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Thermoelectric response across the semiconductor-semimetal transition in black phosphorus

Yuna Nakajima,1 Yuichi Akahama ,2 and Yo Machida 1,*

1Department of Physics, Gakushuin University, Tokyo 171-8588, Japan
2Graduate School of Material Science, University of Hyogo, Kamigori 678-1297, Japan

(Received 15 August 2023; revised 29 September 2023; accepted 8 January 2024; published 31 January 2024)

By precisely tuning the ground state of black phosphorus with pressure from the semiconducting to semimetal-
lic state, we track a systematic evolution of the Seebeck coefficient. Thanks to a manifest correlation between
the Seebeck coefficient and resistivity, the Seebeck response in each conduction regime, i.e., intrinsic, saturation,
extrinsic, and variable range hopping (VRH) regimes, is identified. In the former two regimes, the Seebeck
coefficient behaves in accordance with the present theories, whereas in the latter two regimes available theories
do not give a satisfactory account for its response. However, by eliminating the extrinsic sample dependence in
the resistivity ρ and Seebeck coefficient S, the Peltier conductivity α = S/ρ allows us to unveil the intrinsic
thermoelectric response, revealing vanishing fate for α in the VRH regime. The emerged ionized impurity
scattering on entry to the semimetallic state is easily surpassed by electron-electron scattering due to squeezing of
screening length accompanied by an increase of carrier density with pressure. Each carrier scattering participates
an enhancement of the phonon drag contribution to the Seebeck effect, but creates the phonon drag peak
with opposite sign at distinct temperature. In the low-temperature limit, a small number of carriers enhances
a prefactor of T -linear Seebeck coefficient as large as what is observed in prototypical semimetals. A crucial
but largely ignored role of carrier scattering in determining the magnitude and sign of the Seebeck coefficient
is indicated by the observation that a sign reversal of the T -linear prefactor is concomitant with a change in
dominant scattering mechanism for carriers.
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I. INTRODUCTION

When a solid is subject to temperature gradient, ther-
mal diffusion of charge carriers develops electric field along
the trajectory of carriers. This is a phenomenon known as
the Seebeck effect. The magnitude of this effect is quanti-
fied by Seebeck coefficient S, which is defined as a ratio
of thermoelectric voltage Vth to temperature difference �T ,
S = −Vth/�T . Let us begin by showing that depending on
what statistics electrons obey, the Seebeck coefficient behaves
differently between metals and semiconductors. In the Boltz-
mann picture with relaxation time approximation, the Seebeck
coefficient is expressed by

S = − 1

eT

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞
0

∂ f0

∂ε
D(ε)ε(ε − μ)τ (ε)dε∫ ∞

0
∂ f0

∂ε
D(ε)ετ (ε)dε

⎫⎪⎪⎬
⎪⎪⎭, (1)

where f0 is equilibrium distribution function and the density
of state is D(ε) = (2m)3/2ε1/2/2π2h̄3. The scattering time
is assumed to be τ (ε) = τ0ε

r following Refs. [1,2]. (We
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note that a T −3/2 dependence of the Hall mobility in black
phosphorus [3] enables us to use the power-law energy de-
pendence of the scattering time, which is justified in the
simple parabolic band model.) By using the Fermi integral
Fn(η) = ∫ ∞

0 f0(ζ , η)ζ ndζ , Eq. (1) is rewritten as [1]

S = kB

e

{
η −

(
r + 5

2

)
Fr+3/2(η)(

r + 3
2

)
Fr+1/2(η)

}
, (2)

where ζ = ε/kBT and η = μ/kBT (μ being the chemical
potential).

For metals the Fermi-Dirac distribution function applies to
f0. Employing the Sommerfeld expansion for large positive
values of μ/kBT , the Seebeck coefficient for electrons in
metals is given by

S = −π2

3

kB

e

kBT

εF

(
r + 3

2

)
. (3)

Here, εF is the Fermi energy and we assume μ = εF. From
Eq. (3) one finds that the magnitude of Seebeck coefficient
is set by the Fermi energy εF and the exponent of energy
dependence of scattering time r, which takes different val-
ues depending on the scattering mechanism: r = −1/2 for
phonon scattering, r = 0 for neutral impurity scattering, and
r = 3/2 for ionized impurity scattering [1,2]. S linearly de-
creases with temperature and vanishes at zero temperature.
Validity of this expression is documented by a universal re-
lation between S/T and the Sommerfeld value γ as well as
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S/T and the prefactor of T 2 resistivity for a wide variety of
metals [4,5].

For insulators the Maxwell-Boltzmann distribution func-
tion applies to f0, then the Seebeck coefficient is obtained
to be

Se,h = ∓kB

e

{
�

2kBT
+

(
r + 5

2

)}
, (4)

where � is a gap between the valence and conduction band.
The subscripts e and h denote electron and hole, respectively.
One can see that the magnitude of Seebeck coefficient is set by
� and r, and it diverges on cooling inversely proportional to
temperature. This expression well describes the Seebeck co-
efficient of semiconductors in the intrinsic regime as reported
in Ref. [6].

Here several questions arise. Question 1: What is the fate
of Seebeck coefficient in semiconductors even below the in-
trinsic regime? Surprisingly, after 200 years of discovery of
Seebeck effect there is no consensus about what is going on in
this fundamental transport quantity when a semiconductor is
cooled down to low temperatures. The limited number of stud-
ies have reported the contradicting observations; it diverges in
some cases [7,8] and vanishes as T → 0 in other cases [9–12].
Question 2: What does happen in the Seebeck coefficient at
the metal-insulator (M-I) transition? In other words, how do
the contrasting Seebeck responses between metals and insula-
tors converge at the transition? The thermoelectricity near the
M-I transition has been barely explored [9,13]. The pioneer
work has done by Lohneysen et al. [13] on the doped Si,
who found that the Kondo effect emerges close to the criti-
cal doping. Because of this extrinsic contribution induced by
impurities, the systematic evolution of the intrinsic diffusive
contribution to Seebeck coefficient near the M-I transition is
hardly observable. Question 3: How does the electron scat-
tering affect the Seebeck coefficient? Since the magnitude of
Seebeck coefficient is primarily determined either by εF or
�, in most cases much attention has not been given to the
scattering parameter r in Eqs. (3) and (4).

Black phosphorus (BP), an elemental semiconductor [14],
provides a rare opportunity to address the above issues. Prior
transport studies have revealed the resistivity behaves like the
doped (p-type) semiconductor despite that BP is undoped [3].
The atomic vacancy is attributed to the hole doping [15]. A
schematic image of the band structure is shown in Fig 1. A
direct band gap �vc between the top of valence band and
the bottom of conduction band is estimated to be ∼0.3 eV
by the experiment [16] and theory [17]. An additional gap of
�va ∼ 18 meV [3,18] is present between the valence band and
the acceptor level. The low density of carriers (∼1015 cm−3)
leads to a heat transport dominated by phonons, which yields a
variety of fascinating phenomena including phonon hydrody-
namics [19] and sizable phonon Hall effect [20]. Application
of hydrostatic pressure exceeding 1 GPa is enough to close
�vc and �va and the semimetallic state is stabilized [18,21,22]
due to the band overlapping [17] as schematically shown
in Fig. 1. It should be emphasized that the semiconductor-
semimetal transition is isostructural, thus it is the Lifshitz
transition [18]. This is in contrast with the pressure-induced
M-I transition in Si, which is accompanied by a structural
change [23]. The ability to use the pressure to tune the ground

FIG. 1. Schematic image of pressure evolution of the band struc-
ture in black phosphorus. At ambient pressure, a direct band gap
�vc is present between the top of valence band and the bottom
of conduction band. The atomic vacancy creates the acceptor level
slightly above the top of the valence band, forming an additional
gap �va. Both �vc and �va are closed at the critical pressure Pc

around 1 GPa and due to the band overlapping the semimetallic state
emerges above Pc.

state is advantage of BP over such as Si [13] because an
introduction of impurities can be avoided. The Dirac nature
of mobile carriers created in the semimetallic state makes this
elemental semimetal more attractive [17,18,24].

Our focus is to unveil the thermoelectric property of semi-
conductor and its evolution on entering the semimetallic state
across the semiconductor-semimetal (S-S) transition utilizing
BP as a representative semiconductor. Our precise transport
measurements under pressure up to 1.7 GPa and in the tem-
perature range between 2 K and 300 K allow us to track
the systematic evolution of resistivity and Seebeck coefficient
as a function of temperature and pressure. We show that
thanks to the clear correspondence to the resistivity, which
can be separated into four conduction regimes, i.e., intrin-
sic, saturation, extrinsic, and variable range hopping (VRH)
regimes, the characteristic Seebeck response in each regime
is resolved. In particular, the vanishing fate for Seebeck coef-
ficient is uncovered in the VRH regime. While the Seebeck
behavior in the intrinsic and saturation regimes is satisfac-
torily accounted by the present theories, the responses in
the extrinsic and VRH regimes are not in agreement with
any available theories. However, we show that being free
from extrinsic sample dependence, the Peltier conductivity
allows us to access the intrinsic thermoelectric response at low
temperature.

Concomitant with an entry to the semimetallic state, ion-
ized impurity scattering becomes dominant scattering process
affecting electrons, but it is overwhelmed by electron-electron
scattering due to shrinkage of screening length of impurity
potential upon increasing of density of conduction electrons
with pressure. We show that both scattering could be sources
to enhance the phonon drag contribution to the Seebeck co-
efficient. A direct link between the change in hierarchy of
dominant scattering and a sign reversal of the T -linear prefac-
tor of Seebeck coefficient indicates that a crucial role is played
by carrier scattering in determining the magnitude and sign
of the Seebeck coefficient, although its importance has been
largely ignored.
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FIG. 2. (a) Schematic of transport measurement setup. For the Seebeck coefficient measurements, the current source on the right-hand
side supplies the electrical current to the heater, which serves the heat current to the sample through the gold wire connecting the heater and
the sample. Thermoelectric voltage Vch (Vco) generated across the circuit consisting of the sample and Chromel (Constantan) is measured by
the voltmeter. For the resistivity measurements, the current source on the left-hand side supplies the electrical current to the sample through
the same gold wire. This circuit is opened while the Seebeck coefficient measurements. (b) A diagram showing the principle of the Seebeck
coefficient measurement. (c) A photo of the setup.

II. METHODS

Single crystals of black phosphorus were synthesized un-
der high pressure [25]. Seebeck coefficient under pressure
was measured by the differential dc method using Chromel-
Constantan thermocouples as probes of thermoelectric voltage
[26]. Schematic image of the measurement setup is shown
in Fig. 2(a). The junctions of the thermocouples were made
by spot welding, and glued directly to the sample by using
silver paste. A temperature gradient across the sample was
generated by a chip resistor mounted on the thin glass-epoxy

flame. The resistor was connected to the hot end of the sample
by a gold wire, which was also used as a current electrode
for the resistivity measurements. Thanks to this configuration,
both heat and electrical currents were injected along the same
direction, which was the in-plane in our experiments. The cold
end of the sample was thermally anchored at a large copper
plate with silver paste to establish steady heat flow from the
sample. The absolute Seebeck coefficient S of the sample is
evaluated from the following relation:

S − Sch = Vch�T (5)
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FIG. 3. Temperature dependence of resistivity ρ under various
pressure in a logarithmic scale.

and

S − Sco = Vco�T . (6)

Vch (Vco) is the thermoelectric voltage across the circuit con-
sisting of the sample and Chromel (Constantan) as shown
in Fig. 2(b), and Sch (Sco) is an absolute Seebeck coefficient
of Chromel (Constantan). �T is the temperature difference
between the two thermocouple junctions.

On combining Eqs. (5) and (6), one obtains the absolute
Seebeck coefficient S of the sample as

S = Sch − (Vch/Vco)Sco

1 − (Vch/Vco)
. (7)

S can be calculated from Eq. (7) if Sch and Sco are known
and Vch and Vco are measured. An advantage of this method
is that S is obtained without directly measuring �T . Sco was
evaluated from the differential Seebeck coefficient of the type
E thermocouple with independently measured Sch [27–29].
Effect of pressure on the type E thermocouple was found
to be negligible (see Appendix). Vch and Vco were measured
using the digital nanovoltmeter with the high input impedance
(∼10 G�), which is well above the highest sample resistance
(∼10 k�) at low temperature.

External pressure was applied by using a NiCrAl-BeCu
hybrid piston cylinder. Daphne oil 7373 was used as a
pressure-transmitting medium. The applied pressure was
estimated by monitoring the superconducting transition tem-
perature of Pb. The resistivity was also measured under the
same pressure environment utilizing the voltage electrodes for
the thermoelectric measurements.

FIG. 4. Arrhenius plots in the intrinsic and extrinsic regimes are
shown in (a) and (b), respectively. Resistivity in the VRH regime is
plotted against (c) T −1/2, (d) T −1/3, and (e) T −1/4.

III. RESULTS

A. Electrical resistivity

Figure 3 shows temperature dependence of electrical re-
sistivity ρ(T ) measured under various pressures. ρ(T ) at
ambient pressure can be separated into four conduction
regimes, i.e., intrinsic, saturation, extrinsic, and variable range
hopping (VRH) regimes. In the intrinsic regime between
250 K and 300 K, ρ(T ) shows an activation behavior due
to the thermal excitation of the carriers across the band gap
�vc between the valence band and the conduction band. By
fitting the data to the Arrhenius equation ρ = exp(�vc/2kBT )
[Fig. 4(a)], �vc is obtained to be 0.3 eV, which is in agree-
ment with what was reported in the previous study [16]. On
cooling the thermal excitation across �vc becomes impossi-
ble and ρ(T ) peaks around 250 K, signaling an entrance of
the saturation regime. In this regime, ρ(T ) decreases with
temperature between 50 K and 250 K due to the follow-
ing reasons. Since the acceptor level is fully occupied, the
carrier density is unchanged with temperature. Therefore, a
primary factor that determines the temperature variations of ρ

is the scattering time, which becomes longer with decreasing
temperature because the scattering of carriers by phonons
becomes rare at low temperature. The decrease of ρ(T ) is in-
terrupted at the entrance of the extrinsic regime around 50 K.
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FIG. 5. Temperature dependence of resistivity ρ under the pres-
sure of 1.7 GPa. At low temperature, ρ follows T 2 as shown in
the top inset. Bottom inset: Exponent γ of temperature depen-
dence of resistivity (ρ = ρ0 + Aγ T γ ), which is quantified by taking
the logarithmic derivative after subtracting residual resistivity: γ =
{d ln(ρ − ρ0)/d ln T } is shown as a function of temperature.

In this regime, the thermal excitation across �va dominates
the transport and ρ(T ) again displays the activation behavior.
A fitting to the data in the Arrhenius plot [Fig. 4(b)] gives
�va ∼ 16 meV, which is comparable with the one found in
the previous reports [3,18]. Below 15 K, an evolution of ρ

becomes weak due to an entrance in the VRH regime where
the conduction is governed by a hopping of electrons between
impurity sites. In this regime, ρ varies following the expres-
sion ρ ∝ exp[(T/T0)−1/(d+1)] (d is a space dimension). As
seen in Figs. 4(c)–4(e), our limited data does not allow us to
determine the hopping dimensionality.

By increasing the pressure, a rise of ρ in the intrinsic
and extrinsic regimes becomes weak due to the gap closing.
Indeed, the gap estimated from the Arrhenius plot [Figs. 4(a)
and 4(b)] decrease with pressure as shown in Fig. 6(a). A
linear extrapolation suggests that the gaps vanish around Pc ∼
1.1 GPa. This conjecture is supported by the observation
that the semiconducting behavior in ρ(T ) becomes unclear at
P = 1.07 GPa (Fig. 3).

Above 1.16 GPa, a metallic behavior eventually shows
up in ρ(T ) at high temperature, but below 100 K ρ(T )
subsequently rises. Such an upturn is observed in gapless
semiconductors and semimetals [30–33], and is attributed to
the ionized impurity scattering. For such a scattering process,
screening of the impurity potential by conduction electrons
is irrelevant. A comparable magnitude of the Thomas-Fermi
screening length rTF ∝

√
aB/n1/3 ∼ 15 nm (aB being the

effective Bohr radius) and the mean-free path l = 24 nm
calculated from resistivity ρ = 3π2h̄/e2k2

Fl [34] implies the
ionized impurity scattering is marginal in BP.

FIG. 6. (a) The gaps between the top of valence band and the
bottom of conduction band �vc (left axis) determined by resistivity
and Peltier coefficient decrease linearly with pressure, pointing that
the gap vanishes around 1.1 GPa as denoted by a dashed line. The
gap between the top of valence band and the acceptor level �va (right
axis) follows the same trend. Contour plot of temperature derivative
of resistivity and the Seebeck coefficient in the temperature-pressure
plane are shown in (b) and (c), respectively.

In fact, by further increasing the pressure, the upturn en-
tirely suppressed and ρ keeps decreasing all the way down
to the lowest temperature at the pressure exceeding P∗ ∼
1.35 GPa. This is caused by the squeezing of rTF upon
increasing the number of conduction electrons, and thus
the scattering from ionized impurity becomes ineffective. In
Fig. 5, a plot of ρ vs T at P = 1.7 GPa is shown as repre-
sentative temperature dependence of ρ(T ) in the semimetallic
state. As seen in the top inset of Fig. 5, at low temperature
ρ(T ) exhibits T 2 dependence arising from electron-electron
scattering. A linear fit to the data gives a T 2 prefactor of 15.2
n�cm/K2, which is comparable to the one find in Bi [35].
On warming, electron-phonon scattering becomes dominant
and as a result, an exponent of T dependence of ρ increases
from two to three as demonstrated in the bottom inset of
Fig. 5 where the logarithmic derivative after subtracting resid-
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ual resistivity: dln(ρ − ρ0)/dlnT is plotted as a function of
temperature. By further increasing temperature, the exponent
drops to approach around one. Similar variation of dln(ρ −
ρ0)/dlnT has been observed in Sb [36].

One can see how ρ evolves under pressure from a con-
tour plot of temperature derivative of ρ, dρ/dT , in the
temperature-pressure plane, which is shown in Fig. 6(b).
In the plot, warm/cold color represents a region where ρ

decrease/increase on cooling. It is clearly seen that the intrin-
sic, saturation, and extrinsic/VRH regions colored by purple,
red, and purple, respectively, are squeezed upon increasing the
pressure and the former two regions are terminated at the S-S
transition (Pc ∼ 1.1 GPa) denoted by a dashed line. While the
extrinsic/VRH region also disappears at the same pressure,
the emergence of ionized impurity scattering above Pc extends
the cold-color region (dρ/dT < 0) to the semimetallic state.
As can be seen by a change of color from cold to hot across
P∗ ∼ 1.35 GPa (a dashed-and-dotted line), the dominant scat-
tering mechanism switch from the ionized impurity scattering
to electron-electron scattering. As we will show below, this
change in scattering mechanism inside the semimetallic state
provides a great impact on the Seebeck effect.

B. Seebeck coefficient

1. Semiconducting state

Figure 7 depicts the temperature dependence of Seebeck
coefficient S(T ) under various pressures. A sign of S is pos-
itive in the semiconducting state, consistent with that black
phosphorus is the p-type semiconductor. At ambient pres-
sure, S(T ) increases with decreasing temperature and attains
a maximum value, 800 μV/K around 200 K. Up to the crit-
ical pressure (Pc ∼ 1.1 GPa), the maximal S is diminished
by a factor of five. The magnitude of S keeps decreasing
even above Pc as displayed in Fig. 7(b), and S takes place
a sign change at P∗ ∼ 1.35 GPa [the inset of Fig. 7(b)] at
low temperature. The contour plot of S displayed in Fig. 6(c)
clearly shows that the sign change in S is concomitant with
the disappearance of ionized impurity scattering. One of
the main outcomes of this study is a manifest correlation
between resistivity and Seebeck coefficient. Figure 8 shows
the temperature dependence of Seebeck coefficient (left axis,
open circles) together with resistivity (right axis, closed cir-
cles) at each pressure. In the semiconducting state, Seebeck
coefficient shows characteristic behaviors in four conduction
regimes: S sharply rises in the intrinsic regime, then becomes
nearly temperature independent in the saturation regime, and
subsequently drops rapidly in the extrinsic regime. Finally,
S again decreases slowly in the VRH regime. An applica-
tion of the pressure makes the intrinsic and extrinsic regime
wider and the saturation and VRH regime narrower, creating
a prominent peak of S in the saturation regime. On entering
the semimetallic state at P > Pc, the peak in S becomes less
pronounced.

From Eq. (4), the diffusion thermopower is expected to
evolves with �vc/T in the intrinsic regime. Indeed, this is
seen in our data as shown in Fig. 9(a) where S is plotted
against 1/T . An extraction of �vc from the slope is not
straightforward due to the presence of thermally excited hole
and electron carriers. The Seebeck coefficient of two carrier

FIG. 7. (a) Temperature dependence of Seebeck coefficient S
under various pressure. Corresponding zooms above 1.07 GPa and
1.30 GPa are shown in (b) and its inset, respectively.

system is expressed as

S = σeSe + σhSh

σe + σh
, (8)

where σe (σh) and Se (Sh) are conductivity and Seebeck coeffi-
cient of electrons (holes), respectively. By substituting Eq. (4)
to Eq. (8), we get

S = kB

e

1 − (σe/σh )

1 + (σe/σh )

{
�

2kBT
+

(
r + 5

2

)}
. (9)

Since the number of thermally excited holes and electrons is
the same deep inside the intrinsic regime where the chemical
potential is located at the middle of the energy gap as depicted
in Fig. 1, σe/σh is close to unity. In this situation, the Seebeck
coefficient will be very small. Cooling moves the chemical
potential toward one of the bands (the valence band for the
case of BP). Then, the hole contribution becomes dominant
(σe/σh � 1), yielding the activation behavior (S ∝ �/T ) in
the Seebeck coefficient with the positive sign. This is what
occurs in our sample when it is cooled from room temperature.
By assuming that the Seebeck coefficient is dominated only
by holes, �vc is obtained by fitting the data to Eq. (4). As
seen in Fig. 6(a), the extracted �vc is about twice as large
as the one from resistivity. This discrepancy may be due to
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FIG. 8. Temperature dependence of Seebeck coefficient (left axis) together with resistivity (right axis) under each pressure. (a)–(d) and
(e)–(o) correspond to the data in the semiconducting and semimetallic states, respectively. In (a)–(d), four conduction regimes in the
semiconducting state are highlighted by different colors.

FIG. 9. (a) Seebeck coefficient exhibits 1/T dependence in the
intrinsic regime as expected from the theory. Peltier coefficient also
follows the expected T dependence in the saturation regime, which
is shaded by orange in (b)–(f). (g) demonstrates that the Seebeck co-
efficient in the saturation regime shaded by orange is well described
by the Pisarenko formula [Eq. (11)]. The calculated results are shown
by a dashed line.

the presence of two kinds of holes with distinct mobilities
as suggested by the Hall conductivity measurements [22].
This complexity also makes difficult to find implication of
the scattering parameter r that evolves from −13 to −4 on
approaching Pc.

An alternative estimation of �vc is provided by the
Peltier coefficient � = ST (extracted using the Kelvin re-
lation), which quantifies average thermal energy transported
by carriers and it corresponds to the activation energy �vc.
Figures 9(b)–9(f) depict temperature dependence of � at P <

Pc (the saturation regime is shaded by orange). � attains a
maximum value at the lower temperature end of the intrinsic
regime. �vc extracted from the maximal �max as e�max =
(�vc/2T )T = �vc/2 is in good agreement with the one from
resistivity, as seen in Fig. 6(a). We note that this way of the
gap estimation is compatible with the empirical method using
the relation of Eg = 2e|Smax|Tmax [37], where Eg, Smax, and
Tmax are the energy gap, the maximum Seebeck coefficient,
and the temperature at which Smax occurs, respectively. This
yields Eg ∼ 0.32 eV at ambient pressure, in good agreement
with �vc ∼ 0.3–0.4 eV extracted from resistivity and �.

According to the Wilson-Sommerfeld treatment [38], com-
bining the equation of carrier density n = A exp(−�vc/2kBT )
(A being constant) with � ∝ �vc gives the qualitative descrip-
tion of Peltier coefficient as,

� ∝ 2kBT (ln A − ln n). (10)

Given that n is nearly constant in the saturation regime, �

is expected to vary proportional to temperature. We show
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in Figs. 8(b)–8(f) that � is indeed in T linear in the
saturation regime shaded by orange. A quantitative account of
the magnitude of Seebeck coefficient in the saturation regime
is given by the Pisarenko formula [6,39], which is valid when
the number of carriers is set by extrinsic dopants,

S = kB

e

[
2 + r + ln

{
2

n

(
m∗kBT

2π h̄2

)3/2
}]

, (11)

where m∗ is the effective carrier mass. Since the dominance of
phonon scattering between 50 K and 200 K is indicated by the
Hall mobility experiments [3], by setting r = −1/2 and using
n extracted from the published data [3], we obtained a fair
agreement of the computed S from Eq. (11) to the experiments
with m∗ = 0.45 m0 in the saturation regime [see the dashed
line in Fig. 9(g)]. The deduced effective mass of m∗ = 0.45 m0

reasonably agrees with the one extracted from the cyclotron
resonance experiments [40].

Contrary to the activation behavior in resistivity, the
Seebeck coefficient steeply drops upon entry to the extrin-
sic regime. The similar behavior can be found in other
semiconductors [1,41]. While a satisfactory account of this
contradiction is still missing, we infer that the presence of
electron carriers whose mobility is comparable with that of
hole carriers would cancel out the 1/T behavior because the
Seebeck coefficient of two carrier system is expressed by
Eq. (8). This makes the Seebeck response in the extrinsic
regime dramatically different from what we found in the
intrinsic regime even though the resistivity exhibits the ac-
tivation behavior in both regimes. The presence of electron
carriers is backed by the fact that oxygen dopants induce
n-doped BP [42].

In the VRH regime, S(T ) varies linearly with temperature
as shown in the inset of Fig. 10(b). (See the data of sample
#14 from which the preceding data is obtained). Our obser-
vation is not in agreement with what was seen in the BP
nanoribbons in which S(T ) follows T 1/2 in the temperature
range (between 50 K and 200 K) where resistivity obeys the
VRH transport [43], and is in contrast with what was found
in the doped Si [13] and the organic insulator [8] where S(T )
diverges on cooling. None of available theories predicting the
vanishing VRH thermopower S ∼ T x (x = 1/2 [44], 3/4 [45]
for three dimensions) are compatible with our result. We show
here that the Peltier conductivity α = S/ρ rather than S is
useful to probe the intrinsic thermoelectric feature of semi-
conductors. In Figs. 10(a)–10(c), ρ(T ), S(T ), and α(T ) of
the several BP samples from the same batch together with the
literature data [46] are compared, respectively. Clearly, ρ(T )
and S(T ) are highly sample dependent especially below the
extrinsic regime because they are affected by the impurities.
By suppressing the extrinsic sample dependence in ρ(T ) and
S(T ), however, all α(T ) data fall into the same curve, allowing
us to address the intrinsic thermoelectric responses: α(T )
varies with T 1.5 and T 5 in the VRH and extrinsic regimes,
respectively.

Now, let us discuss the phonon drag contribution to the
Seebeck coefficient in the semiconducting state. In general,
the Seebeck coefficient is composed of the diffusion term Sdif

FIG. 10. Temperature dependence of (a) resistivity, (b) Seebeck
coefficient, and (c) Peltier conductivity for four different BP samples
form the same batch together with the literature data [46]. While ρ

and S depend largely on the samples, α falls on an almost the same
curve, which arrows us to access an intrinsic thermoelectric behavior
of semiconductors.

and the phonon drug term Sph,

S = Sdif + Sph. (12)

The facts that the Seebeck coefficient obeys the activation
behavior in the intrinsic regime and that the Pisarenko formula
is valid in the saturation regime (both are features of the
diffusive Seebeck response) indicate that a dominant role is
played by the carrier diffusive in both regimes. This means
that in these regimes every response in the Seebeck coeffi-
cient is predominantly controlled by �vc. We do not exclude
the phonon drag contribution below the extrinsic regime, but
the lacking of quantitative explanation of the diffusive con-
tribution prevents the further analysis. Notably, the gigantic
phonon drag effect, which allows the Seebeck coefficient to
attain as large as 6 mV/K below 50 K (the extrinsic region),
is reported in germanium [38].
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TABLE I. Comparison of prominent semimetals with BP.

Bi Sb As BP

n (cm−3) 2.7 × 1017 3.7 × 1019 2.0 × 1020 2.9 × 1017

kF (nm−1) 0.2 1.0 1.8 0.2
v̄s (km/s) 1.1 2.9 3.0 3.8
�∗

D (K) 3.3 44 82 12
Tmax (K) 3 10 30 10-30
Ref. [47,48] [47,49,50] [47,51,52] [22,53]

2. Semimetallic state

The Seebeck effect in the semimetallic state is character-
ized by the presence of positive and negative peaks centered
around 10 K and 30 K, respectively [red and blue triangles
in Figs. 8(f)–8(o)]. The former persists up to P∗ where the
dominant scatterers for carriers change from the ionized im-
purities to other electrons. The latter appears as a dip above Pc

and becomes a prominent negative peak above P∗. To search
for the origin of peaks, comparison to prototypical semimetals
is instructive. In semimetals, phonon drag effect provides an
enhancement of Seebeck coefficient around a temperature
where phonon scatter electrons most efficiently [47]. Such
a condition is satisfied when typical phonon wave vector q
becomes comparable to twice of electron wave vector, q ∼
2kF. The effective Debye temperature �∗

D = 2kFv̄sh̄/kB (v̄s

being the average of phonon velocity), rather than the true
Debye temperature, can be used to describe such a characteris-
tic temperature. As shown in Table I, the estimated �∗

D for Bi,
Sb, and As is of the same order of magnitude as Tmax where the
peaks of Seebeck coefficient appear [48,50,52]. Here, kF for
each system is evaluated from the carrier density [47]. Under
the assumption that the calculated v̄s for the orthorhombic
structure under ambient pressure [53] is retained even under
the pressure and with the knowledge of carrier density at
1.7 GPa [22], �∗

D for BP is estimated to be 12 K, which
coincides with Tmax ∼ 10–30 K within experimental margin.
This provides reasonable ground to argue that the phonon drag
participates the formation of peaks.

A qualitative description of phonon drag effect is provided
by Herring [54] as,

Sph = ±�
kB

e

m∗v̄2
s

kBT

τph

τe
. (13)

Here, � is the momentum exchange rate between phonons
and electrons, and τph and τe are phonon and electron scat-
tering times. According to this equation, a large phonon drag
contribution to the Seebeck response is possible when τph 	
τe [33,54]. Coming back to the giant Sph in germanium, it
is shown the large τph/τe ratio is a key to understand this
phenomenon [38]. For BP, the nearly ballistic heat conduction
by phonons below 30 K [19] enables the large τph, while the
ionized impurity scattering and the electron-electron scatter-
ing are responsible for the damping of τe. The opposite sign
of peaks implies the sign of carriers coupled with phonons is
opposite. Given the Fermi surfaces constituted of two electron
pockets and one hole pocket [17,18,21], combining the spacial
distribution of Fermi surfaces and phonon wave vectors of

each branch would allow us to pin down at which Fermi
surface and at what temperature the favorable condition for
the phonon drag effect (q ∼ 2kF) is satisfied.

Upon cooling the sample down to low temperature, the
phonon drag contribution dies out and diffusive contribution
becomes significant, recovering the T -linear dependence in
the Seebeck coefficient as expected from Eq. (3). This is seen
in Figs. 10(a)–10(b), in which Seebeck coefficient divided
by temperature S/T under various pressures are shown as a
function of temperature. While S/T in the semiconducting
state (P < 1.1 GPa) shows a striking temperature dependence
with a concave curve and does not saturate except for under
ambient pressure [Fig. 11(a)], the one in the semimetallic state
exhibits a convex temperature dependence and eventually sat-
urates to a constant value at low temperature [Fig. 11(b)]. As
shown in the inset of Fig. 11(b), S/T becomes constant but
negative above P∗. The saturation behavior of S/T suggests
that the low-temperature Seebeck response is governed by
carrier diffusion. Let us prove this conjecture by examining
a universal relation between the prefactor of T 2 resistivity, A,
and the T -linear term of Seebeck coefficient [5]. It is seen
from Fig. 12(a) that not only prominent semimetals of Bi and
Sb, but also BP for which A and S/T are evaluated under
1.7 GPa fall into the universal line, providing evidence that the
thermoelectric response is purely diffusive at low temperature.
We note that a relation between A and the Fermi energy εF [55]
is also valid for BP under 1.7 GPa as shown in Fig. 12(b).
Here, εF is taken from Ref. [18].

Having established the diffusive response in the semimetal-
lic state, let us scrutinize the response of the T -linear term of
the Seebeck coefficient αT against the pressure. As shown in
Fig. 13(a), αT falls above Pc and changes the sign across P∗.
By combining Eqs. (3) and (8), one gets the expression of αT

for semimetals with equal number of electron and hole carrier
density (ne = nh),

αT = −π2

3

k2
B

e(μe + μh)

{
μe

εe
F

(
re + 3

2

)
− μh

εh
F

(
rh + 3

2

)}
,

(14)

where μe (μh), εe
F (εh

F), and re (rh) are mobility, Fermi energy,
and the exponent of energy dependence of scattering rate
of electrons (holes), respectively. To compute the pressure
dependence of αT, one needs μe,h and εe,h

F as a function of
pressure, which are taken from Refs. [22] and [18], and shown
in Figs. 13(b) and 13(c), respectively. Since the data for εe,h

F is
interrupted around 1.3 GPa, εe,h

F is assumed to vanish at Pc as
shown by the dashed line in Fig. 13(b). Due to the higher mo-
bility and the lower Fermi energy of electrons, the computed
αT is always dominated by electrons (αT is always negative)
and does not reproduce the experimental data as long as re,h

is set to be the same value and pressure independent. The
cases of re = rh = −1/2, re = rh = 0, and re = rh = 3/2 are
shown in Fig. 13(a). Nevertheless, the better agreement with
the experiment is obtained for P > P∗ with re = rh = −1/2.
This corresponds to an energy-independent mean-free path,
which is a good description for electron scattering even in
the presence of electronic correlations. Thus, it is reasonable
to set re = rh = −1/2 at P 	 P∗. An elaborate agreement
including the sign change in αT is achieved with the
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FIG. 11. Seebeck coefficient divided by temperature S/T as a function of temperature in the semiconducting state (a) and semimetallic state
(b), respectively. The inset shows a zoom of the data at P � 1.30 GPa. While S/T is not constant at low temperature in the semiconducting
state except at ambient pressure where the VRH transport governs the carrier conduction, it becomes constant in the semimetallic state as
observed in ordinary metals.

assumption that re and rh evolves differently with pressure
whereas re and rh are equal to −1/2 at P 	 P∗. For the
case where rh and re change from 3/2 and −2, respec-
tively to −1/2 [see the inset of Fig. 13(a)], not only the
magnitude of αT but also the sign reversal at P∗ can be
reproduced by the computations as show by the solid red
line in Fig. 13(a). Such an evolution of rh with pressure
unveils an intimate link between the sign reversal in αT and
the vanishing of ionized impurity scattering. While the jus-
tification of re = −2 near Pc remains a challenge, an equal
influence of ionized impurity scattering for electrons and

FIG. 12. (a) A plot of a prefactor of T 2 resistivity A vs. (S/T )2

for various materials. The data is adapted from Ref. [5]. Note that not
only prototypical semimetals of Bi and Sb, but also semimetallic BP
(1.7 GPa) obey the universal relation between A and (S/T )2. (b) As
demonstrated in Ref. [55] for the various elemental metals, a relation
between A and the Fermi energy εF is valid for BP at 1.7 GPa.

FIG. 13. The T -linear term of Seebeck coefficient αT as a
function of pressure. The computed αT does not reproduce the ex-
perimental data when the scattering parameters re,h for electrons and
holes are set as the same value. An quantitative account of αT is
possible when re,h varies with pressure as denoted by the solid red
line. Pressure dependence of the Fermi energy from Ref. [18] and
mobility from Ref. [22] for electrons and holes are shown in (b) and
(c), respectively.
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holes that was theoretically proposed in Ref. [30] would
support our analysis. What we emphasize here is that in
addition to the thermodynamic quantity like εF, how and by
what are carriers scattered is a key ingredient that determines
the magnitude as well as the sign of Seebeck coefficient.

IV. SUMMARY

In summary, our measurements on the Seebeck coefficient
of black phosphorus under pressure have provided several
pieces of information that promote our understanding of
thermoelectricity in solids. We showed that the Seebeck coef-
ficient follows the activation behavior in the intrinsic regime
and yields the gaps, which are reasonably in agreement with
what was determined by other experiments. The validity of
the Pisarenko formula in the saturation regime is documented
with effective mass comparable with the one obtained by the
cyclotron resonant experiments. We resolved the vanishing
fate for the Seebeck coefficient with S ∼ T in the VRH regime
whereas its T -linear slope is highly sample dependent. The
independence of the Peltier conductivity α on the different
samples paves a way to access the intrinsic thermoelectric
properties even in the extrinsic semiconductors.

In the semimetallic state, we found that the increasing
of carrier density induces the change in dominant scat-
tering mechanism from the ionized impurity scattering to
electron-electron scattering. Both mechanism participate the
enhancement of phonon drag effect at high temperature, but
the opposite sign of phonon drag peaks imply distinct type of
carriers are dragged by phonons. The intimate link between
the change in dominant scatterers for carriers and the sign
reversal of low-temperature Seebeck coefficient that is purely
dominated by carrier diffusion explicitly points to the crucial
role of carrier scattering in determining not only the magni-
tude but also the sign of Seebeck coefficient.
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APPENDIX: PRESSURE EFFECT ON TYPE E
THERMOCOUPLE

Pressure effect on the type E thermocouple was investi-
gated by using the setup shown in Fig. 14. The junction of
thermocouple was glued by silver paste (DuPont 4922N) on
one side of a Cernox thermometer (CX-1050-HT). A chip
resistor was attached on the other side of the thermometer,
which serves the heat current along the thermocouple. The
other end of thermocouple was thermally anchored to the body
of pressure cell and connected to the copper wires for the
thermoelectric voltage (Vth) measurement. The temperature
gradient generated along the thermocouple was measured by
using two Cernox thermometers. One was at the thermocouple
junction as noted above and monitored the temperature (Tin)
at the junction (hot end of the thermocouple) inside the pres-
sure cell. The other one was placed on the body of pressure

FIG. 14. A photo of setup for calibration of the type E thermo-
couple under pressure.

cell and measured the temperature (Tout) at the cold end of
thermocouple. The latter was always under ambient pressure.
An external pressure was applied by using a NiCrAl-BeCu hy-
brid piston cylinder. Daphne oil 7373 was used as a pressure-
transmitting medium. The applied pressure was estimated by
monitoring the superconducting transition temperature of Pb.

We first ensured that there is no appreciable tempera-
ture difference between the two thermometers located inside
and outside the pressure cell at ambient pressure without
injecting the heat current. The top inset of Fig. 15 shows
that the temperature difference between the thermometers

FIG. 15. Temperature dependence of Cernox thermometer at dif-
ferent applied pressures. Top inset demonstrates that temperature
difference between Cernox thermometers placed inside and outside
of the pressure cell is less that 0.3% at ambient pressure. Bottom
inset: Dimensionless sensitivity of thermometer (T/R)(dR/dT ) at
each pressure.

013125-11



NAKAJIMA, AKAHAMA, AND MACHIDA PHYSICAL REVIEW RESEARCH 6, 013125 (2024)

FIG. 16. Temperature dependence of differential Seebeck co-
efficient Sdif of type E thermocouple at ambient pressure. For
comparison, the standard data [56] and the literature data [57] are
also shown.

(Tin − Tout )/Tin, which is less than 0.3% in the whole tem-
perature range measured. Subsequently, the thermometer
inside of the cell was calibrated under pressure against the
thermometer outside of the cell. The results are shown in the
main panel of Fig. 15. While the resistance of thermometer
slightly decreases with pressure, its dimensionless sensitivity
(T/R)dR/dT is not degraded by the pressure as shown in the
bottom inset of Fig. 15.

Figure 16 shows temperature dependence of the differ-
ential Seebeck coefficient Sdif of the type E thermocouple
at ambient pressure. For comparison, the standard data [56]
and the literature data [57] are also shown. As seen from the
figure, our data well coincides with the one from Ref. [57] and
deviates from the standard data especially at low temperature.
The discrepancy may be due to different amount of impuri-
ties contained in the thermocouple wires made by different

FIG. 17. Temperature dependence of the differential Seebeck
coefficient Sdif of the type E thermocouple measured under three
different pressures. Inset shows the correction on temperature at the
thermocouple junction.

manufacturers; our Constantan and Chromel wires are from
Goodfellow, and the Constantan wire from Goodfellow and
the Chromel wire from Hoskins Manufacturing were used in
Ref. [57] (manufacturers are not specified for the standard
data).

Figure 17 shows temperature dependence of Sdif measured
under three different pressures. Significant dependence of Sdif

on the pressure is observed only below 10 K. Sdif increases
at most 80% than that of ambient pressure at 1 GPa and
2 K. As shown in the inset of Fig. 17, the relative change
of Sdif with pressure results in less than 2% of the correc-
tion on temperature at the thermocouple junction estimated
as (Ttrue − Twrong)/Ttrue, where Ttrue = −Vth/S(P) + Tout and
Twrong = −Vth/S(0 GPa) + Tout. This small correction led us to
conclude that the pressure effect on the type E thermocouple
is negligible up to 2.5 GPa.
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