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Research in open quantum system dynamics has received growing interest in recent years, and its ongoing
investigation has uncovered many intriguing physics departing from closed systems. A particularly useful
application of the open quantum system theory is to simulate quantum dynamical processes in condensed phase
materials. As the quantum degree of freedom is constantly under the influence of its thermal environment, the
accurate description of the dynamics often requires non-Markovian time evolution at finite temperature. Such
calculation is usually quite challenging on classical computers as extensive memory storage is required. In
this work, we focus on a quantum system linearly coupled to its harmonic bath and present a path integral
based quantum algorithm that time-evolves the reduced density matrix under finite temperature non-Markovian
dynamics. To treat the nonunitary time evolution, the Sz.-Nagy dilation scheme is used for the conversion to
unitary dynamics that can be implementable on gate-based quantum computers. The modified Hadamard test
is then used to retrieve all the information of the reduced density matrix. Complexity analysis shows that the
memory requirement has exponential reduction on the quantum machine whereas the runtime complexity stays
roughly the same as for the classical computer. It points to the possibility of using this algorithm to simulate
multilevel and multisite non-Markovian quantum dynamics that are beyond the reach of classical computers. The
algorithm makes no ad hoc assumptions and extends naturally beyond Markovian and weak coupling regimes.
We validated the algorithm on the quantum simulator with the spin-boson model and demonstrated its excellent
agreement with the classical computer benchmark.
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I. INTRODUCTION

The theory of open quantum systems offers a powerful and
versatile tool to study quantum systems interacting with their
external environment [1,2]. Various interesting physics have
emerged along this line of investigation, including nonequi-
librium phase transitions [3,4], topological and entangled
state preparation by reservoir engineering [5–10], informa-
tion backflow [11–16], as well as direct emulation of open
quantum systems on quantum devices [17–19]. Particularly
prominent playing fields of open quantum systems are the
simulations of quantum dynamical processes in the condensed
phase environment, and the harmonic bath with linear cou-
pling model has served as an archetypical framework for such
investigation. Intensive research efforts have been devoted to
developing numerically exact computational methods based
on this model to simulate open quantum system dynamics,
with the non-Markovian and finite temperature effect fully ac-
counted for. Well-established methods include quasi-adiabatic
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propagator path integral [20–22], hierarchical equation of mo-
tion [23–25], and multiconfiguration time-dependent Hartree
[26–28]. Despite being highly successful, they all suffer expo-
nential scaling on classical computers in one way or another.
The unfavorable scaling is rooted in the fact that, in the clas-
sical computing architecture, the number of grid points used
for simulating a quantum system grows exponentially with the
size of the Hilbert space and the degree of non-Markovianity.
Quantum computers, on the other hand, hold the promise to
simulate many-body quantum dynamics in an efficient manner
[29–33].

There is a growing interest in recent years in developing
quantum algorithms for simulating open quantum system dy-
namics. However, a wealth of literature has been focused on
Markovian dynamics, including the construction of universal
semigroup generators [34,35], and the efficient simulation of
the Lindladian [36,37] using various techniques such as block
encoding [38–41], linear combination of unitaries [42], imag-
inary time evolution [43], and a variational approach [44].
On the other hand, quantum algorithms for non-Markovian
evolution are in the nascent stage of development. Notable
works include Sweke et al. [45] who considered locally in-
divisible maps that are capable of describing non-Markovian
systems, and Head-Marsden et al. [46] who used ensembles
of Lindblad trajectories originating from different times to
capture the non-Markovian behavior. Recently, Wang et al.
[47] constructed non-Markovian superoperators from the
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integrated generalized quantum master equation and imple-
mented them on noisy intermediate-scale quantum (NISQ)
devices through block encoding.

In this work, we present a quantum algorithm for simulat-
ing non-Markovian quantum dynamics based on Feynman’s
path integral formulation of the (multi)spin-boson Hamilto-
nian [48]. The system-bath interaction and the non-Markovian
nature of the dynamics are captured by Feynman-Vernon’s
influence functional expression. This algorithm adds to the
existing pool with at least three merits. First, by working with
a concrete spin-boson type Hamiltonian instead of abstract
maps, we expect the algorithm to be generally applicable to
simulating many condensed phase quantum dynamics ranging
from charge-transfer processes in solutions [49] to excita-
tion energy transfer in a light-harvesting complex [50,51].
Secondly, all the path sums are done on the quantum ma-
chine, fully taking advantage of the quantum computer to
create superposition and entanglement states, and its nat-
ural ability to represent exponentially large Hilbert space.
Thirdly, the non-Markovianity is directly related to the time
span of correlation function in the influence functional, and
therefore the numerical convergence is straightforward (more
details in Sec. III A). The following contents are organized
as such. In Sec. II, we briefly present the theoretical frame-
work of path integral formulation based on Feynman-Vernon’s
influence functional approach. In Sec. III, we discuss its im-
plementation on gate-based quantum computers, including
propagation scheme (Sec. III A), unitary matrix construction
(Sec. III B), measurement (Sec. III C), and complexity analy-
sis (Sec. III D). In Sec. IV, we present the simulation results
with a comparison between classical and quantum computing.
In Sec. V, we conclude with future work.

II. FEYNMAN’S PATH INTEGRAL

For open quantum systems, the reduced density matrix
(RDM) is commonly used to investigate the dynamics. The
Hamiltonian for an m-state system linearly coupled to its
harmonic bath has the following expression:

Hs =
m∑

s=1

s|s〉〈s| +
∑
s,s′

Vs,s′ |s〉〈s′| (2.1)

Hb =
∑

j

h̄ω ja
†
j a j, (2.2)

Hs−b = −
m∑

s=1

s|s〉〈s|
∑

j

c j

√
h̄

2mjω j
(a†

j + a j ), (2.3)

where Hs and Hb denote the system and bath Hamiltonian,
respectively, and Hs−b denotes the system-bath coupling. The
system states |s〉 are usually expressed in the diabatic basis
which diagonalize the position operator, and this represen-
tation fits nicely into the position representation of the path
integral formulism. The coupling strength c j and the fre-
quency ω j collectively define the strength-weighted density
of modes called spectral density [52]:

J (ω) = π

2

∑
j

c2
j

m jω j
δ(ω − ω j ). (2.4)

The commonly used model spectral densities are of Drude
or Ohmic form [2], which have a characteristic peak and
a cutoff. Alternatively, the spectral density can be obtained
from the Huang-Rhys factors [53] and molecular dynamics
simulations [49,54,55].

The RDM in Feynman’s path integral formulation is ex-
pressed as the system bare propagator multiplied by an
influence functional [22]:

ρred(s+
N , s−

N ; t )

=
∫

ds+
0

∫
ds+

1 · · ·
∫

ds+
N−1

∫
ds−

0

∫
ds−

1 · · ·
∫

ds−
N−1

× 〈s+
N |e−iHs�t/h̄|s+

N−1〉 · · · 〈s+
1 |e−iHs�t/h̄|s+

0 〉〈s+
0 |ρs(0)|s−

0 〉
× 〈s+

N |eiHs�t/h̄|s−
1 〉 · · · 〈s−

N−1|eiHs�t/h̄|s−
N 〉

× I (s+
0 , s+

1 , ..., s+
N−1, s+

N , s−
0 , s−

1 , ..., s−
N−1, s−

N ; �t ).
(2.5)

The {s+
0 , s+

1 , . . . , s+
N } and {s−

0 , s−
1 , . . . , s−

N } denote the
discretization of the forward and backward paths, and
〈s+

0 |ρ0(0)|s−
0 〉 is the system’s initial condition. �t is the Trot-

ter time step.
The expression

I = exp

[
−1

h̄

N∑
k=0

k∑
k′=0

(s+
k − s−

k )(αkk′s+
k′ − α∗

kk′s−
k′ )

]
(2.6)

is the influence functional, with the αkk′ coefficient (see Ap-
pendix) derived by Makri [22].

In continuous time, the αkk′ coefficient has the form

α(t ) = 1

π

∫ ∞

0
dωJ (ω)

[
coth

(
h̄ωβ

2

)
cos (ωt ) − i sin (ωt )

]
,

(2.7)

which is the thermally averaged bath correlation function.
This time correlation function α(t ′ − t ′′) is nonlocal and is
responsible for the non-Markovian character of the dynamics.

Although modeling the environment’s degrees of freedom
using harmonic oscillators is the major assumption, the cen-
tral limit theorem [54] guarantees that this type of Gaussian
response is widely applicable to many condensed phase sys-
tems, and its accuracy has been demonstrated on numerous
occasions [49,51,55–62].

III. QUANTUM ALGORITHM

In the following sections, we discuss in detail how Eq. (2.5)
can be converted to unitary dynamics, which is preliminary
for gate-based quantum computing. The major undertakings
involve constructing a matrix vector multiplication scheme
based on Eq. (2.5) and converting the nonunitary matrix into
a unitary one. As a general feature for open quantum systems,
the time evolution operator loses its unitarity due to damp-
ing and decoherence. Therefore, techniques are required to
unitarize the propagator matrix, and to properly retrieve the
information of the RDM through measurement.
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A. Matrix vector multiplication for time propagation

The RDM can be made into a vector and represented
by qubit states. As an example, for a two-level system, the
vectorized RDM has the following form:

|ρ〉 =

⎛
⎜⎜⎝

ρ00

ρ01

ρ10

ρ11

⎞
⎟⎟⎠, (3.1)

where ρ00 and ρ11 are the diagonal elements of the RDM,
and ρ01 and ρ10 are the off-diagonal ones. Although a general
state preparation is a nontrivial task [40,63,64], for practical
simulations of charge and exciton dynamics, the initial state is
usually localized in one site. Therefore, the initial RDM has
the form of (1,0,0,0) in the diabatic basis.

Without the influence functional, the RDM propagation
in discrete time step �t can be formulated as matrix vector
multiplication:

ρs(s
±
k+1) =

∑
s±

k

K (s±
k+1, s±

k ) ρs(s
±
k ) (3.2)

in which the propagator matrix K (s±
k+1, s±

k ) is defined as

K (s±
k+1, s±

k ) = 〈s+
k+1|e−iHs�t/h̄|s+

k 〉〈s−
k |eiHs�t/h̄|s−

k+1〉, (3.3)

where sk and sk+1 are position states at time t = k and t =
k + 1, respectively.

The memory kernel α(t ′ − t ′′) in the influence functional
couples timepoints further away from each other. For the
condensed phase environment where the bath is composed of
a broad range of frequencies, α(t ′ − t ′′) has a finite time span
[22,65]. This observation of memory cutoff has important
implications for the propagation scheme.

The matrix vector multiplication scheme complying with
Eq. (2.5) has been developed by Makri [66,67] and is sum-
marized as follows. Define N�t to be the memory span of the
correlation function α(t ′ − t ′′). Propagating N time steps from
the initial state, a propagator matrix T can be defined, with the
matrix element shown as the following:

T (N )(s±
N , . . . , s±

2N−1; s±
0 , . . . , s±

N−1)

=
N−1∏
k=0

K (s±
k+1, s±

k )I0(s±
k , s±

k )I1(s±
k+1, s±

k )

× I2(s±
k+2, s±

k ) · · · IN (s±
k+N , s±

k ), (3.4)

where

I j (s
±
k′ , s±

k ) = exp

[
−1

h̄
(s+

k′ − s−
k′ )(αk’ks+

k − α∗
k’ks−

k )

]
(3.5)

is an element in the influence functional that dictates the
coupling between two timepoints. Together, they account for
the timewise self-interactions, nearest timepoint interactions,
and non-nearest timepoint interactions. One subtlety is that,
to match the dimensionality of the propagator matrix, the
vectorized RDM has to be elongated (denoted by ℘), with the

initial condition defined as

℘(0; s±
0 , , s±

N−1) = 〈s+
0 |ρs(0)|s−

0 〉. (3.6)

For instance, for a two-state system with memory
length N = 2, the elongated density matrix with ini-
tial condition |ρ〉 = (1, 0, 0, 0) has the form |℘〉 = (1, 0, 0,

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0). The elongated density ma-
trix at time t = N�t is simply obtained through the matrix-
vector multiplication,

℘(N�t ; s±
N , . . . , s±

2N−1)

=
∑

s±
0 , . . . , s±

N−1

T (N )(s±
N , . . . , s±

2N−1; s±
0 , . . . , s±

N−1)

×℘(0; s±
0 , . . . , s±

N−1). (3.7)

It turns out that the propagator matrix, T (N ), is translation-
ally invariant in time, i.e.,

T (N )(s±
N , . . . , s±

2N−1; s±
0 , . . . , s±

N−1)

= T (N )(s±
k+N , . . . , s±

k+2N−1; s±
k , . . . , s±

k+N−1). (3.8)

Therefore, once the T (N ) matrix is constructed for the ini-
tial time propagation, it can be reused for subsequent iterative
propagation to time t = nN�t as

℘(nN�t ) = {T (N )}n
℘(0). (3.9)

The unique feature of this matrix vector multiplication
scheme is that it does not propagate one time point to the next,
but one chunk of time span of N�t to the next chunk. Finally,
the RDM at t = nN�t ≡ L�t is obtained by

ρs(L�t ; s±
L ) = ℘(L�t ; s±

L ; s±
L+1 = · · · = s±

2L−1 = 0)I0(s±
L ).

(3.10)

This completes the entire construction of the matrix vector
multiplication scheme used for the time propagation of the
non-Markovian quantum dynamics.

B. Unitary matrix construction

The propagator matrix T (N ) defined in Eq. (3.4) is not a
unitary matrix. This is manifested in open quantum systems
where the environment exchanges energy with the system
and has the decoherence effect. To convert the nonunitary
matrix into a unitary one, we employ the Sz.-Nagy theorem
[38,68,69], stating that a matrix T can be dilated to a unitary
one by doubling its original dimension,

UT =
(

T DT †

DT −T †

)
, (3.11)

where DT = √
I − T †T . This is possible conditioned on T

being a contraction, i.e., the largest singular value of T has to
be smaller or equal to 1. For a matrix that is not a contraction,
it can be made contractive by rescaling it with its largest
singular value. Equation (3.11) is called 1-dilation, and this
block-encoding scheme requires one ancilla qubit.
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If the multiplication of two nonunitary matrices T1T2 is
desired, then the 2-dilation scheme is employed where

UT1 =

⎛
⎜⎝

T1 0 DT †
1

DT1 0 −T †
1

0 I 0

⎞
⎟⎠, (3.12)

UT2 =

⎛
⎜⎜⎜⎝

T2 0 DT †
2

DT2 0 −T †
2

0 I 0

⎞
⎟⎟⎟⎠. (3.13)

In general, an n-dilation matrix has the form

UT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 0 · · · 0 DT †

DT 0 0 · · · 0 −T †

0 I 0 · · · 0 0

0 0 I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.14)

To propagate T (N ) n times, n-dilation is needed. It is worth
noting that since the n-dilated matrix is sparse, the compila-
tion has polynomial scaling rather than exponential.

C. Measurement

Since the state vector for the RDM is now dilated, to obtain
the information of the RDM itself, one needs to project the
state vector onto its original subspace. The projection can be
seen as calculating the overlap of the two wave functions,
one being the state vector in the dilated space and one being
the basis vectors in the original space. This overlap can be
calculated on a quantum computer by the modified Hadamard
test [32], shown in Figs. 1 and 2.

Here V represents the dilated propagator T (N ), and U
transforms the default computational basis to the basis of the
projected subspace. For instance, for a two-state system with
memory length N = 2, U is achieved by the Hadamard gates
on the first two qubits.

D. Complexity analysis

The computational cost on classical computers scales ex-
ponentially with the memory length N . For an m-level system
with memory length N , the propagator matrix has the di-
mension of m2N × m2N . The space complexity (i.e., classical
storage) on a classical computer is O(m4N ). For a quantum
computer, the number of qubits required to store this n-dilated
matrix is log2n + 2N log2m, which has exponential saving.
For time complexity, the number of operations on a clas-
sical computer include O(m4N ) multiplications and O(m4N )

FIG. 1. Modified Hadamard test for calculating the real part of
the state overlap.

FIG. 2. Modified Hadamard test for calculating the imaginary
part of the state overlap.

additions for each step of the propagation. To compile the
propagator T (N ) on a quantum machine, d ∼= 2N log2m num-
ber of qubits are needed, which breaks down to O(d × 4d )
native gates, i.e., O(N log2m × m4N ), which scales roughly
the same as on the classical machine. It is worth mentioning
that this compilation complexity does not take into account the
symmetry and the sparseness of the dilated propagator matrix
(shown in the next section), which may reduce the gate counts
to polynomial scaling.

IV. RESULTS AND DISCUSSIONS

A. System-bath parameters

We use the spin-boson model to test the quantum algorithm
thus proposed. Specifically, the system Hamiltonian describes
a symmetric two-level system with a nonzero off-diagonal
coupling,

Hs = −h̄
(|s1〉〈s2| + |s2〉〈s1|), (4.1)

where |s1〉 and |s2〉 are localized states that are eigenstates of
the position operator ŝ,

ŝ|si〉 = si|si〉, (4.2)

and 
 is the tunneling frequency. The harmonic bath and
its interaction with the system are charactered by the Ohmic
spectral density,

J (ω) = π

2
h̄ξωe−ω/ωc , (4.3)

where dimensionless ξ is the Kondo parameter that deter-
mines the strength of the system-bath coupling, and ωc is
the cutoff frequency of the bath. For all the simulation re-
sults below, the system and bath parameters are chosen to be

 = 1, ξ = 0.1, β = 5, ωc = 7.5, and �t = 0.25, respec-
tively. These values are chosen randomly except for the
convergence parameter �t . The values are all in atomic units.

B. Propagator matrix

The propagator matrices, T , and their dilated counterparts
are demonstrated in Figs. 3–6 for memory length N = 1 and
2. These figures are the heat maps of the nonunitary and the
dilated unitary matrices. The three plots in a row are the real,
imaginary, and the absolute value of the matrix, respectively.

C. Simulation results

Three different propagation schemes are explored. The first
one considers memory length N = 1 and is illustrated picto-
rially in Fig. 7 (left) where only self-interactions (loops) and
nearest timepoint couplings (curves) are accounted for. They
coincide with the terms I0(s±

k , s±
k ) and K (s±

k+1, s±
k )I1(s±

k+1, s±
k )
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FIG. 3. Propagator matrix T with memory length N = 1.

FIG. 4. Dilated propagator matrix with memory length N = 1.

FIG. 5. Propagator matrix T with memory length N = 2.

FIG. 6. Dilated propagator matrix with memory length N = 2.

013135-5



PETER L. WALTERS AND FEI WANG PHYSICAL REVIEW RESEARCH 6, 013135 (2024)

FIG. 7. Three propagation schemes. Time arrow goes from right to left. Left: N = 1 which includes self-interactions and nearest time
couplings. Middle: Iterative scheme for N = 2, which includes self-interactions and nearest and non-nearest time couplings. Right: Full
memory with all-time couplings.

FIG. 8. Memory length N = 1. Left: Diagonal elements of the RDM. Middle: Real part of the off-diagonal element of the RDM. Right:
Imaginary part of the off-diagonal element of the RDM. (Curves: classical benchmark; dots: quantum computing).

FIG. 9. Memory length N = 2. Left: Diagonal elements of the RDM. Middle: Real part of the off-diagonal element of the RDM. Right:
Imaginary part of the off-diagonal element of the RDM. (Curves: classical benchmark; dots: quantum computing).

FIG. 10. Full memory. Left: Diagonal elements of the RDM. Middle: Real part of the off-diagonal element of the RDM. Right: Imaginary
part of the off-diagonal element of the RDM. (Curves: classical benchmark; dots: quantum computing).
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in the propagator matrix T [Eq. (3.4)]. It has the unique fea-
ture that operationally, it is Markovian, whereas, physically,
it corresponds to the non-Markovian dynamics of memory
span �t . The second scheme extends to non-nearest timepoint
interactions. These correspond to the I2, I3, … terms of the
propagator matrix. As illustrated in Fig. 7 (middle) for the
case of memory length N = 2, it iteratively propagates two
timepoints to the next two timepoints. This iterative approach
can be generalized for any finite memory length, and therefore
deserves a separate demonstration. The third scheme explores
the case where the memory spans the whole dynamics. In this
scenario, full memory is included and direct implementation
of the propagator matrix T without iteration is required. This
propagation scheme is illustrated in Fig. 7 (right).

Figure 8–10 show the simulation results corresponding to
the above three propagation schemes. Among each scheme,
three plots are given that represent the diagonal elements of
the RDM (population dynamics), and the real and imaginary
parts of the off-diagonal elements of the RDM (coherence).
The curves are benchmark calculations from the classical
computer, and the dots are the quantum algorithm compiled on
QISKIT [70] and simulated on QASM. Unfortunately, the depth
of the circuits is too deep for NISQ devices. For all the simu-
lations, the initial state is localized in one state. The bath is an
ensemble of harmonic oscillators initially at thermal equilib-
rium. As the dynamics ensues, the system starts to tunnel back
and forth between the two states. With time, the population
eventually approaches the 50-50 equilibrium state that coin-
cides with the detailed balance. The real and imaginary parts
of the off-diagonal elements of the RDM offer information
about coherence. The real part eventually approaches a fixed
value that indicates the phenomenon of coherence trapping by
the non-Markovian bath [71]. The quantum algorithm results
match perfectly with the classical benchmark.

D. Discussions

The simulation results described thus far are non-
Markovian dynamics at finite temperature. Except for the
harmonic bath assumption, no other ad hoc approximations
have been made. Therefore, it is expected that the algo-
rithm can serve as a general framework for a wide range
of condensed phase quantum dynamics simulations. In ad-
dition, since the memory requirement only grows linearly
with the time correlation length and logarithmically with
the system size, the quantum algorithm offers exponential
reduction in space complexity and is well suited to handle
multisite quantum dynamics, such as large spin systems in
dissipative environment [72,73], or long-range proton transfer
in biomolecules [74–76], which are very challenging if not
impossible on classical computers.

As alluded to previously, the propagator matrices T and
their dilated counterparts show very symmetric structures
for a symmetric two-level system. This is due to the equiv-
alence in time propagation between 〈1|T |1〉〈1|T †|1〉 and
〈0|T |0〉〈0|T †|0〉, or 〈0|T |1〉〈1|T †|0〉 and 〈1|T |0〉〈0|T †|1〉,
etc., where the simultaneous permutations of 0 and 1 give the
same results. Meanwhile, the dilated matrices are subblock
sparse. Exploiting these features is expected to give more

compact and shallower circuit structure [77–79] than using
the existing compiling platform in QISKIT.

The novelty of our proposed algorithm can be elaborated
as follows. First, it maps the temporal entanglement of the
non-Markovian dynamics to the physical entanglement of the
qubits, which is the root of exponential saving on memory.
Second, it computes the entire path integral on the quantum
machine by first encoding the path amplitude in the amplitude
of the qubits and then using the Hadamard test to complete
the index contraction. On the other hand, as the authors are
not aware of any efficient quantum algorithm for performing
singular value decomposition, there is a classical cost associ-
ated with it when constructing the dilated matrix, which scales
as O(d3) for a d × d matrix.

V. CONCLUSION

We have developed a general quantum algorithm for sim-
ulating quantum dynamics of a multistate system coupled to
its harmonic bath. The algorithm is based on Feynman’s path
integral formulation, with the influence functional accounting
for the full non-Markovian effect at finite temperature. The
unitary dynamics implementation is through the construction
of a propagator that evolves the states spanning the full
memory, and then through a block-encoding technique, the
Sz.-Nagy dilation. The resource requirement scales linearly
with the memory length and logarithmically with the system
size and the degree of dilation, overcoming the exponential
scaling on classical computers. A modified Hadamard test
is used to retrieve the information of the RDM. We have
demonstrated its feasibility and accuracy based on the spin-
boson model on the QASM simulator. The excellent agreement
between the quantum and classical computing results offers
a starting point for future algorithm design for dealing with
open quantum system dynamics in the finite temperature non-
Markovian regime. It is important to point out that while this
work has not been focused on efficient compilation, several
ideas are worth exploring to render better time complexity.
Such schemes include (1) quantum singular value transfor-
mation [80–82] which directly block-encodes the powers of
the propagator matrix used for iteration rather than resorting
to n dilation, (2) quantum imaginary time evolution [43,83]
that maps the nonunitary part of the influence functional to
a unitary dynamics, and (3) introducing auxiliary variables to
decrease the degree of non-Markovianity [84]. These ideas are
currently undergoing investigation in our group.
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FIG. 11. Exemplar circuit for the dilate propagator matrix T with memory length N = 1.

APPENDIX

Below, Eqs. (A1)–(A6) are the coefficients appearing in the
influence functional in Eq. (2.6).

αk′k = 2

π

∫ ∞

−∞
dω

J (ω)

ω2

exp
(

β h̄ω

2

)
sinh

(
β h̄ω

2

) sin2

(
ω�t

2

)
e−iω�t (k−k′ ),

0 < k < k′ < N, (A1)

αkk = 1

2π

∫ ∞

−∞
dω

J (ω)

ω2

exp
(

β h̄ω

2

)
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(
β h̄ω

2

) (1 − e−iω�t ),

0 < k < N, (A2)

αN0 = 2

π

∫ ∞

−∞
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J (ω)

ω2

exp
(

β h̄ω

2

)
sinh

(
β h̄ω

2

) sin2

(
ω�t

4

)
e−iω[t−(�t/2)],

(A3)

α00 = αNN = 1

2π

∫ ∞

−∞
dω

J (ω)

ω2

exp
(

β h̄ω

2

)
sinh

(
β h̄ω

2

) (1 − e−iω�t/2),

(A4)

αk0 = 2

π

∫ ∞

−∞
dω

J (ω)

ω2

exp
(

β h̄ω

2

)
sinh

(
β h̄ω

2

) sin

(
ω�t

4

)

× sin

(
ω�t

2

)
e−iω[k�t−(�t/4)], 0 < k < N, (A5)

αNk = 2

π

∫ ∞

−∞
dω

J (ω)

ω2

exp
(

β h̄ω

2

)
sinh

(
β h̄ω

2

) sin

(
ω�t

4

)

× sin

(
ω�t

2

)
e−iω[t−k�t−(�t/4)], 0 < k < N.

(A6)

The spectral density is extended to the negative frequencies
defined as J (−ω) = −J (ω) to avoid the singularity in the
integration.

Figure 11 is an exemplar circuit for the dilate propagator
matrix T .
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