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Discrete time crystal in an open optomechanical system
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The spontaneous breaking of time translation symmetry in periodically driven Floquet systems can lead
to a discrete time crystal. Here we study the occurrence of such dynamical phase in a driven-dissipative
optomechanical system with two membranes in the middle. We find that, under certain conditions, the system
can be mapped to an open Dicke model and realizes a superradiant-type phase transition. Furthermore, applying
a suitable periodically modulated drive, the system dynamics exhibits a robust subharmonic oscillation persistent
in the thermodynamic limit.
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I. INTRODUCTION

As an analog to spatial crystals, Wilczek first proposed the
idea of time crystals in 2012 [1]. Soon, it was pointed out that
a system where continuous time invariance is spontaneously
broken would naturally radiate energy into the environment,
which conflicts with the principle of energy conservation [2].
Indeed, formal no-go theorems have shown that time crystals
cannot exist in equilibrium [3,4]. On the other hand, broken
time translational invariance is still allowed under nonequilib-
rium conditions, where the concept of discrete time crystals
(DTCs) has been proposed [5–7]. A DTC is realized in a peri-
odically driven system, with Hamiltonian satisfying H (t ) =
H (t + T ), and breaks discrete time translational symmetry,
i.e., the period of the dynamics is a multiple of the driving
period T [8]. In a genuine DTC phase such spontaneously
generated subharmonic response should be robust against
parameter variations and persist to arbitrarily long times in
the thermodynamic limit [7–9]. Experimentally, DTCs have
been explored with trapped ions [10], vacancy-based quantum
simulators [11], superfluid helium-3 [12], spin NMR sys-
tems [13,14], and a driven atom-cavity system [15]. Besides,
various generalizations have been proposed theoretically, such
as the realizations of a DTC in the Dicke model [16–19], finite
chains of Rydberg atoms [20], in the presence of quasiperiodic
spatial modulations [21], or topological DTCs [22].
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While most DTC realizations and proposals are based on
an interacting spin model, in the past decades optomechanical
systems (where light interacts with motional degrees of free-
dom) have become one of the most promising platforms for
exploring macroscopic quantum-mechanical behaviors and
quantum information processing. This is due to their high
coherence, the presence of an intrinsic nonlinear coupling,
and the ability to couple in a versatile way to other quan-
tum systems [23,24]. A large variety of quantum engineering
protocols have been proposed in optomechanics [24]. Among
them, of special relevance here is a “membrane in the mid-
dle” setup realizing a Dicke-type phase transition [25]. In
that system, the mechanical mode and two cavity modes are
mapped to the bosonic mode and collective spin of the Dicke
model, respectively. However, cavity dissipation in optome-
chanical systems is normally much larger than the dissipation
of the membranes. Hence the mapping leads to a Dicke
model where dissipation acts predominantly on the collec-
tive spin, unlike typical quantum-optics realization (where
cavity dissipation dominates [26–28]). Furthermore, applying
Schwinger’s spin-boson mapping leads to a collective decay
of total angular momentum, which differs from the more
usual collective decay (see, e.g., Ref. [29]) or individual spin
decoherence [28,30,31].

Inspired by the above proposal, we consider here an al-
ternative “two membranes in the middle” setup, which can
realize a more typical Dicke-type phase transition. A main dif-
ference is that, in our model, light-matter degrees of freedom
are not swapped by the mapping: the cavity and mechanical
modes of the optomechanical setup correspond to the cavity
mode and the collective spin of the Dicke model, respec-
tively. Therefore, due to the much smaller decay rate of the
membranes compared to cavity decay, the conservation of the
atomic angular momentum (in the Dicke model) is a much
better approximation. We show that the Dicke phase transition
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FIG. 1. Schematics of the system, with two membranes inside
a driven Fabry-Pérot cavity. The positions x1,2 of the mirrors are
discussed in Appendix A.

can be simulated in this optomechanical system with realistic
parameters. Furthermore, we analyze the realization of a DTC
phase, which for the Dicke model has been recently dis-
cussed in Refs. [16,17]. Unfortunately, the simple approach of
pulsing on/off the effective coupling is not directly applicable
to our system, due to the specific features of the optomechan-
ical system and the mapping. Thus we develop an alternative
sequence of control pulses which can achieve an equivalent
result.

The outline of our paper is as follows. In Sec. II we
introduced our “two membranes in a cavity” model and its
mapping to the Dicke model. In Sec. III we study the phase
transition and phase diagram of this model. The validity
of various approximations invoked in the mapping are also
checked. In Sec. IV the pulse sequence to realize the DTC
is presented. We also provide discussions on various issues
such as the choice of flipping time, the robustness of the DTC
phase, the fate of the DTC in the deep quantum regime, and
the influence of mechanical damping. Finally, we summarize
our work in Sec. V. Some technical details are given in Ap-
pendixes A and B.

II. EFFECTIVE DICKE MODEL

The optomechanical system we consider is formed by
two mechanical membranes inside a driven optical cav-
ity, schematically shown in Fig. 1. The two membranes
are located at antinodes of the cavity field, such that only
second-order optomechanical couplings are significant. The
Hamiltonian reads (setting h̄ = 1)

Ĥ = ωcâ†â + ω1b̂†
1b̂1 + ω2b̂†

2b̂2 + ĤI + ĤD, (1)

where ω1,2 (ωc) is the frequency of the relevant mechanical
modes (cavity mode) with annihilation operators b̂1,2 (â). The
interaction (ĤI ) and drive (ĤD) Hamiltonians are given by

ĤI = gâ†â(b†
1 + b̂1)2 − gâ†â(b̂2 + b̂†

2)2

+ J (b̂†
1 + b̂1 − b̂†

2 − b̂2)2, (2)

ĤD =A(â eiωDt + â†e−iωDt ). (3)

Here the second-order optomechanical couplings of the cavity
with the two membranes are assumed to have opposite values
(g1 = −g2 = g). The feasibility of this condition is discussed
in detail in Appendix A), while the case g1 �= g2 will be
considered in Sec. IV. J is the direct coupling between the two
membranes which can be implemented through a coupling
overhang [32–36]. In ĤD, the parameters ωD and A are the fre-
quency and the amplitude of the drive, where A = √

2PLκ/ωc

depends on the power of the drive PL and the decay rate of
the cavity field κ . For the moment, we will neglect the small
damping of the mechanical modes. Effects of a finite decay
rate γ will be discussed in Sec. IV E.

We now show that, under appropriate conditions, the above
optomechanical system becomes equivalent to the Dicke
model, describing the interaction of a cavity mode with an
ensemble of identical two-level systems. At strong drive,
the optical cavity mode â can be decomposed as â = (α +
d̂ ′)e−iωDt , where d̂ ′ represents the quantum fluctuations and α

is the large classical amplitude of the driven cavity mode:

α = A

iκ − �
≡ |α| exp[iθ ], (4)

with � = ωc − ωD the detuning, which we choose positive.
The interaction ĤI leads to modified mechanical frequencies,
ω̃1(2) = ω1(2) + 2J ± 2g|α|2. Considering a working point
with equal effective frequencies:

ω1 + 2J + 2g|α|2 = ω2 + 2J − 2g|α|2 ≡ ωm, (5)

we can derive the following effective Hamiltonian in the ro-
tating frame U = e−iωDt â†â−iωmt (b̂†

1b̂1+b̂†
2 b̂2 ):

Ĥeff = �d̂†d̂ + 2g|α|(d̂ + d̂†)(b̂†
1b̂1 − b̂†

2b̂2)

− 2J (b̂1b̂†
2 + b̂†

1b̂2), (6)

where we have defined d̂ ≡ d̂ ′ exp[−iθ ]. Here, taking the ro-
tating wave approximation (RWA), high frequency oscillating
terms were neglected, leading to an effective Hamilto-
nian where the number of total phonons is conserved,
i.e., [N̂, Ĥeff ] = 0 (N̂ = b̂†

1b̂1 + b̂†
2b̂2). We see that, applying

the Schwinger’s representation to Eq. (6), Ĵz = −(b̂†
1b̂2 +

b̂†
2b̂1)/2, Ĵx = (b̂†

1b̂1 − b̂†
2b̂2)/2, the mechanical degrees of

freedom can be written in terms of spin variables:

Ĥeff = �d̂†d̂ + 4JĴz + 4g|α|(d̂ + d̂†)Ĵx. (7)

Thus the system is mapped onto a Dicke model with a dissi-
pative cavity. In a standard notation [26,28]

HDM = ω0ĉ†c + ωzĴz + 2λ√
Na

(ĉ + ĉ†)Ĵx, (8)

where ĉ is the cavity mode and Ĵz/x = 1
2

∑Na
i=1 σ̂ i

z/x are col-
lective atomic operators, with σ̂α the Pauli matrices. The
mapping yields ω0 = � and ωz = 4J for the cavity and atomic
frequencies, respectively. The coupling strength is given by
λ = 2g|α|√Na, where the size Na of the atomic ensemble can
be identified with the number N̂ of mechanical excitations.

It is worth pointing out that another Dicke model real-
ization in optomechanics has been proposed, considering a
membrane in the middle setup [25]. In that case, however,
the roles of optical and mechanical degrees of freedom are

013130-2



DISCRETE TIME CRYSTAL IN AN OPEN … PHYSICAL REVIEW RESEARCH 6, 013130 (2024)

FIG. 2. Validity of the effective model. In each panel, the lower
(orange) curve is obtained computing |a − α|2 from the mean-field
equations of the full model and the upper (blue) curve is obtained
from the effective Hamiltonian. The black dot-dashed lines refer to
the mean-field steady state of the effective model, given by Eq. (12).
The three panels are computed for N = 200 and ωm/NJ = 1, 10, 100
(from top to bottom). Other parameters are A/J = 2000, �/J = 20,
κ/J = 10, b1(0) = b2(0) = 10, and g = 1.2gc. We compute gc as in
Eq. (11), while ω1, ω2 are decided by Eq. (5).

switched, as the Dicke model cavity is mapped to a single me-
chanical membrane. Conversely, the spin ensemble is mapped
to a pair of cavity modes. Therefore, in such a realization the
total angular momentum of the atomic ensemble decays to
zero quickly, due the large damping of the optomechanical
cavities. In contrast, in our system the role of the spin ensem-
ble is played by the phonon modes, whose damping can be
105–106 times smaller than κ [23,37]. Thus the Dicke model
is implemented in a more standard scenario.

In the rest of the paper, we will discuss the quantum phase
transition and a protocol to realize a discrete time crystal
based on our setup with two membranes. The validity of the
effective model Eq. (6) can be tested through the mean-field
approximation of the equations of motion:

i
d

dt
b1 = 2g|α|(d + d∗)b1 − 2Jb2,

i
d

dt
b2 = −2g|α|(d + d∗)b2 − 2Jb1,

i
d

dt
d = �d + 2g|α|(b∗

1b1 − b∗
2b2) − iκd, (9)

where 〈b̂1〉 = b1, 〈b̂2〉 = b2, and 〈d̂〉 = d . Here, quantum fluc-
tuations are neglected and the factorization of expectation
values is imposed, 〈(d̂ + d̂†)b̂i〉 → 〈(d̂ + d̂†)〉〈b̂i〉, 〈b̂†

i b̂i〉 →
〈b̂†

i 〉〈b̂i〉 (with i = 1, 2). Analogous equations can be derived
from the full model, Eq. (1). A comparison between numerical
results is shown in Fig. 2, showing good agreement when ωm

is increased. This is because the two main approximations,
linearization and RWA, require a sufficiently large α and
ωm 
 J (b2

i + b†2
i ), g|α|2(b2

i + b†2
i ), respectively.

III. “SUPERRADIANT” PHASE

In the thermodynamic limit Na → ∞, the Dicke model
in Eq. (8) displays a second-order phase transition from the
normal phase to a superradiant phase, where the Z2 symmetry
[defined by {ĉ, σ̂x} → {−ĉ,−σ̂x}] is spontaneously broken
and both cavity field and atomic ensemble acquire macro-
scopic occupations. Such quantum phase transition has been
demonstrated theoretically and experimentally [26,38]. The
analysis of the critical behavior can be performed using the
mean-field solution [26,28,30], which is valid in the thermo-
dynamic limit, and gives the critical coupling [39]

λc =
√(

ω2
0 + κ2

)
ωz/4ω0. (10)

From the mapping detailed in the previous section, we obtain
the corresponding critical point of the optomechanical model:

gc =
√

(�2 + κ2)J

4|α|2N�
, (11)

where N ≡ |b1|2 + |b2|2 is the (approximately) conserved to-
tal number of phonons. When the optomechanical coupling
satisfies g � gc, the system is in the normal phase with zero
occupancy of the displaced cavity mode, d = 0, and sym-
metric phonon numbers, |b1|2 = |b2|2. For g > gc, the Z2

symmetry is spontaneously broken and the system enters
the superradiant phase, which implies a finite expectation
value of d and unbalanced phonon occupations, i.e., δN =
(|b1|2 − |b2|2)/2 �= 0. The two symmetry-broken states are
|α ∓ d̄,±δN̄〉, with the stationary values

d̄ = 2g|α|N
� − iκ

√
1 − g4

c

g4
, (12)

δN̄ = N

2

√
1 − g4

c

g4
. (13)

As shown by the dashed lines in Fig. 2, the finite expectation
value of Eq. (12) is exact for the effective model and shows
good agreement with the stationary value of the full model, in
the expected regime of validity. A more detailed comparison
of order parameters across the critical coupling is presented
in Fig. 3, showing good agreement between analytical expres-
sions and simulations from the original Hamiltonian.

To obtain the above results directly from the mean-field
equations (9), without invoking the mapping to the Dicke
model, one should consider the ansatz b1,2 → β1,2eiωt . Here
β1,2 are stationary amplitudes and the effective mechanical
frequency is given by

ω = 2J

[
1 + g2 − g2

c

g2
c

θ (g − gc)

]
. (14)

Equation (14) reflects the fact that, for g � gc, the two mem-
branes are coupled oscillators with a symmetric normal mode
of frequency ω = 2J (in the rotating frame). However, the
coupling to the cavity should be taken into consideration in
the superradiant phase, which modifies the effective frequency
of the normal mode. We refer to Appendix B for explicit
calculations.
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FIG. 3. Dependence on g of two order parameters. (a) Displace-
ment |d|2 of the cavity field. (b) Phonon difference between the two
mechanical modes. In each panel, we compare stationary values from
the effective Hamiltonian (blue lines) and simulations from the orig-
inal Hamiltonian (orange dashed lines). We have used the following
parameters: �/J = 20, A/J = 2 × 103, κ/J = 10, b1(0) = b2(0) =
10, and ωm/J = 104. The final time of the simulations is t f = 80/J
and ω1,2 are decided by Eq. (5).

Finally, we comment on the role of mechanical dissipation.
If the decay of the membranes is considered, the total phonon
number is not a conserved quantity but slowly decays with
time. Supposing to start from the superradiant phase, and
keeping the strength and detuning of the external drive fixed,
one finds that the critical coupling gc slowly grows in time,
due to the decrease of N [see Eq. (11)]. During this slow evo-
lution, thanks to the large cavity damping, the system follows
adiabatically the broken-symmetry state. Correspondingly, the
order parameters of Eqs. (12) and (13) gradually decrease.
Finally, when the critical point gc becomes larger than the
fixed coupling strength g, the system recovers the normal
phase. From this qualitative description we see that a finite
mechanical damping allows one in principle to observe the
phase transition in time domain. As the same behavior occurs
for the time crystal, we defer a more detailed discussion to
Sec. IV E. See, in particular, Fig. 12.

IV. DISCRETE TIME CRYSTAL

The realization of a time crystal in cavity/circuit QED
systems, based on a Dicke model with tunable coupling, has
been recently proposed in Ref. [16]. The basic idea is to
periodically control the dipole interaction and alternate finite
coupling and free evolution periods. In an ideal limit, assum-
ing small dissipation and the resonant condition ωz = ω0, the
system is in one of two stationary broken-symmetry states
for λ > ω0/2. Subsequently, free evolution for a period π/ω0

accumulates a π phase, which switches the system from one
steady state to the other. The repetition of this protocol in
time generates a discrete dissipative time crystal, robust to
deviations from the ideal limit [16].

However, this idea cannot be applied in a straightfor-
ward manner to our optomechanical system. Setting λ = 0 in
Eq. (8) corresponds to α = 0, since the bare optomechanical
coupling g in Eq. (7) is not easily modified. But turning off
the external drive invalidates the resonant condition Eq. (5), on
which the mapping from Ĥ to Ĥeff is based. To circumvent this
problem, we notice that a free evolution is not necessary, as an

FIG. 4. Discrete time-crystal protocol. The time dependence of
detuning, with the corresponding time evolution of δN , are illustrated
in panels (a) and (b), respectively. The blue line in panel (b) depicts
the continuous-time evolution of the phonon difference and the black
dashed line is the stroboscopic dynamics at t = kT (k = 0, 1, 2, . . .).
Panels (c) and (d) show the actual time evolution of δN and d during
the flipping process (1), obtained from numerical simulations. Panels
(e) and (f) show the time evolution during the relaxation process (2).
We have used �1/J = 100, �2/J = 50, A2/J = 104, κ/J = 10, N =
200, g = 1.2gc,2, ωm/J = 104, t1 = 1.196/J , and t2 = 100/J , while
A1 is given by Eq. (15).

equivalent result can be achieved by tuning parameters to the
normal phase. Even if the ensuing dynamics is more complex,
due to nonlinear features of the (still interacting) model, an
approximate π rotation can be realized in this manner. Such
incomplete flip is sufficient to establish a discrete time crystal,
due to its intrinsic robustness to imperfections. In practice,
we consider below a protocol where the critical point gc is
modified through simultaneous adjustments of detuning �

and drive amplitude A [cf. Eq. (11)]. This allows us to drive
the optomechanical system to the normal phase by keeping g
and α fixed, thus preserving the mapping to the Dicke model.

A. Period-doubling Floquet dynamics

In Sec. III, we have discussed how the model with two
membranes in the cavity exhibits a second-order phase transi-
tion in the thermodynamical limit of infinite phonon number,
N → ∞, when g > gc. Based on this phase transition, an
exact period-doubling Floquet dynamics can be constructed
with four basic steps, illustrated in Fig. 4(a). After initializing
the system in one of the two symmetry-broken steady states,
say |α − d̄, δN̄〉, the protocol reads as follows.

(1) Detuning and drive amplitude are switched to �1 and
A1, respectively, such that g < gc,1 and the system is in the
normal phase. Importantly, the new values should satisfy α =
A1/(iκ − �1) (i.e., the amplitude of the initialization step
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remains unchanged). Now the system undergoes an oscilla-
tory dynamics, shown in panels (c) and (d) of Fig. 4. For a
proper evolution time t1 (the choice of t1 will be discussed
in detail in Sec. IV B), the state is approximately flipped
from |α − d̄, δN̄〉 to |α + d̄,−δN̄〉. We note that the effective
oscillator should not be in the overdamped regime; otherwise,
it will simply relax to |α, δN = 0〉. Even if an oscillatory
dynamics takes place, an exact flip is usually not possible.

(2) The detuning is changed to �2 and the drive amplitude
to A2, still satisfying

A2

iκ − �2
= A1

iκ − �1
. (15)

The values of �2 and A2 can simply be the initialization
values. They are chosen to yield g > gc,2 but do not affect
the classical amplitude α of the cavity; see Eq. (4). Now the
system is in the superradiant phase for a time t2 (giving the
period of the drive T = t1 + t2) and relaxes towards the nearby
steady state, i.e., |α + d̄,−δN̄〉, as illustrated in panels (e) and
(f) of Fig. 4 for the mechanical and cavity degrees of freedom,
respectively.

(3) Setting � = �1 and A = A1 for a time duration t1
returns the system to the normal phase, which induces an
approximate evolution from |α + d̄,−δN̄〉 to |α − d̄, δN̄〉.

(4) � = �2 and A = A2 for a time duration t2. At the end
of this step, the state is relaxed towards the initial state |α −
d̄, δN̄〉.

In summary, the periodic change in detuning and drive
amplitude is described by

{�, A} =
{

{�1, A1} [0, t1),

{�2, A2} [t1, T ),
(16)

where the two pairs are related as in Eq. (15). The system
returns to the initial state with period 2T , thus doubling
the period of the control pulse. An example of persistent
period-doubling behavior induced by the above control pulse
is shown in Fig. 5, through the stroboscopic dynamics of
δN/N and its discrete Fourier transform:

S(θ ) = 1

n

n∑
k=1

δN (k)

N
exp(i2πkθ ), (17)

defined as in Refs. [7,20]. Here, δN (k) is the phonon differ-
ence between the two membranes at the end of the kth period.
Note that the stroboscopic oscillation in Fig. 5(a) is not strictly
symmetric around δN = 0. As the original Hamiltonian is not
exactly Z2 symmetric, the asymmetry reflects small correc-
tions to the effective Dicke model (7).

B. Choice of flipping time

As explained above, each 2T operation cycle involves
two flipping operations [(1) and (3)], where the steady state
|α ∓ d̄,±δN̄〉 flips to the other steady state |α ± d̄,∓δN̄〉.
In the presence of decoherence and the always-on interac-
tion g, an analytical expression of the ideal flipping time is
not readily available. However, suitable values of t1 can be
found numerically. We find that the choice of the flipping
time is rather flexible, because the actual flipping operation
has a certain inertia and continues into the relaxation process

FIG. 5. Persistence of the stroboscopic dynamics. In panel (a) we
show the stroboscopic time evolution of δN/N in the interval
[1950, 2000] × T . In the relaxation phase, we used the same param-
eters of Figs. 2(b) and 2(c), which give rise to a robust DTC (orange
and blue dots, respectively). Instead, we could not realize a DTC
with the parameters of Fig. 2(a), due to the difficulty of finding a
suitable flipping time t1. Panel (b) is the discrete Fourier transform of
the blue curve of panel (a), computed from Eq. (17) with n = 2000.
The upper inset of (b) is a zoom-in of the main peak and the lower
inset is a zoom-in around θ = 0, showing a small feature induced
by the slight asymmetry of the oscillations around δN = 0. Other
parameters: �1/J = 40, t1 ≈ 1.34/J , and t2 = 20/J .

even after the system is driven back to the superradiant-phase
parameters. To demonstrate this, the evolution in the flipping
process (1) (blue lines) is shown in Fig. 6 for different choices
of the flipping times t1. We also continue the time evolution
beyond t1 into the relaxation process (2) (orange lines). One
can see that the initial evolution in the relaxation processes (2)
is a continuation of the oscillatory dependence of (1). Since
an imperfect flipping can be completed during the relaxation
phase, see in particular the top panel of Fig. 6, the flipping
time t1 can be chosen in a wide range. In Fig. 7 we mark by
a shadowed region (we refer to this as the DTC region) the

FIG. 6. Time evolution for different choices of the flipping time
t1. The gray dashed lines mark Jt1 = {0.7, 1.4, 2.1, 2.8} (from top
to bottom). The time evolution at t > t1 (orange curves) is in the
relaxation phase (2). We used κ/J = 10, �1/J = 40, �2/J = 20,
A2/J = 2 × 103, N = 200, g = 1.2gc,2, and ωm/J = 104.
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FIG. 7. Flipping times leading to DTC dynamics. The blue line
represents the time evolution during the flipping process (1) (without
the restriction t < t1). DTC behavior can be obtained by choosing
the flipping time t1 inside the shaded regions. Dashed lines mark
the minima of δN/N , around which the DTC regions are (asym-
metrically) located. We used κ/J = 10, �1/J = 40, �2/J = 20,
A2/J = 2 × 103, N = 200, g = 1.2gc,2, ωm/J = 104, and Jt2=50.

ranges of t1, which allow the persistent oscillatory behavior
of a time crystal. From the third panel of Fig. 6 we can also
see that the continuation of the oscillatory dependence into
the relaxation phase can bring back a nearly flipped state to
the starting point. For this reason, the DTC regions of Fig. 7
appear at “advanced” times, instead of being centered at the
minima of the time evolution (dashed lines).

C. Rigidity of the DTC

In the previous subsection we have shown that, for the
proposed control pulse, the optomechanical system exhibits
long time oscillations with period doubling. To qualify as a
time crystal, this persistent oscillation must be robust against
parameter deviations, i.e., it should not occur at a finely tuned
point in parameter space. This property is also important
for the experimental realization, where imperfections are un-
avoidable. In this section, we discuss how the DTC phase is
affected by variations of different parameters, such as detun-
ing and optomechanical coupling.

Varying �1 and �2, we obtain the phase diagram of DTC
order shown in Fig. 8(a). Period doubling occurs in the re-
gion marked in red, while in the blue region such behavior
is absent. It is evident that period doubling is robust to the
imperfection in �1 and �2. In Fig. 8(a) the flipping time t1 is
fixed, but a larger DTC region can be obtained if t1 is further
optimized at each point of the phase diagram; see Fig. 8(b).
Here the two black lines indicate the conditions gc,1 = g and
gc,2 = g. As explained above, when gc,2 < g < gc,1 is satis-
fied, i.e., in region III, the DTC can be realized. However,
DTC behavior also occurs in region II, where g > gc,1. To
understand the persistence of the DTC phase in region II
one can introduce an effective potential Veff (x), where x =
(d + d∗)/

√
2 is a quadrature of the cavity (see Appendix C for

the derivation). Various profiles of Veff (x) during the flipping
process are shown in Fig. 9, where the red point is the initial
position of the cavity and is decided by the previous relaxation

FIG. 8. Phase diagram of DTC order with respect to �1 and �2.
The red (blue) region refers to the DTC (non-DTC) phase. The two
black lines indicate the conditions g = gc,1 (dashed) and g = gc,2

(dot-dashed). In panel (a) the flipping time is fixed at t1 = 1.90/J ,
while in panel (b) t1 is chosen for each �1/2 by the position of the
first minimum in the time evolution of δN (see, e.g., Fig. 7). Other
parameters are the same for both panels: κ/J = 15, A2/J = 2000,
g/J = 2 × 10−3, N = 200, ωm/J = 104, and Jt2 = 200.

process. The effective potentials in I-IV correspond to the
four regions of Fig. 8(b). The bottom left panel shows that in
region (II), although g > gc,1 implies an effective poten-
tial with a double-well dependence, the barrier at x = 0 is
smaller than the initial value of the potential energy and thus
does not prevent the flipping process from one steady state
|α − d̄,+δN̄〉 to the other steady state |α + d̄,−δN̄〉 from
taking place.

Besides being robust to changes in �1 and �2, the pe-
riod doubling oscillation is also tolerant to deviations from
g1 = g2 = g (i.e., the condition of equal optomechanical cou-
plings), which is particularly important for the experimental
realization. A phase diagram of DTC order with respect to in-
dependent optomechanical couplings g1,2 is shown in Fig. 10.

D. DTC behavior in the deep quantum regime

While time-crystal order appears in the thermodynamic
limit, N → ∞, experimental realizations are certainly limited
to a finite excitation number. In principle, at finite N the mean-
field approximation is not exact and numerical simulations
with the full quantum treatment should be performed. In this
regime of finite N , the period-doubling oscillation is only
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FIG. 9. Schematic plot of the cavity effective potential Veff (x) [cf.
Eq. (C3)] during the flipping process, for four possible scenarios. The
initial value of x (indicated by a red dot) is decided by the previous
relaxation process. Panels I–IV correspond to the four areas in the
phase diagram of Fig. 8.

transient. However, their decay time diverges when increasing
N . To address these effects, we investigate the few-phonon
regime by solving the quantum master equation directly:

d ρ̂

dt
= −i[Ĥeff , ρ̂] + κ

(
d̂ ρ̂d̂† − 1

2
(d̂†d̂ ρ̂ + ρ̂d̂†d̂ )

)
. (18)

FIG. 10. Phase diagram of DTC order with respect to g1 and g2.
The red region is the DTC phase. We used κ/J = 10, �1/J = 100,
�2/J = 50, A2/J = 104, N = 200, ωm/J = 104, and Jt2 = 100. The
two optomechanical couplings g1,2 are expressed here in terms of
g = 1.2gc,2 and t1 is determined at each point of the phase diagram
from the first minimum in the oscillations of δN (see, e.g., Fig. 7).

FIG. 11. Period-doubling oscillations in the deep quantum
regime. In (a) we show the stroboscopic time evolution of δN/N at
different values of the (conserved) phonon number N . The dashed
black line is the simulation from the original Hamiltonian, ob-
tained by the mean-field approximation. The solid lines are quantum
simulations obtained from the master equation (18) using N =
10, 24, 32, 50. A larger value of N results in a larger oscillation
amplitude. In panel (b) we plot the lifetime TN (dots), extracted
from the simulations of panel (a). The dashed line is a guide for
the eye. We used the following parameters: κ/J = 1.2, �1/J = 20,
�2/J = 5, A2/J = 300, ωm/J = 1500, g = 1.5gc,2, Jt1 = 5.94, and
Jt2 = 5.

For simplicity, we only perform simulation based on Ĥeff ,
expressed as in Eq. (6) through the Schwinger’s representa-
tion [40]. Oscillations of 〈δN̂/N〉 = 〈(b̂†

1b̂1 − b̂†
2b̂2)/2N〉 are

displayed in panel (a) of Fig. 11, for different values of the
(conserved) phonon number N . As expected, the oscillation
period is 2T . while the amplitude at given N follows an
approximate exponential decay ∼e−t/TN . By increasing N , we
observe both a general increase of amplitude, bringing the
oscillations closer to the mean-field result (dashed curve), as
well as a longer decay time TN .

The growth of TN with N , shown in Fig. 11(b), is consistent
with a robust DTC order in the thermodynamic limit. The
dependence is slightly faster than linear in the available range
of N , but the precise functional form is difficult to ascertain.
If larger values of N were accessible, TN might show the same
type of weak exponential growth discussed in Ref. [16]. While
it is numerically difficult to extend the simulations to larger
N , we note that the total number of phonons is naturally large
in our optomechanical model, which validates the thermody-
namic limit and justifies the mean-field description adopted
in the rest of the article. Instead, in Ref. [16] the number of
artificial atoms is typically of order O(1).

E. Mechanical dissipation

So far all our discussions have assumed negligible mechan-
ical dissipation. Then, within the regime of validity of the
effective Dicke model Eq. (7), the initial phonon number N is
conserved. Instead, if the decay of the membrane is considered
the total phonon number becomes time dependent and follows
the approximate exponential decay N (t ) ≈ N0 exp[−2γ t] (as-
suming equal decay rates of the two mechanical modes, γ1 =
γ2 = γ ). Consequently, the two critical couplings gc,i(t ) (with
i = 1, 2) increase with time. The value of gc,2(t ) is most
important here for the stability of DTC order and Eq. (11)
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FIG. 12. Evolution of the DTC order parameter δN/N after in-
cluding the decay of the mechanical modes. The blue curve is the
numerical evolution, obtained from the mean-field equations of the
full model; see Eq. (1). The dashed and dot-dashed curves are
from Eq. (21). We have used the following parameters: �1/J =
80, �2/J = 20, A2/J = 2000, κ/J = 10, γ /J = 10−3, ωm/J = 104,
Jt1 = 0.97, Jt2 = 6, and g = 1.7gc,2(0), where the critical coupling
gc,2(0) is computed from Eq. (11) using N = 200 (the initial number
of phonons). The value of A1 is determined by Eq. (15).

gives

gc,2(t ) =
√(

�2
2 + κ2

)
J

4�2|α|2N0
exp[γ t]. (19)

As seen in Fig. 8, DTC order only occurs for g > gc,2. Oth-
erwise, the relaxation phase drives the system to the normal
state and the DTC order cannot persist. Imposing gc,2(t ) = g,
the lifetime T0 of the DTC is found as follows:

T0 = 1

γ
ln

[
g

gc,2(0)

]
. (20)

For t < T0, the amplitudes of the period-doubling oscillations
decay as

d̄ (t ) = 2g|α|N0 exp[−2γ t]

�2 − iκ

√
1 − g4

c,2(t )

g4
,

δN̄ (t ) = N0 exp[−2γ t]

2

√
1 − g4

c,2(t )

g4
, (21)

while for t � T0 the period-doubling oscillations have disap-
peared. An example of DTC dynamics with finite mechanical
damping is shown in Fig. 12, finding excellent agreement with
Eqs. (20) and (21).

F. Experimental feasibility

A main motivation for our setup has been the large differ-
ence in relaxation rates between the cavity and the mechanical
modes. In a wide range of optomechanics setups, the decay
rate of the mechanical mode is γ ∼ (10−4–10−7) ωm, which
can be 105–106 times smaller than κ (see, e.g., Table II of
Ref. [23]). This makes it desirable to develop a mapping in
which the low-dissipation mechanical modes correspond to
the atomic ensemble of the Dicke model.

Throughout the paper, we have used values of the cou-
plings g and J , which are generally compatible with existing
optomechanical setups. In particular, a large second-order
interaction with g/2π = 245 Hz has been realized in an op-
tomechanical crystal [41] (in that case ωm/2π � 9 MHz,
giving g ∼ 3 × 10−5 ωm). Furthermore, reported values of the
structural coupling parameter J are typically J ∼ 10−3 ωm,
while reaching up to J ∼ 10−2 ωm [33,35,36]. In our sim-
ulations we assumed values well within, or much smaller
than, these typical scales. For example, we take 2J =
(10−2–10−4) ωm and g � (10−5–10−7) ωm in Fig. 2. The pa-
rameters of Figs. 2(b) and 2(c) were also used to compute the
DTC dynamics of Fig. 5.

On the other hand, we find that the RWA conditions ωm 

JN, g|α|2N (under which the mapping to the Dicke model
becomes accurate) can represent a significant restriction. They
are satisfied by simply assuming a sufficiently large value
of the mechanical frequency ωm. However, in this regime it
might be more challenging to realize a large second-order op-
tomechanical coupling g. Furthermore, due to the large value
of ωm, our simulations were performed deep in the resolved
sideband regime. The most favorable value considered in
Figs. 2 and 5 is κ � 0.005 ωm, which is not too far from exper-
imental realizations [23], but still not in the achievable range.

To address this issue, we extend in Fig. 13(a) the calcula-
tions of DTC dynamics of Fig. 5 by considering progressively
larger values of κ/ωm. We observe a significant decay of
the DTC oscillations which, for the case with largest cavity
damping (κ = 0.04 ωm), terminate after about 500 periods.
This decay of the oscillation amplitude is qualitatively similar
to the effect of a finite mechanical damping. In fact, we show
in Fig. 13(b) that here the DTC protocol induces a decay
of the total photon number N (even if γ = 0). We recall
that for an accurate mapping the total phonon number N is
approximately conserved. Thus the observed decay reflects
progressively larger violations of the RWA condition. Fur-
thermore, it can be seen in Fig. 13(a) that the center of the
DTC oscillations gets gradually displaced from δN = 0. This
feature, noted already, is also due to the imperfect mapping.

Despite these obvious imperfections, the DTC oscillations
of Fig. 13 are long-lived. As shown by the black curve of
Fig. 13(b), the decay induced by the natural damping of
a high-quality mechanical mode occurs on a much faster
timescale and thus would completely dominate over the decay
observed in Fig. 13(a). If mechanical damping were included,
the DTC oscillations would be limited to at most ∼100 periods,
similar to Fig. 12. These discussions suggest that that, in
realistic systems, it is meaningful to explore the DTC phase
beyond the regime of strict validity of our mapping. This can
relax the restrictions on parameters and facilitate the realiza-
tion of our proposed setup.

V. CONCLUSION

In this work we have proposed a scheme for the realiza-
tion of a superradiant-type quantum phase transition in a two
membranes in the middle optomechanical system. We identify
a regime in which the system can be accurately mapped to
the Dicke model and exhibits Z2 symmetry breaking in the
thermodynamic limit. By modulating the drive amplitude and
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FIG. 13. Period-doubling oscillations with progressively larger
values of κ . Panel (a) shows the amplitude of the strobo-
scopic dynamics. For reference, we plot the same oscillations of
Fig. 5(a) where κ/ωm = 0.0005 and 0.005 (blue and yellow symbols,
respectively), showing negligible decay. The other curves are for
κ/ωm = 0.02 (green squares), 0.04 (red diamonds), and 0.04 (violet
triangles). In these three cases we used �1/J = 10J , while all other
parameters are as in Fig. 5. The symbols of panel (b) show the
corresponding evolution of the phonon number. The solid black line
is N (t ) = N0 exp[−2γ t], using γ = 10−7 ωm.

detuning in a periodic way, making the system cross the
normal/superradiant critical point, one can realize a discrete
time crystal order with period doubling. We show that such pe-
riod doubling is robust to parameter deviations and persists in
the thermodynamic limit. We also discussed how the realiza-
tion of the present setup, while challenging, is broadly com-
patible with currently available optomechanical technology.
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APPENDIX A: FEASIBILITY OF THE MODEL

In this Appendix, we demonstrate an implementation of
the model. The specific example we consider is a Fabry-Pérot

cavity with two membranes in the middle. As indicated in
Fig. 1, the laser axis is along the x direction, with the two end
mirrors at positions x = ±L. In analogy to Refs. [42–44], we
model the membranes as dielectric “bumps” with transmission
coefficient T and apply suitable boundary conditions at the
end mirrors and at the positions of the two membranes. A
transcendental equation can be obtained

sin(2kL + 2ϕ) + sin[2kL + 2k(x1 − x2)] sin2 ϕ

− 2 sin ϕ cos[k(x1 − x2) − ϕ] cos[k(x1 + x2)] = 0,

(A1)

where k is the wave number of the optical mode and
ϕ = arccos

√
T . We now impose the condition of vanish-

ing first-order optomechanical couplings and require that the
second-order couplings have the same form of Eq. (2):

∂k

∂x1
= ∂k

∂x2
= ∂2k

∂x1∂x2
= 0,

∂2k

∂x2
1

= −∂2k

∂x2
2

. (A2)

By evaluating the first- and second-order derivatives of
Eq. (A1), we rewrite Eq. (A2) as

sin(2kx1 − ϕ) + cos[2k(L + x1 − x2)] sin ϕ = 0,

sin(2kx2 + ϕ) − cos[2k(L + x1 − x2)] sin ϕ = 0,

sin[2k(L + x1 − x2)] = 0,

cos(2kx1 − ϕ) = − cos(2kx2 + ϕ). (A3)

A solution of Eq. (A3) is

k = (2m0 + 1)π

2L
− ϕ

L
, x(0)

1 = m1π

k
,

x(0)
2 = m2π + π/2 − ϕ

k
, (A4)

FIG. 14. Optical spectrum of the two-membrane cavity, close
to the condition determined by Eq. (A4). Here we choose m0 =
7, m1 = −1, m2 = 1, and T = 0.85, giving x(0)

1 /L � −0.296 and
x(0)

2 /L � 0.407. The left (right) panel shows the optical spectrum as
a function of �x1 (�x2), while setting �x2 = 0 (�x1 = 0). For the
middle mode, the vanishing derivatives (indicated by red lines) imply
zero first-order optomechanical couplings. The opposite curvatures
with respect to changes in �x1 and �x2 correspond to second-order
optomechanical couplings with opposite sign.
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FIG. 15. Optical spectrum for the middle mode of Fig. 14. More
precisely, we plot L�k = L[k(x1, x2) − k(x(0)

1 , x(0)
2 )] as a function of

�x1, �x2. As expected, �k is approximately ∝�x2
1 − �x2

2 for small
values of �x1,2.

where m0, m1, m2 are integers. For specific parameters, the
dependence of the optical spectrum as a function of the dis-
placements �xi = xi − x(0)

i (i = 1, 2) is illustrated in Figs. 14
and 15, showing that one of the eigenmodes follows the ex-
pected behavior.

APPENDIX B: PHASE TRANSITION FROM THE
MEAN-FIELD EQUATIONS

The effective Hamiltonian is shown in Eq. (6) and the
corresponding mean-field equations of motion are presented
in Eq. (9). By substituting b1,2 → β1,2eiωt , where β1,2 are
time-independent amplitudes, we get

ωβ1 = −2g|α|(d + d∗)β1 + 2Jβ2,

ωβ2 = 2g|α|(d + d∗)β2 + 2Jβ1, (B1)

which can only have a nontrivial solution for

ω = ±
√

4g2|α|2(d + d∗)2 + 4J2. (B2)

This equation describes how the unperturbed frequencies ±2J
of the normal modes are modified by a finite expectation value
of the cavity field. In terms of ω and d , and by using the
conserved total phonon number N = |b1|2 + |b2|2, we find

|β1|2 = 4J2N

4J2 + [2g|α|(d + d∗) + ω]2
,

|β2|2 = N[2g|α|(d + d∗) + ω]2

4J2 + [2g|α|(d + d∗) + ω]2
. (B3)

Assuming a stationary d , the mean-field equations also give
d = 2g|α|(|β2|2 − |β1|2)/(� − iκ ), implying

(�2 + κ2)(d + d∗) = ± 4g2|α|2�N (d + d∗)√
J2 + g2(d + d∗)2|α|2 , (B4)

where the ± sign corresponds to Eq. (B2) and, assuming d �=
0, must be chosen in accordance with the sign of �. For g >

gc, the above condition has the following nontrivial solution:

(d + d∗)2 = 16g2|α|2�N2

(�2 + κ2)2

(
1 − g4

c

g4

)
, (B5)

which is in agreement with Eqs. (11) and (12). Substituting
Eq. (B5) in the expression (B2) for ω, we find the effective
frequency (14) given in the main text. Finally, we can recover
Eq. (13) using Eq. (B3).

APPENDIX C: EFFECTIVE POTENTIAL OF THE CAVITY

In this appendix, we introduce an effective potential Veff

(x) of the cavity. We first rewrite the mean-field equation of
motion for the cavity, see Eq. (9), in terms of the quadrature
variables as follows: We have

dx

dt
= �p − κx,

d p

dt
= −�x − 2

√
2g|α|(|b1|2 − |b2|2) − κ p, (C1)

where x = (d∗ + d )/
√

2 and p = i(d∗ − d )/
√

2. It is then
simple to derive the following equation of motion for x:

d2x

dt2
= −dVeff (x)

dx
− 2κ

dx

dt
, (C2)

where dVeff (x)
dx = (�2 + κ2)x + 2

√
2g|α|�(|b1|2 − |b2|2).

With the values of |b1,2|2 given by Eqs. (B3) and (B2), the
following explicit form of the effective potential is found:

Veff (x) = 1

2
(�2 + κ2)x2 + 2�N

√
J2 + 2|α|2g2x2. (C3)

The critical coupling g associated with Veff (x) coincides with
Eq. (11) and in the broken-symmetry phase the minima of
Veff (x) agree with Eq. (12).
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