PHYSICAL REVIEW RESEARCH 6, 013127 (2024)

Entropic uncertainty relations for multiple measurements assigned with biased weights

Shan Huang ®,>3 Hua-Lei Yin®,*!* Zeng-Bing Chen,"-" and Shengjun Wu' >3-
' National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center
of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2Institute for Brain Sciences and Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Key Laboratory of
Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China

® (Received 17 September 2023; accepted 10 January 2024; published 31 January 2024)

The entropic way of formulating Heisenberg’s uncertainty principle not only plays a fundamental role in
applications of quantum information theory but also is essential for manifesting genuine nonclassical features of
quantum systems. In this paper we investigate Rényi entropic uncertainty relations (EURSs) in the scenario where

measurements on individual copies of a quantum system are selected with nonuniform probabilities. In contrast
with EURs that characterize an observer’s overall lack of information about outcomes with respect to a collection
of measurements, we establish state-dependent lower bounds on the weighted sum of entropies over multiple
measurements. Conventional EURs thus correspond to the special cases when all weights are equal, and in such

cases we show our results are generally stronger than previous ones. Moreover, taking the entropic steering
criterion as an example, we numerically verify that our EURs could be advantageous in practical quantum tasks
by optimizing the weights assigned to different measurements. Importantly, this optimization does not require
quantum resources and is efficiently computable on classical computers.
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I. INTRODUCTION

Heisenberg’s uncertainty principle [1] is a fundamental
concept in quantum mechanics which underlies one of the
most important nonclassical features of quantum physics—
quantum observables can be incompatible such that no
observer has precise knowledge about them simultaneously.
As a consequence, an observer’s ability to predict (or certainty
about) outcomes of measuring incompatible observables is
inherently limited.

Various uncertainty measures have been proposed to for-
mulate the uncertainty principle quantitatively. Among them,
entropies are recognized as natural uncertainty measures from
an information-theoretical perspective [2—8]. Entropic uncer-
tainty relations (EURs) set lower bounds on one’s uncertainty
(lack of information) about measurement outcomes and, thus,
are basic tools for the security analysis of quantum protocols,
including quantum key distribution [9—15] and quantum ran-
dom number generation [16—-19], in the finite key scenario.
EURs can also be utilized to demonstrate genuine nonclassical
features of quantum systems. For example, the uncertainty
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(unpredictability) of local measurement outcomes is a signa-
ture of weak classical correlation, yet quantum correlation is
exclusive with local certainty [20]. This endows EURs with
special significance in witnessing entanglement [21-27]. (See
the review of Ref. [28] for more applications.)

Following Deutsch [2] and the conjecture of Kraus [29],
Maassen and Uffink [3] proved the famous EUR for two
nondegenerate observables:

H(Ml)p + H(MZ),O 2 _10g Cmax =—: MU, (1)

where H(Mjy), = — Y, pio log pije (all logarithms are base
2 in this work) is the Shannon entropy of the proba-
bility distribution (pojg, p1j, - ..), induced by measuring
the Oth observable on the quantum state p, and cpax =
max; ;{| (i1 j2) |?} denotes the maximal overlap between the
normalized eigenbases {|i;)} and {|j,)} of observables under
consideration, which characterizes the measurement incom-
patibility. Notably, the entropic lower bound gyy is nontrivial
(gmu > 0) for observables with no common eigenstate
(cmax < 1). Furthermore, for two mutually unbiased bases
(MUBS) of d-dimensional Hilbert space Hyg, i.e., | (i1|j2) |*> =
1/d for all i, j=0,1,...,d — 1, gmy = logd is maximal
and tight.

Attempts [30,31] have been made to generalize Eq. (1) to
multiple measurement bases, in terms of the overlap between
bases. When considering multiple measurements, however,
merely the maximal overlap could be too rough a characteriza-
tion of measurement incompatibility to ensure strong enough
EURs. Partovi introduced the idea of utilizing majorization
relations to investigate uncertainty relations [32]. Inspired
by this, Friedland et al. [7] proposed a universal method of
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explicitly formulating EURs from the measurements under
consideration. Further in-depth study shows that the majoriza-
tion EURs, particularly the ones obtained by Rudnicki et al.
[33,34], are generally stronger than other existing EURs,
except for multiple bases that are approximately mutually
unbiased. Interestingly, in the case of (incomplete subset of)
design-structured measurements [35-45], e.g., measurements
in MUBs [35-38] and mutually unbiased measurements
(MUMs) [41], strong entropic lower bounds [35-53] for mul-
tiple measurements can be derived directly from upper bounds
on the respective total indexes of coincidence (IC) of outcome
probability distributions. Now, a meaningful question arises
as to whether improved EURs valid beyond the special cases
of design-structured measurements can be formulated in a
similar way.

We emphasize that, as is pointed out in [54,55], EURs
like Eq. (1) are thus far formulated in a restricted form con-
sidering that they describe lower bounds on simply entropy
sums, whereas the most general entropic way of expressing
the uncertainty principle should be

> weH(My) > q. )
6

with {wy} being arbitrary positive weights. Conceptually
speaking, requiring the weights {wy} to be equal is unnec-
essary, since the left-hand side (lhs) of Eq. (2) well captures
the presence of uncertainty regardless of the weights, i.e., it is
positive for observables with no common eigenstate. Realiz-
ing this, weighted EURs (WEURSs) for multiple measurements
in terms of the collision entropy as well as for two projective
measurements in terms of the Shannon entropy have been
established, respectively, in Refs. [54] and [55].

In this paper, inspired by a recent work [54] on com-
plementarity relations, we obtain upper bounds (4) on the
weighted sum of IC over multiple outcome probability dis-
tributions induced by general measurements. We establish
lower bounds on the weighted sum of Rényi entropies [56] for
multiple generalized measurements, i.e., positive-operator-
valued measures (POVMs). Compared with previous EURs,
our WEURs are generally stronger and apply to versatile
measurement scenarios.

This paper is structured as follows. In Sec. II we introduce
general upper bounds on the IC of probability distributions
induced by performing general sets of measurements on quan-
tum systems. In Sec. III we propose WEURs for multiple
measurements assigned with positive weights. In Sec. V we
take the steering test as an example to show numerically that
our WEURs are advantageous in practical quantum tasks.
Finally, we draw a brief conclusion in Sec. VI.

II. PRELIMINARY

Each quantum measurement is described by a set of pos-
itive semidefinite operators (POVM effects) M = {M,} that
satisfy . M; = 1, with 1 being the identity operator. For ex-
ample, the POVM description of measuring a nondegenerate
observable consists of rank-1 projectors onto its eigenba-
sis, called rank-1 projective measurements. Throughout the
rest of this article, we frequently consider the measurement
scenario where an observer chooses, according to the value of

a classical random variable 6 sampled from some probability
distribution {wy} (3 4 wg = 1, wg > 0), to perform one of a
set of measurements {/M,} on individual copies of a quantum
system. We denote by p; the probability of obtaining the
ith outcome when performing the Oth measurement My =
{M;;¢}; on the state p, which is p;y = Tr(M;j¢p) according to
Born’s rule.

In Ref. [54] the authors proposed an upper bound on the
average information gain on quantum systems in individual
trials of measurements,

> wolpip — Tr(M)/dT < 121 - feom(p). ()
i,0

Here, Lom(p) = Tr(p?) —1/d is the operationally invari-
ant measure of complete information content contained in
d-dimensional quantum states [57]. ||g]| denotes the largest
eigenvalue of the weighted average of view operators g =
Ze 'LUQG(MQ) [54] (see also Appendix A), which is state-
independent and depends only on the measurement scenario.
In fact, the weighted average information gain defined as
the lhs of Eq. (3) quantifies how much the state p can be
discriminated from the completely mixed state I/d through
the respective outcome statistics {p;9} and {Tr(M;9)/d}. The
right-hand side (rhs) of Eq. (3), on the other hand, limits
one’s ability to gain information about quantum systems in
different measurement scenarios. Interestingly, Eq. (3) natu-
rally explains the origin of wave-particle duality in two-way
interferometers [54].

Next, we will restrict our focus to measurements
that are described by POVM effects with equal trace
(ETE-POVMs). For clarity, we say a set of [-outcome
POVMs {Mj} are ETE-POVMs if and only if Tr(Mop) =
-+ = Tr(M;_yp) for all 8. Examples of ETE-POVMs include
rank-1 projective measurements and design-structured
POVMs. Notably, when considering ETE-POVMs, the
lhs of Eq. (3) essentially measures the average distance
between the probability distributions (pojg, -, pi—1j9)
of measurement outcomes and the completely random
distribution [Tr(Mo9)/d, - - -, Tr(M;—-1j9)/d]. In other words,
Eq. (3) characterizes an observer’s certainty about (ability to
predict) outcomes of ETE-POVMs. Namely, Eq. (3) becomes
a certainty relation for ETE-POVMs.

To establish WEURs for /-outcome ETE-POVMs from the
certainty relation (3), let us cast Eq. (3) into an equivalent
inequality for convenience,

> wepdy <11+ 13- Leom(p) =1 €. @
1,0

It is worth mentioning that Eq. (4) becomes a tight equality
for an arbitrary complete set of design-structured measure-
ments with equal weights. Moreover, % < |12l £ 1 holds for
a number ® of rank-1 projective measurements, regardless of
the weights {wy} [54]. In particular, ||g]| = % is saturated by
random measurements in one of ® MUBs, and for arbitrary
nondegenerate observables with one or more common eigen-
states there is ||g]| = 1. Following Ref. [54], we will call

> G(My)

0

Kot = O — =0 — |Gl &)
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FIG. 1. The IC-entropy diagrams and convex estimations Q)
[Eq. (9); dot-dashed blue line] and Q3 [Eq. (6); dashed red line] of
their lower boundaries, respectively, for the Shannon entropy (blue
region) and the Rényi 3-entropy (orange region).

the total measurement exclusivity, which takes a value in the
range Xir € [0, ® — 1] for rank-1 projective measurements.
The exclusivity may be interpreted as a complement of over-
lap between multiple measurements, which tends to be larger
for measurement bases that are less overlapped (closer to
being mutually unbiased).

III. WEIGHTED ENTROPIC UNCERTAINTY RELATIONS

The Rényi entropies are generalizations of the Shannon
entropy defined as below [56],

. 1
Ho(p) = 1—— log ) pt,

where p = (po, p1, -..) can be any probability distribution,
and the parameter o > 0 and « # 1. The Shannon entropy
H(p)=—Y ;pilogp; =lim,_,| Hy(p) is thus recovered in
the limit « — 1. Rényi entropies have essential significance
in cryptography and information theory. As a noteworthy
example, the minimum entropy Heo(P) = — 108 Pmax (Pmax =
max;{p;}) characterizes the number of random bits that can be
extracted from a random variable obeying the distribution p.
For more discussions on the basic properties and applications
of Rényi entropies, we recommend the review of Ref. [28].
Our discussions on WEURs revolve around the rela-
tionship between the IC of probability vectors and the
corresponding Rényi entropies. The IC of a probability vector
p refers to the probability that two independent random vari-
ables drawn from p take the same value, that is, c(p) = ) _; p%.
Obviously, c(p) € [1/1, 1] if the length of p is [. Observe
that H,(p) =0 if and only if ¢(p) =1 (e.g., po=1,p1 =
-o«=pi—1 =0), and H,(p) = log! if and only if ¢(p) = 1/I
(i.e., po=---=p;—1 = 1/1). When [ =3, the IC-entropy
diagrams—the ranges of the map p — (c(p), Hy(p))—are
plotted in Fig. 1 for @ = 1, 2, 3, respectively. We can see they
intersect at the green points {(1/3, log3), (1/2, 1), (1,0)} on
the curve (c, —logc) of the Rényi 2-entropy. Similar results
hold also for general / > 2. This is because H, () is a mono-
tonic decreasing of «, except when the nonzero probabilities
of p are uniform, say py = - - - = p,—; = 1/n for some integer

—_
(&)
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FIG. 2. State-independent lower bounds on the sum of Shannon
entropies [gs (13), real blue line; g; (11), dot-dashed blue line]
and Rényi 2-entropies [g, (8), dashed red line] for 1600 randomly
generated sets of three single-qubit observables with equal weights:
a comparison with the respective numerical optimal bounds B; (blue
dots) and B, (orange dots).

n € [1,1], then c¢(p) = 1/n and H,(p) = logn is independent
of a.

Let us first consider the case o > 2. To estimate the lower
boundary of the IC-entropy diagram we adopt the function
(53]

2 52
alogx,  loglxlog[l+(—Dei]
Qa(lv C) = + h ,

o (I —a)log[l + (I — 1)«]
where x| = @ and x; = @ This esti-

mation function (see the dashed red line in Fig. 1 for the case
a = 3) is optimal when o = 2 or 400, as well as for / = 2,
and it remains a good estimation in other situations, especially
when [ is large. Additionally, Eq. (2) is convex with respect to
¢, and when combined with the IC bound (4) we immediately
have the theorem below.

Theorem 1. Suppose { My} are [-outcome ET-POVMs to
be performed on the state p with selection probabilities {wy},
and g is the average view operator. When « > 2 the average
Rényi «-entropy satisfies

> woHo(Mg)y = Qull, 1/1+ 1131l - eom ()] =: Ga- (7)
0

(6)

Interestingly, the uncertainty lower bound given as the rhs
of Eq. (7) decreases monotonically with the quantity ||g] -
I.om(p). Meanwhile, for fixed measurements and selection
probabilities, g, reaches its minimum at all pure states, thus
becoming state-independent in the sense that it is an uncer-
tainty lower bound valid for all quantum states in the Hilbert
space considered.

Corollary 1. For rank-1 projective measurements on indi-
vidual qubits in the state p,

)
1+08l ]

Equation (8) is compared in Fig. 2 with the corresponding
numerical optimal entropic lower bound for three nondegen-
erate observables with equal weights. As shown, ¢, is very

1
q = —log |:§ + 18l - Icom(p)] p lOg[
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strong, especially when the exclusivity is around X, = 2
(MUBS) or X, = 0 (compatible bases).

As for the Shannon entropy, the corresponding lower
boundary of the IC-entropy diagram consists of concave
curves, each joining a pair of neighboring points with coor-
dinates on the set {(1/n,logn)|ln =1, ...,1} [53,58] (see the
green points in Fig. 1). Substituting these curves for line sec-
tions, we arrive at the estimation function (see the dot-dashed
blue line in Fig. 1):

Qi(c)=logn — (n+ 1)(nc — 1)log(1 + 1/n). )]

Here n = | 1/c] denotes the round-down of 1/c to the near-
est integer. Similar to the estimation function (2) for o > 2,
Eq. (9) is convex with respect to ¢. Combining Eq. (9) with
the IC bound (4), the following theorem is then obvious.

Theorem 2. Suppose { My} are [-outcome ETE-POVMs to
be performed on the state p with selection probabilities {wy},
and g is the associated average view operator. The average
Shannon entropy satisfies

ZwOH(MO)p Z Q1/T+ 18l - Leom ()] =2 g1 (10)
0

Corollary 2. For rank-1 projective measurements on indi-
vidual qubits in the state p,

g1 =1=218ll - Leom(p) = 1 —1IZIl. an

If the inverse of 1/ + |12l - I.om(p) happens to be an in-
teger, say n, then ¢; = logn would be the best uncertainty
bound that can be obtained from the IC bound (4). But this
is not the case in general. Luckily, when restricted to ETE-
POVMs with equal weights, we can make full use of Eq. (4)
to derive improved EURs.

Theorem 3. Suppose {M,}_, is a set of [-outcome ETE-
POVMs to be performed on individual quantum systems in
the state p. Then the sum of Shannon entropies satisfies

> H(My), > klogn+(© —k — 1)log(n + 1)
0

— (1 —=p)log[(1 — p)/n] — plog p =: gs.
(12)

Here, with & =1/l + $)1Giotll - Lom(p) being the average
IC, n=|1/¢] and k= |(n(n+ 1)¢ —n)®]. In addition,
p € [0, n—Jlrl] is the solution to (1 — p)zé +p?P=0¢— % —
‘(H)Il;kfl. We refer to Appendix B for a detailed proof of
Theorem 3.

For a complete set of d +1 MUBs (CMUBs) in d-
dimensional Hilbert space, note that the corresponding total
view operator must satisfy Giotll = 1 (see also Appendix A).
Substituting Iom(p) < 1—1/d into Eq. (12) then leads
us to the strong entropic bound previously obtained in
Refs. [47,59,60]:

d+1
d+1)log &F odd d,
S 2
= 4 d+(d+1)1 (d+1) d
—log — - - vend.
20g2 3 og ) €vel

This immediately indicates that Eq. (12) would be strong
for approximate CMUBs, as gy is continuous with respect to
measurements.

Corollary 3. For ® rank-1 projective measurements on
individual qubits in the state p,

1 1 A
s =hbm(5 + 3y 20Galleon(0) - k) +O—1-k

11 .
>hbm(§ + §s> + 0 — 1 — |Gl (13)
where hyin(p) = —plog p — (1 — p)log(1 — p), k=

121Giotll - Leom(p)], and s = (| Giotll — LGt 1)/

Both g; (11) and g5 (12) decreases monotonically with
the operationally invariant information I, (0) contained in
the quantum systems to be measured and achieve their
state-independent minimum at pure states. For two rank-1
projective measurements (® = 2), Eq. (13) reduces to g5 >
hbin(% + %«/2cmax — 1). This recovers an earlier bound re-
ported in Ref. [48], which is known to be tighter than gyyu
(1). For rank-1 projective measurements onto three MUBs
(© =3, |Gl = 1), gs =2+ S(p) is known to be tight
[61], where S(p) = —Tr(plogp) is the von Neumann en-
tropy. We emphasize here that Eq. (12) is a general result
valid beyond the aforementioned simple cases. In Fig. 2 the
state-independent forms of ¢; and gy are compared with the
respective numerical optimal uncertainty bounds for three ran-
dom nondegenerate observables of qubits. As depicted, both
of them are tight for MUBs (X},; = 2) and remain strong when
Kot < 2.

IV. COMPARISON OF BOUNDS

To further compare our EURs with those obtained in
previous works, we remark that inequalities (7), (10), and
(12) extend a series of EURs [35-53] for (incomplete)
design-structured measurements to WEURSs for general ETE-
POVMs. Therefore we only need to consider those EURs that
hold for measurements without special structure. Liu et al.
generalized the two-bases bound gyu (1) to multiple bases
as below [30]:

quvr = —logb + (O — 1)S(p), (14)
where ¢$?") = max; ;{c";""} denotes the maximal overlap

between the Oth and 6’th bases and

0-1
§ (1,2) (6,60+1)
Ini?x{cil,iz } Cig i :
6=2

i, i1

b = max
lo

Notably, gmr (14) is never weaker than gyy for any pair of
bases, whereas it is not tight for multiple MUBs. As is pointed
out by Xie et al. [31], the entropic lower bound

1 , ®
dscB =~ g Zlog o) + 55(,0), (15)
0>0"

simply constructed from gyy by considering the bases in a
pairwise manner, can be stronger than gy when the bases
are approximately mutually unbiased.

We present in Fig. 3(a) numerical comparisons between
qs (13), guvr (14), and the simply constructed bound gscp
(15) on the sum of Shannon entropies over three single-qubit
observables. As shown, gs > gscp holds for all four sets of
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FIG. 3. Lower bounds on the Shannon entropy sums. (a) Comparisons between gs (13), gscg (15), and gpvr (14) for three single-qubit

N

observables: (1) {a,, 0y, . }. (2) {04, 0y, Lo, + L.} 3) {01, 0y, Lo + Lo.}. @) {00, Lo + Loy, Lo, + Lo, ). (b) Comparison between
the state-independent forms of bounds gs, gLmr, ¢scs, grpz and the numerical optimal bound B, for 750 randomly generated sets of three bases
in H,. (c) Comparison between state-independent entropic bounds for 750 randomly generated sets of four bases in #,. (d) Entropic bounds

for four bases in H; defined by Eq. (16).

observables considered. Additionally, although g mr is rela-
tively weaker for pure states [S(p) = 0; L.om(p) = 0.5], it can
be stronger than gscg and gy for mixed states. It is worth
noting that g; mr > ¢s may hold for mixed states in the special
case when two of the three observables are approximately
compatible while the third one is complementary to them [see
Fig. 3(d)-3]. But more generally, gpmr tends to be weaker than
gs, especially for observables that are close to being mutually
complementary or commutable [see Fig. 3(d)-(1, 2, 4)].

In fact, for ® MUBs in H,, the state-independent forms
of Egs. (14) and (15) are gpmr = logd and gscg = % logd.
When © >Vd+1, s> 0q > Oq = Olog 775~ >
®10g\/3 = gscB = qumr- This already demonstrates that
Egs. (10) and (12) would be stronger than g yr and gscs,
at least for ® > Jd +1 bases in Hy that are sufficiently
close to being mutually unbiased. In Fig. 3(b) we move
on to take into consideration the famous state-independent
bound grpz obtained from the direct-sum majorization
relations by Rudnicki er al. [34]. As depicted, both gg and
grpz are never weaker than the state-independent forms of

gumre and gscp for three arbitrary bases in H,. Moreover,
gs attains the optimal bound B; for three MUBs in H,
(Yot =2), gimr =1 < gqscs = 1.5 < qrpz ® 1.8 < g5 =2,
and remains stronger than grpz for approximately MUBs.
On the other hand, for bases that are close enough to be
compatible (Xy < 1), grpz is stronger in general.

When considering four bases in H,, we can see from
Fig. 3(c) that gs > grpz tends to hold for measurement bases
with large exclusivity and, roughly speaking, grpz > ¢s holds
for bases that are close enough to be compatible. In Fig. 3(d)
we make a further comparison between gs and the bounds
grpz and gscp for ® = 4 bases in ‘H3, including the computa-
tional basis and three unitary transformations of it below:

Uy =F*7 U, = EF)™, Uy =E*(F)*™.  (16)

Here E is diagonal with eigenvalues {1, ¢”7/3, ¢?27/3} and F
denotes the discrete Fourier transform, i.e., Fjx = %6’2”1"/ 3,

Again, gs = 4 is tight [62] for MUBs (8 = 7 /4), in which
case it is stronger than grpz.
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V. ENTROPIC STEERING CRITERION

In this section we discuss the applications of our EURs in
steering detection. The concept of steering [63,64] dates back
to Einstein, Podolsky, and Rosen’s [65] prominent observation
that quantum correlation allows one to predict the outcome of
measuring one particle based on the measurement performed
on a distant particle. One possible explanation for this kind
of correlation between distant measurement outcomes is the
local hidden state (LHS) model. To illustrate, consider a bi-
partite state shared between Alice and Bob. Then Bob’s local
state after Alice’s measurement on subsystem A is said to
admit a LHS model if it can be decomposed as

oap = ) w(Mpaald, Mp;., (17)
A

where A denotes the value of an assumed hidden variable
subject to some probability distribution 7 (1), pa(alf, A) de-
notes Alice’s probability to obtain the ath outcome when
she chooses to perform the measurement labeled by 6, and
{p,} are local hidden states on Bob’s side independent of
Alice’s measurements. Thus Eq. (17) essentially describes a
particular form of correlation between Bob’s local states {09}
and Alice’s measurement outcomes {(a, 6)}. What is inter-
esting is quantum states can be steerable and violate steering
inequalities [66] such that they do not admit a LHS model.
In Schrodinger’s words, “The steering forces Bob to believe
that Alice can influence his particle from a distance” [67].
From a modern point of view, steering signifies the presence
of entanglement, but not necessarily Bell nonlocality [63].
Steering has many applications in quantum information
processing (see the reviews [63,64] and references therein
for details), wherein a key point is to detect when and how
much a certain steering inequality can be violated, or Bob’s
ability to predict his local measurement outcomes conditioned
on Alice’s measurement results. To this end, we utilize the
conditional Rényi entropy [68] to quantify Bob’s uncertainty
about (inability to predict) his local measurement outcomes:

H, =

——tog | 3 palDllpmntille |

J
where pp4(i| j) is the conditional probability and || - || denotes
the o norm. As a straightforward generalization of the en-
tropic steering criterion [42,69], if Alice is unable to convince
Bob that the state psp is entangled by performing the local
measurements {/\/l/g} on subsystem A we have

D woHy(MEIMS)y,, = qa(UME, we)).  (18)
[4

Here q(,[({./\/l'ée , wp}) denotes the state-independent entropic
bounds given as the rhs of Egs. (7) and (10) when Bob chooses
to perform the measurement MJZ with probability wy on
subsystem B. Violation of Eq. (18) necessarily implies Bob’s
local uncertainty can be reduced given Alice’s measurement
results, so that the state p,p is steerable from Alice to Bob.

It is worth noting that to accomplish a steering task Al-
ice must choose proper measurements, that is, nonjointly

1
h Tlequ
S09H Tl
NG N T n
0 N
ig) 0.8 A
: o
S 0.7 ¢ N
Q067 i TR
0.5 : : :
0 0.5 1 1.5 2

Exclusivity: X = 3 — HGH

FIG. 4. Estimations of the incompatibility of three qubit-
observables based on Eq. (18) when o = +oo (minimum entropy).
For three complementary observables (X = 2), Eq. (18) yields
Nequ ~ 0.577 when the weights w; = w, = ws are equal, which well
estimates the corresponding incompatibility n* = % More gener-
ally, optimizing the weights leads to a better estimation 7., and
" < Nopt < Nequ-

measurable (incompatible) measurements [70,71]. Joint mea-
surability is an operationally motivated extension of the
commutativity of observables to generalized measurements.
White noise robustness is a commonly used measure of in-
compatibility. It refers to the critical value n* of n (0 <
n < 1) below which a set of noisy measurements {nEjq +
(1 - n)ﬁﬂd} become jointly measurable (n = O corresponds
to trivial measurements, which are always compatible). Next
we study how much white noise could corrupt the incom-
patibility of Alice’s measurements to keep inequality (18)
saturated. Following Refs. [42,69], we exploit the equivalence
[72,73] between incompatibility and steering of a maximally
entangled state, that is, whenever Alice chooses incompatible
measurements, she will succeed in convincing Bob that the
state shared between them is entangled.

As a simple example, we then utilize Eq. (18) to esti-
mate the incompatibility of single-qubit observables. Suppose
now the maximally entangled state psp = \/%(|OO) —|11))
is shared between Alice and Bob, and in each round of
the test, if Alice chooses to measure the observable o, Bob
measures its noisy counterpart no + (1 — ’7)% 1,. For simplic-
ity, we consider three observables in the form {cos 8o, +
sin B0, cos B0y + sin Bro;, 0}, with f; =0 and 0 < B, <
F or fpp=7 and 0 < B; < 5. We present in Fig. 4 some
numerical results about the threshold value nequ (70p) of 7
for Bob’s measurements with equal (optimal) weights to vi-
olate Eq. (18). As shown, Eq. (18) yields nequ ~ 0.577 for
the case of three complementary observables (8; = 8, = 0,
Xiot = 2). This value coincides with the noise robustness n* =
%. More generally we have nequ > 7opt; therefore optimizing
the weights in Eq. (18) leads to superior performance. We
would like to remark that the performance of Eq. (18) has been
underestimated in the preceding analysis, as we restricted
Alice’s measurement choice to be the noiseless counterpart
of Bob’s measurement for simplicity.
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VI. CONCLUSION

In this work we have derived Rényi EURs for multiple
measurements assigned with positive weights from upper
bound (4) on the respective IC of outcome probability
distributions. On one hand, our results extend a series of inde-
pendent investigations [35-53] on EURs for design-structured
measurements to WEURs for much more general measure-
ments. On the other hand, we verified both analytically and
numerically that our Shannon EURs are generally stronger
than the generalizations, gpmr (14) and gscp (15), of Maassen
and Uffink’s famous EUR (1) to multiple bases. Our bound
gs (12) can also outperform the strong direct-sum majoriza-
tion bound ggrpz [34] for certain measurements, especially for
approximately mutually unbiased bases (MUBs). Taking the
steering test as an example, we also demonstrated numerically
that WEURSs could achieve better performance in practical
applications simply by optimizing the weights assigned to
different measurements. Crucially, the optimization process
can be readily accomplished on a classical computer without
incurring any additional quantum costs.

Our investigation provides insights into the interpretation
of quantum uncertainty from an entropic perspective, and we
expect it to inspire future in-depth research on the applications
of WEURSs in quantum information theory. To improve our
results, future work will take into consideration other eigen-
values of the average view operator to tighten the IC bound
(4). Exploring new applications of WEURSs also presents an
intriguing avenue for future investigation.
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APPENDIX A: VIEW OPERATOR

The view operator of a measurement M = {M;} on
d-dimensional systems is defined as [54]
GM) = Gy = M) (M (A1)

where M; = M; — 1Tr(M;)1, is traceless and |M;) =
Vd(M; ® 14) |,) is a vector on the product space Hy ® Ha,
which is orthogonal to the maximally entangled isotropic

state |¥y) = f Zl —o 1) ®[i)*
We list here some basic properties of view operators (see
detailed proofs in Ref. [54]):

(1) View operators are positive semi-definite, G>0on
the (d?> — 1)-dimensional subspace H 1y, of Hy ® Hy that
consists of vectors orthogonal to |Y,).

(2) View operators vanish for POVMs whose effects are all
proportional to the identity operator 1, on Hy, i.e., POVMs
satisfying M; = ﬁTr(M,-)Ild for each i.

(3) For any rank-1 projective measurement, the associated
view operator is an identity operator on a (d — 1)-dimensional
subspace of H | y,.

(4) The view operators of measurements in MUBs are
mutually orthogonal, and the combined view operator G, =

d+l G(./\/tg) associated with d + 1 MUBs constitutes the
identlty operator on H |y, .

(5) The largest eigenvalue of the view operator associated
with an ETE-POVM {M;} equals the second largest eigenvalue
of the overlap matrix W; ; = Tr(M;M ;).

(6) Let G, denote the combined view operator asso-
ciated with a set of ® orthonormal bases of H,, then
1 < |Gl < ©® and ||Giill = © is achieved by measure-
ments such that the corresponding overlap matrix, defined as
Wi, jlor = Tr(M;eM jp-), is reducible, e.g., observables with a
common eigenstate.

M Letg=>, wgG(My) denote the average view op-
erator associated with a set of ® orthonormal bases in
Hy, then 2l < 3 wp|GM)Il = 5 wp =1 and 8] >
maxg{wy[|G(Mp)l} > maxe{we} > 5

APPENDIX B: SHANNON EURs

To prove Theorem 3, here we mainly utilize the method for
constructing Shannon EURs from IC introduced in Ref. [53].
Some intermediate conclusions in the first section have been
obtained also in Refs. [58,60].

1. Shannon lower bound for a single distribution

Consider all possible probability distributions with index
of coincidence (IC) being c, namely, Zi p? = c. It was shown
in Refs. [51,53,58,60] that the probability vector p that mini-
mizes the Shannon entropy takes the form

n in total
- ————e
P=Pas---+ParPb)s Pa Z2Pp=1—(m—1p, 2 0; (Bl)
c(p)=m—Dp.+p,=c. (B2)

p is a linear combination of two uniform distributions
of length n and n — 1, respectively, and is fully deter-
mined by the above equations. Condition (Bl) requires
1 <c< 11, namely, n = H/c] Immediately p, = 1 S+
L =D =T, and p,= 1~ L= Dm-D is
determined by Eq. (B2).

So the Shannon entropy of any probability distribution with
IC being c is lower bounded by

h(c) = —(n — 1)p,log p, — pylog py, (B3)
with
n=Tr1/cl, pa=1+ D=1, (B4
1
= - —\/<cn D=1 (B5)
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2 : : : [1/(k+ 1), 1/k] [53,58]. (iii) If 1/c = k is an integer, then
—h(c) n=k, p,=pp,=1/k, and h(c) = —logk [53,58]. (4) For
——log(c) arbitrary two positive integers k; > k, > 1, there is [53]
15 f

h(1/ki) + h(1/ky + 5) = h(1/ki +5) + h(1/kz) ~ (B6)

1 1
for0 <s < - —,
ki—1 Kk
057 h(1/ky = )+ h(1 /ks) > h(1 k) + h(1 fka = )
1 1
0 . . | forogsgk——k—l (B7)
0.4 0.6 0.8 1 1 Rt
Index of coincidence: ¢ ) .
The properties above are enough to derive the best lower
FIG. 5. The diagram of h(c) for ¢ € [1/4, 1]. bound on the average Shannon entropy for multiple probabil-
ity distributions based only on an upper bound on the average
The diagram of /(c) is plotted in Fig. 5 for ¢ € [1/4, 1]. IC (see the next section). We present below the detailed proof
Properties. There are some useful properties of h(c). (i) ~ of property (4). L
h(c) decreases monotonically with ¢ [51,53,58,60]. (ii) For The proof is straightforward. For ¢ € [, -—7), lets = ¢ —
any positive integer k, h(c) is concave with respect to ¢ € % and we have
|
h(c) = A(s, n)

=logn—nn;1<1+ /nn_sl>log<l+ /n"_s1 )—%(1—w/sn(n—1))log(1—\/sn(n—l)). (BS)

To show Eq. (B6), we only need to show B(s, n) = logn — A(s, n) is an increasing function of n for s € [0, ﬁ]:

0A(s,n) 5 ++/sn(n—1) ) 1+ /sn/(n—1) sn? (B9)
= 0] ot .
on n?/sn(n — 1) g 1 —/snin—1) 5+ sn(n — 1)
Let 0 < u = /sn(n — 1) < 1. The term in square brackets is
n—14u u*n n—14u un (B10)

log - = > log - .
(=D —u) %L 4umn-1) =D —-u) (-1

The rhs of Eq. (B10) increases monotonically with u; obviously it is non-negative. To show Eq. (B7) we only need to show

C(s,n) = A(ﬁ — s, n) — log(n — 1) is an increasing function of n for s € [0, ﬁ]:
n 1 1—sn(n—1)
C(s,n) = log ——m—-14/1—=sn(n—1))log|l + ——
n—1 n n—1
1
— —(1—+/1—=sn(n—1))log(l —+/1—snn—1)), (B11)
n
sn 1
aC(s, n) _ 1+ % — /1 —sn(n— 1)log 1+ —=+/1—sn(n—-1) 1 =JT—sn(n— 1). B12)
on n2/1—sn(n—1) 1—J1T—=sn(n—1) n(n—1)
Let0 <u=4/1—sn(n—1) < 1. We then have
dC(s, n) 2n(1—u)—(1—u)21 n—14u 1—u
= 0 p—
on 2n%(n — Du g(n—l)(l—u) nn—1)
2n(1 —u) — (1 — u)? —1 2
_ n( u) — ( u) log n +u _ nu . (B13)
2n%(n — Nu m—1D)A—-u) 2n—0—un)
Similar to Eq. (B10), the term in square brackets of Eq. (B13) is positive:
log n—1+u 2nu n—1+u 2nu >o. (B14)

- 210g - =
n—1D0—-u) 2n—1—u) -1 —u) 2n—1
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2. The sum of Shannon entropies over
multiple probability distributions

Suppose cior = Z?:, ¢(Py) is an upper bound on the total
IC of ® (® > 2) length-/ probability vectors {pg}. Then the
best lower bound on the sum of Shannon entropies that can be
obtained from cy is

ho(l,co)= __min > hlc(Pp)].

Zg):1 c(Po)=Crot )

(B15)

To evaluate hg(/, cy), we first examine what the steepest-
descent method leads us to and then prove it is indeed optimal
instead of a local minimum.

J

Dg(l, cior) =

Observe in the last equality above, ®/r < lg(r, k) <
cot < lo(r,k+1) < O/(r — 1), which implies r = [®/cyo]-
Further, since

1 ®-1 k 1
< Cor — lo(r k) + = = cror — - <
r r r(r—1) r—1

3

N | =

or equivalently,

® ()]
rr—D(cor—— | =1 <k<r(r—D|co—— ),
r r

we have k = [r(r — 1)(ceor — 9)]. Therefore the steepest-
descent method leads us to

De(l, cior) =(© — k — 1)logr + klog(r — 1)
®—-k—1 k
r r—1

+h (Ctot — ) , (B 17)

(© —k —1logl +klog(l — 1) + hlcwoy — lo(l, k) + 1/1], To(l, k) < cor < lo(l,k+1)

Let i x U; denote i uniform distributions of length j
and Ig(l, k) = % + % denote the total IC of the follow-
ing ® probability distributions: k x U;—; (k=0,1,...,0 —
1) and (® —k) x U;. When ¢ = ©/1 = I(l,0), obvi-
ously he(l, cior) = ®logl. As ¢y increases, the steepest
descent of entropy (SDE) is Dg(l, cior) = (® — 1)logl +
h(cor — ©74) when ¢ < lo(l,1) = (© — 1)/1+ 1/(1 = D).
This is because h(c) is concave with respect to ¢ for ¢ €
[1/1,1/(I — 1)]. Similarly, for Ig(l,1) < cor < lo(l,2) =
(®—-2)/1+2/(I —1), according to Eq. (B6) the SDE
lga(zis us tlo ho(l, cror) = (® —2)log! + log(l — 1) + h(ceor —

= - m). Furthermore, for general ¢y,

(© — Dlogl + hlcior — (© — 1)/1], 1(1,0) < cior < lo(l, 1)

(© —=2)logl +1log(l — 1) + hlc — o (1, 1) +1/11, Io(l, 1) < cio < Io(l,2)

(B16)

(© —k —1Dlogr+klog(r — 1) + hlco — lo(r, k) + 1/r], lo(r, k) < cior < lo(r, k + 1).

(

with r=[0/ci] and k = |[r(r — 1)(cror — %)J. Equa-
tion (B17) can be saturated by the following ® probability
distributions, (® —k — 1) x U,, k x U,_;, and one distribu-
tion that is a linear combination of U, and U,_;.

To see why Eq. (B17) is indeed the optimal lower
bound, i.e., Dg (I, cior) = he(l, cior), Observe that the first the
property (ii) of /(c) ensures that the set of non-negative num-
bers {ci,...,co} satisfying > ,cp = cor and ho(l, cor) =
> o h(co) contains at most one element that is not an in-
verse of an integer. Without losing generality, suppose ¢; =

T Com1 = ﬁ are inverse of integers withk; > k- -+ >

ke—1 = 1. Note that Eq. (B7) requires ce > ﬁ and
ki — ko—_1 < 1; otherwise logk; + logke_; > h(% + kl%l -
%) + h(ﬁ — k]%] + %) contradicts the assumption that
Y g h(cy) = he(l, cior). At the same time, Eq. (B6) requires
co < = if ki —ke-1 =1, otherwise logki + h(ce) >
log(k; — 1) + h(ce — h+1 + 1) contradicts Eq. (B6). This
promises that Eq. (B17) is the best entropic lower bound that
can be obtained from an upper bound on IC only.
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