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Hydrodynamics of quantum vortices on a closed surface

Yanqi Xiong 1 and Xiaoquan Yu 1,2,*

1Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies,

University of Otago, Dunedin 9016, New Zealand

(Received 4 May 2023; revised 20 November 2023; accepted 1 December 2023; published 1 February 2024)

We develop a neutral vortex fluid theory on closed surfaces with zero genus. The theory describes collective
dynamics of many well-separated quantum vortices in a superfluid confined on a closed surface. Comparing
to the case on a plane, the covariant vortex fluid equation on a curved surface contains an additional term
proportional to Gaussian curvature multiplying the circulation quantum. This term describes the coupling
between topological defects and curvature in the macroscopic level. For a sphere, the simplest nontrivial
stationary vortex flow is obtained analytically and this flow is analogous to the celebrated zonal Rossby-Haurwitz
wave in classical fluids on a nonrotating sphere. For this flow the difference between the coarse-grained vortex
velocity field and the fluid velocity field generated by vortices is solely driven by curvature and vanishes in the
corresponding vortex flow on a plane when the radius of the sphere goes to infinity.
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I. INTRODUCTION

Fluids on curved surfaces exhibit rich phenomena which
are absent on a plane. The interplay between geometry, topol-
ogy and fluid dynamics has been explored extensively in
diverse platforms, including quantum Hall liquids [1–6], ac-
tive matter [7–9], classical fluids [10–13], and soft materials
[14–16].

The coupling between geometric potentials induced by
curvature and quantum vortices plays an essential role in
determining properties of superfluids on a curved surface
[17,18]. For a superfluid film, a curved surface is realized by
the underlying substrate [18]. Recent experimental advances
in Bose-Einstein condensates (BECs) in International Space
Station [19] now allow ultracold atomic bubbles [20], pro-
viding a promising possibility to investigate a bubble trapped
superfluid experimentally. Motivated by the experimental
progress, research interests on few body vortex dynamics on
curved surfaces have been renewed [21–23], adding different
perspectives on a more mathematical treatment of point vortex
dynamics on curved surfaces [24–26]. However, the effects
of curvature and topology on collective dynamics of quan-
tum vortices remain unexplored, motivating us to consider
vortex fluids on curved surfaces. Furthermore, static vor-
tex distributions influenced by curvature remains a challenge
[18], especially when the vortex number is large. Examining
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stationary solutions of such vortex fluid equations would pro-
vide a feasible way to tackle this problem.

A vortex fluid is a coarse-grained model for a system
consisting of a large number of point vortices and its dynam-
ical equations describe collective dynamics of well-separated
quantum vortices at large scales [27,28]. The theory reveals
several emergent properties. For instance, a binary vortex fluid
is compressible [28] while a chiral vortex fluid is incompress-
ible [27]; there exists an odd viscous tensor and the circulation
quantum plays the role of the nondissipative odd viscosity
coefficient. The theory also predicts a universal long-time
dynamics of the vorticity distribution in a dissipative super-
fluid and this prediction has been verified in experiments [29].
However, on a finite region with boundaries, boundary con-
ditions are difficult to incorporate in general, hence a closed
surface is a better venue for vortex fluids. Vortex fluids are
also closely related to quantum Hall liquids [2] and fractons
[30,31].

In this paper we develop a vortex fluid theory on orientable
closed surfaces with zero genus. For a closed surface, the total
vorticity must vanish and hence we consider binary vortex
fluids containing equal number of vortices and antivortices.
On a plane, the momentum flux tensor of the vortex fluid
contains an emergent odd viscous tensor and a quantum pres-
sure like stress tensor [28], preventing applying the minimal
coupling principle directly to derive the covariant vortex fluid
equation on a curved surface. We overcome this difficulty
by introducing an auxiliary tensor which is mathematically
equivalent to the original momentum flux tensor, however,
is more readily amenable for applying the minimal cou-
pling substitution. After the minimal coupling substitution and
rewriting the equation in terms of the original momentum flux
tensor, we obtain the vortex fluid equation on a closed surface
in isothermal coordinates. The emergent curvature term plays
the role of a source term in the vortex fluid equation and hence
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might be referred to as curvature anomaly. The generalized
relation between the superfluid velocity field generated by the
vortices and the coarse-grained vortex velocity field induces
the equation of motion (EOM) of point vortices on closed
surfaces, verifying the minimal coupling approach. A connec-
tion between the odd viscous tensor and Euler characteristic of
the closed surface is obtained. For a sphere, an exact station-
ary vortex flow solution determined by Gaussian curvature is
found, whose vorticity exhibits the profile of a vortex-dipole
in spherical coordinates and its velocity distribution has the
profile of a Kaufmann vortex in stereographic coordinates. It
should be noted that the obtained vortex fluid equation holds
also for infinitely large curved surfaces, where the vortex
system does not have to be neutral.

II. QUANTUM VORTICES AND VORTEX FLUIDS
ON A PLANE

In a superfluid, the circulation of a vortex is quantized in
units of circulation quantum κ ≡ 2π h̄/m [32], and the vor-
ticity has a singularity at the vortex core ri: ω(r) = ∇ × u =
κσiδ(r − ri ) with sign σi = ±1 for singly charged vortices.
Here m is the atomic mass and u is the fluid velocity gen-
erated by the vortex at r = ri. This quantization arises from
the single-valuedness of the macroscopic superfluid wave
function. It ensures that the vorticity of a quantum vortex
concentrates around the core region in the dynamics, which
is not the general case for vortices in classical fluids [33].
Hence when the mean separation between quantum vortices
is much larger than the vortex core size �, the point vortex
model governs the dynamics of quantum vortices [33–36],
provided vortex annihilation can be neglected. In this regime,
a superfluid at low temperatures is nearly incompressible.

Let us introduce complex coordinates z = x1 + ix2, ∂z ≡
(∂1 − i∂2)/2, ∂z̄ ≡ (∂1 + i∂2)/2 and complex velocity u ≡
u1 − iu2. For a system containing N+ singly-charged quantum
vortices and N− antivortices, the superfluid velocity u gener-
ated by these vortices and the vortex velocity vi ≡ dz̄i/dt read

u = − 1

2π

N∑
j=1

iκσ j

z − z j
, vi = − 1

2π

N∑
j, j �=i

iκσ j

zi(t ) − z j (t )
, (1)

where u = 2i∂zψ , the stream function ψ (z) =
−κ/2π

∑
i σi log |(z − zi )/�|, and N = N+ + N− is the total

number of vortices. The vorticity is ω(r) = κ
∑

i σiδ(r − ri ).
The above fluid velocity u appears to be a singular solution
of incompressible two-dimensional (2D) Euler or Helmholtz
equation [37] : ∂tω + u · ∇ω = 0, which describes 2D
nonviscous incompressible classical fluids.

In the point vortex regime, the slow motion of vortices
is nearly decoupled from fast degree of freedom-acoustic
modes. In this regime, a large number of well-separated quan-
tum vortices are almost isolated and can be treated as a fluid
[27,28]. On a plane, the corresponding hydrodynamical equa-
tion is [28]

∂t (ρvα ) + ∂βT αβ + ρ∂α p = 0, (2)

where ρ(r) ≡ ∑
i δ(r − ri ) is vortex number density, σ (r) ≡∑

i σiδ(r − ri ) = κ−1ω is vortex charge density, vα is vortex
velocity field defined as ρvα ≡ ∑

i δ(r − ri )vα
i , p is the fluid

pressure, T αβ = ρvαvβ − αβ is the momentum flux tensor,
and

αβ = −η2σ∂β

(
1

ρ
∂ασ

)
− 8πη2σ 2δαβ − σταβ (3)

is the emergent Cauchy stress tensor with η = κ/8π . This
emergent tensor αβ is absent in the Euler equation and
describes emergent macroscopic effects of discrete quantum
vortices. In particular,

ταβ = −η
(
εα
γ ∂βvγ + εβ

γ ∂γ vα
)

(4)

is the nondissipative odd viscous tensor and η is identified as
the odd viscosity coefficient. Here ε1

2 = 1, ε2
1 = −1, and ε1

1 =
ε2

2 = 0. The presence of ταβ in Eq. (3) is due to that in a vortex
system the parity symmetry is broken, namely η → −η under
the parity transformation (x1, x2) → (−x1, x2) or (x1,−x2).
The odd viscosity effects in 2D fluids are very rich [38,39]
and have been investigated in quantum Hall systems [40–43],
chiral active matter [44–46], chiral superfluids [47], 2D vortex
matter [27,28,48–50] and classical fluids [51,52].

The vortex fluid theory describes emergent collective dy-
namics of well-separated quantum votices at large scales and
is valid whenever the point vortex model (PVM) Eq. (1) is
applicable. Vortex annihilations due to collisions, dissipative
vortex dipole decay and boundary loss would modify the
PVM. For a low temperature BEC containing many vortices,
annihilations due to collisions limit dominantly the PVM
approach. However, the collision rate depends on the vortex
distribution [28] and for largely vorticity-polarized states, in-
cluding the vortex shear flow [28], Onsager clustered states
[34,54–58], and the enstrophy cascade [53], vortex number
losses are negligible.

III. VORTEX FLUIDS ON CLOSED SURFACES

The widely used recipe on deriving laws of physics in
curved spacetime from those in flat spacetime is the so-called
minimal coupling (MC) principle. For our situation, it means
the following substitution:

δμν → gμν ; ∂μ → ∇μ, (5)

where gμν is the metric on the surface, and ∇μ is Levi-Civita
covariant derivative. When acting a vector field V ν ,

∇μV ν = ∂μV ν + �ν
μλV λ, (6)

where

�ν
μλ = 1

2
gνρ

(
∂gρμ

∂xλ
+ ∂gρλ

∂xμ
− ∂gμλ

∂xρ

)
(7)

is the connection coefficient-Christoffel symbol. The second
covariant derivatives do not commute, namely

(∇α ∇β − ∇β ∇α )V μ = Rμ
ναβV ν, (8)

where Rμ
ναβ is Riemann curvature tensor.

Unless specified, in the following we use isothermal coor-
dinates

ds2 = gμνdxμdxν = h(x1, x2)[(dx1)2 + (dx2)2], (9)

namely, g12 = g21 = 0 and g11 = g22 = h(x1, x2), where
h(x1, x2) is a positive function and exists locally for 2D
surfaces [59]. In isothermal coordinates, calculations are
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considerably simplified. For instance, gαβ = δαβh−1 and vα =
gαβvβ = h−1vα .

We define the vortex number density and vortex charge
density on a curved surface as

ρ(xμ) = 1√
det gμν

∑
i

δ
(
xμ − xμ

i

)
, (10)

σ (xμ) = 1√
det gμν

∑
i

σiδ
(
xμ − xμ

i

)
. (11)

The assumption of absence of vortex annihilation ensures the
the following continuity equations:

∂tρ + ∇μJμ
n = 0, ∂tσ + ∇μJμ

c = 0, (12)

where

Jμ
n = 1√

det gμν

∑
i

δ(r − ri )v
μ
i ≡ ρvμ, (13)

Jμ
c = 1√

det gμν

∑
i

δ(r − ri )σiv
μ
i ≡ ρwμ, (14)

are the currents for number and charge, respectively.
We use Eq. (5) to obtain the relation between u and v on a

curved surface from it on a plane [28] :

ρvμ = ρuμ − ηεμ
ν gνα∇ασ, (15)

ρwμ = σuμ − ηεμ
ν gνα∇αρ. (16)

Consequently, ωv − ω = η∇μ( 1
ρ
∇μσ ), where ωv = ε

γ
α ∇γ vα

and ω = εμ
ν ∇μuν = 8πησ . The vortex fluid is compressible

and ∇μvμ = −ηεμ
ν ∇μ( 1

ρ
∇νσ ) �= 0 [60]. Note that here εβ

α ≡
εβ

α = gβγ εγα and εγα = √
det gμν ε̃γ α is the Levi-Civita

tensor and ε̃γ α is the Levi-Civita symbol. In isothermal co-
ordinates, the tensor εβ

α used here takes the same value as
what is introduced previously [below Eq. (4)]. For a scalar
f , ∇α f = ∂α f , in complex coordinates, Eqs. (15) and (16)
become

ρv = ρu − 2iη
1

h
∂zσ, (17)

ρw = σu − 2ηi
1

h
∂zρ. (18)

The above relations reveal that the velocity of a vortex at
position r is the fluid velocity excluding the flow generated by
the vortex itself at r. The superfluid velocity field u is irregular
at a vortex core and subtracting the pole at the vortex core
leads to a regular vortex velocity field v.

There is no solid reason why the MC principle must lead
to correct results [61]. Hence justification is needed. To verify
Eqs. (17) and (18), let us apply the relation (17), which is for
coarse-grained variables, to discrete point vortices. The fluid
velocity generated by these point vortices on a closed surface
is u = 2ih−1∂zψ with the stream function

ψ (z) = 8πη
∑

i

σiG(z, zi ), (19)

where G(z, zi ) is the Green’s function satisfying [26]

�G(z, zi ) = −δz,zi + 1/�, (20)

� ≡ ∇μ∇μ, � is the area of the surface and

δz,zk ≡ h−1δ(z − zk ). (21)

The fluid velocity at z = zk is

uz→zk = 16πηi

h

[ ∑
i �=k

σi∂zG(z, zi )|z=zk + σk lim
z→zk

∂zG(z, zk )

]
,

(22)

where the last part is the contribution from the vortex at z = zk

itself and contains a pole. To analyze the last term in Eq. (22),
it is useful to isolate the logarithmic singularity of the Green’s
function [62]:

G(z, zk ) = 1

2π
[− log |z − zk| + H (z, zk )], (23)

where H (z, zk ) = H (zk, z) is a regular function. Expanding in
a power series in z around zk , we obtain

H (z, zk ) = h0(zk ) + 1

2
h1(zk ) (z − zk ) + H.c. + O(|z − zk|2)

(24)

and

∂zH (z, zk ) = 1

2
h1(zk ) + O(|z − zk|) = 1

2
∂zk h0(zk )

+O(|z − zk|). (25)

Here h0(zk ) = H (zk, zk ) and h1(zk ) = ∂zHz,zk |z=zk . Let us
now analyze the singular term in ∂zσ . Noting that
2/(πh)∂z̄∂z log |z − zk| = δz,zk and rearranging derivatives, we
obtain

lim
z→zk

∂zσ = −σkδz,zk ∂z log h|z=zk − 2σk
1

z − zk
δz,zk , (26)

where we have used ∂z̄(1/z) = πδ(r). Hence the singular
terms ∝ 1/(z − zk ) in Eq. (22) and Eq. (26) cancel and the
remaining finite part in Eq. (17) gives rise precisely, by recog-
nizing v(z = zk ) = dz̄k (t )/dt and limz→zk ρ = δz,zk , the EOM
of point vortices on closed surfaces with zero genus [26]:

σkh
dz̄k (t )

dt
=8πηi

[
2

∑
i �=k

σkσi∂zG(z, zi )|z=zk +∂zk Rrobin(zk )

]
,

(27)

where Rrobin(zk ) ≡ (1/2π )[h0(zk ) + log
√

h(zk )] is the cele-
brated Robin function [62].

Note that Eq. (27) holds for infinitely large curved sur-
faces as well [24], and hence so do Eqs. (17) and (18). For
an infinitely large surface, Rrobin(zk ) = (1/2π ) log

√
h(zk ). In

contrast to the scenario on a plane, on a curved surface the
self-energy of a vortex is position dependent and a single
vortex may move driven by the geometrical potential (Robin
function) [18]. It was not an easy task to obtain the EOM
of point vortices on closed surfaces [26]. From the vortex
fluid point of view, it is somewhat striking that relation (17)
naturally generalized from it on a plane could lead to Eq. (27).
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IV. DYNAMICAL EQUATIONS OF VORTEX FLUIDS
ON CLOSED SURFACES

The Euler equation on a curved surface can be obtained
from its form on a plane applying the MC principle [7,11]:

∂t u
α + ∇βT αβ = 0, (28)

where the momentum flux tensor T αβ = uαuβ + pgαβ (here-
after we set the fluid (mass) density n = 1). Unlike the
case of Euler equation, we cannot apply the MC princi-
ple to Eq. (2) directly. The reason is that there are terms
containing second derivatives of vectors in Eq. (2). On a
plane, the order of derivatives of these terms are interchange-
able, namely: ∂β∂α∂βσ = ∂α∂β∂βσ and ∂β∂γ vα = ∂γ ∂βvα .
However on a curved surface, ∇β∇α∇βσ �= ∇α∇β∇βσ , and
∇β∇γ vα �= ∇γ ∇βvα . At this stage, there is no preferred order
for which the MC substitution should be applied.

Our strategy is to search for another tensor Qαβ such that

(1) it does not contain derivatives of vectors;

(2) ∂βT αβ = ∂βQαβ.

To do so, it is convenient to use complex coordinates, in
which, Eq. (2) becomes

∂t (ρv) + ∂zTzz̄ + ∂z̄T + ρ∂z(2p) = 0, (29)

where

T = ρvv + 4η2σ∂z

(
1

ρ
∂zσ

)
− 4iησ∂zv, (30)

Tzz̄ = ρvv̄ + 16πη2σ 2 + 4η2σ∂z̄

(
1

ρ
∂zσ

)

= ρvv̄ + 4iησ∂z̄v − 4η2σ∂z̄

(
1

ρ
∂zσ

)
. (31)

In the last step we have used ∂z̄u = −4π iησ and u = v +
2iη∂zσ/ρ [28].

Let us now define

Qzz̄ ≡ ρvv̄ − 4iηv∂z̄σ + 4η2 1

ρ
∂z̄σ∂zσ, (32)

Q ≡ ρvv + 4iηv∂zσ − 4η2 1

ρ
∂zσ∂zσ. (33)

Clearly condition (1) is satisfied. Since Tzz̄ − Qzz̄ =
4iη∂z̄(σv) − 4η2∂z̄[(σ/ρ)∂zσ ] and T − Q = −4iη∂z(σv) +
4η2∂z[(σ/ρ)∂zσ ], it is easy to verify that ∂zQzz̄ + ∂z̄Q =
∂zTzz̄ + ∂z̄T which is the complex form of condition (2).
Hence Qαβ defined in Eqs. (32) and (33) is the tensor we
search for.

It is now ready to apply the MC principle to obtain the
vortex fluid equation on a closed surface :

∂t (ρvα ) + ∇βQαβ + ρ∇α p = 0, (34)

where

Qαβ = ρvαvβ + 2ηvαεβ
μ∇μσ + η2 1

ρ
εα
μεβ

ν ∇μσ∇νσ (35)

and the pressure p is determined by ∇μ(uν∇νuμ) =
−∇μ∇μ p.

It is crucial that the momentum flux tensor includes the
odd viscous tensor ταβ (∂μ → ∇μ). For this purpose, we need
to write the dynamical equation in terms of T αβ :

∂t (ρvα ) + ∇βT αβ + ρ∇α p = ηK

(
η
σ

ρ
∇ασ − 2σεα

βvβ

)
,

(36)

where

T αβ = ρvαvβ + η2σ∇β

(
1

ρ
∇ασ

)
+ 8πη2σ 2gαβ + σταβ,

(37)

K = R1212/ det gμν = R1212/h2 is Gaussian curvature. Here
we have used εμ

ν ∇μuν = 8πησ and Eq. (15).
Comparing to Eq. (2), the conspicuous feature of Eq. (36)

is that the combination of Gaussian curvature and the circula-
tion quantum/odd viscosity plays the role of the coefficient of
a source term. The presence of this additional term might be
referred to as curvature anomaly. The momentum flux tensor
T αβ is not symmetric for binary vortex fluids and it cannot be
symmetrized in the usual way due to that its antisymmetric
part

T 12 − T 21 = η2σh−1∇μvμ (38)

is not a total divergence. The hydrodynamics equation (37) is
invariant under the following scaling transformation x → λx,
t → λ2t , ρ → λ−2ρ, σ → λ−2σ , vα → λ−1vα K → λ−2K ,
p → λ−2 p. The vortex core size � plays the role of the ul-
traviolet cut-off of the hydrodynamics theory.

Since the odd viscous tensor ταβ is of fundamental im-
potence and appears in a large class of fluids [39], it is
worthwhile exploring its properties on a curved surface. From
the definition of ταβ , one obtains

�vα∇βταβ = −ηKεα
βvβ�vα. (39)

For a closed orientable surface, due to Gauss-Bonnet theorem,
we have∫

ds
�vα∇βταβ

εα
βvβ�vα

= −η

∫
dsK = −2πηχ (M), (40)

where χ (M) = 2(2 − g) is Euler characteristic, and g is the
genus of the surface. It should be noted that Eq. (40) holds
for any value of g. Connecting Eq. (40) to physical ob-
servables deserves future investigations. The hydrodynamic
equation (36) can be verified by substituting Eqs. (15) and (16)
into Eq. (28). It should be mentioned that chiral vortex fluids
have been studied on closed surfaces [49], where additional
vorticity has to be introduced to ensure zero total vorticity.

V. VORTEX FLOW ON A SPHERE

We consider vortex fluids on a sphere embedded in R3. We
introduce the Cartesian coordinates

ξ = R sin θ cos φ, η = R sin θ sin φ, ζ = R cos θ, (41)

where R is the radius, θ is the polar angle and φ is the
azimuthal angle. On a sphere, stereographic coordinates z =
x1 + ix2 are isothermal coordinates and are related to the
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spherical coordinates by z = R tan(θ/2)eiφ (projection from
the south pole). In terms of z, the Riemannian metric reads

h = 4R4

(R2 + |z|2)2
(42)

and in spherical coordinates

ds2 = R2dθ2 + R2 sin2 θdφ2. (43)

A. Conserved quantities

It is known that for point vortices on a sphere, the quantities

Lξ = κR2
∑

j

σ j sin θ j cos φ j, (44)

Lη = κR2
∑

j

σ j sin θ j sin φ j, (45)

Lζ = κR2
∑

j

σ j cos θ j, (46)

are conserved [25]. In terms of collective variables,

Lξ = κR2
∫

ds σ sin θ cos φ, (47)

Lη = κR2
∫

ds σ sin θ sin φ, (48)

Lζ = κR2
∫

ds σ cos θ. (49)

These conserved quantities are directly related to the cor-
responding fluid angular momentum

∫
ds r × u which is

associated with the SO(3) symmetry. In stereographic coor-
dinates, they become

Lξ = κR
∫

dx1dx2h3/2σx1, Lη = κR
∫

dx1dx2h3/2σx2,

(50)

Lζ = −κ

2

∫
dx1dx2h3/2σ |z|2 + κR2

2

∫
dx1dx2h3/2σ. (51)

Then it is easy to notice that, as R → ∞,

Lξ /R ∝ Px2 = −κ
∑

i

σix
1
i = −κ

∫
dx1dx2σx1, (52)

Lη/R ∝ Px1 = κ
∑

i

σix
2
i = κ

∫
dx1dx2σx2, (53)

where Px2 and Px1 are components of canonical momentum of
vortices on a plane. Also, as R → ∞,

Lζ ∝ L = κ
∑

i

σi|ri|2 = κ

∫
dx1dx2σ |z|2 (54)

which is the canonical angular momentum of the point-vortex
system on a plane. Hence there is a one-to-one correspon-
dence between conserved quantities on a plane and on a
sphere.

It is worthwhile to mention that the enstrophy

H ≡
∫

ds ω2 (55)

is conserved in any closed surface with zero genus, as

dH

dt
= −2

∫
dsωuμ∇μω = −

∫
ds ∇μ(uμω2) = 0. (56)

However, the symmetry associated with this conservation law
is not obvious [63].

B. Stationary vortex flows

For constant vortex density ρ = ρ0 on a surface with con-
stant Gaussian curvature K = K0, the vortex fluid becomes
incompressible ∇μvμ = 0 and Eq. (36) becomes

∂tωv + 1

ρ0
εγ
α ∇γ ∇βT αβ = 2ηK0

ρ0
vβ∇βσ. (57)

For a sphere, K0 = 1/R2, and we find a stationary solution
of Eq. (57)

σ = ρ0
K−1

0 − |z|2
K−1

0 + |z|2 , (58)

v1 = −(4πηρ0 − K0η)x2, v2 = (4πηρ0 − K0η)x1.

(59)

Note that σ (z = 0) = ρ0 = −σ (z = ∞). For this flow
ταβ = 0, Lξ = Lη = 0 and Lζ = 4/3πR4κρ0. The modulus of
the vortex velocity field is

|v| =
√

v1v1 + v2v2 = 2R2|4πηρ0 − K0η||z|
R2 + |z|2 , (60)

having the profile of a Kaufmann vortex. For |z| 	 R, |v| ∝
|z|, while |v| ∝ 1/|z| for |z| 
 R. The maximum value of |v|
is reached at |z| = R. The anomalous correction to the fluid
velocity is

v1 − u1 = K0ηx2, v2 − u2 = −K0ηx1 (61)

and its modulus is (v1 − u1)(v1 − u1) + (v2 − u2)(v2 −
u2) = hK2

0 η2|z|2 = 4K0η|z|2/(R2 + |z|2)2. The vorticity of
the vortex velocity field also has an anomalous correction that
is proportional to K0

ωv − ω = −2K0η
K−1

0 − |z|2
K−1

0 + |z|2 . (62)

When R → ∞, K0 → 0, σ → ρ0 for z �= ∞ (ρ0 keeps a con-
stant as R → ∞), and this corresponds to rigid body rotation
of a chiral vortex flow on a plane. The oppositely charged
vortices accumulate at z = ∞. It is important to note that the
anomalous corrections, i.e., the differences between v and u
(or ωv and ω), are proportional to curvature and vanish as
K0 → 0.

It is helpful to express this stationary flow using spherical
coordinates, for which v = vθ ∂θ + vφ∂φ and

σ = ρ0 cos θ, vφ = R(4πηρ0 − K0η), vθ = 0. (63)

The modulus of the vortex velocity field is

|v| =
√

vφvφ + vθvθ = R|(4πηρ0 − K0η) sin θ |, (64)

which vanishes at the poles and reaches the maximum at
the equator (see Fig. 1). Since uφ = 4πηRρ0 and uθ = 0, we
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FIG. 1. Schematic of the stationary vortex flow on a sphere. The
arrows represent the vortex velocity field v and the background color
shows the renormalized vorticity of the vortex fluid ωv (θ )/|ωv (0)|.

have |v − u|2 = (vφ − uφ )(vφ − uφ ) = K0η
2 sin2 θ . The vor-

ticity of the vortex fluid reads

ωv = 2(4πρ0 − K0)η cos θ. (65)

and the correction is ωv − ω = −2K0η cos θ . Due to compact-
ness of the sphere, ωv (θ = 0) = −ωv (θ = π ) = 2(4πρ0 −
K0), the vorticity of this vortex flow has the profile of a vortex-
dipole. It is worthwhile mentioning that the vortex flows we
found here are analogous to zonal Rossby-Haurwitz flows in
Euler fluids on a sphere [64,65], which play an important role
in analyzing dynamics of atmosphere of Earth [66–68].

VI. CONCLUSION

We generalize the vortex fluid theory on a plane to closed
surfaces with zero genus. The dynamical equation is derived
using the minimal coupling principle from it on a flat sur-
face. An additional curvature term emerges and describes the
interaction between topological defects and curvature in the
hydrodynamical level. Since the vortex fluid equation contains
second derivatives of vectors, there is an ambiguity for apply-
ing the minimal coupling principle directly. Our method does
get over this difficulty and provides a feasible recipe to inves-
tigate other complex fluids on curved surfaces. For a sphere,
a nontrivial stationary vortex flow is found analytically. It
poses a challenge to find analytic solutions for surfaces with
non-constant Gaussian curvature. For surfaces with Gaus-
sian curvature weakly depending on positions [K (xμ) = K0 +
δK (xμ) with δK (xμ) 	 K0], it might be possible to treat
δK (xμ) as perturbations and investigate the effects of noncon-
stant Gaussian curvature. These are interesting topics which
are worthwhile exploring in the feature.

The theory developed in this work leads to a broad under-
standing of the interaction between topological defects and
curvature, and provides a theoretical framework for investi-
gating rich phenomena involving a large number of quantum
vortices [69–72] in bubble trapped Bose-Einstein condensates
[73,74].
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