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Sensing directional noise baths in levitated optomechanics
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Optomechanical devices are being harnessed as sensors of ultraweak forces for applications ranging from
inertial sensing to the search for the elusive dark matter. For the latter, there is a focus on detection of either
higher energy single recoils or ultralight, narrow-band sources; a directional signal is expected. However, the
possibility of searching for a stochastic stream of weak impulses, or more generally a directional broadband
signal, need not be excluded; with this and other applications in mind, we apply Gaussian white noise impulses
with a well defined direction � to a levitated nanosphere trapped and 3D cooled in an optical tweezer. We find
that cross-correlation power spectra offer a calibration-free distinctive signature of the presence of a directional
broadband force and its orientation quadrant, unlike normal power spectral densities (PSDs). We obtain excellent
agreement between theoretical and experimental results. With calibration we are able to measure the angle �,
akin to a force compass in a plane. We discuss prospects for extending this technique into the quantum regime
and compare the expected behavior of quantum baths and classical baths.
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I. INTRODUCTION

Experiments on levitated nanoparticles, cooled and con-
trolled in cavities or by active feedback [1], are mainly aimed
at two important goals. The first is the experimental real-
ization of quantum coherence in systems of mesoscopic or
macroscopic size. The second is the ultrasensitive detection
of forces and accelerations, with applications ranging from
fundamental physics [2–5] to real world applications.

The two goals are by no means exclusive. Indeed, combin-
ing them for quantum force sensing is itself an overarching
aim. Recent progress has been remarkable: cooling to quan-
tum (or near) ground state of a single mode of the motion
has been achieved, either by quantum control [6,7] or via the
optical mode of a cavity [8]. Multimode cooling and dynamics
is of increasing interest [9–13]. Sensing of forces as low as the
zeptoNewton scale has already been investigated experimen-
tally [14–19] with levitated nanoparticles. Within this second
context, optomechanics based sensing studies have focused on
three distinct types of forces [1]: constant forces, harmonic
forces and isolated impulses.

Here we consider a fourth possibility. Stochastic forces
of microscopic origin are ubiquitous in nature. Nanopar-
ticles experience thermal forces f th(t ), such as collisions
with surrounding gas molecules; or due to photon recoils.
These represent stochastic noise baths and are Markovian, so
〈 f th

x,y(t ) f th
x,y(t ′)〉 ∝ δ(t − t ′). To date it it has been assumed that
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〈 f th
x (t ) f th

y (t ′)〉 = 0, i.e., the corresponding impulses along x, y
(and z) are uncorrelated and these baths are considered purely
deleterious sources of heating. However, if a subset of these
impulses are randomly timed, but with a preferred orientation,
this assumption may not be justified.

We propose to detect anisotropies—specifically
directionality—via the cross-correlation spectrum
Sxy(ω) = 1

2 (〈[x̂]†ŷ〉 + 〈[ŷ]†x̂〉). For example, we consider
an incident beam of microscopic particles from a particular

FIG. 1. (a) A levitated nanoparticle is exposed to stochastic
forces f th such as Brownian thermal motion, uncorrelated in any
plane, e.g., 〈 f th

x (t ) f th
y (t ′)〉 = 0 (upper image). Consider detection of

a stream of stochastic impulses, too weak to be individually detected
but from fixed orientation � (45◦ is illustrated). (b) By applying
a directed stochastic force, we show that with normal PSDs (solid
lines) one must first subtract the thermal component; and they are
insensitive to quadrant: ±� are indistinguishable. (Hatched areas
show the PSDs without directed noise; solid lines show experimental
data with directed noise; dashed lines use Eq. (4) (for β � √

2, see
text). (c) Cross-correlation spectra, Sxy(ω), in contrast, are shown to
offer a calibration-free signature of a directed force and its orienta-
tion quadrant.
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direction � in the x-y plane: even if the stream of weak
stochastic impulses are individually undetectable, integrated
over a macroscopic timescale, the cumulative effect of this
white-noise force can generate a measurable, steady-state
correlation spectrum Sxy.

We experimentally demonstrate the effect by applying an
electrically generated stochastic force at orientation � to the
x-y axes of a nanosphere, trapped in an optical tweezer and 3D
cooled by feedback control. The levitated particle is naturally
charged, but with one to a few elemental charges. Hence the
forces are microscopic- on the atto-Newton scale. We show
the Sxy signal provides an unambiguous and calibration-free
signature of the presence of the directional stochastic noise,
but also its orientation quadrant, as illustrated in Fig. 1.

Applications of detection of such thermal-bath anisotropies
may include detection of weak gas currents or temperature
anisotropies [20]. The exquisite force sensitivity of levitated
nano- and microspheres in high vacuum offers a promising
new approach in the search for dark matter [4,5], for de-
tectable single impacts and narrow-band sources. However,
the possibility of detecting a directional stochastic source
via the resulting cross-correlations has not yet been consid-
ered. The work opens the way to applications in quantum
regime and we discuss the signature of a quantum bath. In
our present setup and cooling, easily achievable pressures
of 10−6–10−7 mbar cool the motion down to occupancies
nx,y ∼ 10 quanta. However, the present sensing technique
is demonstrated at higher pressures. Displacements on the
scale of quantum zero point motion (∼10−12 m here) may
be detected from the phase of the scattered light, but in-
dependent detection of x, y transverse to the axial tweezer
direction, in order to generate quantum Sxy spectra, requires
further sensitivity enhancements of the split-detection scheme
employed here, by about 1–2 orders of magnitude. In addi-
tion, the artificially generated noise and other measurement
errors reduce sensitivity. However, this is not a fundamental
limit.

In Sec. II, below we introduce the physical model and
cross correlation spectra, while in Sec. III, we introduce the
experiment. In Sec. IV, we discuss our results. In Sec. V, we
briefly consider quantum regimes and quantum noise baths,
using as an example the quantum optical shot noise in a cavity.
Finally we conclude.

II. CLASSICAL NOISE MODEL

We consider a spherical nanoparticle trapped in an optical
tweezer. Its center of mass motion corresponds to a set of
harmonic oscillators of frequencies ωu with u ≡ x, y, z, under-
damped by collisions with background gas that also drive the
particle motion with a stochastic force fth. The nanoparticle
is driven by a feedback force to precool and stabilize its
motion. In addition, we consider a directional force fdir. The
equations of motion can then be written as

ü + γuu̇ + ω2
uu = ( fth,u(t ) + fdir,u(t ) + ffb,u(t ))/m, (1)

where u ≡ x, y, z and γ is the gas damping [21,22] while m is
the particle mass. For a spherical particle, normally gas damp-
ing rates are isotropic γu ≡ γ . The feedback force ffb,u(t ),
which for the cold-damping scheme corresponds to a force

proportional to the measured velocity v(t ). The equations can
readily be solved in the frequency domain. In particu-
lar, the feedback force is then approximated ffb,u(ω)/m =
Hu(ω)v(ω) ≈ −iω�

(u)
eff x(ω) hence

u(ω) = χu(ω)( fth,u(ω) + fdir,u(ω)). (2)

Hence the transfer function FT[H(t )] = H(ω) was replaced
by an effective constant damping allowing a simpler analysis,
but noting that the full stochastic numerics can simulate the
experimental transfer function. In this case, we obtain the
effective susceptibility χu = [m(ω2

u − ω2 + iω�u)]−1 where
we take �u = γ + �

(u)
eff . For simplicity, we also neglected

the effect of the imprecision noise on the feedback scheme
since it is not relevant at the pressure the experiment is carried
out in Ref. [23].

The power spectral densities (PSDs) may be obtained
once the properties of the stochastic force noises are
defined. For thermal noise, we have zero mean and correla-
tion 〈 fth,u(t ) fth,u′ (t ′)〉 = 2kBT mγ δ(t − t ′)δu,u′ where u, u′ ≡
x, y, z, with an isotropic power spectrum Sth,u ≡ Sth

ff .
We restrict our analysis to the nanoparticle motion in the

2D tweezer polarization plane identified by the x and y axes
in Fig. 2; the z motion remains largely decoupled due to the
significant difference in the trap frequencies. However, all
calculations and numerics are fully 3D.

Directional forces. For the directional force noises,
we assume zero mean and correlation functions
〈 fdir,x(t ) fdir,x(t ′)〉 = Sdir

ff cos2 �δ(t − t ′), 〈 fdir,y(t ) fdir,y(t ′)〉 =
Sdir

ff sin2 �δ(t − t ′), and finally a cross correlation
〈 fdir,x(t ) fdir,y(t ′)〉 = Sdir

ff cos � sin �δ(t − t ′). Here, the
angle � represents the direction of the stochastic force. It is
convenient to quantify the relative magnitude of the directed
and background thermal forces, especially for the case where
both have white noise spectra. Thus we introduce

β2 = Sdir
ff /Sth

ff , (3)

The experimental PSDs are then given by

Sxx(ω) � |χx(ω)|2Sth
ff (1 + β2 cos2 �),

Syy(ω) � |χy(ω)|2Sth
ff (1 + β2 sin2 �), (4)

Sxy(ω) � Re[χ∗
x (ω)χy(ω)]Sth

ff β
2 cos � sin �.

One readily sees that the cross correlation has the advan-
tage that it isolates the signal due to the directional force from
the thermal noise contribution, since Sxy(ω) depends only on
Sdir

ff (if sensing an uncontrolled force, β is not known a pri-
ori). β 
 1 corresponds to the regime where the directional
force is very weak compared with the thermal component;
while for β � 1, the directed force is dominant. For β = √

2
and � = π/4 (which gives the maximal cross-correlation),
β2 cos2 � = β2 sin2 � = 1 thus the directed contribution to
the PSDs is equal to the thermal contribution; the experiments
presented in Figs. 1 and 2 correspond to β � 1.4 ∼ √

2.

III. EXPERIMENTAL SETUP

An overview of the experiment is shown in Fig. 2(a).
A diode pumped solid state laser of wavelength λ = 1064
nm illuminates a single aspheric lens of nominal numerical
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FIG. 2. (a) Simplified layout of the experimental setup (top) and schematic view of the trapped nanoparticle with the geometrical
configuration of the four electrodes exploited for injecting the directional force (bottom; NB: R ≈ 70 nm nanosphere image is not to scale).
(b) Experimental data showing the cross-correlation for six different orientations (right) and a 2D map of the cross-spectral density Sxy(ω)
obtained from a detailed sweep of � (left). Even without any calibration, the traces have the “smoking gun” characteristic shape indicating
the presence of a directed force; and the flip in sign that discriminates between orientation quadrants. (c) Shows theoretical simulation, with
the analytical expression (5), in excellent qualitative and quantitative agreement with experiment, showing that we may also measure arbitrary
values of � to within under a degree. For the experiment, β � √

2.

aperture NA= 0.77 to obtain an optical tweezer. At its focus,
we trap single silica nanoparticles with typical radii in the
range R = 60–90 nm. A condenser aspheric lens, NA = 0.55,
recollimates the beam after the tweezer focus. Subsequently,
the beam is attenuated and divided in two paths by a nonpo-
larizing beam splitter. On each path, a split detection scheme
allows one to measure the particle motion in the tweezer po-
larization plane x-y along orthogonal directions. The particle
motion is cooled in all three center of mass (CoM) direc-
tions by a cold damping scheme [6,7,24,25] exploiting the
Coulomb force. Thus the trapped particles are charged with
a number of elementary charges typically in the range 1–50
and this represents an essential requirement for the feedback
scheme.

Hence, the most effective approach is to introduce a direc-
tional stochastic Coulomb force, felec. In order for felec ≡ fdir,
there are specific requirements for the force components in the
x, y directions: (i) vanishing mean values 〈 felec,x〉 = 〈 felec,y〉 =
0, (ii) correlation 〈 felec,x(t ) felec,x(t ′)〉 = Selec

ff cos2 �δ(t − t ′)
and 〈 felec,y(t ) felec,y(t ′)〉 = Selec

ff sin2 �δ(t − t ′), and finally a
cross correlation 〈 felec,x(t ) felec,y(t ′)〉 = Selec

ff cos � sin �δ(t −
t ′), and (iii) while Selec

ff = Sthβ
2 ≡ 2kBT mγ β2.

To implement this experimentally we use four rod elec-
trodes laying in a plane parallel to the tweezer polarization
plane. This is shown in Fig. 2(a). The plane of the elec-
trodes is slightly shifted from the origin which represents
the particle mean position. The symmetry of this geomet-
rical configuration allows one to have full control of the

electric field components in the x-y plane by applying the
same voltage signal to three electrodes each with the right
scaling factor while keeping the fourth grounded. This can
be intuitively understood by considering that a voltage Vs

on electrode 1, with all others grounded, will give an elec-
tric field E1 = Vs (−Tx,−Ty,−Tz )T , where Ti represents the
inverse of an effective distance. For symmetry reasons, if
the same voltage is applied on electrode 2 the electric field
would be E2 = Vs (−Tx, Ty,−Tz )T . Thus the superposition
of the two electric fields will have a vanishing component
on the y direction. The same approach can be used with
electrodes 1 and 4 to obtain an electric field with vanishing x
component.

The last step to obtain an arbitrary electric field direction in
the x-y plane is to control the relative amplitude of the voltage
signal delivered to electrodes 1-2 and 1-4. We do this with a
Wheatstone bridge which given an input Vs provides two out-
puts Vs1, Vs2 whose ratio fully depends on a variable resistor.
By tuning the bridge, one can approximate Vs1 � Vs cos � and
Vs2 � Vs sin �.

In the experiment, Vs is a white noise signal, provided by
a standard signal generator, with a spectral density of SVV =
1.4 × 10−8 V2/Hz on a bandwidth of BW = 2.5 MHz, after
amplification with gain G = 80, Vs1 and Vs2 drive electrodes 2
and 4 respectively while electrode 1 is driven with their sum.

Experimentally, we infer �
(x)
eff ≈ 2.1 kHz and �

(y)
eff ≈

2.5 kHz. To simulate the data in Figs. 1 and 2, we take pressure
P = 4 × 10−3 mbar.
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IV. RESULTS

In Fig. 2, we show that there is excellent agreement, for
all angles �, between the measured cross-correlations and the
expression

Sxy(ω) � Re[χx(ω)χ∗
y (ω)]2kBT mγ β2 sin � cos � (5)

by taking β = 1.4.
The accuracy of the value of β = 1.4 for modeling the

applied electric stochastic noise in Fig. 2, may be further
tested by considering the normal PSDs. The directed force can
affect the usual PSDs quantitatively. If the directed force pro-
vides heating, the final temperature is increased by the factor
(1 + β2 cos2 �) for the x mode, and (1 + β2 sin2 �) for y. In
the absence of the directed force, we measured Ty = 215.7 ±
0.6 mK and Tx = 297 ± 2 mK. In the presence of the directed
noise, for the same pressure, the temperatures are enhanced by
a factor of ≈3 ≈ 1 + β2 for � = ±π/2, 0 and were measured
to be Ty = 641 ± 0.2 mK and Tx = 936 ± 3 mK, respectively,
as expected.

The results show that positive detection of the distinctive
Sxy shape suffices as a signature of directionality. Sensitivity
analysis is, however, useful for more precise measurement of
�. Details are found in Appendix, but noting that the variance
errors are similar; and that the Sxy have the advantage of
excluding a signal from Sth

ff ; then, a key element is to compare
the relative gain of force sensing with Sxy, compared to PSDs,
by considering the ratio (for ω � ωx):

Sxy(ω)

Sxx(ω)
= Re[χx(ω)χ∗

y (ω)]

|χx(ω)|2
β2 sin � cos �

1 + β2 cos2 �
. (6)

We approximate
Re[χx (ω)χ∗

y (ω)]
|χx (ω)|2 ≈ �2

x
4(ωx−ωy )2+�2

x
near ω ∼ ωx.

Hence, we readily see that optimal visibility of the cross
correlation spectrum, relative to the ordinary PSD, requires
�x ∼ |ωx − ωy|. As the gas damping is very weak, this means
that cooling (such as by active feedback) is essential or else
the cross correlations are strongly suppressed. A similar result
is obtained at ω � ωy, by comparing Syy and Sxy. We note that,
in contrast, standard 1D force sensing is insensitive to cooling
rate � (see Appendix for further details).

V. QUANTUM VERSUS CLASSICAL NOISE BATHS

The case of the nanoparticle trapped in a cavity is espe-
cially interesting as the particle is subjected to the classical
noise bath (from the background gas) simultaneously with a
quantum bath (optical quantum shot noise).

The experiments presented here are in free space and in
these setups, 2D quantum cooling has not yet been achieved.
While future technical advances may allow 2D quantum cool-
ing without a cavity and direct measurement of Sxy(ω), to date
only cavity setups have achieved quantum regimes in the x-y
plane, with the coherent scattering setup [8] that allows very
strong light-matter coupling rates gx, gy.

Hence one might apply the technique employing 2D
quantum cooling in a cavity, provided split detection offers
adequate sensitivity. However this opens up another problem
which is that cavity-mediated coupling between modes leads
to hybridization of the x-y modes and the formation of dark
modes [9,10,26] and back-action induced rotation of the x-y

FIG. 3. Spectral asymmetry even far from quantum regimes: a
levitated particle in an optical cavity subject to a classical ther-
mal bath with anisotropy β2 = 1/4. The mechanical modes x, y are
equally coupled to the optical mode of the cavity and have occu-
pancies nx,y ∼ 25. For orientations angles � = 0, π/2 the classical
bath correlations vanish, exposing the effect of the quantum optical
shot noise bath and resulting in a very noticeable asymmetry even
when the x, y modes are far from the ground state. Cavity parameters
from the setup in Ref. [11], with gas pressure P = 3 × 10−6 mbar
and β2 = 1/4.

modes. 2D quantum cooling occurs in a “Goldilocks” zone
of coupling that is not large enough to form dark modes, but
remains large enough for effective cooling [10,12]. To avoid
misalignments between the detectors and the x, y modes, the
orientation of the normal modes must be identified, for each
different set of experimental parameters. Alternatively, one
may use a trapping point where the back-action rotation is
suppressed [11] and the normal modes remain aligned with
the tweezer axes. For the simulations here we consider the
nanoparticle in this unperturbed trapping point, investigated
experimentally in Ref. [11].

A directional component in the Brownian gas collisions
is introduced, with β2 = 1/4 and the PSDs and cross-
correlations may be obtained analytically using the standard
methods quantum linear theory (QLT). In Fig. 3, we plot
Sxy(ω) for the cavity parameters in Ref. [11] except now
pressure P = 3 × 10−6 mbar. Derivations are in Appendix E
where expressions for Sxy(ω) plotted in Fig. 3 are given in
Eq. (E5).

The x, y modes which are equally coupled to the light field
have a phonon occupancy of nx, ny � 25, thus the ordinary
PSDs display little asymmetry. We note that sideband asym-
metry of Sxx, Syy is an extremely well-studied experimental
signature of quantum cooling since the area of the positive
(negative) frequency peaks is proportional to nx,y, (nx,y + 1)
respectively.

However, the behavior of the cross-correlations is remark-
able: for most orientation angles � the Sxy sidebands are
symmetrical; while for � ∼ 0, π/2 . . . the cross-correlation
from the Brownian gas motion is suppresses and the spectra
should vanish. At this point, the weak contribution from the
quantum optical shot noise bath is exposed and a striking
degree of asymmetry is seen even if the nanoparticle is quite
far from the quantum ground state. This is in sharp contrast
with PSDs where strong asymmetry is only ever present as
phonon occupancies → 0.
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VI. CONCLUSIONS

We propose and demonstrate for the first time that the
steady state cross-correlation spectrum provides a distinctive
and unambiguous signature of the presence of a directed
stochastic force and its orientation quadrant. The experi-
ment exploited a singular advantage of levitated nanoparticles
wherein its center of mass motion modes have a clear geo-
metric interpretation (motion along x, y, z axes [9,10]), unlike,
say, two breathing modes of a membrane. The method gener-
alizes to other planes, provided the condition �i, j ∼ |ωi − ω j |
(where i, j ≡ x, y, z) can be satisfied.

In principle, by measuring relative changes in Sxx and
Syy, measured independently, one might infer information
on directionality; but such changes might be indistinguish-
able from fluctuations in the underlying experimental heating
and cooling rates. And as the normal PSDs cannot dis-
criminate between orientation quadrants (thus between ±�),
some information is lost. However, as measuring Sxy implies
measurement of Sxx, Syy, no choice is required: the cross-
correlation complements current methods at no extra cost.
There is the added advantage that it is not necessary to sub-
tract the unknown uncorrelated component as Sxy isolates Sdir

f f :
i.e., for our artificial stochastic noise source, β was speci-
fied accurately; in contrast, for uncontrolled noise, Sth adds
an uninteresting and uncertain component to the signal (see
Appendix). Sensitivity may be enhanced by improving the
cooling to frequency ratio which is not optimal as �x,y/|ωx −
ωy| ∼ 1/7; and operating at lower pressures of 10−6–10−8

mbar, near quantum limited regimes. The method is also
relevant to narrow-band directed forces, provided �cool ∼
|ωx − ωy|.

Our study opens the way to detection of different classes of
forces of microscopic origin such as tiny gas currents, small
anisotropies in the background noise baths, possibly due to in-
coming streams of gas or temperature variations [20]. There is
also the prospect of fundamental applications: the search for a
suitable dark matter candidate has not yet been successful and
remains one of the major challenges of physics. Directionality
is expected and significantly increases background rejection,
even for a handful of events [27]. Searches for dark matter
within optomechanics focus on detection of higher energy
single recoils [4], or ultralight, weak but narrow-band sources
[5]. However, weak but broadband directional sources might
also be considered [28]. This possibility might encompass an
ultralight source with a very short coherence time; or a source
spanning a band of multiple frequencies. The natural charge of
levitated nanospheres (from 1 to 1000’s elementary charges)
also opens the possibility of searches of millicharged dark
matter [29] with levitation in ion traps [30–32].
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APPENDIX A: SENSITIVITY ANALYSIS

In this section, we present details of sensitivity analysis
for directional force sensing using cross-correlations, relative
to the PSD approach. A standard signal to noise analysis is
complicated by the fact that our “signal” is the expectation
value of a stochastic force with similar spectral character-
istics to the thermal noises that act on the nanoparticle.
Not only do we need to exclude the uninteresting isotropic
contribution, but this also means the distinction between
signal and noise is less clear-cut than for, say, detection
of a harmonic drive. Nevertheless we may still apply tech-
niques widely used in optomechanics-based force sensing.
We present a brief review of standard methods, then apply
that to cross-correlations. Finally we present further details of
applications.

1. Force sensing in levitated optomechanics:
1D analysis and minimum detectable force

There is already a considerable body of work on ultra-
sensitive force sensing [1,14–19] with levitated nanoparticles.
A central result encapsulates measurement sensitivity in an
expression for the minimum detectable force in terms of
Boltzman’s constant, k, temperature Tx of center of mass
motion along x and mass of the nanoparticle m:

Fmin =
√

2kTxm�b. (A1)

Here b is the measurement bandwidth. The expression sets,
as a hard limit, that the minimum detectable force signal
must exceed the variance of the noise arising from thermal
fluctuations from sources such as, for instance, the Brownian
noise from background gas collisions.

In order to justify Eq. (A1), we consider a 1D damped
harmonic oscillator subject to a fluctuating force Fx that is to
be measured:

m
[
ẍ + �xẋ + ω2

x x
] = Fx(t ). (A2)

Analysis of the response of the oscillator to the driving is via
the well-known transformation to Fourier space. If the driving
force is deterministic, one obtains

x(ω) = χx(ω)Fx(ω), (A3)

where χx = [m(ω2
x − ω2 + iω�x )]−1 is the force susceptibil-

ity.
Stochastic forces require analysis via the power spectral

densities (PSDs). Regardless of whether Fx(t ) is deterministic
or stochastic, provided steady state is attained, we can write

Sxx(ω) = |χx(ω)|2Sff(ω), (A4)

where Sff(ω) is the PSD of Fx(t ).
In order to understand Eq. (A1), we consider the case

where Sxx(ω) is driven purely by thermal baths corresponding
to thermal motion at a temperature Tx. The corresponding ther-
mal force fluctuations are uncorrelated in time 〈Fx(t )Fx(t ′)〉 =
Sffδ(t − t ′) yielding a a white noise spectrum Sff(ω) ≡ Sff.
The variance of x in steady state is thus kTx = mω2

x 〈x2〉 and

013129-5



J. M. H. GOSLING et al. PHYSICAL REVIEW RESEARCH 6, 013129 (2024)

may be obtained by integrating over the PSD:

〈x2〉 = 1

2π

∫ +∞

−∞
Sxx(ω)dω = Sff

2π

∫ +∞

−∞
|χx(ω)|2dω

= Sff

2m2ω2
x�x

(A5)

hence

〈x2〉 = kTx

mω2
x

= Sff

2m2ω2
x�x

(A6)

from whence we readily obtain Sff = 2kTx�xm. However, the
corresponding force F depends on the frequency bandwidth b
of the measurement so writing 〈F 2〉 ≡ Sffb recovers Eq. (A1)
for the minimum detectable force.

In detection of narrow-band forces, the bandwidth b is gen-
erally equated with the inverse integration time, thus b ≡ 1/T .
It may be reduced to improve the variance error. Reducing
b has for instance allowed a demonstration of yoctoNewton
force sensitivity in levitated nanosystems: a recent study that
took integration times up to T = 36 000 s [17] achieved sen-
sitivity of tens of yoctoNewtons. It was found that system
stability ultimately limited the duration of the experimental
integration time and thus the minimum detectable force.

2. Variance of force spectra

When measuring deterministic forces, Sxx(ω) represents
the variance on the measured displacement x(ω) and 〈F 2〉
is the variance on the inferred force F (ω). However since
here we are measuring a purely stochastic force, we rely on
Eq. (A4), rather than Eq. (A3), we are instead interested in
the variance of the measured power spectra of force Sff(ω) ≡
Sxx(ω)/|χx(ω)|2. However we may still compare uncertainties
in measurement of force power spectra of narrow-band deter-
ministic forces with detection of stochastic white force noise
spectra.

In Fig. 4, we illustrate and contrast detection of narrow-
band forces with detection of stochastic white-noise forces
for different T . We employed stochastic solutions of the time
dependent equations of motion for x, y, z, in the presence of
external forces, and evolved the dynamics until steady state
was attained. The lower panels show displacement spectra (for
both PSDs and cross-correlations). The upper panels show the
corresponding inferred force spectra.

We consider first a force with combined harmonic plus
white-noise thermal components:

Fx(t ) = F harm
x (t ) + fth,x(t ), (A7)

where F harm
x = F0 cos ωht . As the system is linear, the cor-

responding spectra are additive Sff(ω) = Sth
ff + Sharm

ff (ω). Our
measured force spectrum is at finite integration time T , hence

Sff(ω, T ) ≡ 〈|x(ω, T )|2〉/|χx(ω)|2 � Sth
ff + Sharm

ff (ω). (A8)

Sff(ω, T ) fluctuates significantly for finite T . The associated
variance error might in principle be arbitrarily mitigated by
increasing T and averaging neighboring frequency bins. In
practice, the measured time traces are split into nb indepen-
dent integration blocks of length Tb, thus T = nbTb. In that
case T → ∞ is approached as nb → ∞ and the frequency
bin width is 1/Tb: in all calculations below we fix Tb and
vary nb.

Our measured spectrum is a discretized force spectrum
calculated by averaging over an ensemble of nb measured or
simulated data points:

Sff(ω j, T ) = 1

Tbnb

nb∑
l=1

x∗
l (ω j )xl (ω j )/|χx(ω j )|2, (A9)

which fluctuates, with a variance Var[Sff(ω, T )], about the
expectation value given by Sff(ω j, T → ∞) ≡ 〈Sff〉, which
is frequency independent for a white noise force. The corre-
sponding variance of the force measured with integration time
T is

Var[Sff(ω, T )] ≡ 〈 〈
S2

ff(ω, T )
〉 − 〈Sff〉2

〉
, (A10)

where the average is over the usable frequency bandwidth (in
principle infinite, in practice limited by measurement noise to
a finite range � f , as discussed below).

In Fig. 4(a), we compare the PSD (Sxx(ω)) (lower
panel) with the corresponding estimated force spectrum
Sxx(ω)/|χx(ω)|2 (upper panel). It can be seen that F harm

x re-
sults in a sharp feature ∝ F 2

0 sinc2(ω − ωh)Tb/2 for finite Tb,
which may be represented as a delta peak for infinite Tb; in
Fig. 4(a) the off-resonant harmonic contribution appears as a
very small peak in the PSDs, but is clearly visible in the force
spectra. The thermal component, on the other hand, appears
in the force spectrum as a noise “floor” at Sth

ff � 2kmTx,y�x,y,
which is flat but with a strongly fluctuating background—a
variance due to thermal fluctuations that is reduced as nb →
∞.

Figure 4(a) illustrates the minimum detectable force spec-
trum and the role of b and integration time. The minimum
detectable force must exceed the variance error. The delta
peak “signal” due to the harmonic drive must exceed this noise
to become detectable: it is clearly the case for nb = 30 (red
line) but not for nb = 3 (grey line).

Since in the present work we are interested in sensing a
component of the Gaussian noises, we are effectively detect-
ing a change in the noise floor level. The “signal” of interest
is actually the flat Sff ≡ Sth

ff thus the limit of long integration
time, T → ∞. This change in the floor level too must exceed
the error σx.

In summary, for the simple damped harmonic oscillator
in Fig. 4(a), for detection of thermal noises, the “signal”
corresponds to Sth

ff = 2kmTx�x and σ 2
x [Sxx(ω)/|χx(ω)|2] =

Var[Sff(ω, T )] � [Sth
ff ]2/nb, so our error improves, as σx ∝

1/
√

nb, and as the integration time is increased.

APPENDIX B: SENSING ANISOTROPIC NOISE

We now consider the case where the driving force is purely
stochastic but one component is able to induce correlations
between two degrees of freedom x, y, z of the center of mass
motion. We consider x and y. For the case of center of mass
motion, in our work, we note that this may be straightfor-
wardly related to directionality of the stochastic bath.

1. 2D analysis with PSDs

We consider that our system is exposed to external forces
comprising a harmonic driving force, a thermal, randomly ori-
ented, component and now, an additional stochastic, directed
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FIG. 4. Illustrates optomechanical force sensing. The top panels show the force spectra for different types of external forces. The bottom
panels show the corresponding displacement spectra, either PSDs [Sxx (ω)] or cross-correlation spectra (Sxy). (a) Force spectra for a nanoparticle
subject to isotropic thermal forces plus a harmonic drive at 149 kHz. As the integration time increases (T = Tbnb, Tb = 3.3 ms), the variance
decreases and this sets the minimum detectable force spectrum. The harmonic signal shows as a sharp peak. In contrast, any change in the
(Gaussian white noise) force signal will show as a displacement of the noise floor level. In both cases, the signal must be detectable above
the fluctuations with σx ∼ Sth

ff /
√

nb, and this sets the threshold for minimum detectable force power spectrum. If measuring Gaussian noise,
the “signal” of interest corresponds to the nb → ∞ infinite time integration limit (cyan line). (b) Corresponding force power spectrum for a
nanoparticle subject to (i) Gaussian noise with an anisotropic component (β2 = 3, � = π/4) in addition to the uncorrelated thermal noise (ii)
the same harmonic drive along x. The standard deviation, for finite nb, is larger than in (a) by a factor 1 + β2/2, as both noise components
contribute. The white noise floor “signal” (cyan) is now the sum of the directed plus isotropic components. As it does not distinguish between
them, measuring the anisotropic component has an added uncertainty. The harmonic force signal is once again included to show that, in contrast,
for narrow-band force sensing, the distinction between signal and the noise floor can be clear-cut, as long as the variance is sufficiently low.
(c) shows the advantage of using the cross correlations, relative to the PSDs. For a nanoparticle subject to the same combined anisotropic plus
uncorrelated thermal forces as in (b), detection via cross-correlation isolates the directed anisotropic component of the noise, eliminating a
source of uncertainty in the signal. The noise variance includes both noise contributions so is, as expected, similar for (b) and (c). Pressure is
P = 1 × 10−3 mbar.

Gaussian white noise component:

Fx = f dir,x(t ) + fth,x(t ) = f dir (t ) cos � + fth,x(t ) + F harm
x ,

Fy = f dir,y(t ) + fth,y(t ) = f dir (t ) sin � + fth,y(t ). (B1)

We attempt to estimate the external forces from the displace-
ment PSDs corresponding to integration time T :

Sxx(ω, T )

|χx(ω)|2 � Sdir
ff cos2 � + Sth

ff,x + Sharm
ff,x ,

Syy(ω, T )

|χy(ω)|2 � Sdir
ff sin2 � + Sth

ff,y, (B2)

Sxy(ω, T )

Re[χ∗
y (ω)χx(ω)]

� Sdir
ff sin � cos �,

where we introduce the notation Sxx(ω, T ) ≡ 〈|x(ω, T )|2〉 to
denote the finite time ensemble averaging in the experimental
spectra. Although we assume that T (or nb) is large enough
that we can provide a reasonable estimate of the force spec-
trum, it is still a fluctuating signal, with a nonzero variance.

The experiments here employed a controlled, artificial di-
rected stochastic source and as the isotropic and anisotropic
noises are both white, we can model the effect of the applied
stochastic forces by specifying the ratio:

β2 = Sdir
ff /Sth

ff . (B3)

One would not expect to know β a priori in a realistic sensing
scenario, thus it should in general be treated as an unknown
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parameter: one may not be able to “turn off” the directed
component so as to calibrate the experiment for Sth

ff,x, Sth
ff,y.

The effect of adding the anisotropic/directed component in
the PSD is to shift the noise floor; thus detecting the extra
force Sdir

ff cos2 � requires one to estimate that shift relative to
Sth

ff , adding an uncertainty to the signal.
This shift is illustrated in Fig. 4(b) (upper panel), where we

once again plot the PSD and the corresponding total x force
spectrum, for the case where β2 = 3. For contrast, a narrow-
band signal such as a harmonic drive is also shown: Sharm

f f ,x
appears as a delta-peak δ(ω − ωh), at the drive frequency.
Here the distinction between the near delta-spike harmonic
force signal and the white noise floor is clear-cut and a simple
shift in the noise floor level does not preclude measurement of
the amplitude of the harmonic signal.

The variance for the same given integration time T
has to allow for the additional anisotropic noise bath.
Hence, Var[Sxx(ω, T )/|χx(ω)|2] � [(1 + β2 cos2 �)Sth

ff ]2/nb,
while Var[Syy(ω, T )/|χy(ω)|2] � [(1 + β2 sin2 �)Sth

ff ]2/nb.
In order to measure �, we can subtract the thermal contri-

butions:

Sxx(ω, T )

|χx(ω)|2 − Sth
ff,x ≈ Sdir

ff cos2 � ≡ �Sx, (B4)

Syy(ω, T )

|χy(ω)|2 − Sth
ff,y ≈ Sdir

ff sin2 � ≡ �Sy, (B5)

then, even if the magnitude of the anisotropic component
f dir (t ) is completely unknown, we combine the shift in x with
the shift in y to estimate � from the ratio:

�Sy/�Sx � tan2 �. (B6)

Equation (B6) exposes the fact that any sort of measurement
using the PSDs is insensitive to ±�. In addition, Eq. (B5) ex-
poses a further source of uncertainty as we must measure two
thermal components to extract �: the ratio of Sth

f f ,x and Sth
f f ,y

is generally not accurately known and must be carefully cal-
ibrated. The thermal components contain not only the effects
of the isotropic gas collisions, but also x, y channel-dependent
electronic noises, arising from the feedback cooling for in-
stance, that can shift not only the magnitude but the ratio of the
x, y components. These can vary significantly over different
experimental runs. Calibration may be complicated by the
fact that one may not (as in this work) controllably turn the
added anisotropy on and off for comparison. Pressure gauges
may have 10%–30% uncertainties which would translate into
a corresponding scaling of the thermal component, undistin-
guishable from adding f dir. In general, nanoparticles are not
perfectly spherical, thus �x �= �y [33] and the response is
not necessarily identical for x, y if a different nanoparticle is
loaded into the trap.

In summary, PSDs are in effect “blind” to whether the
additional component is directional anisotropy or whether it
is a channel dependent additional noise. The requirement to
characterise and subtract the uninteresting uncorrelated ther-
mal component, for each experimental run, can be challenging
and adds a potentially significant uncertain component to the
measured signal.

2. Noise anisotropy: cross-correlation spectra

a. Calibration-free detection of a directed component

In Fig. 4(c) (lower panel), we show the cross-correlation
spectra and inferred force using Eq. (B2). The fig-
ure shows the characteristic shape that indicates that a
directional/anisotropic noise is present. In the absence of a
directed noise, 〈Sxy(ω)〉 = 0. As shown in this work detection
and analysis of Sxy augments the PSD-measurement as it can
evidently discriminate between isotropic and directed noise.
As the signature shape “flips” between ±�, it offers also
calibration free discrimination between quadrants.

A detailed sensitivity analysis is not essential for this key
result of our work.

The simple observation of a detectable Sxy(ω, T ) trace
suffices to unambiguously signal the presence of a directed
component. A properly setup apparatus is of course as-
sumed: misalignments between the detection x, y axis and
the normal modes of the motion can introduce spurious
cross-correlations; fortunately free-space experiments do not
introduce the back-action induced rotation of normal modes
that are a feature of cavity setups [11]. However, the signature
shape is insensitive to re-loading of a new nanoparticle, fluc-
tuations in optical power, in feedback voltage or background
gas density.

b. Detection of force orientation with calibration

In Fig. 4(c) (upper panel), we extract the directed force
spectrum from the cross-correlations:

Sxy(ω, T )

Re[χ∗
y (ω)χx(ω)]

� Sdir
ff sin � cos �. (B7)

The anisotropic/directed component is now isolated, without
the need to estimate β. Comparison between the upper panels
in Figs. 4(b) and 4(c) illustrates that the variance “noise”
on the force is similar relative to that obtained from PSDs.
This seems intuitive and reasonable: the cross-correlations are
constructed from precisely the same basic components as the
PSDs, ie the measured time series x(t ), y(t ).

No harmonic force signal is seen as F harm
x is along x. A

harmonic force not perfectly aligned with x or y would also
yield a sharp peak in the cross-correlation, but in this work
we focus on broad-band force detection so do not include a
deterministic drive in Fig. 4(c).

The variance of the cross-correlation may be written
Var[|〈x†y〉|] = √

Var[Sxx(ω, T )]Var[Syy(ω, T )] [34]. Squar-
ing both sides and dividing both sides by |χy(ω)|2|χx(ω)|2,
we obtain

Var[Sff(ω, T )] � Var

[ |〈x†y〉|
|χy(ω)||χx(ω)|

]

� (1 + β2 cos2 �)(1 + β2 sin2 �)
(
Sth

ff

)2
/nb

(B8)

for the variance of the force spectrum extracted from the
cross-correlation. Note that here we measure and investi-
gate Sxy = 1

2 [〈x†y〉 + 〈xy†〉] which corresponds to Re〈x†y〉 but
we can assume the real and imaginary components of 〈x†y〉
have similar statistical behavior.
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In summary, Eq. (B8) shows that the variance of the force
spectrum inferred from the cross-correlation contains both the
directed and isotropic contributions so is of similar magnitude
to that inferred from the PSDs. The mean or expectation
value (the noise floor, for T → ∞), in contrast, isolates the
directed contribution. We must now consider the effect of
the imprecision noise: there is no perfect measurement of
the PSDs or cross-correlation; they are both also affected
by measurement/imprecision noises, but we show that the
disparity in gain implies the effect is not equal.

c. Imprecision noise

In a realistic experiment, the motion is detected exploiting
interferometric techniques which will have an associated im-
precision noise. Additionally, electronic noise can potentially
be added through the transduction chain when going from
optical to electronic signal. In principle one can write the mea-
sured electronic signal v(t ) as given by v(t ) = gel(goptx(t ) +
sshot ) + sel. Here, gopt is the transduction coefficient from dis-
placement to optical intensity, gel is the photodetection gain
while sshot and sel are stochastic variables associated with
optical shot noise and electronic noise, respectively. Upon
calibration, the signal v(t ) provides a measurement of the
particle motion.

A typical and simple way to describe this situation is to
consider that a measurement of the particle position will have
an associated imprecision noise, i.e., xm(t ) = x(t ) + simp. We
thus write for the measured xm position PSD

Sm
xx(ω) = Sxx(ω) + Simp, (B9)

where Simp is the PSD of the imprecision noise that for sim-
plicity we approximate to be white noise. This is certainly
the case for the shot noise contribution. In general, other
contributions to simp might have different color but at least
over the interesting frequency range, are approximately flat.

Below we do not include the T and Sm
xx(ω) ≡ Sm

xx(ω, T ) as
a finite T is implied in any measurement.

As the imprecision noise is unfiltered by the nanoparticle
motion, it is purely additive. We then obtain for the measured
force PSD:

Sm
xx(ω)

|χx(ω)|2 ≡ Sm
ff = Sdir

ff cos2 � + Sth
ff,x + Simp

|χx(ω)|2 . (B10)

Thus even if the system is only driven by a white noise force
(i.e., Fharm = 0) and the imprecision noise has a flat spectrum,
the measured force spectra now has a strong frequency de-
pendence because of the imprecision noise. However, since
|χx(ω)|2 has a sharp maximum for ω = ωx the imprecision
contribution Simp

|χx (ω)|2 is suppressed near ω ≈ ωx and also for
high gain. Force sensitivity is thus maximal on-resonance.

The imprecision contribution introduces an effective upper
limit on the measurement bandwidth: while for perfectly flat
white noise force spectrum, we may in principle use the full
frequency range to converge to 〈Sff〉, in practice the presence
of coloured or imprecision noises mean that sensing is re-
stricted to a narrow frequency band � f , where Sff >

Simp

|χx (ω)|2 ,
near resonant frequencies. With this further averaging, over
� f , we may then reduce the variance of 〈Sth

ff 〉 as 1/� f T .
On the other hand, if � f is too narrow, or even absent, if

Simp

|χx (ω)|2 > Sff over the entire frequency range, detection be-
comes impractical.

Measurement noise clearly affects also force measurement
via cross-correlations. We may estimate the measured force
spectrum, Sm,xy

ff , from measured cross-correlations, Sm
xy(ω), as

follows:

Sm
xy

Re[χ∗
x (ω)χy(ω)]

= Sm,xy
ff = Sdir

ff cos � sin � + Simp

Re[χ∗
x (ω)χy(ω)]

. (B11)

Our Eqs. (B10) and (B11) are analogous but expose clearly
the relative advantages: Equation (B11) does not extract
the uncorrelated component, thus eliminating that uncer-
tainty in the signal. On the other hand, as the effective gain
Re[χ∗

x (ω)χy(ω)] can be significantly lower, cross-correlations
may become undetectable, while the PSDs have the relative
advantage of a larger gain |χx,y(ω)|2. To mitigate this dis-
advantage, one must either minimise imprecision noises, or
improve the relative gain function as explained in Eqs. (5) and
(6) of the main text.

APPENDIX C: RELATIVE SENSITIVITY OF PSD AND
CROSS-CORRELATION SPECTRA

Our measured signal for force detection is

Sm
xy(ω) � Re[χ∗

x (ω)χy(ω)]Sth
ff β

2 cos � sin � (C1)

with cross-correlation, and

Sm
xx(ω) � |χx(ω)|2Sth

ff (1 + β2 cos2 �) (C2)

for the x PSD. The noise standard deviation for both cases is
of the same order ∼

√
(1 + β2 cos2 �)(1 + β2 sin2 �)Sth

ff /
√

nb

and may be similarly mitigated by longer integration times
(larger nb) in both cases.

The principal disadvantage for the cross-correlation is that
its signal can be associated with a relatively weaker gain func-
tion unless � ∼ |ωx − ωy|, in which case the gain functions
can become of the same order of magnitude. This follows
from consideration of the ratio:

Sxy(ω)

Sxx(ω)
= Re[χx(ω)χ∗

y (ω)]

|χx(ω)|2
β2 sin � cos �

1 + β2 cos2 �
. (C3)

If we consider this ratio near resonance, we can approximate
Re[χx (ω)χ∗

y (ω)]
|χx (ω)|2 ≈ �2

x
4(ωx−ωy )2+�2

x
near ω ∼ ωx, provided ωx, ωy �

|ωx − ωy|. A similar result is obtained for ω ∼ ωy.
In summary, force detection with cross-correlations pro-

vides a calibration-free signature of the presence of an
external directed force and its orientation quadrant. As the
cross-correlation spectra is constructed from the same com-
ponents [measured x(t ), y(t )] as the PSDs, it might also be
viewed as a means to augment PSD-based detection without
additional effort. While both methods are equally affected
by noise, the cross-correlation detection signal (as opposed
to the noise error) isolates the directed force signal from its
uncorrelated signal and is sensitive to the sign of �.
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APPENDIX D: COOLING AND SENSITIVITY

The well-known optomechanics expression Eq. (A1) for
the minimum detectable force in 1D, Fmin = √

2kT m�b ex-
poses the interesting result that (in principle) cooling of the
nanoparticle motion does not improve sensitivity. Even if T =
300 K, exquisite enhancements in sensitivity result purely
from operating at high vacuum (down to pressures P ∼ 10−9

mbar and below), so if the heating is determined by back-
ground gas � → 0.

It is normal to apply some feedback cooling to stabilise the
motion in each mode (x, y) as the pressure is reduced, thus in
general there is a mode dependent damping �

x,y
eff = � + �

x,y
f b .

For strong cooling (such as is the case in Fig. 2 of the main
text), �

x,y
f b � � where � is determined by the background gas

collisions. The superscripts arise because feedback cooling
rates are applied independently to each channel and thus may
vary. To be more precise, � → �x,y as most nanoparticles
are not perfectly spherical thus even if the loaded particle is
carefully selected, in general �x �= �y.

In that case, the corresponding temperatures:

T x,y
eff = �x,y

�
x,y
eff

Tx,y. (D1)

The minimum force expression is then

F x,y
min =

√
2kT x,y

eff m�
x,y
eff b (D2)

from the above, we see that cooling keeps the Teff�
x,y
eff product

invariant so the sensitivity is insensitive to cooling.
The scenario with cross-correlations is different. The con-

straint �
x,y
eff ∼ |ωx − ωy| means that cooling is in general

important for measurable cross-correlations. Minimising the
isotropic thermal noise is also important as that adds to the
variance of the measurement, as shown above.

APPENDIX E: QUANTUM DYNAMICS

For a standard optomechanical system comprising an ar-
bitrary 2D mechanical oscillator in an optical cavity, we can
give the solutions of the quantum Langevin equations for
the quantum mechanical displacement operators, in Fourier
space, in the form

x̂(ω) = M−1
x

[√
�Q̃therm

x + i
√

κgxμxÃin
]
,

ŷ(ω) = M−1
y

[√
�Q̃therm

y + i
√

κgyμyÃin
]
. (E1)

On the right-hand side, we have operators for thermal noises
(classical in general) and for the quantum optical shot noise.

The thermal noises (and j ≡ x, y) take the form

Q̃therm
j (ω) = χ (ω,ω j, �)b̂in

j (ω) + χ∗(−ω,ω j, �)b̂in
j

†(ω).
(E2)

For the normal levitated optomechanics scenario, the ther-
mal noises are dominated by collisions with surrounding gas
molecules at ambient temperature so the corresponding bath is
highly occupied, i.e., 〈[b̂therm

x ]†b̂therm
x 〉 = n̄xδ(t − t ′) and where

n̄x = kT/(h̄ωx ) � 1, where n̄x is the thermal occupancy of the
x mode. Similarly for y.

The associated Brownian motion is isotropic, so one as-
sumes the baths are uncorrelated:〈[

b̂therm
x

]†
b̂therm

y

〉 = 〈[
b̂therm

y

]†
b̂therm

x

〉 = 0. (E3)

In contrast, the quantum optical shot noise:

Ãin(ω) = χ (ω,−�, κ )âin(ω) + χ∗(−ω,−�, κ )â†
in(ω)

(E4)
corresponds to a zero temperature quantum bath and
〈â†

inâin〉 = 0 while 〈âinâ†
in〉 = δ(t − t ′).

Optical and mechanical susceptibilities: The μ j (ω) are
mechanical susceptibilities, while ηc is the optical suscepti-
bility. We have the usual mechanical susceptibility μ j (ω) =
χ (ω,ω j ) − χ∗(−ω,ω j ) and optical susceptibility ηc(ω) =
χ (ω,−�) − χ∗(−ω,−�), where e.g., χ (ω,ωx ) = [−i(ω −
ωx ) + �

2 ]−1 and χ (ω,�) = [−i(ω − �) + κ
2 ]−1.

Additionally, in Eq. (E1), we have the normalization fac-
tor (for j ≡ x, y) Mj (ω) = 1 + g2

jμ j (ω)ηc(ω). This important
term encompasses the cooling effect of the cavity optical
mode and is responsible for reducing the effective temperature
of the mechanical mode.

We now lift the assumption that the thermal baths are
uncorrelated by introducing an additional component of
gas moving along a definite direction, hence we replace
�b̂in

j (ω) → �b̂in
j (ω) + � j,corrb̂corr

j (ω). The additional compo-
nent of correlated noises no longer obeys Eq. (E3) but rather,
〈[b̂corr

x ]†(t )b̂corr
y (t ′)〉 ∝ δ(t − t ′).

We model the correlated collisions by a physically intuitive
model: a force F (t ), at � = 45◦ to x implies that fx(t ) = fy(t )
at arbitrary times; conversely, at � = 135◦ to x implies that
fx(t ) = − fy(t ) at arbitrary times, etc. We consider a broad
spectrum force in the ω ≈ ωx, ωy range, and for simplic-
ity take white noise, so expect 〈 fx(t ) fy(t ′)〉 ∝ sin � cos �δ

(t − t ′).
For simplicity, we consider our directed component to be

of the same species as the main Brownian gas collisions
but represents a modest fraction β2 < 1 of the gas (it is no
problem to relax this assumption). Hence we take

√
�x

√
�y =

�β2 sin � cos �.
We note that the quantum optical shot noise is common

to both mechanical modes thus it will introduce correlations
between them. In this case, there is no directionality involved,
however.

From the solution of the linearized quantum Langevin
equations (see also Ref. [9]), we readily obtain

Sxy(ω) = SQB(ω) + SClass(ω), (E5)

where the first term is the contribution from the quantum bath
of the optical shot noise:

SQB(ω) = κgxgy|χc(ω)|2Mxy(ω),

while the second term is the contribution from the classical,
thermal Brownian bath:

SClass(ω) = �
β2

2
sin � cos �[(n̄x + 1 + n̄y + 1)Mxy(ω)

+ (n̄x + n̄y)Mxy(−ω)] (E6)
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FIG. 5. (a) For 2D quantum cooled motion in the x-y plane,
using cavities, heterodyne detection gives the most sensitivity for
displacement sensing. Using parameters similar to 2D x-y quantum
cooling experiments [12], we show that provided β � 1, the Sxy

contribution is exposed and isolated for � ∼ 0◦ and ∼90◦. In the left
panel, it is shown that the sharp asymmetry in the y mode “flips” at
� = 0 for the case of β = 10. The y mode is not heated and remains
at quantum phonon occupancy ny � 1. The change in shape yields a
characteristic signature of the presence and orientation of the direc-
tional force, even in a quantum regime. For general orientations, the
Sxy contribution still results in a �-dependent heterodyne PSD, but
the difference between � = π/4 and 3π/4 is now only quantitative,
rather than a qualitative change in shape.

and where

Mxy(ω) =
[

μx(ω)μ∗
y (ω)

Mx(ω)M∗
y (ω)

+ c.c.

]
(E7)

is real. We note that both terms are modulated equally by
the frequency dependent functions Mxy(ω). However, the
quantum bath has only one component and is missing the
Mxy(−ω) component.

The classical term will vanish if sin 2� = 0. For these
angles, Sxy(ω) = SQB(ω) the cross-correlation spectra are
dominated by the quantum noise, even if the particle is not
near its quantum ground state.

One can estimate the relative strengths of the classical and
quantum contributions; for −� ∼ ωx, ωy, |χc(ω)|2 ∼ 4/κ2.
Hence

SQB(ω) : S fx fy (ω) ∼ 4gxgy

κ
: �β2 sin � cos �nB, (E8)

Thus defining a quantum “cross-cooperativity” Cxy in close
analogy to the usual quantum cooperativity:

Cxy = 4gxgy

κ�n̄
, (E9)

where n̄ = (n̄x + n̄y)/2. We see that the classical bath will
dominate the correlating effects of the quantum shot noise
bath if

Cxy � β2 sin � cos �. (E10)

1. Heterodyne detection

Heterodyne (or homodyne) detection of the output cavity
light is widely used to detect quantum-scale displacements:

Shet (ω) ≈ |χc(ω)|2[g2
ySyy + g2

xSxx + gxgySxy
] + Simp, (E11)

where Simp is the imprecision noise (ideally optical quantum
shot noise) and χc(ω) is the optical susceptibility. It may be
seen that the heterodyne spectrum does not isolate Sxy so its
contribution is generally masked by the stronger Sxx and Syy

contributions. In addition, there are additional artificial cor-
relations induced by back-action induced rotations of the
modes, that for strong coupling yield dark modes [10,11].
These rotations can be suppressed by trapping away from
the cavity node [11]. To retain the advantages of low photon
heating at the node while allowing 2D cooling implies gx ∼
gy 
 |ωx − ωy|. However this suppresses cross correlations
as these require cooling widths �cool ∼ |ωx − ωy|.

However, we may still detect the cross-correlation spec-
trum in certain cases. For gx ∼ gy ≡ g and β2 � 1, thus in
the case of ultrahigh vacuum where the directed noise is
dominant, then Shet ∝ g2(|χx(ω)|2 cos2 � + |χy(ω)|2 sin2 � +
Re[χ∗

x (ω)χy(ω)] cos � sin �. Using parameters similar to the
quantum cooling experiments in Ref. [12], we find that the Sxy

spectrum is exposed for � ∼ 0 for ω ∼ ωy and for � ∼ π/2
for ω ∼ ωx. The reason for this is that, e.g., for ω ∼ ωy,
Sxy (ω∼ωy )
Sxx (ω∼ωy ) = �cool

|ωx−ωy| cot �. In Fig. 5, we show that even for
�cool

|ωx−ωy| 
 1, as cot � → ∞ near 0, the cross-correlations are
exposed.

APPENDIX F: APPLICATIONS

1. Temperature anisotropy

The ability to accurately detect the presence of a directional
component in the Gaussian noise baths that heat the levi-
tated nanoparticle opens up possibilities for thermodynamic
sensing and temperature anisotropies on microscopic scales.
For instance, previous studies [20] have identified significant
anisotropies in gas temperatures along different orientations.
The present study offers the possibility of doing so at far
more sensitive scales, as well as to identify other sources of
anisotropy such as weak gas currents.

2. Levitated systems and dark matter searches

To date much effort towards direct detection of dark mat-
ter using nonlevitated platforms has been focused on weakly
interacting massive particles (WIMPs), with mass ranges in
the GeV to TeV range. However, as more parameter space
for standard WIMPs is explored, interest has shifted towards
lower-mass candidates. This has been accompanied by in-
creasing interest in levitated systems as a platform for direct
dark matter searches. Levitated particles ranging from tens
of nanometres to micrometers, levitated at ultrahigh vacuum
are decoupled from their environment. They offer a high con-
centration of mass (∼1010–1015 atomic masses) compared to
atomic systems, amplifying coupling to certain dark matter
candidates. There are a wide variety of levitation techniques:
although here we employed optical levitation, magnetic and
electrical levitation enables the trapping of heavier masses,
offering potential for increased coupling, particularly useful
for bosonic ultralight dark matter searches [35].

A range of experiments have already investigated phenom-
ena induced by dark matter interactions. The initial focus has
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been on impulse searches, considering an impulse induced by
interactions via a Yukawa-like potential between a composite
dark matter nugget and a levitated microsphere [16]. Here,
dark matter nuggets couple to the number of neutrons in the
microsphere, exemplifying the advantages of having a high
concentration of mass for these types of searches. By consid-
ering levitated nanoparticles, the impulse sensitivity increases
and allows investigation of the products of radioactive decay.
By measuring the energy of the emitted products using the
nanoparticle and external sensors, information about neutrinos
can be inferred allowing searches into heavy sterile neutrinos
[36]. It has been proposed that quantum superpositions on
macroscopic scales might offer further enhancements [37].

Electrical control and trapping of levitated particles was
introduced in 2015 [30,38]: levitated particles are naturally
charged with charges ranging from single to hundreds of
elemental charges. Trapping in ion traps such as Paul traps
[30] can eliminate deleterious effects such as photon recoil
heating observed in tweezer traps and offer an effective means
of applying active cooling.

The ability to control the net charge on a levitated system
opens avenues to investigate millicharged particles bound to
matter. Being able to neutralise a microsphere has enabled
searches for charges as small as 10−4e [39], improving on the
state of the art by two orders of magnitude. It also means that
levitated nanospheres may provide an alternative platform to
ion traps [29] in the search for millicharged dark matter. Trap-
ping of a nanoparticle in a linear Paul trap down to pressures
in the P ∼ 10−11 mbar regime was recently reported [40].

a. Applications of cross-correlations

This type of search can be augmented by considering the
cross-correlations: any dark matter candidates amenable to in-
vestigation with PSDs can exploit the expected directionality
of dark matter. For the case of detection via PSDs in steady
state, as in all proposals to exploit the heating effect of the
interaction on the detection platform, a formidable challenge
is the extremely low average mass density of dark matter
ρDM, in the vicinity of the solar system. To provide a simple
illustration, assuming densities of 1 hydrogen atom mass per
cubic cm, as a heuristic yardstick, taking pressure relation
P � ρv̄2, and taking a streaming velocity of v̄ ∼ 230 km/s,
corresponding to the velocity of the sun around the galaxy,
would yield an equivalent pressure of P ∼ 10−12 mbar.

There are proposed models that envisage higher local dark
matter densities; in Ref. [29], a mechanism is proposed that
may allow enhancements of 14 orders of magnitude. How-
ever even with more modest enhancements, the sensitivity of
levitated experiments offers much promise as current levi-
tated experiments are already approaching PSD detection at
10−11 mbar pressures in ion traps, at ambient temperatures.
This simplistic comparison is not conclusive but indicates that
even nonrelativistic candidates may be amenable to future
detection. Higher energy impacts would be easier to detect;
cross-correlations may also be useful in the case of single
recoil detections as even in that case, they may be useful
to probe the directionality of the individual impact. Current
experiments already achieve sensitivities corresponding to the
impact from a single N2 molecule at ambient temperature.
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