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All known resource states for measurement-based quantum teleportation in correlation space possess
symmetry-protected topological order, but is this a sufficient or even necessary condition? This work considers
two families of one-dimensional qubit states to answer this question in the negative. The first is a family
of matrix-product states with bond dimension two that includes the cluster state as a special case, protected
by a global non-on-site symmetry, which is characterized by a finite correlation length and a degenerate
entanglement spectrum in the thermodynamic limit but which is unable to deterministically teleport a universal
set of single-qubit gates. The second are states with bond dimension four that are a resource for deterministic
universal teleportation of finite single-qubit gates, but which possess no symmetry.
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I. INTRODUCTION

The measurement-based model of quantum computation
(MBQC) [1,2] is wholly equivalent to the quantum circuit
model in its ability to effect arbitrary quantum gates [3] but
is advantageous for practical implementations where the ap-
plication of local entangling gates on demand is challenging.
In MBQC, the entanglement is present at the outset, in the
form of a specific resource state, and quantum gates are tele-
ported by means of adaptive single-qubit measurements. A
long-standing open problem has been to identify the essential
characteristics required of a resource state, and accordingly
much attention has been focused on one-dimensional sys-
tems which are able to perform measurement-based gate
teleportation (MBQT) of arbitrary single-qubit gates. To
date, all resource states for MBQT that have been identified
possess symmetry-protected topological (SPT) order [4–8],
which passively protects the quantum information from cer-
tain kinds of errors [9]; these include the cluster states of
the original one-way quantum computation model [3,10], and
Haldane-phase states [11] such as the ground states of the
Affleck-Kennedy-Lieb-Tasaki (AKLT) state [12,13], its gen-
eralizations to two dimensions and higher spin [14–18], and a
two-dimensional state with genuine SPT order [19].

For all resource states with SPT order, MBQT is performed
in correlation space in the matrix product state (MPS) repre-
sentation [20–23]. The group cohomology [4] ensures that the
teleported gate in correlation space can be expressed as a ro-
tation operator in a tensor product with an unimportant “junk”
matrix [6,7]. Unfortunately, the teleported gates throughout
the universal SPT phase are not strictly in the protected “wire
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basis,” which restricts the target teleported gates to infinitesi-
mal rotations in correlation space [8,24] except for the cluster
state itself. Another key signature of SPT is the degeneracy of
the entanglement spectrum (ES) [7,25,26].

While SPT order has been a powerful approach to classi-
fying resource states for MBQT, a plethora of key questions
remain, even for the simplest case of one-dimensional qubits.
Are resource states with SPT order required for MBQT? If
not, what other kinds of resource states are possible? Can
any resources other than the cluster state effect the telepor-
tation of universal single-qubit gates based on finite, rather
than infinitesimal, unitary rotations? What is the relationship
between the ability of a state to be a resource for MBQT and
the structure of the teleported gates?

This work partially addresses these questions by
considering two specific examples. The first is a family of SPT
states with bond dimension D = 2 that includes the cluster
state as a special case, which is protected by a global Z2×Z2

symmetry that is generally neither unitary nor on-site. States
within this family have finite correlation length and exhibit
a degenerate ES for arbitrary boundary conditions in the
thermodynamic limit but (except for the cluster state itself) are
unable to deterministically teleport a universal set of protected
single-qubit gates in correlation space. The second example is
an extension of the cluster state to a family of non-SPT states
with bond dimension D = 4, which are a resource for the de-
terministic teleportation of single-qubit gates, based on finite
rotations. The results demonstrate that SPT order is neither
sufficient nor necessary for a state to be an MBQT resource.

II. TECHNICAL BACKGROUND

A one-dimensional state for n qubits can be written in the
MPS representation as

|ψ〉 =
∑

i1,...,in

A[n][in] · · · A[1][i1]|i1 · · · in〉. (1)
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The A[k][ik], where in = {0, 1}, are rectangular matrices and
their product (indexed by the strings i1 · · · in) therefore consti-
tute the amplitudes of |ψ〉 in the computational basis. Given
that A[n][in] (A[1][i1]) is a row (column) vector, it is conven-
tional to introduce matrices B[k][ik] and boundary vectors |L〉
and |R〉 such that A[n][in] = 〈R|B[n][in], A[1][i1] = B[1][i1]|L〉,
and A[k][ik] = B[k][ik] otherwise, in which case Eq. (1) be-
comes

|ψ〉 =
∑

i1,...,in

〈R|B[n][in] · · · B[1][i1]|L〉|i1 · · · in〉. (2)

In this work, the MPS matrices B[k][0] and B[k][1] are ar-
bitrary complex matrices with fixed “bond” dimension D,
and are normalized in (left) site canonical form,

∑
ik

B[k][ik]
†

B[k][ik] = I for each k, where I is the identity matrix.
A general single-qubit measurement can be effected by first

performing a unitary gate Ũ on the qubit, and then measuring
it in the computational basis by projecting the result onto
|m〉〈m|, m = 0, 1. This is equivalent to applying the operator
|m〉〈m|Ũ = |m〉〈φm|, where |φm〉 = Ũ †|m〉 constitute a basis
for the unitary:

|φ0〉 = e−iϕ1 cos ϑ |0〉 + e−iϕ2 sin ϑ |1〉;
|φ1〉 = eiϕ2 sin ϑ |0〉 − eiϕ1 cos ϑ |1〉. (3)

Consider the action of this operator on the first qubit of |ψ〉 in
Eq. (2). Ignoring normalization, one obtains

|m〉1〈φm|ψ〉 = |m1〉〈R|
∑

i2,...,in

B[n][in] · · · B[2][i2]

×
⎛
⎝∑

i1

〈φm|i1〉B[1][i1]

⎞
⎠|L〉|i2 · · · in〉

= |m〉1

∑
i2,...,in

〈R|B[n][in] · · · B[2][i2]|L′〉|i2 · · · in〉,

(4)

where the left boundary state in correlation space is trans-
formed into |L′〉 = B[1][φm]|L〉 by the operator B[1][φm] =∑

i1
〈φm|i1〉B[1][i1]; in general, one obtains

B[k][φ0] = eiϕ1 cos ϑB[k][0] + eiϕ2 sin ϑB[k][1]; (5)

B[k][φ1] = e−iϕ2 sin ϑB[k][0] − e−iϕ1 cos ϑB[k][1], (6)

for measurements of 0 and 1, respectively. Successive mea-
surements therefore apply a sequence of gates to |L〉. For
MBQT, however, B[k][φm] must correspond to a unitary op-
erator for all m, a severe restriction on possible resource states
which are defined by the matrices B[ik ][ik].

One-dimensional cluster states of qubits with open bound-
ary conditions provide a convenient reference for the work
presented here. It is straightforward to verify that these are
(nonuniquely) described by an MPS representation with ma-
trices

B[k][0] = 1√
2

(
1 0
1 0

)
= |+〉〈0|;

B[k][1] = 1√
2

(
0 1
0 −1

)
= |−〉〈1| (7)

for k = 1, . . . , n, where |±〉 = (|0〉 ± |1〉)/
√

2, 〈R| = 〈0|, and
|L〉 = √

2|+〉. Because the matrices are independent of site,
the MPS representation is said to be translationally invariant,
even though the state itself is defined with open boundary
conditions. One obtains

B[k][φm] = 〈φm|0〉|+〉〈0| + 〈φm|1〉|−〉〈1|, (8)

which is unitary if

|〈φm|0〉|2|+〉〈+| + |〈φm|1〉|2|−〉〈−| = cI;

|〈φm|0〉|2|0〉〈0| + |〈φm|1〉|2|1〉〈1| = cI, (9)

where c is a constant related to the (re)normalization of
|ψ〉 after the measurement. These two conditions require
|〈φm|0〉|2 = |〈φm|1〉|2 = c for m = 0, 1, and it is straight-
forward to verify that they together imply B[k][φm] =
X mHRZ (θ ) and c = 1/2 ignoring overall phase factors,
where

X =
(

0 1
1 0

)
; Z =

(
1 0
0 −1

)
; H = 1√

2

(
1 1
1 −1

)
, (10)

and RZ (θ ) = exp(iZθ ).

III. SPT STATES UNABLE TO EFFECT MBQT

A. MPS matrices and the state

The (unitary) teleported gate (5) is chosen to have the form
yU , where

U =
(

eiφ1 cos θ eiφ2 sin θ

e−iφ2 sin θ −e−iφ1 cos θ

)
(11)

with all parameters assumed to be real, and y is a proportion-
ality factor to account for the renormalization of the state after
measurement; this case corresponds to an MPS with bond
dimension D = 2. Consider first the simplest case of a trans-
lationally invariant system. The derivation is straightforward
but unwieldy, and is relegated to Appendix A. Choosing the
MPS matrices to be in column form as in the cluster-state
case, Eq. (7), and ensuring that they do not depend on the
measurement angles, restricts both the measurement basis and
the teleported gates; one choice corresponds to ϕ2 = −ϕ1 :=
−ϕ, ϑ = (2k + 1)π/4, k ∈ Z, and y = 1/

√
2. These yield the

measurement basis Ũ † = HRZ (ϕ), exactly as in cluster-state
teleportation. One obtains the (nonunique) expressions for the
MPS matrices, Eq. (A10):

B[0] =
(

cos θ 0
sin θ 0

)
; B[1] =

(
0 sin θ

0 − cos θ

)
, (12)

which in turn yield the measurement-dependent teleported
unitary gates, Eq. (A11):

U [0] = ZRY (θ )RZ (ϕ); (13)

U [1] = RY (−θ )RZ (ϕ) = ZRY (θ )ZRZ (ϕ) = U0Z, (14)

where Y = iXZ .
Assuming a translationally invariant MPS, consistently

measuring |0〉 would yield successive rotations about Z
and RY (−θ )RZ (ϕ)RY (θ ), a measurement-dependent rotation
around Z conjugated by a fixed rotation around Y . These
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are nonparallel axes, which allows for the teleportation of
any single-qubit unitary; for the cluster state, θ = θc := (2k +
1)π/4, k ∈ Z, and the latter rotation axis is X . However, the
byproduct operator when measuring |1〉 is not easily com-
pensated for. Consider the teleported gates on two successive
measurements:

U (2)U (1) = ZRY (θ )Zm2 RZ (ϕ2)ZRY (θ )Zm1 RZ (ϕ1)

= Zm1+m2 RY [(−1)m1+m2+1θ ]RZ (ϕ2)

× RY [(−1)m1θ ]RZ (ϕ1). (15)

If m1 = 1, the second rotation corresponds instead to
RY [(−1)m2θ ]RZ (ϕ2)RY (−θ ), which if m2 = 0 is a rotation
around Z conjugated by a rotation around Y in the opposite di-
rection than would be the case for m1 = 0. One strategy would
be to choose ϕ2 = 0 on the next measurement, but if one
instead obtains m2 = 1 one is left with a second unwanted ro-
tation RY (−2θ ) that would somehow need to be compensated
for on the third measurement. The MBQT protocol would
therefore become nondeterministic. Another strategy might
be to restrict the ϕi to infinitesimal angles, but in this case
the error induced by the byproduct is RY (−θ )RZ (ϕ)RY (θ ) −
RY (θ )RZ (ϕ)RY (−θ ) ≈ i sin(θ )ϕX → 0 as ϕ → 0. Because
the error accumulates, the teleported state would be indistin-
guishable from noise after several iterations.

The inability of a state defined by the MPS (12) to effect
deterministic MBQT of either finite or infinitesimal gates is
in marked contrast from the “oblivious wire” protocol that
ensures that SPT states have uniform computational power to
effect MBQT [24,27]. In that case the gates are infinitesimally
displaced from the symmetry-protected wire basis, in order
to compensate for the fact that the junk matrices are gener-
ally measurement-dependent. But this is not possible for the
simple D = 2 case under consideration here. Over all MPS
matrices (12), only the cluster state can effect deterministic
teleportation.

The (unnormalized) state |ψ〉 can be constructed either
directly from Eq. (2) or using the machinery in Ref. [21]. With
left and right boundary states

〈R| = aR〈0| + bR〈1|; |L〉 = aL|0〉 + bL|1〉 (16)

and site-dependent values of θ , the state takes an especially
simple form after some straightforward algebra:

|ψ〉 =
n−1∏
j=1

C( j, j+1)
θ j

(x1|0〉 + x2|1〉) ⊗ |+〉⊗n−2

⊗(aL|0〉 + bL|1〉), (17)

x1 = aR cos θn + bR sin θn, x2 = aR sin θn − bR cos θn, and

C( j, j+1)
θ j

=
√

2diag(cos θ j, sin θ j, sin θ j,− cos θ j ) j, j+1 (18)

acts on qubits j and j + 1. With θ j = π/4 for j > 1, so
that Cθ j = CZ = diag(1, 1, 1,−1), the state coincides with the
one-dimensional cluster state with rotated left and right physi-
cal qubits. As C j, j+1

θ j
is only a unitary operator for θ j = θc ∀ j,

Eq. (17) should be considered as an expression of the state
rather than as a procedure for generating it.

The static correlation function COk ,O′
r
= 〈OkOr〉 −

〈Ok〉〈Or〉 with respect to operators Ok and Or acting

on sites k and r generically decays exponentially for
a 1D MPS with finite bond dimension [28] (consistent
with the parent Hamiltonian being gapped [29–32]):
‖COk ,O′

r
‖ ∼ e−|k−r|/ξ , where ξ is the correlation length.

For a translationally invariant MPS, ξ = −1/ ln(λ1), where
λ1 is the second-largest eigenvalue of the transfer matrix [33]

Tk =
∑

ik

B[k][ik]
∗ ⊗ B[k][ik]. (19)

Using Eq. (12), one obtains λ0 = 1 and λ1 = cos 2θ ; thus,
ξ = −1/ ln(cos 2θ ). The correlation length is zero when θ =
θc, it diverges as ξ ∼ 1/2θ2 for θ → 0,

B. SPT order

The real-space representation of the state, Eq. (17), allows
for the explicit construction of the symmetry operators. As
shown in Appendix B, the state possesses an exact Z2 × Z2

symmetry O(g1, g2)|ψ〉 = |ψ〉, where O(g1, g2) = X g1
oddX g2

even
and g1, g2 ∈ {0, 1}. The operators Xodd and Xeven are the
analogs of the X symmetry operators that act on odd-labeled
and even-labeled sites of the cluster state, respectively, and for
an even number of sites are given by Eq. (B25):

Xodd = P1,2
θ1

⎛
⎝X1

∏
j=1

P2 j,2 j+1
θ2 j

P2 j+1,2 j+2
θ2 j+1

X2 j+1

⎞
⎠Zn;

Xeven = Z1

⎛
⎝∏

j

P2 j−1,2 j
θ2 j−1

P2 j,2 j+1
θ2 j

X2 j

⎞
⎠(

Pn−1,n
θn

Xn
)
, (20)

where

P j, j+1
θ j

= diag(cot θ j, tan θ j, tan θ j, cot θ j ) j, j+1. (21)

Alternatively, these can be written as Xodd =
S1,2(

∏
j S2 j+1,2 j+2) and Xeven = (

∏
j S2 j,2 j+1)Sn−1,n, where

S j, j+1 = P j−1, j
θ j

P j, j+1
θ j+1

Zj−1XjZ j+1 are (nonlocal) stabilizer
generators for the state, Eq. (17). While these symmetry
operators square to the identity and commute with one
another, as shown in Appendix B, they are neither unitary nor
on-site.

Consider the left boundary qubit. The X and Z gates are
transformed by the Cθ operators into effective Pauli gates:
X 1 = P1,2

θ1
X1Z2 and Z1 = Z1. Then one may determine the

effective operators X
′
1 and Z

′
1 corresponding to X 1 and Z1

conjugated by O(g1, g2), respectively. Straightforward algebra
presented in Appendix B reveals Z

′
1 = (−1)g1 Z1 and X

′
1 =

(−1)g2 X . The transformations on Z and X by the Z2×Z2

operators are therefore equivalent to conjugation under an
effective operator Oeff (g1, g2) = X

g1 Z
g2 , which is the same

as for the regular cluster state. A similar result holds for the
right boundary. Thus the state belongs to the same maximally
noncommutative phase as the cluster state [6,8].

In the cluster-state limit θ j = θc ∀ j, the symmetry opera-
tors (20) reduce to Xodd = ∏

j=1 X2 j−1 and Xeven = ∏
j=1 X2 j ,

as expected. The on-site symmetry U (g) = U (g1, g2) =
X g1

oddX g2
even, which acts in parallel on adjacent two-site blocks

so that U (g)⊗n/2|ψ〉 = |ψ〉, is shared by the MPS matrices
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themselves via [21,34,35]∑
j

U (g)i,jA[j] = eiφgV (g)A[i]V (g)†, (22)

where i and j are bitstrings of length 2, and A[i] = A[i1i2] :=
A[i1] ⊗ A[i2]. It is straightforward to verify that V (g) = Y g1

1 ⊗
Y g2

2 and φg = 0. For any choices of θ j �= θc, however, O(g) =
O(g1, g2) is non-on-site, and there is no analog of Eq. (22)
that can be expressed in block-injective form for any length
smaller than n. Rather,∑

j

O(g)i,jA[j] �= eiφgV (g)A[i]V (g)−1, (23)

where i, and j are now bitstrings of length n and g =
(1010 · · · )g1 ⊕ (0101 · · · )g2 (⊕ is bitwise addition mod 2), for
any V (g): the only nonzero term on the left is j = i ⊕ g, and
|O(g)i,i⊕g| �= 1. Thus the symmetry of the real-space state is
no longer shared by the (product of) MPS matrices for a global
non-on-site symmetry.

C. Entanglement spectrum

Consistent with the SPT order of the state defined either by
the MPS matrices (7) or the state (17), the ES is asymptoti-
cally degenerate in the thermodynamic limit for all choices of
boundary conditions. The ES corresponds to the eigenvalues
of the reduced density matrix associated with a partition of
the one-dimensional state with 
 qubits on the left and n − 


qubits on the right. It can be obtained by diagonalizing the
reduced density matrix, but more efficiently from the MPS
matrices. Following Prosen [36], one may express the ampli-
tudes of the state (2) as

〈R|B[n][in] · · · B[1][i1]|L〉 =
D∑

j=1

�R

, j�

L

, j ; (24)

here,

�R

, j := 〈R|B[n]

n · · · B[
+1]

+1 | j〉; �L


, j := 〈 j|B[
]

 · · · B[1]

1 |L〉, (25)

and | j〉 are computational basis states. The elements of covari-
ance matrices V L

n and V R
n are obtained via

〈 j′|V R

 | j〉 :=

∑

+1,...,n

�R∗

, j′�

R

, j ;

〈 j′|V L

 | j〉 :=

∑
1,...,


�L

, j′�

L∗

, j, (26)

where the sum is over all internal indices. The ES coincides
with the eigenvalues of V R


 V L

 .

The calculations for the solution (12) with boundary con-
ditions specified in Eq. (16) are given in Appendix C. For a
bulk bipartition where 2 < 
 < n − 1, one obtains Eq. (C5):

V R

 = 1

2

(
1 + α 0

0 1 − α

)
;

V L

 = 1

2

(
1 + β cos(2θ
) β sin(2θ
)

β sin(2θ
) 1 − β cos(2θ
)

)
, (27)

where α := (|x1|2 − |x2|2)
∏n−1

k=
+1 cos(2θk ) and β :=
(|aL|2 − |bL|2)

∏
−1
k=1 cos(2θk ), with x1, x2 defined below

Eq.(17). Note that the matrix elements depend explicitly on
the boundary states. If

∏
−1
k=1 cos(2θk ) = ∏n−1

k=
+1 cos(2θk ) =
0, then V R


 and V L

 are proportional to the identity and the ES

is degenerate. This condition is automatically satisfied for the
cluster state, θk = θc,∀k. If θk �= θc, however, both matrices
are strictly diagonal only if α and β do not depend on the
choice of 
, corresponding to |x1|2 = |x2|2 and |aL|2 = |bL|2,
which includes the state that is fully invariant under O(g1, g2).
In general, the (unnormalized) eigenvalues of V R


 V L

 are given

by

λ± = 1
4 {1 + αβ cos(2θ
)

±
√

[1 + αβ cos(2θ
)]2 − (1 − α2)(1 − β2)}. (28)

The ES becomes asymptotically degenerate in the thermo-
dynamic limit, for any boundary conditions. For 0 < θk < θc,
one has 0 < cos(2θk ) < 1 so that α, β → 0 as n → ∞ for
any bulk bipartition, 
 ∼ n/2; in that case, V L


 ,V R

 → I/2.

Alternatively, in the translationally invariant case θk = θ one
may write cos(2θ ) = e−1/ξ , where ξ is the correlation length.
This yields α = (|x1|2 − |x2|2)e−(n−
−2)/ξ and β = (|aL|2 −
|bL|2)e−(
−2)/ξ , so that α, β → 0 exponentially quickly on
finite chains as long as 
, n − 
 � ξ . In this aspect, the system
behaves much like the AKLT chain [37].

To summarize the results of this section: SPT order on
qubits is not a sufficient condition for the state to be a resource
for deterministic MBQT with finite or infinitesimal gates.

IV. NON-SPT STATES THAT EFFECT MBQT

Consider next the case where the teleported gate in the D =
4 correlation space is a direct sum U ⊕ J of a 2×2 unitary U ,
given again by Eq. (11), and an arbitrary junk matrix

J =
(

peiφp qeiφq

reiφr seiφs

)
, (29)

with all parameters real. The U at each measurement step
acts on the {|00〉, |01〉} computational subspace of the virtual
two-qubit state, which can be considered as encoding a single
qubit, while J acts on the complementary subspace. Assuming
a direct sum is notationally convenient in what follows, but
choosing any other subset of registers yields an equivalent
description. For example, if U and J act on the odd-parity
and even-parity subspaces {|01〉, |10〉} and {|00〉, |11〉} respec-
tively, the output has the characteristic structure of a match
gate [38,39], and indeed would correspond exactly to a match-
gate if det(U ) = det(J ).

The procedure follows closely the strategy above. Setting
ϕ2 = −ϕ1 := −ϕ, φ1=φp=φr = ϕ, and φ2 = φq = φs = −ϕ,
one obtains

B[k][0] = y sec ϑ

⎛
⎜⎜⎝

cos θ 0 0 0
sin θ 0 0 0

0 0 p 0
0 0 r 0

⎞
⎟⎟⎠;

B[k][1] = y csc ϑ

⎛
⎜⎜⎝

0 sin θ 0 0
0 − cos θ 0 0
0 0 0 q
0 0 0 s

⎞
⎟⎟⎠. (30)
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Enforcing the canonical normalization conditions requires
sec2 ϑ = csc2 ϑ , which is satisfied again by setting ϑ = (2k +
1)π/4, k ∈ Z, in which case the teleported single-qubit uni-
taries coincide with Eqs. (13) and (14) according to the
measurement outcome. The normalization conditions also
require y = 1/

√
2 and p2 + r2 = q2 + s2 = 1. These last con-

ditions can be conveniently incorporated by setting p = cos γ ,
r = sin γ , q = sin δ, and s = cos δ, in which case the junk
matrices become

J[0] =
(

eiϕ cos γ e−iϕ sin δ

eiϕ sin γ e−iϕ cos δ

)
; J[1] = J[0]Z. (31)

A major motivation is to explore the possibility that the
direct-sum format can yield new resource states for determin-
istic MBQT with finite rotations, so the primary focus is on
the θ = π/4 case, in which case U [m] = X mHRZ (ϕ). As-
suming site-dependent junk matrices, and general boundary
states 〈R| = {aR, bR, cR, dR} and |L〉 = {aL, bL, cL, dL}T , one
obtains the unnormalized states

|ψ〉 =
n−1∏
j=1

C j, j+1
Z |ψ1〉 +

n−1∏
j=1

C j, j+1
γ j ,δ j

|ψ2〉, (32)

where

|ψ1〉 = (x1|0〉 + x2|1〉) ⊗ |+〉n−2 ⊗ (aL|0〉 + bL|1〉);

|ψ2〉 = (x3|0〉 + x4|1〉) ⊗ |+〉n−2 ⊗ (cL|0〉 + dL|1〉), (33)

x1 = aR + bR, x2 = aR − bR,

x3 =
√

2(cR cos γn + dR sin γn);

x4 =
√

2(cR sin δn + dR cos δn), (34)

and

C j, j+1
γ j ,δ j

=
√

2diag(cos γ j, sin δ j, sin γ j, cos δ j ) j, j+1. (35)

The state in Eq. (32) allows for the teleportation of determin-
istic single-qubit unitaries (with feed-forward) for all choices
of junk-matrix angles γ j and δ j , because the computational
subspace acts like a cluster state and is orthogonal to (and
therefore remains independent of) the junk subspace.

The matrices (30) are in block-diagonal form, so that the
MPS is not injective [21]. This further implies that the state
(32) cannot be the unique ground state of a local frustration-
free parent Hamiltonian, but rather that the ground-state
degeneracy of such a parent Hamiltonian is two, correspond-
ing to the number of blocks; this however doesn’t preclude
the possibility of preparing the state directly via a quantum
circuit. In principle, the noninjectivity could affect readout of

the final state [8]. In practice, the state can be chosen such that
Cn−1,n

γn−1,δn−1
= I via γn−1 = δn−1 = π/4 so that no entanglement

is generated between the last two qubits in the junk sector.
This prevents any information reaching the junk output state
cL|0〉 + dL|1〉, which can be defined in any convenient way,
and therefore the quantum information encoded in the cluster
sector remains uncontaminated.

Similar to state (17), the C j, j+1
γ j ,δ j

in Eq. (32) are not generally
unitary and are (potentially) site-dependent. Because (32) is
described by a superposition of states, each defined by a dif-
ferent set of generalized stabilizers, it no longer possesses SPT
order. Thus neither SPT order nor injectivity are necessary
conditions for a state to be a resource for MBQT.

V. CONCLUSIONS AND DISCUSSION

The results presented in this work demonstrate that the
presence of symmetry-protected topological order is neither
a sufficient nor necessary condition for a quantum state to
be a resource for deterministic measurement-based quantum
gate teleportation. On the one hand, a family of states of
one-dimensional qubits with a non-on-site SPT symmetry is
unable to deterministically teleport universal one-qubit gates
in correlation space, while on the other a family of states with
no SPT order is able to do so. All identified states can be
considered to be analogs of cluster states, but where the CZ

entangling gates in their description are generally replaced by
diagonal nonunitary operators.

The family of states with non-on-site symmetries identi-
fied here belong to the same SPT phase as the cluster state,
and therefore can be prepared from the cluster state via a
constant-depth quantum circuit comprised of nonoverlapping
k-local unitaries [40]. The fact that such a unitary transfor-
mation maps a resource state for deterministic MBQT to a
nonresource state suggests that a large number of states in a
given SPT phase may not be resources for MBQT. Rather,
perhaps only the subset of transformations that preserve the
on-site nature of the symmetry would ensure that the state
remains computationally useful.
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APPENDIX A: DERIVATION OF MPS MATRICES

Express the MPS matrices as follows:

B[0] =
(

a11eiφ11 a12eiφ12

a13eiφ13 a14eiφ14

)
; B[1] =

(
a21eiφ21 a22eiφ22

a23eiφ23 a24eiφ24

)
. (A1)

Equations (5) and (6) become

B[φ0] = (eiϕ1 cos ϑB[0] + eiϕ2 sin ϑB[1]) := yU [0]; (A2)

B[φ1] = (e−iϕ2 sin ϑB[0] − e−iϕ1 cos ϑB[1]) := yU [1], (A3)
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where

U [0] =
(

eiφ1 cos θ eiφ2 sin θ

e−iφ2 sin θ −e−iφ1 cos θ

)
(A4)

is an arbitrary target single-qubit unitary gate, and U [1] and the constant y are to be determined. Solving Eq. (A2) yields
constraints on the parameters appearing in B[1]:

a21 = e−i(φ21+ϕ2 )(−a11ei(φ11+ϕ1 ) cot ϑ + yeiφ1 cos θ csc ϑ);

a22 = e−i(φ22+ϕ2 )(−a12ei(φ12+ϕ1 ) cot ϑ + yeiφ2 sin θ csc ϑ);

a23 = e−i(φ23+φ2+ϕ2 )(−a13ei(φ13+ϕ1+φ2 ) cot ϑ + y sin θ csc ϑ);

a24 = e−i(φ24+φ1+ϕ2 )(−a14ei(φ14+ϕ1+φ1 ) cot ϑ − y cos θ csc ϑ). (A5)

The MPS matrices can be expressed in a column-oriented form similar to those of the cluster state, Eq. (7), by setting
a21 = a23 = 0, which can be accomplished via

a11 = y cos θ sec ϑ ; φ11 = φ1 − ϕ1; a13 = y sin θ sec ϑ ; φ13 = −φ2 − ϕ1;

a12 = 0; φ22 = φ2 − ϕ2; a14 = 0; φ24 = −φ1 − ϕ2; (A6)

this yields

B[0] = ye−iϕ1 sec ϑ

(
eiφ1 cos θ 0
e−iφ2 sin θ 0

)
; B[1] = ye−iϕ2 csc ϑ

(
0 eiφ2 sin θ

0 −e−iφ1 cos θ

)
. (A7)

If the MPS matrices depend explicitly on all the measurement angles then MBQC is impossible. Setting φ1 = ϕ1, φ2 = −ϕ1,
and ϕ2 = −ϕ1 yields

B[0] = y sec ϑ

(
cos θ 0
sin θ 0

)
; B[1] = y csc ϑ

(
0 sin θ

0 − cos θ

)
, (A8)

with only ϑ remaining. The normalization condition (neglecting the junk sector) is

B[0]†B[0] + B[1]†B[1] = y2

(
sec2 ϑ 0

0 csc2 ϑ

)
= I, (A9)

which yields ϑ = (2k + 1)π/4, k ∈ Z, and y = 1/
√

2. Thus the measurement angle ϑ is fixed; choosing ϑ = π/4, one obtains

B[0] =
(

cos θ 0
sin θ 0

)
; B[1] =

(
0 sin θ

0 − cos θ

)
. (A10)

The output unitary matrices are then

U [0] =
(

eiϕ1 cos θ e−iϕ1 sin θ

eiϕ1 sin θ −e−iϕ1 cos θ

)
= ZRY (θ )RZ (ϕ);

U [1] =
(

eiϕ1 cos θ −e−iϕ1 sin θ

eiϕ1 sin θ e−iϕ1 cos θ

)
= RY (−θ )RZ (ϕ) = ZRY (θ )ZRZ (ϕ) = U [0]Z, (A11)

where Rα (θ ) := exp(iθα).

APPENDIX B: SPT ORDER

In this Appendix, we show that the states defined by Eq. (17) have nontrivial symmetry-protected topological order, by
explicitly constructing the symmetry operators in real space.

1. Review of SPT order in cluster states

It is useful to review the basics of SPT order in cluster states, and the following analysis follows expands on Ref. [41].
The Z2×Z2 symmetry of the cluster state with an even number of sites n and periodic boundary conditions is explicitly
generated by the operators Xeven = ∏

j X2 j and Xodd = ∏
j X2 j+1. Because (X ⊗ I )CZ = CZ (X ⊗ Z ), applying the Xj operator
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on C j−1, j
Z C j, j+1

Z returns C j−1, j
Z C j, j+1

Z Z j−1XjZ j+1 so that all Z factors cancel on the application of either Xodd or Xeven. The
symmetry operators leave the cluster state invariant because all qubits are originally set to |+〉 which is an eigenstate
of X .

For a cluster state with open boundary conditions, the symmetry operators need to be slightly modified. Again assume n is
even. The additional Z operators resulting from the action of X on the first and last sites, X1C

1,2
Z = C1,2

Z X1Z2 and XnC
n−1,n
Z =

Cn−1,n
Z Zn−1Xn, will be canceled by other Z gates arising from the adjacent odd or even sites, respectively. But the action of X

on site 2 and n − 1, X2C
1,2
Z = C1,2

Z Z1X2 and Xn−1C
n−1,n
Z = Cn−1,n

Z Xn−1Zn, yield Z operators on the first and last sites that aren’t
canceled by other X gates in Xeven or Xodd. The symmetry operators therefore become Xeven = Z1

∏
j X2 j and Xodd = ∏

j X2 j+1Zn.
The CZ gates are diagonal and therefore commute with Z operators, so the cluster state is the unique +n eigenstate of the n-fold

sum of stabilizer generators in the bulk S j = Zj−1XjZ j+1 (2 � j � n − 1) and at the boundaries S1 = X1Z2 and Sn = Zn−1Xn.
Pauli gates at the boundaries are transformed by the CZ operators into effective Pauli gates X 1 = C1,2

Z X1C
1,2
Z = X1Z2 (note that

C†
Z = CZ ), Z1 = Z1, X n = Zn−1Xn, and Zn = Zn. Defining the generators of the Z2×Z2 symmetry as U (g1, g2) = X g1

oddX g2
even,

where g1, g2 ∈ {0, 1}, the effective Pauli operators on the left site are transformed as U (g1, g2)X 1U (g1, g2)† = (−1)g2 X 1 and
U (g1, g2)Z1U (g1, g2)† = (−1)g1 Z1, which is equivalent to an effective transformation Ueff (g1, g2) = X

g1 Z
g2 . A similar result

holds for the right edge.
SPT phases in one-dimensional systems can be classified by the second cohomology group. If Ueff is a projective representa-

tion of the symmetry group, then Ueff (g)Ueff (h) = ω(g, h)Ueff (g ⊕ h), where ⊕ here corresponds to bitwise addition (not a direct
sum!) and ω(g, h) (called a 2-cocycle) must satisfy the consistency conditions [42]

ω(g, h)ω(g ⊕ h, k) = ω(h, k)ω(g, h ⊕ k) (B1)

and

ω(g, h) ∼ ω(g, h)β(g)β(h)β(g ⊕ h)−1, (B2)

where the β are phase factors. The 2-cocycle for the left boundary of the cluster state is therefore

ω(g1, g2; h1, h2) = Ueff (g1, g2)Ueff (h1, h2)U −1
eff (g1 ⊕ h1, g2 ⊕ h2) = X

g1 Z
g2 X

h1 Z
h2 Z

g2⊕h2 X
g1⊕h1

= (−1)g2h1 I, (B3)

where the result is obtained by considering each case. Check that this satisfies Eq. (B1): (−1)g2h1 (−1)(g2⊕h2 )k1 =
(−1)h2k1 (−1)g2(h1⊕k1 ). If g2 = 0 then the left and right sides are (−1)h2k1 , and if g2 = 1 then one requires (−1)h1 (−1)h̄2k1 =
(−1)h2k1 (−1)h1⊕k1 . Next, if k1 = 0 then both sides are (−1)h1 , and if k1 = 1 then one requires (−1)h1 (−1)h̄2 = (−1)h2 (−1)h̄1 or
(−1)h1−h̄1 = (−1)h2−h̄2 which is true for any {h1, h2}. Therefore Eq. (B1) is satisfied. A sufficient condition for SPT order is that
the 2-cocycles anticommute:

ω(g1, g2; h1, h2)ω(h1, h2; g1, g2)−1 = Ueff (g1, g2)Ueff (h1, h2)Ueff (g1, g2)−1Ueff (h1, h2)−1

= (X1Z2)g1 Zg2
1 (X1Z2)h1 Zh2

1 Zg2
1 (Z2X1)g1 Zh2

1 (Z2X1)h1

= X g1
1 Zg2

1 X h1
1 Zh2

1 Zg2
1 X g1

1 Zh2
1 X h1

1

= X g1
1 (−1)g2h1 X h1

1 Zh2
1 X g1

1 Zh2
1 X h1

1

= (−1)g1h2 (−1)g2h1 I �= I, (B4)

consistent with Eq. (B3); thus, the algebra associated with the two effective Pauli operators at the surface is (maximally)
noncommutative [19].

2. Symmetry operators for the state defined in Eq. (17)

We first show that there exist two-qubit operators Pθ j and Qθ j , defined as

P j, j+1
θ j

= |0〉 j〈0|Xj+1M j+1
θ j

Xj+1 + |1〉 j〈1|M j+1
θ j

;

Q j, j+1
θ j

= |0〉 j〈1|Xj+1M j+1
θ j

Xj+1 + |1〉 j〈0|M j+1
θ j

= P j, j+1
θ j

Xj, (B5)

where

M j+1
θ j

= tan θ j |0〉 j+1〈0| + cot θ j |1〉 j+1〈1|, (B6)

such that

P j−1, j
θ j

Q j, j+1
θ j+1

C j−1, j
θ j

C j, j+1
θ j+1

= P j−1, j
θ j

P j, j+1
θ j+1

XjC
j−1, j
θ j

C j, j+1
θ j+1

= C j−1, j
θ j

C j, j+1
θ j+1

(Zj−1XjZ j+1), (B7)
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i.e., that

P j−1, j
θ j

Q j, j+1
θ j+1

= C j−1, j
θ j

C j, j+1
θ j+1

(Zj−1XjZ j+1)
(
C j−1, j

θ j
C j, j+1

θ j+1

)−1
. (B8)

Note that the inverse is applied since Cθ is not unitary.
Neglecting the factor of

√
2, the two-qubit operator C j, j+1

θ j
defined in Eq. (18) can be conveniently expressed as

C j, j+1
θ j

= |0〉 j〈0|N j+1
θ j

+ |1〉 j〈1|Xj+1N j+1
θ j

Xj+1Zj+1, (B9)

where

N j+1
θ j

= cos θ j |0〉 j+1〈0| + sin θ j |1〉 j+1〈1|. (B10)

To simplify the notation without loss of generality, rewrite

C j, j+1
θ j

→ Cj = |0〉〈0| ⊗ Nj + |1〉〈1| ⊗ (XNjXZ ), (B11)

with

Nj = cos θ j |0〉〈0| + sin θ j |1〉〈1|, (B12)

and furthermore assume that j = 1. A few lines of algebra yields

C j, j+1
θ j

C j+1, j+2
θ j+1

→ (C1 ⊗ I )(I ⊗ C2) = N1 ⊗ |0〉〈0| ⊗ N2 + XN1XZ ⊗ |1〉〈1| ⊗ XN2XZ (B13)

and

(C1 ⊗ I )(I ⊗ C2)(Z ⊗ X ⊗ Z ) = N1Z ⊗ |0〉〈1| ⊗ N2Z + XN1X ⊗ |1〉〈0| ⊗ XN2X. (B14)

Next, one seeks operators P j, j+1
θ j

→ P1 ⊗ I and Q j+1, j+2
θ j+1

→ I ⊗ Q2, where

P1 = |0〉〈0| ⊗ α1 + |0〉〈1| ⊗ α2 + |1〉〈0| ⊗ α3 + |1〉〈1| ⊗ α4;

Q2 = |0〉〈0| ⊗ β1 + |0〉〈1| ⊗ β2 + |1〉〈0| ⊗ β3 + |1〉〈1| ⊗ β4, (B15)

and the αi and βi are free parameters, such that (P1 ⊗ I )(I ⊗ Q2)(C1 ⊗ I )(I ⊗ C2) returns the right hand side of Eq. (B14).
Straightforward algebra yields

(P1 ⊗ I )(I ⊗ Q2)(C1 ⊗ I )(I ⊗ C2) = cos θ1|0〉〈0| ⊗ α1|0〉〈0| ⊗ β1N2 + cos θ1|0〉〈0| ⊗ α1|1〉〈0| ⊗ β3N2

+ sin θ1|0〉〈0| ⊗ α1|0〉〈1| ⊗ β2XN2XZ + sin θ1|0〉〈0| ⊗ α1|1〉〈1| ⊗ β4XN2XZ

+ sin θ1|1〉〈1| ⊗ α4|0〉〈0| ⊗ β1N2 + sin θ1|1〉〈1| ⊗ α4|1〉〈0| ⊗ β3N2

− cos θ1|1〉〈1| ⊗ α4|0〉〈1| ⊗ β2XN2XZ − cos θ1|1〉〈1| ⊗ α4|1〉〈1| ⊗ β4XN2XZ, (B16)

and α2 = α3 = 0. Comparing this expression with the right hand side of Eq. (B14), the free parameters must take the values

α4 = tan θ1|0〉〈0| + cot θ1|1〉〈1|; α1 = cot θ1|0〉〈0| + tan θ1|1〉〈1| = Xα4X ;

β3 = tan θ2|0〉〈0| + cot θ2|1〉〈1|; β2 = cot θ2|0〉〈0| + tan θ2|1〉〈1| = Xβ3X ; β1 = β4 = 0. (B17)

One then obtains

P1 = |0〉〈0| ⊗ XM1X + |1〉〈1| ⊗ M1;

Q2 = |0〉〈1| ⊗ XM2X + |1〉〈0| ⊗ M2, (B18)

where

Mj = tan θ j |0〉〈0| + cot θ j |1〉〈1|. (B19)

Reverting to unsimplified notation, one obtains

P j, j+1
θ j

Q j+1, j+2
θ j+1

C j, j+1
θ j

C j+1, j+2
θ j+1

= P j, j+1
θ j

P j+1, j+2
θ j+1

Xj+1C
j, j+1
θ j

C j+1, j+2
θ j+1

= C j, j+1
θ j

C j+1, j+2
θ j+1

(ZjXj+1Zj+2), (B20)

where

P j, j+1
θ j

= |0〉 j〈0|Xj+1M j+1
θ j

Xj+1 + |1〉 j〈1|M j+1
θ j

(B21)

and

M j+1
θ j

= tan θ j |0〉 j+1〈0| + cot θ j |1〉 j+1〈1|, (B22)
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though the nonunitary operator P j, j+1
θ j

is more conveniently expressed as a diagonal matrix acting on qubits j and j + 1:

P j, j+1
θ j

= diag(cot θ j, tan θ j, tan θ j, cot θ j ) j, j+1. (B23)

These recover the statement Eq. (B7). Using the same procedure, one may derive similar expressions for the boundary operators:

P1,2
θ1

X1C
1,2
θ1

C2,3
θ2

= C1,2
θ1

C2,3
θ2

(X1Z2I3); Pn−1,n
θn

XnC
n−2,n−1
θn−1

Cn−1,n
θn

= Cn−2,n−1
θn−1

Cn−1,n
θn

(In−2Zn−1Xn). (B24)

Second, we prove that the joint operator P j, j+1
θ j

Q j+1, j+2
θ j+1

commutes with its counterpart P j+2, j+3
θ j+2

Q j+3, j+4
θ j+3

two sites over. Using

the simplified notation, this corresponds to proving that [(P1 ⊗ I )(I ⊗ Q2) ⊗ I⊗2, I⊗2 ⊗ (P3 ⊗ I )(I ⊗ Q4)] = 0. The third qubit
is the only one with support on both operators, so one need only focus on the contributions of the operators on this position: the
XM2X and M2 from Q2, and the |0〉〈0| and |1〉〈1| from P3. And, because all of these operators are diagonal in the computational
basis, they commute, and therefore the P j, j+1

θ j
Q j+1, j+2

θ j+1
and P j+2, j+3

θ j+2
Q j+3, j+4

θ j+3
operators commute. Thus

∏
j P2 j,2 j+1

θ2 j
Q2 j+1,2 j+2

θ2 j+1
=∏

j P2 j,2 j+1
θ2 j

P2 j+1,2 j+2
θ2 j+1

X2 j+1 and
∏

j P2 j−1,2 j
θ2 j−1

Q2 j,2 j+1
θ2 j

= ∏
j P2 j−1,2 j

θ2 j−1
P2 j,2 j+1

θ2 j
X2 j are bulk symmetry operators for the state (17).

Likewise, the boundary operators in Eq. (B24) automatically commute with the bulk operators two sites over, because they have
support on different qubits. The analogs of the cluster-state symmetry operators (for even n) are then

Xodd = P1,2
θ1

X1

⎛
⎝∏

j=1

P2 j,2 j+1
θ2 j

P2 j+1,2 j+2
θ2 j+1

X2 j+1

⎞
⎠Zn; Xeven = Z1

⎛
⎝∏

j=1

P2 j−1,2 j
θ2 j−1

P2 j,2 j+1
θ2 j

X2 j

⎞
⎠(

Pn−1,n
θn

Xn
)
, (B25)

where Z gates are added to the last and first sites of Xodd and Xeven, respectively, as was necessary for the cluster state with open
boundary conditions. Note that Xodd and Xeven are neither unitary nor on-site global symmetries.

3. Generalized stabilizers for the state defined in Eq. (17)

We first show that the Pθ j operators yield n − 2 operators S j, j+1, 2 � j � n − 1, such that S j, j+1|ψ〉 = |ψ〉. These are the
analogs of the bulk cluster-state stabilizer generators Zj−1XjZ j+1. Given that the Cθ j gates are diagonal, one may rewrite Eq. (B7):

P j−1, j
θ j

P j, j+1
θ j+1

Zj−1XjZ j+1C
j−1, j
θ j

C j, j+1
θ j+1

= S j, j+1C
j−1, j
θ j

C j, j+1
θ j+1

= C j−1, j
θ j

C j, j+1
θ j+1

Xj . (B26)

Thus Sj, j+1 = P j−1, j
θ j

P j, j+1
θ j+1

Zj−1XjZ j+1 are eigenoperators for the state with unit eigenvalue, for any j in the bulk, and generalize
the stabilizer operators for the cluster state. With Eq. (B21), one obtains

S j, j+1 =
[
|0〉 j−1〈0|XjM

j
θ j

Xj + |1〉 j−1〈1|M j
θ j

][
|0〉 j〈0|Xj+1M j+1

θ j+1
Xj+1 + |1〉 j〈1|M j+1

θ j+1

]
Zj−1XjZ j+1

= [|0〉 j−1〈0|Xj
(
tan θ j |0〉 j〈0| + cot θ j |1〉 j〈1|)Xj + |1〉 j−1〈1|(tan θ j |0〉 j〈0| + cot θ j |1〉 j〈1|)]

× [|0〉 j〈0|Xj+1
(
tan θ j+1|0〉 j+1〈0| + cot θ j+1|1〉 j+1〈1|)Xj+1 + |1〉 j〈1|(tan θ j+1|0〉 j+1〈0| + cot θ j+1|1〉 j+1〈1|)]

× Zj−1XjZ j+1

= [|0〉 j−1〈0|(tan θ j |1〉 j〈1| + cot θ j |0〉 j〈0|) + |1〉 j−1〈1|(tan θ j |0〉 j〈0| + cot θ j |1〉 j〈1|)]
× [|0〉 j〈0|(tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|) + |1〉 j〈1|(tan θ j+1|0〉 j+1〈0| + cot θ j+1|1〉 j+1〈1|)]Zj−1XjZ j+1

= [|0〉 j−1〈0|(cot θ j |0〉 j〈0|) + |1〉 j−1〈1|(tan θ j |0〉 j〈0|)]
× [|0〉 j〈0|(tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]Zj−1XjZ j+1

+ [|0〉 j−1〈0|(tan θ j |1〉 j〈1|) + |1〉 j−1〈1|(cot θ j |1〉 j〈1|)]
× [|1〉 j〈1|(tan θ j+1|0〉 j+1〈0| + cot θ j+1|1〉 j+1〈1|)]Zj−1XjZ j+1

= (
cot θ j |0〉 j−1〈0| + tan θ j |1〉 j−1〈1|)|0〉 j〈0|(tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)Zj−1XjZ j+1

+ (
tan θ j |0〉 j−1〈0| + cot θ j |1〉 j−1〈1|)|1〉 j〈1|(tan θ j+1|0〉 j+1〈0| + cot θ j+1|1〉 j+1〈1|)Zj−1XjZ j+1

= (
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)

+ (
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|). (B27)

Note that the Sj, j+1 are nonseparable three-local operators that are neither unitary nor Hermitian. These operators square to the
identity, as required for generalized stabilizers:

S2
j, j+1 = [(

cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)
+ (

tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]
013134-9
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× [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)

+ (
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

= [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

× [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

+ [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

× [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

+ [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

× [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

+ [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

× [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

= [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

× [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

+ [(
tan θ j |0〉 j−1〈0| − cot θ j |1〉 j−1〈1|)|1〉 j〈0|(tan θ j+1|0〉 j+1〈0| − cot θ j+1|1〉 j+1〈1|)]

× [(
cot θ j |0〉 j−1〈0| − tan θ j |1〉 j−1〈1|)|0〉 j〈1|(− tan θ j+1|1〉 j+1〈1| + cot θ j+1|0〉 j+1〈0|)]

= [(|0〉 j−1〈0| + |1〉 j−1〈1|)|0〉 j〈0|(|1〉 j+1〈1| + |0〉 j+1〈0|)]
+ [(|0〉 j−1〈0| + |1〉 j−1〈1|)|1〉 j〈1|(|0〉 j+1〈0| + |1〉 j+1〈1|)] = I j−1, j, j+1, (B28)

as desired.
Second, internal consistency also requires that the generalized stabilizer operators for different j values commute. In

simplified notation, one needs to only verify that [S1,2 ⊗ I, I ⊗ S2,3] = 0, where using Eqs. (B18) and (B19), one obtains

S j, j+1 = cot θ j |0〉〈0| ⊗ |0〉〈1| ⊗ XMj+1XZ − tan θ j |1〉〈1| ⊗ |0〉〈1| ⊗ XMj+1XZ

+ tan θ j |0〉〈0| ⊗ |1〉〈0| ⊗ Mj+1Z − cot θ j |1〉〈1| ⊗ |1〉〈0| ⊗ Mj+1Z, (B29)

where j = 1, 2 is strictly a label and does not denote qubit position. Multiplication yields the unenlightening expressions

(S1,2 ⊗ I )(I ⊗ S2,3) = − cot θ1 tan θ2|0〉〈0| ⊗ |0〉〈1| ⊗ XM2XZ|0〉〈1| ⊗ XM3XZ

− cot θ1 cot θ2|0〉〈0| ⊗ |0〉〈1| ⊗ XM2XZ|1〉〈0| ⊗ M3Z

+ tan θ1 tan θ2|1〉〈1| ⊗ |0〉〈1| ⊗ XM2XZ|0〉〈1| ⊗ XM3XZ

+ tan θ1 cot θ2|1〉〈1| ⊗ |0〉〈1| ⊗ XM2XZ|1〉〈0| ⊗ M3Z

+ tan θ1 tan θ2|0〉〈0| ⊗ |1〉〈0| ⊗ M2Z|1〉〈0| ⊗ M3Z

+ tan θ1 cot θ2|0〉〈0| ⊗ |1〉〈0| ⊗ M2Z|0〉〈1| ⊗ XM3XZ

− cot θ1 tan θ2|1〉〈1| ⊗ |1〉〈0| ⊗ M2Z|1〉〈0| ⊗ M3Z

− cot θ1 cot θ2|1〉〈1| ⊗ |1〉〈0| ⊗ M2Z|0〉〈1| ⊗ XM3XZ;

(I ⊗ S2,3)(S1,2 ⊗ I ) = cot θ1 cot θ2|0〉〈0| ⊗ |0〉〈1| ⊗ |0〉〈1|XM2XZ ⊗ XM3XZ

+ cot θ1 tan θ2|0〉〈0| ⊗ |0〉〈1| ⊗ |1〉〈0|XM2XZ ⊗ M3Z

− tan θ1 cot θ2|1〉〈1| ⊗ |0〉〈1| ⊗ |0〉〈1|XM2XZ ⊗ XM3XZ

− tan θ1 tan θ2|1〉〈1| ⊗ |0〉〈1| ⊗ |1〉〈0|XM2XZ ⊗ M3Z

− tan θ1 cot θ2|0〉〈0| ⊗ |1〉〈0| ⊗ |1〉〈0|M2Z ⊗ M3Z

− tan θ1 tan θ2|0〉〈0| ⊗ |1〉〈0| ⊗ |0〉〈1|M2Z ⊗ XM3XZ

+ cot θ1 cot θ2|1〉〈1| ⊗ |1〉〈0| ⊗ |1〉〈0|M2Z ⊗ M3Z

+ cot θ1 tan θ2|1〉〈1| ⊗ |1〉〈0| ⊗ |0〉〈1|M2Z ⊗ XM3XZ. (B30)

As XM2XZ|0〉〈1| = cot θ2|0〉〈1| while |0〉〈1|XM2XZ = − tan θ2|0〉〈1|, terms 1 and 3 in both expressions coincide; similarly, as
XM2XZ|1〉〈0| = − tan θ2|1〉〈0| while |1〉〈0|XM2XZ = cot θ2|1〉〈0|, terms 2 and 4 in both expressions coincide. Similar results
apply to the remaining terms, and therefore [S1,2 ⊗ I, I ⊗ S2,3] = 0.
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Third, one may likewise define generalizations of the surface stabilizers from the operations in Eq. (B24):

P1,2
θ1

X1Z2C
1,2
θ1

C2,3
θ2

= S1,2C
1,2
θ1

C2,3
θ2

= C1,2
θ1

C2,3
θ2

X1;

Pn−1,n
θn

Zn−1XnC
n−2,n−1
θn−1

Cn−1,n
θn

= Sn−1,nC
n−2,n−1
θn−1

Cn−1,n
θn

= Cn−2,n−1
θn−1

Cn−1,n
θn

Xn, (B31)

so that S1,2 = P1,2
θ1

X1Z2 and Sn−1,n = Pn−1,n
θn

Zn−1Xn. Following a similar analysis as above, it is straightforward to show that these
operators also commute with the bulk generalized stabilizer generators, Eq. (B27). Likewise, S2

1,2 = I1,2 and S2
n−1,n = In−1,n.

Fourth, for Xodd and Xeven, Eq. (B25), to represent a Z2×Z2 symmetry, they should also square to the identity. We can make
use of the results above for this purpose. Because P j−1, j

θ j
, Eq. (B23), is diagonal, one can write

S j, j+1 = P j−1, j
θ j

P j, j+1
θ j+1

Zj−1XjZ j+1 = Zj−1Zj+1P j−1, j
θ j

P j, j+1
θ j+1

Xj (B32)

or

S2 j+1,2 j+2 = Z2 jZ2 j+2P2 j,2 j+1
θ2 j+1

P2 j+1,2 j+2
θ2 j+2

X2 j+1 = P2 j,2 j+1
θ2 j+1

P2 j+1,2 j+2
θ2 j+2

X2 j+1Z2 jZ2 j+2, (B33)

so that

P2 j,2 j+1
θ2 j+1

P2 j+1,2 j+2
θ2 j+2

X2 j+1 = Z2 jZ2 j+2S2 j+1,2 j+2 = S2 j+1,2 j+2Z2 jZ2 j+2. (B34)

One can therefore rewrite Xodd as

Xodd = P1,2
θ1

X1

⎛
⎝∏

j=1

P2 j,2 j+1
θ2 j

P2 j+1,2 j+2
θ2 j+1

X2 j+1

⎞
⎠Zn = (Z2S1,2)

⎛
⎝∏

j=1

Z2 jZ2 j+2S2 j+1,2 j+2

⎞
⎠Zn = (S1,2)

⎛
⎝∏

j=1

S2 j+1,2 j+2

⎞
⎠, (B35)

where θ2 j+1 → θ2 j is an unimportant shift; here we have used the fact that all the Z operators commute through the S operators,
Eq. (B34). Then

X 2
odd = (S1,2)

⎛
⎝∏

j=1

S2 j+1,2 j+2

⎞
⎠(S1,2)

⎛
⎝∏

j′=1

S2 j′+1,2 j′+2

⎞
⎠ = I, (B36)

because all generalized stabilizers commute with one another, as shown above, and then square to the identity, Eq. (B28). Thus
the symmetry operator Xodd squares to the identity. A similar result follows for Xeven = (

∏
j S2 j,2 j+1)(Sn−1,n). The symmetry

operators written this way have an intuitive form, as products of generalized stabilizers on two-site blocks, counting either from
the first or second site. It is important to keep in mind, however, that each generalized stabilizer operator acts on three sites.

4. SPT order for the state defined in Eq. (17)

Finally, one can apply these results to the analysis of SPT order. Again, we can treat the set of n Sj, j+1 operators as effective
stabilizers that uniquely define the state, including the qubits at the boundaries. The X and Z gates on the boundary qubit are
transformed by the Cθ operators into effective Pauli gates, and can be read directly from Eq. (B24):

X 1 = P1,2
θ1

X1Z2; Z1 = Z1; X n = Pn−1,n
θn

Zn−1Xn; Zn = Zn. (B37)

Define the generators of the Z2×Z2 as O(g1, g2) = X g1
oddX g2

even, where Xeven and Xodd are given in Eq. (B25) and g1, g2 ∈ {0, 1}.
We write O(g1, g2) rather than U (g1, g2) as the former is only unitary for the specific case of θi = θc ∀i. The goal is to determine
the effective Pauli operators X

′
1 and Z

′
1 for the left side that satisfy X

′
1O(g1, g2) = O(g1, g2)X 1 and Z

′
1O(g1, g2) = O(g1, g2)Z1;

recall that O(g1, g2)2 = I so that O(g1, g2)−1 = O(g1, g2). The latter is simpler:

Z
′
1O(g1, g2) = O(g1, g2)Z1 = (

P1,2
θ1

X1
)g1(P1,2

θ1
P2,3

θ2
X2

)g2 Z1 = Z1(−1)g1
(
P1,2

θ1
X1

)g1(P1,2
θ1

P2,3
θ2

X2
)g2

, (B38)

which gives Z
′
1 = (−1)g1 Z1. Consider the cases O(1, 0)X 1 and O(0, 1)X 1 separately:

O(1, 0)X 1 = P1,2
θ1

X1P1,2
θ1

X1Z2 = (|0〉1〈0|X2M2
θ1

X2 + |1〉1〈1|M2
θ1

)(|1〉1〈1|X2M2
θ1

X2Z2 + |0〉1〈0|M2
θ1

Z2)

= (|0〉1〈0|X2M2
θ1

X2M2
θ1

Z2 + |1〉1〈1|M2
θ1

X2M2
θ1

X2Z2) = Z2;

X 1O(1, 0) = P1,2
θ1

X1Z2P1,2
θ1

X1 = P1,2
θ1

X1P1,2
θ1

X1Z2 = Z2, (B39)

so that [X 1, O(1, 0)] = 0;

O(0, 1)X 1 = P1,2
θ1

(
P2,3

θ2
X2P1,2

θ1
X1

)
Z2

X 1O(0, 1) = P1,2
θ1

X1Z2P1,2
θ1

P2,3
θ2

X2 = −P1,2
θ1

(
X1P1,2

θ1
P2,3

θ2
X2

)
Z2, (B40)
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so that one need only compare the terms in parentheses:

P2,3
θ2

X2P1,2
θ1

X1 = (|0〉2〈1|X3M3
θ2

X3 + |1〉2〈0|M3
θ2

)(|0〉1〈1|X2M2
θ1

X2 + |1〉1〈0|M2
θ1

)
= (tan θ1|0〉1〈1| + cot θ1|1〉1〈0|)|0〉2〈1|X3M3

θ2
X3 + (cot θ1|0〉1〈1| + tan θ1|1〉1〈0|)|1〉2〈0|M3

θ2
;

X1P1,2
θ1

P2,3
θ2

X2 = (|1〉1〈0|X2M2
θ1

X2 + |0〉1〈1|M2
θ1

)(|0〉2〈1|X3M3
θ2

X3 + |1〉2〈0|M3
θ2

)
= (tan θ1|0〉1〈1| + cot θ1|1〉1〈0|)|0〉2〈1|X3M3

θ2
X3 + (tan θ1|1〉1〈0| + cot θ1|0〉1〈1|)|1〉2〈0|M3

θ2
, (B41)

which coincide. Therefore X
′
1 = (−1)g2 X 1. The transformations on Z and X by the Z2×Z2 operators are equivalent to

conjugation under an effective operator Oeff (g1, g2) = X
g1 Z

g2 , where X and Z for the left boundary are defined in Eq. ((B37).
A similar result holds for the right boundary. Therefore Oeff (g1, g2) has the same form as for the regular cluster state,
discussed above; this isn’t surprising, as the cluster-state symmetry operators are included in the general form, Eq. (B25).
To summarize, the states given by Eq. (17) possess Z2×Z2 SPT order for all θi, albeit one that is generally neither unitary nor
on-site.

APPENDIX C: ENTANGLEMENT SPECTRUM

Consider the entanglement spectrum for a bipartition of the state defined by the MPS matrices (12), where the boundary states
are defined in Eq. (16), leading to the state given in Eq. (17). Applying Eq. (25) yields the rather intuitive-looking expressions

�R

, j =

⎧⎪⎪⎨
⎪⎪⎩

x1|0〉 (
, j) = (n − 1, 0);

x2|1〉 (
, j) = (n − 1, 1);
1√
2

(∏n−1
k=
+1 Ck,k+1

θk

)
(x1|0〉 + x2|1〉) ⊗ |+〉⊗(n−
−2) ⊗ | j〉 
 < n − 1,

(C1)

and

�L

, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aL cos θ1|0〉 + bL sin θ1|1〉 (
, j) = (1, 0);

aL sin θ1|0〉 − bL cos θ1|1〉 (
, j) = (1, 1);

1√
2

(∏
−1
k=1 Ck,k+1

θk

)(cos θ
 sin θ


sin θ
 − cos θ


)
| j〉 ⊗ |+〉⊗(
−2) ⊗ (aL|0〉 + bL|1〉) 
 > 1,

(C2)

where x1 and x2 are defined below Eq. (17). The �L

, j and �R


, j correspond to 2
-dimensional and 2n−
-dimensional vec-
tors respectively, whose index gets summed over in Eq. (26). A straightforward calculation employing Eqs. (C1) and (C2)
yields

〈0|V R

 |0〉 =

{|x1|2 
 = n − 1;
1
2

[
1 + (|x1|2 − |x2|2

)∏n−1
k=
+1 cos(2θk )

]

 < n − 1;

〈0|V R

 |1〉 = 〈1|V R


 |0〉 = 0;

〈1|V R

 |1〉 =

{|x2|2 
 = n − 1;
1
2

[
1 − (|x1|2 − |x2|2

)∏n−1
k=
+1 cos(2θk )

]

 < n − 1.

(C3)

and

〈0|V L

 |0〉 =

{|aL|2 cos2 θ1 + |bL|2 sin2 θ1 
 = 1;
1
2

[
1 + (|aL|2 − |bL|2) ∏


k=1 cos(2θk )
]


 > 1;

〈0|V L

 |1〉 = 〈1|V L


 |0〉 =
{(|aL|2 − |bL|2) cos θ1 sin θ1 
 = 1;

1
2

(|aL|2 − |bL|2) sin(2θ
)
∏
−1

k=1 cos(2θk ) 
 > 1;

〈1|V L

 |1〉 =

{|aL|2 sin2 θ1 + |bL|2 cos2 θ1 
 = 1;
1
2

[
1 − (|aL|2 − |bL|2) ∏


k=1 cos(2θk )
]


 > 1.
(C4)

Consider the case of a bulk bipartition, 2 < 
 < n − 1. One obtains

V R

 = 1

2

(
1 + α 0

0 1 − α

)
; V L


 = 1

2

(
1 + β cos(2θ
) β sin(2θ
)

β sin(2θ
) 1 − β cos(2θ
)

)
, (C5)
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where α := (|x1|2 − |x2|2)
∏n−1

k=
+1 cos(2θk ) and β := (|aL|2 − |bL|2)
∏
−1

k=1 cos(2θk ). The eigenvalues of V R

 V L


 are readily ob-
tained:

λ± = 1

4

{
1 + αβ cos(2θ
) ±

√
[1 + αβ cos(2θ
)]2 − (1 − α2)(1 − β2)

}
. (C6)

Equation (C6) corresponds to the entanglement spectrum of the (unnormalized) state defined by Eqs. (12) and (17).
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