, we have studied the response of a dilute mix-
ture of two atomic clouds of disparate masses, one fermionic
and one bosonic, to an external lattice potential alongside
an atomic trap. The gases are confined in a cylindrical trap
so that the low-energy physical behavior of the system is
effectively one-dimensional, while the optical lattice imprints
a period structure onto the bosonic gas. We have assumed a
weak optical lattice and a high density of bosons, such that
the bosons form a condensate, which amounts to an effective
interaction of the fermions with a coherent field.

We confirmed that a Peierls instability, manifested via a
BKT-type phase transition to a Peierls phase, persists when
the optical lattice potential is applied solely to the bosons.
Moreover, the presence of this phase was found to stabilize
the system against collapse and separation, as well as to en-
hance the significance of the Peierls effect, a property that is
highly desirable for experimental explorations of the associ-
ated phononlike physics. The presence of the Peierls phase
was confirmed upon developing and applying a hybrid mean-
field method, which retained an amount of coherence able to
sustain sinc-type oscillations along the counterdiagonal of the
one-particle density matrix. It is interesting to note that such
a method can reveal the BKT nature of the phase transition,
as well as the similarity to the SSH model of the Peierls
instability. The crucial scaling is captured by the method we
have developed owing to the fact that we take the deformation
of the Fermi surface into account, while we also retain the
quantum degrees of freedom for the fermions albeit within an
adiabatic approximation. An algebraic decay of correlations is
found for all phases occurring in the trapped BF mixture, in
accordance with a BKT phase transition.

The natural step forwards would be to take quantum fluc-
tuations of the boson degrees of freedom into account. This
entails the development of a formulation and related numeri-
cal methods manifestly beyond any mean-field reduction, and
to that aim, we outline possible directions for deriving the
corresponding many-body Hamiltonian in Appendix A below.
Another promising direction for future research concerns the
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investigation of fermion fillings incommensurate with the op-
tical lattice as well as studying the quenched time-evolution
problem of a single fermion in a dynamical bosonic poten-
tial. Furthermore, an interesting extension replaces the optical
lattice with a BB mixture, using either trapped ions or dipole
bosons. Finally, systems of the kind can be analyzed in greater
detail using matrix product states or bosonization techniques.
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APPENDIX A: ROUTES TOWARDS KNOWN QUANTUM
MANY-BODY MODELS

In Sec. III A, we reported on the presence of a Peierls phase
at a hybrid mean-field level. We argue that this description
accounts for the pairing effect qualitatively. However, there
are clear limitations to such an approach. Effectively, the
model is a free fermion theory, and as long as there is a finite
Peierls gap, � �= 0, however, we find a nontrivial insulator
with algebraically decaying order for the trapped BF mixture.
This is in line with what one expects from a BKT transition,
where one phase should exhibit algebraic decay. Furthermore,
the classical field stemming from the boson condensation
cannot build up quantum correlations with the fermions, while
a quantum field can. To quantitatively analyze such situations
one must go beyond mean field. In this Appendix, we outline,

without going into details, two possible approaches in order
to derive effective Hamiltonians for which both species are
treated quantum mechanically.

In Ref. [36], the condensate wave function was calculated
for zero coupling between the two species, and subsequently,
Bogoliubov excitations around the mean-field response were
taken into account, arising from a weak interaction. Due to the
presence of a deep external lattice potential in their model, a
Hubbard-Holstein model is obtained which can be understood
in terms of polarons. In our case, we instead find the fermion-
phonon Hamiltonian

Ĥ = Ĥ f +
∑

μ

ωμ

∫
dx

(
Mμb̂μ + M∗

μb̂†
μ

)
ρ̂ f

+ gbf

∫
dx|φb|2ρ̂ f +

∑
μ

ωμb̂†
μb̂μ, (A1)

where

Mμ(x) = uμ(x) − vμ(x) (A2)

are given in terms of the uμ(x), vμ(x) of the Bogoliubov trans-
formation and ωμ are the energies of the Bogoliubov modes.
The third term will confine the fermions to their lowest Bloch
band if the interaction is strong enough, and in this limit, the
model approaches the Hubbard-Holstein model of Ref. [36].
However, the approach above would have to be modified since
it rests on the assumption that gbf is weak.

For a deep optical lattice one could come up with another
method: expand the boson field in the corresponding Wannier
functions, w j (x) localized at site j, as [7,8]

ψ̂b(x) =
∑

j

â jw j (x). (A3)

If we expand the fermion field as ψ̂ f (x) = ∑
k ĉkeikx and

impose the single-band and tight-binding approximations, we
arrive at the many-body Hamiltonian

Ĥmb = ĤBH +
∑

k

k2

r
ĉ†

k ĉk + N̂b

∑
k,k′

[D(k − k′)ĉ†
k ĉk′ + H.c.],

(A4)

where

ĤBH = −J
∑

j

(â†
j â j+1 + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1) (A5)

is the Bose-Hubbard Hamiltonian, with J and U the tunneling
rate and onsite interaction strengths, respectively, n̂ j = â†

j â j ,
and D(k − k′) is the overlap integral (which is Gaussian in the
harmonic approximation). Since N̂b is preserved, the quadratic
fermionic Hamiltonian can be readily diagonalized, and we
find no back-action on the bosons due to the fermions. To
incorporate such effects one would need to go beyond the
single-band or tight-binding approximations. Alternatively,
the approximations may be kept but other additional degrees
of freedom should be introduced corresponding to the phonon
modes. For heavy bosons, one can follow the idea of Ref. [92]
to allow a variation in the position of the Wannier-function
centers jπ , but keep the shape of the functions intact. Thus
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we associate a quantized shift δ̂ j with each Wannier func-
tion, w j (x) → w j (x − δ̂ j ). Assuming small shifts δ̂x j 
 1,

one may then expand to linear order in them and derive an
effective Fröhlich-like Hamiltonian [13]

ĤFr = Ĥmb + ĤBP + ĤFBP, (A6)

where the boson-phonon interaction is given by

ĤBP = −J1

∑
j

(δ̂ j+1 − δ̂ j )(â
†
j â j+1 + H.c.)

+ U1

2

∑
j

δ̂ j n̂ j (n̂ j − 1). (A7)

If we introduce the local phonon annihilation/creation opera-
tors d̂ j/d̂†

j , the phonon displacement is expressed as

δ̂ j = (d̂ j + d̂†
j )/2, (A8)

while the fermion-boson-phonon interaction term takes the
form

ĤFBP = μN̂d +
∑

j

∑
k,k′

n̂ jD1(k − k′)δ̂ j ĉ
†
k ĉk′ , (A9)

where the first term is the bare phonon energy (μ is the char-
acteristic frequency and N̂d = ∑

j d̂†
h d̂ j). In principle, within

the harmonic approximation, the coefficients J1, U1 and D1

can be analytically determined. Both ĤBP and ĤFBP describe
phonon-assisted tunneling, either between neighboring lat-
tice sites (bosons) or between different momentum modes
(fermions). It may be noted that if gbf = 0, then D(k − k′) =
D1(k − k′) = 0 and N̂d = 0 such that ĤBP = 0.

APPENDIX B: THE HYBRID MEAN-FIELD–QUANTUM
METHOD

In this Appendix, we provide some further details about the
employed hybrid mean-field ansatz. As already mentioned in
Sec. III A, a gap of the form (7) opens up in the pairing phase.
A superfluid of bosons is gapless and, to the lowest order, is
described by the condensate wave function ψb(x)—the mean-
field order parameter. We define the generalized coherent state

|ψb〉 = exp

(∫
dx ψb(x)ψ̂b

†
(x) − H.c.

)
|0〉, (B1)

where |0〉 is the bosonic vacuum. Taking the expectation value
of the time-dependent Schrödinger equation, we obtain an
effective hybrid Hamiltonian

Ĥeff = Eb[ψb] + Ĥ f [ψb] − i〈ψb|∂t |ψb〉, (B2)

where the first term is given by (12), the second term is

Ĥ f [ψb] =
∫

dx ψ̂
†
f

(
− 1

r

∂2

∂x2
+ Vf + gbf |ψb|2

)
ψ̂ f , (B3)

and the third term is the Berry connection [70]. We will
assume that the state of the condensate is slowly modified,
so that this term can be neglected.

The above is equivalent to a product-state ansatz for the
ground state

|0〉 = |ψb〉 ⊗ | f 〉, (B4)

where | f 〉 is a general fermion state of Nf fermions.
Such an ansatz neglects any entanglement built between the
bosons and fermion subsystems; correlations may actually
arise within the noncondensed fraction of bosons and, more
importantly, different configurations of the condensate may
get entangled with the fermions. In general, such mixed
quantum-classical dynamics is interesting in a much wider
context in condensed matter physics, high-energy physics,
and quantum gravity, and has been investigated in detail in
Refs. [93–95]. In Ref. [93], a multiconfigurational mean-field
approximation based on hybrid quantum-classical theory was
developed, with the central object being the quantum-classical
distribution function—a map from the classical phase space to
the set of quantum density operators, defined as

ρ̂(q, p) =
∑

i j

�i j |i〉〈 j |δ(q − qi j )δ(p − pi j ), (B5)

where q and p are the classical generalized coordinates and
momenta, and |i〉 is a basis state of the quantum subsystem.
In this formalism, “nondiagonal” contributions correspond
to the quantum subsystem generating a coupling between
different trajectories of the classical subsystems. When
considering only a single trajectory, the quantum-classical
distribution function can be written as a single delta-function
term,

ρ̂[ψ ′
b] = | f 〉〈 f |δ[ψb − ψ ′

b], (B6)

where the brackets indicate a functional dependence. In other
words, the system is represented by a single point in classical
phase space, evolving with a quantum density matrix of a pure
state.

We find the ground state of Ĥeff self-consistently first ob-
serving that it can be readily diagonalized by selecting

ψ̂ f (x) =
∑

n

φ f ,n(x)ψ̂ f ,n, (B7)

where the orbitals are solutions of the Hartree (single-particle)
equation (

−1

r

∂2

∂x2
+ gbf Nb|ψb|2

)
φ f ,n = ε f ,nφ f ,n. (B8)

Second, we define a nonlinear Schrödinger equation for the
condensate

iψ̇b = δ

δψ∗
b

〈 f |Ĥeff| f 〉

=
(

− ∂2

∂x2
+ Vb + gbNb|ψb|2 + gbf n f

)
ψb, (B9)

where

n f (x) = 〈 f |ψ̂†
f (x)ψ̂ f (x)| f 〉 =

∑
n

|φ f ,n(x)|2 (B10)

depends explicitly on the bosons through (B8). The ground
state of (B9) is found from imaginary time propagation utiliz-
ing the split-operator method [71].

As mentioned in Sec. III A, the above method can also
be easily adapted to study a translationally invariant sys-
tem of infinite extent for fermion filling ν f = 1/2. In this
case, we assume a periodic solution ψb(x + 4π ) = ψb(x).

013138-11
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The solutions of the Hartree equations are then Bloch waves
eiqx/2u f ,n(q, x). Due to the assumed double periodicity of 4π ,
the first Brillouin zone is halved and the fermionic filling
is in direct correspondence to the edges of the Brillouin
zone. It is straightforward to find the fermion density as the
integral

n f (x) =
∫

1BZ
dq |u f ,0(q, x)|2. (B11)

Another important difference here is that we have to diagonal-
ize the Bloch/Hartree equation for each quasimomentum—in
practice for a large number of sampled values. Apart
from these discrepancies between the two methods, the
solution to Eq. (B9) is also found using imaginary time
propagation.

APPENDIX C: DECAY OF CORRELATIONS IN THE
ABSENCE OF BOSE-FERMI INTERACTION

For gbf = 0 (normal phase), the one-point density matrix
can be calculated analytically via the Cristoffel-Darboux for-
mula, involving summed products of individual orthogonal
fermionic wave functions in terms of the Hermite polynomials
Hn(x) (with n = 0, 1, . . . , Nf ) derived from the quantum har-
monic oscillator eigenstates. Letting Nf = N for convenience,

the result reads

n(x, x′) = π−1/2 exp

(
−x2 + (x′)2

2

)

× 1

N!2N+1

HN (x′)HN+1(x) − HN (x)HN+1(x′)
x − x′ . (C1)

For x′ = −x, along the counterdiagonal of the density matrix
that we select for Fig. 5, the above expression can be recast
into the following form:

n(x,−x) = π−1/2 exp(−x2)
1

N!2N+1

2(−1)N HN (x)HN+1(x)

2x

∼ 22N�((N + 1)/2)�(N/2 + 1)

π3/2 2N N!

sin(
√

2N 2x)

2x

= 1

π

sin(
√

2N 2x)

2x
, (C2)

which follows from the familiar asymptotic N � 1 expansion
of quantum harmonic oscillator eigenstates [96]

e−x2/2HN (x) ∼ 2N

√
π

�

(
N + 1

2

)
cos(x

√
2N − Nπ/2) (C3)

and the Legendre duplication formula for the gamma function.
In fact, the number of fermions confined in the trap need not
be large. Even for Nf � 10, we note a reasonable agreement
between the exact formula of Eq. (C1), and the asymptotic
sinc profile of (C2).
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