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Reciprocal microswimming in fluctuating and confined environments

Yoshiki Hiruta * and Kenta Ishimoto †

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

(Received 20 July 2023; accepted 2 January 2024; published 29 January 2024)

From bacteria and sperm cells to artificial microrobots, self-propelled microscopic objects at low Reynolds
numbers often perceive fluctuating mechanical and chemical stimuli and contact exterior wall boundaries both in
nature and the laboratory. In this paper, we theoretically investigate the fundamental features of microswimmers
by focusing on their reciprocal deformation. Although the scallop theorem prohibits the net locomotion of
reciprocal microswimmers, by analyzing a two-sphere swimmer model, we show that in a fluctuating and
geometrically confined environment, reciprocal deformations can afford a statistically average displacement.
After designing the shape gait, a reciprocal swimmer can migrate in any direction, even in the statistical sense,
while the statistical average of passive rigid particles statistically diffuses in a particular direction in the presence
of external boundaries. To elucidate this symmetry breakdown, by introducing an impulse response function,
we derive a general formula for predicting the nonzero net displacement of a reciprocal swimmer. Using this
theory, we determine the relation between the shape gait and net locomotion as well as the net diffusion constant
increase and decrease, owing to a reciprocal deformation. Based on these findings and a theoretical formulation,
we provide a fundamental basis for environment-coupled statistical locomotion. Thus, this paper is valuable
for understanding biophysical phenomena in fluctuating environments, designing artificial microrobots, and
conducting laboratory experiments.
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I. INTRODUCTION

Even one water droplet in a pond contains thousands
of swimming cells with diverse morphologies. These cells
respond to physical and chemical stimuli from external en-
vironments; their response behavior can be active or passive.
Active responses are well-known in chemotaxis, for ex-
ample, sperm cells responding to molecules released from
eggs or bacteria swimming toward nutrients and oxygen
[1–4]. Some microorganisms and cells turn their heads up-
stream, which is considered a passive behavior without
sensing external stimuli because of hydrodynamic interac-
tions between the self-propelled object and external fluid
flow [5–9]. Microscopic, self-propelled objects are called
microswimmers, which have served as inspiration for the
study of artificial active agents in recent years [10,11].
Further, enabled by the rapid development of machine learn-
ing, a research field has emerged that focuses on creating
and designing smart particles that can change their dynam-
ics by perceiving external environments and learning from
them [12,13].
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Notably, the natural environment fluctuates over time. In
particular, the mentioned microscopic objects are frequently
subjected to Brownian thermal noise. Another important
physical feature of environments is external boundaries, such
as the air–water surface and wall substrates. Microswimmers
are also known to accumulate near walls purely via physical
mechanisms, such as hydrodynamic and contact interactions
[14–17]. Previous studies have focused on microswimming
inside spherical rigid containers and liquid droplets [18–21].
In this paper, we consider the general aspect of microswim-
ming in noisy and confined environments.

Owing to the small size of microswimmers, inertial ef-
fects are negligible; thus, the flow around a swimmer is
governed by the Stokes equation describing the dynamics
of low-Reynolds-number flows. Because of the time-reversal
symmetry associated with the Stokes flow, a reciprocal defor-
mation cannot result in net locomotion; this is known as the
scallop theorem [22–25]. Therefore, one degree of freedom is
insufficient for propulsion. An example is a two-sphere model,
which comprises two spheres connected by a rod. Although a
swimmer can vary the rod length, only reciprocal deformation
is possible. Thus, it remains motionless in a Newtonian fluid
[26–28]. Therefore, microswimmers frequently utilize nonre-
ciprocal deformations, such as multiple degrees of freedom,
and this behavior can be well studied using a three-sphere
model [29–31]. The scallop theorem only holds when the
fluid equation satisfies the Stokes equation and the swimmer
inertia is negligible. Finite inertia effects, therefore, result in
net locomotion even with reciprocal deformations [32–35].
Additionally, non-Newtonian fluids, such as viscoelastic flu-
ids, allow reciprocal swimmers to generate net locomotion
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[27,36–39]. However, external boundaries do not break the
scallop theorem; the theorem still holds if the Stokes flow is
satisfied.

The effects of thermal noise on an active swimmer have
been intensively studied using nondeforming active agents,
such as active Brownian particles [40–44]. Furthermore, the
swimming problem with fluctuating shape gaits has been well
studied, for example, using three-sphere models [45,46]. In
this case, the swimming velocity is determined based on the
statistical average of an area enclosed in the shape space,
and the reciprocal swimmer does not generate net locomo-
tion [47,48]. This is, however, distinct from the problem
where a swimmer’s position fluctuates with fluctuations in the
environment.

If the noise is spatially homogeneous, such as Brownian
motion in free space, the statistical average of particle position
does not change. However, in case of an external boundary,
the environmental noise is no longer spatially homogeneous
because of position-dependent hydrodynamic resistance [49].
Particle diffusion is then suppressed near the boundary, and
the averaged position moves away from it, with the aver-
aged position evolving in time as O(

√
t ). In contrast, studies

on swimmers with deformations in noisy environments are
still limited. Hosaka et al. [50] considered a three-sphere
model with elastic springs. Each sphere possessed different
temperatures and thus different noise magnitudes. They also
theoretically demonstrated that the two-sphere model cannot
generate net locomotion in a statistical sense in free space.
However, the motions of a reciprocal swimmer under spatially
inhomogeneous noise, such as geometrical confinement, are
still unclear.

Therefore, the primary aim of this paper is to examine
the effects of environmental noise on reciprocal swimmers,
particularly in a geometrically confined environment. By
considering a two-sphere swimmer model, we numerically
and theoretically demonstrate that a reciprocal swimmer can
generate net locomotion in a statistical sense. The key math-
ematical structure behind this result lies in the fact that the
statistical average of the distribution function of a variable
is, in general, different from the distribution function of the
averaged variable. To analyze a precise effect from environ-
mental noise, we derive a statistical theory with low-order
moments in the probability distribution function. Accordingly,
the secondary aim of this paper is to apply this theory to
examine the effects of shape gaits on a swimmer’s net velocity
and net diffusion. In particular, we show that a reciprocal
swimmer moves by linearly increasing its position with time
[i.e., ∼O(t )]. Notably, this active displacement dominates the
displacement of the averaged position purely through passive
diffusion [∼O(

√
t )] after a long time. Further, based on this

analysis, we demonstrate that by choosing the shape gait of the
deformation, a reciprocal swimmer can migrate in an arbitrary
direction, which is distinct from the unidirection diffusive
transport of a passive particle near an external boundary.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the governing equation of a two-sphere
swimmer model with an external boundary. Considering a
small amplitude and far-field asymptotic regime, we provide
an explicit form of the stochastic equation of the swimmer
in a noisy environment. In Sec. III, we provide numerical

results to demonstrate that reciprocal deformations lead to
net locomotion. In Sec. IV, we present a theory to predict
nonzero displacements, and in Sec. V, we apply this theory
to understand the symmetric properties of the shape gait and
its impact on the net velocity and diffusion of the swimmer.
Concluding remarks are provided in Sec. VI.

II. MODEL MICROSWIMMERS IN A NOISY
AND CONFINED DOMAIN

A. Equations of motion for a two-sphere swimmer

In this section, we introduce the equations of motion for
a two-sphere swimmer under geometrical confinement. For
simplicity, we assume that the swimmer’s position is restricted
to one dimension and neglect rotational motion.

The two-sphere swimmer comprises two spheres of radius
a connected through a rod whose length is controlled as a
function of time. Let x1 and x2 > x1 be the center positions
of the spheres. We define the swimmer position by X = (x1 +
x2)/2. Thus, the relative distance between the spheres, l =
x2 − x1, represents the swimmer configuration. Subsequently,
we calculate the swimmer velocity U = dX/dt for a given
deformation l (t ) (Fig. 1). The function l (t ) designates the
shape gait, and we consider a time-periodic deformation with
a period T .

We assume that the surrounding fluid obeys the Stokes
equation; that is, for the velocity field u and pressure p,

∇p = μ∇2u, (1)

∇ · u = 0, (2)

where constant μ represents the (dynamic) viscosity. Ow-
ing to to the linearity of the Stokes flow, the hydrodynamic
force on the swimmer can be decomposed into drag Fd and
propulsion Fp [25,51,52]. The drag Fd is proportional to the
velocity dX/dt = U (X, l ) and is thus written as Fd = −MdU ,
where Md(X, l ) indicates the drag coefficient and is positive-
definite. Similarly, the propulsion is proportional to the rate of
deformation, Fp = Mp(dl/dt ), with the coefficient Mp(X, l )
being a function of X and l . Because of the negligible inertia
of the swimmer, the total force on the swimmer is balanced;
therefore, we can derive the one-dimensional equations of the
swimmer without noise via [51]

U (X, l ) = M(X, l )
dl

dt
, (3)

where the function M(X, l ) encodes hydrodynamic inter-
actions, which are only determined by the instantaneous
configuration of the swimmer and the geometry of the
surrounding objects. Notably, Eq. (3) holds for a general re-
ciprocal swimmer moving in one direction once the function
l (t ) reads any function to specify its shape gait. Moreover,
most of the theoretical results presented in the following sec-
tions are not restricted to a specific model. Given a shape gait
l (t ) and an initial position X (0), we can obtain the solution of
Eq. (3) as X = X0(t ), which we hereafter call the zero-noise
solution.

Under a noisy environment, the swimmer position X
becomes stochastic, and we denote its probability distribution
function by P(X, t ). A statistical spatial average of an
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FIG. 1. (a) Schematic of the two-sphere swimmer inside a
sphere. The two spheres with a radius of a are connected through
a rod of length l (t ) = x2 − x1, which designates the shape gait. The
position of the swimmer, denoted by X , moves along the x axis. The
shaded area indicates a material wall. Schematics of the two-sphere
swimmer near (b) a flat wall and (c) spherical obstacle.

arbitrary function A(X ) is defined as 〈A〉t ≡∫
dXA(X )P(X, t ). We then introduce the average position

〈X 〉t and variance 〈X 2〉t , both of which are functions of time.
In addition to drag and propulsion, an external force Fext (t )

acts on the swimmer through the environmental noise. These
are balanced as Fd + Fp + Fext = 0, owing to the negligible
inertia. Next, we introduce the Gaussian white noise ξ (t ) as
an external force from the environment.

Owing to the position-dependent drag coefficient M(X, l ),
the equations of motions generally contain a multiplicative
noise term [53], resulting in a position-dependent diffu-
sion coefficient. Such a stochastic differential equation is
analyzed as a Stratonovich type, producing an additional
virtual-background flow term. This effective drift leads to
nonzero net displacement for a reciprocal swimmer, even with
noise.

To simplify our analysis, we consider an asymptotic regime
of a � l � LW , where LW is the distance between the swim-
mer and wall boundary. Notably, the position dependence of
the diffusion constant is negligible, as detailed and discussed
in the Appendix. Thus, our governing equation of a swimmer
with environmental noise is written as

dX

dt
= M(X, l )

dl

dt
+

√
D ξ (t ), (4)

and the random variable ξ (t ) represents the zero-mean normal
white Gaussian noise, where 〈ξ (t )〉 = 0 and 〈ξ (t1)ξ (t2)〉 =
δ(t1 − t2). Here, δ(t ) is the Dirac delta function and the con-
stant D denotes the diffusion coefficient, representing the
noise strength.

From thermodynamics constraints, the diffusion constant
D should relate to the drag coefficient γ through the
fluctuation-dissipation theorem, an example of which is the
Einstein relation D = 2kB�γ −1 for a thermal noise of temper-
ature � and Boltzmann constant kB. Notably, the prefactor of
2 in the Einstein relation reflects our definition of the diffusion
constant in Eq. (4). We can estimate a typical value of D
for a micron-scale colloid in water at room temperature as
DT/a2 ≈ 0.5, where T is the time period of the deformation.
We use � = 300 K, a = 1 µm, and T = 1 s.

The stochastic equations of motion (4) are equivalent to
the following Fokker–Planck equation for the probabilistic
distribution P(X, t ):

∂

∂t
P = − ∂

∂X

(
M(X, l )

dl

dt
P

)
+ D

2

∂2

∂X 2
P. (5)

By definition, the average over white Gaussian noise for
the stochastic Langevin equation is equivalent to the aver-
age for the Fokker-Planck equation with respect to P. In
the subsequent sections, we numerically solve Eq. (5) using
a finite-volume method with second-order spatial accuracy
and the fourth Runge–Kutta method with space and time
discretizations of 0.01a and 10−5T , respectively. We impose
no-flux boundary conditions at the spatial boundary, which is
taken at an adequate distance from the swimmer. The initial
condition is set to be a Gaussian distribution; that is, P(X ) ∝
exp(−(X − X (0))2/σ 2

0 ), with the parameter σ0 being taken as
sufficiently small.

We now discuss that the averaged position is generally
different from the position in the deterministic case [i.e.,
〈X 〉t �= X0(t )]. By taking an ensemble average in Eq. (3), we
obtain

〈U 〉t = 〈M(X, l )〉t
dl

dt
. (6)

Hence, the equality 〈X 〉t = X0(t ) holds only if the relation
〈M(X, l )〉 = M(〈X 〉, l ) is satisfied at an arbitrary time t . This,
however, does not generally hold for M(X ). In fact, using
Jensen’s inequality for a lower-convex function M(X ), such as
M = X 2, we have 〈M(X, l )〉 � M(〈X 〉, l ). The equality only
holds when M is linear or a constant in X , and the leading-
order effects of the convexity should therefore be captured by
the second spatial derivative of M. Such spatial dependence
of M(X ) is possible when the system does not exhibit transla-
tional symmetry, and external boundaries generally break this
symmetry, implying that that the scallop theorem is violated
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in a statistical sense under a noisy and confined environment
regardless of the details of the function of M.

Nonetheless, these simple arguments only consider the in-
stantaneous velocity and do not exclude the possibility that
the averaged net displacement 〈X 〉T cancels out after one de-
formation cycle T , while the zero-noise solution X0(T ) must
vanish owing to the scallop theorem. We therefore assume
particular geometries for the external boundaries to further
quantify the net displacement under thermal environmental
noise.

B. Swimmer–wall hydrodynamic interactions

Henceforth, we focus on the two-sphere swimmer inside a
spherical container and with a spherical obstacle or flat wall,
where the sphere center and wall are located at x = 0 and
position X is assumed to be positive without loss of generality
(Fig. 1). With these simple geometries, we derive the leading-
order dependence of M(X, l ) on X .

First, we estimate the force Fα acting on the sphere α (α ∈
{1, 2}) from the surrounding fluid using the Faxén law. With
our asymptotic regime of a/l � 1, by dropping the O((a/l )2)
correction, we can write the force using the local Stokes drag
with a correction term as

Fα = −γ

(
dxα

dt
− U I

α

)
, (7)

where γ = 6πμa is the Stokes drag coefficient and U I
α is the

perturbed fluid velocity at position xα owing to the motion of
the other sphere and the presence of the external boundary.

In this asymptotic regime, where the effects of the sphere
size are negligible, the perturbed velocity U I

α can be written
using Green’s function of the Stokes flow with the boundary
geometry, as follows:

U I
α = −G̃αβFβ, (8)

where G̃αβ is the summation of the Stokeslet along the x
axis and corrections due to the presence of a wall boundary,
GW(xα, xβ ). Let us introduce the Stokeslet in three dimen-
sions as Gi j (x, 0) = (8πμ)−1(r−1 + xix jr−3) for a point x
in three dimensions, where the indices i and j denote the
spatial coordinates, i, j ∈ {1, 2, 3}, and r = |x|. Now all the
dynamics are along the x axis. By substituting xα = (xα, 0, 0)
into the Stokeslet, we introduce sphere–sphere interactions
using GS(xα, xβ ) = G11(xα, xβ ) for α �= β and zero otherwise,
namely,

GS(xα, xβ ) = 1

4πμ|xα − xβ | for α �= β (9)

and is zero when α = β as the self-induced velocity should be
removed. Therefore, the Green’s function in Eq. (8) is written
as

G̃αβ = GS(xα, xβ ) + GW(xα, xβ ). (10)

Notably, G̃αβ = G̃βα and is valid for any boundary shape [54].
From Eqs. (7) and (8), we can derive an equation to determine
the force acting on each sphere as follows:

Fα = −
(

I

γ
+ G̃

)−1

αβ

dxβ

dt
, (11)

where I is the identity matrix. Generally, the sum of the forces
acting on the microswimmer, F1 + F2, may be decomposed
into the drag force Fd, which is proportional to U and Fp,
which is proportional to dl/dt , as

Fd = −1

det(γ −1I + G̃)
(2γ −1 + G̃11 + G̃22 − G̃12 − G̃21)

dX

dt
,

(12)

Fp = −1

det(γ −1I + G̃)
(G̃11 − G̃22)

dl

dt
. (13)

In the asymptotic regime of a � l , the leading-order expres-
sion is det(γ −1I + G̃) = γ −2(1 + O(a/l )), which yields the
following asymptotic form:

Fd 
 −2γ
dX

dt
, (14)

Fp 
 −γ 2(G̃11 − G̃22
)dl

dt
, (15)

where the neglected error terms are of the order of O(a/l ).
The prefactor of 2 in Eq. (14) reflects the two spheres. The
propulsion force represented in Eq. (15) includes the wall-
induced correction, and we also confirm that no motion is
generated without an external boundary because both G̃11 and
G̃22 include only wall-induced flows.

Therefore, in the equations of motion [Eq. (4)], M is writ-
ten in the following form:

M(X, l )

= γ

2

[
GW

(
X + l

2
, X + l

2

)
− GW

(
X − l

2
, X − l

2

)]
.

(16)

We then proceed to derive expressions for the M(X, l )
in Eq. (16) for a two-sphere swimmer in three geometries
(Fig. 1): Mint for a swimmer inside a spherical container of
radius R, Mflat for the presence of an infinite flat wall, and
Mext for the presence of an external spherical obstacle with a
radius R.

The form of the boundary-induced Green’s function
GW (X, X ) is explicitly solved using the method of images and
obtained as the superpositions of a Stokeslet and its multipoles
located in the region outside the fluid domain [55,56]. The
expression is, therefore, written as

GW(X, X ) = α(X )GS(X − XIM(X )), (17)

with the strength and position of the mirror image represented
by α and XIM, respectively, both of which are functions of
the position X (> 0). Next, we derive the leading-order con-
tribution of Green’s function GW(X, X ) by assuming that the
swimmer is far enough away from the external boundaries.

When a flat wall is located at x = 0 [Fig. 1(b)], by eval-
uating the weights of the mirror singularities to impose the
no-slip condition at the wall boundary, we obtain α = −1 and
XIM = −X . Thus, we have the leading-order contribution

GW(X, X ) = − 1

4πμ|X − XIM| = − 1

8πμX
, (18)

and by substituting Eq. (18) into Eq. (16), we obtain

Mflat = −γ

16πμ

l

X 2
. (19)
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When the swimmer is situated exterior or interior to a
sphere [Figs. 1(a) and 1c)], a similar analysis of the weights of
the mirror singularities provides the parameters α = −3R/2X
and XIM = R2/X . Thus, we obtain a similar asymptotic form
of GW,

GW(X, X ) = ±3R

8πμ(X 2 − R2)
, (20)

where the upper and lower signs correspond to the swimmer
inside the spherical container and around the spherical obsta-
cle, respectively. Therefore, the drag coefficient is given at the
leading order of the asymptotic regime X � R by

Mint = −9aXl

4R3

(
1 + 2

X 2

R2

)
(21)

for the swimmer in the spherical container (X < R) [Fig. 1(a)]
by neglecting the O((X/R)4) term. With an external sphere
(X > R) [Fig. 1(c)], the drag coefficient is similarly evaluated
for X � R as follows:

Mext = 9aRl

4X 3
. (22)

Owing to hydrodynamic interactions, it is generally not
tractable to provide an analytic expression for the function
M(X, l ) when the swimmer is situated in the vicinity of ex-
ternal flat no-slip boundaries. To capture the general tendency
of the dynamics, we expand the function M(X, l ) in the Taylor
series of X , where X represents the distance from the bound-
ary edge and we assume nonsingular behavior at the boundary.
As the convexity of M is crucial in nonzero displacements,
the simplest model of M should be a quadratic function with
respect to X . Thus, we introduce a model function,

Mquad = λ−3lX 2, (23)

where λ represents the length scale of the variation of M.
In the following sections, for computational reasons we

focus on the dynamics using Mint and Mquad, which are both
nonsingular in X .

III. RECIPROCAL SWIMMING IN A NOISY
ENVIRONMENT

We now proceed to examine the mechanism through which
the reciprocal swimmer generates net locomotion under geo-
metrical confinement in a noisy environment. The arguments
presented in this section do not depend on the specific form of
M(X, l ), as discussed in Sec. II A; thus, they hold for a general
reciprocal swimmer.

In Fig. 2, we present a numerical demonstration of the
paths of a reciprocal swimmer following Eq. (4). Figure 2
presents the individual and averaged dynamics of the swim-
mer inside a sphere. We employed the Euler-Maruyama
method [57,58] for the time integration over t ∈ [0, T ] as well
as the drag coefficient of Eq. (21). The shape gait is given by
a symmetric form as follows:

l1(t ) = l0 + ε1 exp

[
−

(
t

T
− 0.5

)2/
s2

]
, (24)

where parameter s is fixed as s = 0.2.

FIG. 2. Sample paths of the position of a reciprocal swimmer in a
noisy environment and their statistical averages for (a) the swimmer
in a spherical container Min and (b) the model of Mquad = λ−3lX 2.
During one reciprocal deformation, as illustrated by the schematics,
the arm is shortened in the first half and elongated in the second half.
(a) With a symmetric reciprocal deformation cycle l1(t ) (t ∈ [0, 1]),
the statistical average 〈X 〉t (shown by the thick line) deviates from
the zero-noise solution X0 (shown as a dashed line) in the last part
of the deformation cycle, although these two almost overlap. Inset:
Deviation from the zero-noise solution 〈Y 〉t = 〈X 〉t − X0(t ) is shown
by black dashed line. The averaged displacement 〈Y 〉t=T is clearly
generated after one period of deformation at t/T = 1. The ensemble
average of 108 samples of the Langevin simulations is plotted by
the green line, although this almost overlaps with the plot of Y (t ).
(b) Similar demonstrations of the deviation using a model of Mquad to
indicate the behaviors with high clarity. The function of l1(t ) and the
parameters used in the two panels are given in the main text.

In Fig. 2(a), we plot the results for a swimmer in a spher-
ical container using the expression Min (21). The parameters
are set as R/a = 10, X (0)/a = 5, DT/a2 = 1, l0/a = 2, and
ε1/a = −1. The rod between the spheres is shortened and
subsequently elongated to recover the initial length at time
t = T , as indicated in the figure. Each realization of the
stochastic dynamics is shown using differently colored thin
lines. The statistical average 〈X 〉t is computed based on the
Fokker-Planck Eq. (5) and shown as a thick line. Furthermore,
we plotted the zero-noise solution as a dashed line and ob-
served that the statistical average deviates from the zero-noise
solution, although the two lines appear to overlap. To show the
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difference, in the inset, we plotted the deviation from the zero-
noise defined as Y (t ) ≡ 〈X 〉t − X0(t ). This confirmed that the
statistical average deviated from the zero-noise solution X0(t )
in the last part of the deformation, while the zero-noise solu-
tion X0(t ) returned to the initial position after the deformation
cycle. The displacement by the reciprocal swimmer after one
beat cycle is computed as 〈X 〉t=1 ≈ 5.0 × 10−4a [inset of
Fig. 2(a)]. In the inset, we also plotted the ensemble average of
the 108 samples from the Langevin simulation of Eq. (4). The
two plots almost overlap, validating the numerical simulation
of the Fokker-Planck equation with the space discretization
set as 0.01a. We confirmed by doubling spatial resolution that
the absolute numerical error is bounded by 10−6a and that the
numerical error at time t/T = 1 is bounded 10−9a, which is
less than 0.001% of 5 × 10−4a.

To highlight the nonzero displacement, we also consider
the example model of Mquad = λ−3lX 2, which was introduced
in Sec. II B. The simulation results are presented in Fig. 2(b)
for the same stroke of l1(t ), with the parameters being set
as X (0)/λ = 10, DT/λ2 = 10, l0/λ = 0.5, and ε1/λ = −0.1.
As is the case for a swimmer inside a spherical container, the
spatial dependence of the drag coefficient produces a nonzero
averaged displacement for a reciprocal swimmer in a noisy
environment.

With regard to the diffusion process of a passive rigid par-
ticle under thermal noise, by dropping the first term in Eq. (5),
we obtain the simple diffusion equation. In the presence of a
wall, the nonpenetrating boundary condition leads to the prob-
abilistic flux moving away from the wall, with its averaged
position evolving in time as O(

√
t ). Notably, this diffusive

displacement is unidirectional. As seen in Fig. 2, when the
swimmer deforms, the statistical average of the displacement
can have a nonzero value. As the swimmer repeats its defor-
mation, the net displacement is expected to be proportional
to time. Thus, it scales as 〈X 〉t = O(t ), which becomes much
larger than the passive diffusion of O(

√
t ) after a longer time.

This physically intuitive argument is further numerically and
theoretically demonstrated in the next section.

IV. SMALL-DEVIATION THEORY

To derive a formula for calculating the deviation from the
zero-noise solution, we introduce an imaginary probe force fp

to the system as an arbitrarily small external force instead of
the environmental noise. We focus on the short-time behav-
ior, in which the deviation from the zero-noise solution Y =
X (t ) − X0(t ) is sufficiently small to expand the equations of
motion Eq. (4). Thus, we obtain

dY

dt
= M ′(X0(t ), l (t ))

dl

dt
Y + 1

2
M ′′(X0(t ), l (t ))

dl

dt
Y 2 + fp(t ),

(25)

with O(Y 3) errors, where the primes denote the derivative with
respect to X . We may readily solve Eq. (25) using a standard
method for a linear ordinary differential equation as follows:

Y (t ) =
∫ t

0
du exp(L(t, u))

×
(

fp(u) + 1

2
M ′′(X0(u), l (u))

dl

du
Y (u)2

)
, (26)

where the kernel expL corresponds to an impulse response.
The two-time function L(t, u) is explicitly given as follows:

L(t, u) =
∫ t

u
dsM ′(X0(s), l (s))

dl

ds
, (27)

which we now call a response generator.
Applying white Gaussian noise as the probe force such

that fp(t ) = √
Dξ (t ) and taking the statistical average, we first

obtain the variance up to the second order of Y , as follows:

〈Y 〉t = 1

2

∫ t

0
du exp(L(t, u))M ′′(X0(u), l (u))

dl

du
〈Y 2〉u. (28)

Thereafter, we derive the expression for 〈Y 2〉t by substituting
the form of the probe force fp(t ) = √

Dξ (t ) into Y 2(t ) after
squaring Eq. (26). Thus, the statistical average becomes

〈Y 2〉t =
∫ t

0
du

∫ t

0
ds exp(L(t, u) + L(t, s))D〈ξ (u)ξ (s)〉

(29)

by neglecting the O(Y 4) term and dropping other terms using
〈ξ (u)〉 = 0. Based upon the relation 〈ξ (u)ξ (s)〉 = δ(u − s),
we further simplify the equation to obtain

〈Y 2〉t = D
∫ t

0
du exp(2L(t, u)). (30)

Equations (28) and (30) provide a closed form, thereby
enabling us to calculate the statistical averages when the
swimming gait l̇ and its drag coefficient M(X, l ) are given.
From Eq. (28), the zero net displacements for the deterministic
swimmer (D = 0) and rigid swimmer without deformation
(dl/dt = 0) can be easily reproduced.

Let us further assume that the rod length l (t ) is a periodic
function with a period T . Thus, the integrands in Eqs. (28)
and (30) as well as the response generator L are also periodic
functions with the same period. Therefore, we can introduce
the net swimming velocity and net diffusion coefficient using
the time-average of 〈Y 〉t and 〈Y 2〉t over the deformation cycle.

Here, we define the net swimming velocity as

Unet = 〈Y 〉nT

nT
, (31)

with a positive integer n. This velocity is equivalent to the net
swimming velocity because the zero-noise solution vanishes
as X0 = 0 at time t = nT . Similarly, we define the net diffu-
sion coefficient as

Dnet = 〈Y 2〉nT

nT
, (32)

which is explicitly obtained from Eq. (30) as

Dnet = D

T

∫ T

0
dt exp(−2L(t, 0)). (33)

In the subsequent sections, we employ Eqs. (28) and (30)
to examine the statistical properties of the swimmer.
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FIG. 3. Net displacement at every deformation period (t/T =
0, 1, · · · ) for (a) a reciprocal swimmer in a spherical container with
drag coefficient Mint given by Eq. (21) and (b) an example model
with Mquad given by Eq. (23). We employed the shape gait of l1(t )
[Eq. (24)] in both cases. (a) The circles (◦) indicate the numerical
results, and the plus symbols (+) indicate the theoretical predictions
obtained using the small-deviation theory [Eq. (28)]. The results
with ε1 > 0 and ε1 < 0 are represented by the green (increasing)
and blue (decreasing) points, respectively. The numerical simulation
and prediction based on the small-deviation theory are in excellent
agreement. (b) Similar plots for the net displacement with Mquad.

V. NET SWIMMING VELOCITY AND DIFFUSION
OF THE SWIMMER

A. Net swimming velocity

Next, we analyze the ensemble-averaged swimming veloc-
ity and variance using the formula derived in the previous
section.

We now analyze the net velocity for particular swimmer
models from the formulas [Eqs. (28) and (30)] for compar-
ison with the solution of the Fokker-Planck equation. As in
Fig. 2, we employ the symmetric deformation l (t ) = l1(t ) for
t ∈ [0, T ] and recursively repeat this deformation at a later
time using l (t + T ) = l (t ). Other parameters of the shape gait
were the same as those shown in Fig. 2, except the sign of
ε1 and the value of the diffusion constant, which was set to
DT/a2 = 10.

In Fig. 3, we plot the averaged deviation from the zero-
noise solution or, equivalently, the net displacement 〈Y 〉 at
every period of deformation. Figure 3(a) presents the analysis
results for Mint. The green and blue plots show the results

with ε1/a = 1 and ε1/a = −1, respectively. The results from
the formulas [Eqs. (28) and (30)] plotted using the plus sym-
bol (+) are in excellent agreement with the solution to the
Fokker–Planck equation plotted by circles (◦). The displace-
ment is linear in time both in the theoretical prediction and in
the direct simulation of the Fokker–Planck equation.

Here, we again emphasize that the linear increase of the
averaged displacement dominates over the passive diffusion
of O(

√
t ) at large times. Further, upon changing the shape gait

by ε1 → −ε1, the swimmer can reverse its direction, being
distinct from the unidirectional diffusion of passive particles
in the presence of an external boundary.

To investigate the limit of our theory based on the small-
deviation theory, we again examine the model of Mquad, and
the same parameter set is used as shown in Fig. 2(b). As in
the study using Min, we found a linear increase in the net
displacement in time, a reversal of the moving direction, and
a flip of the shape gait. The deviation from the zero-noise
solution is relatively large in this case, and the assumption of
a small deviation is expected to be violated at an early time.
In Fig. 3(b), we plotted the net displacement at every defor-
mation period. The statistical average obtained through direct
numerical simulation deviates from that obtained through
theoretical prediction, which assumed a small deviation and
neglected O(Y 4) terms.

B. Net swimming velocity and shape gait

Next, we examine the effects of the shape gait on lo-
comotion by focusing on the short-time regime, where the
small-deviation theory is valid. Notably, the function M
was proportional to l in all four examples of Mflat, Mext,
Mint, and Mquad; therefore, we decomposed M into the
form M(X (t ), l (t )) = N (X (t ))l (t ). Further, in the short-time
regime under consideration, the function N is represented by
the value at the initial time and we can approximate its second
spatial derivative as N ′′(X (t )) = N ′′(X (0)) + O(N ′′′(X (t ) −
X (0))), leading to the following relation:

M ′′ dl

dt
= κ

2

dl2

dt
+ O(N ′′′(X (t ) − X (0))), (34)

where κ = N ′′(0) is a constant determined only by the ini-
tial position. Subsequently, we plugged these equations into
Eqs. (28) and (30). The integrands are no longer dependent on
time, so we obtain the following:

〈Y 〉t = Dtκ

2

(
(l (t )2 − 1

t

∫ t

0
dt ′l (t ′)2

)
. (35)

Next, we introduce a T -periodic function η(t ) such that l (t ) =
l0 + η(t ) and η(T ) = η(0) = 0. By substituting this form into
Eq. (35), the net velocity at t = nT is given by

Unet = −Dκ

2

(
2l0
T

∫ T

0
du Sym[η(u)] + 1

T

∫ T

0
duη2(u)

)
,

(36)

where the time-reversal part of the deformation is defined by
Sym[η(t )] ≡ (η(t ) + η(T − t ))/2. From Eq. (36), at the first
order of η, only the time-reversal term contributes to the net
velocity. Similarly, we can define the skew-symmetric part of
the deformation as Skew[η] ≡ (η(t ) − η(T − t ))/2, and the
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skew-symmetric part of the deformation rate is computed as

Skew

[
dl

dt
(t )

]
= 1

2

(
dl

dt
(t ) − dl

dt
(T − t )

)
= d

dt
Sym[η(t )].

(37)
To examine the effects of the shape gait and its symme-

try, we consider two examples of the deformation function
with different symmetries. The first example is the shape
gait given by l (t ) = l1(t ), which was already introduced as
Eq. (24) in Sec. II, and exhibits time-reversal symmetry as
l1(t ) = l1(T − t ). As a second example, we consider a skew-
symmetric oscillatory deformation given by

l2(t ) = l0 + ε2 sin(ωt ), (38)

where ω = 2π/T is the angular frequency. This function sat-
isfies the relation l2(t ) − l0 = −(l2(T − t ) − l0).

In these two cases, by substituting the shape gait functions
into Eq. (36), we obtain exact solutions that estimate the
net displacement during one period of deformation. For the
symmetric deformation l1(t ), the net velocity is expressed as

U (1)
net = −Dκ

√
π s

(
2l0ε1 + 1√

2
ε2

1

)
. (39)

Conversely, the expression for the skew-symmetric deforma-
tion l2(t ) possesses a qualitatively different form, as follows:

U (2)
net = 1

4 Dκε2
2 , (40)

which is independent of ω. The symmetric deformation yields
contributions of the order of ε1, whereas the skew-symmetric
deformation only generates net velocities of the order of
O(ε2

2 ).
From Eq. (39), we again confirm that the deformation or

the nonzero ε1 is necessary for generating the net displace-
ment, which is proportional to time. Furthermore, if |ε1/l0| <

2
√

2, by changing the shape gait with ε1 → −ε1, we can
invert the swimming direction.

In Fig. 4, we plot the numerical result of the net displace-
ment via the Fokker-Planck and Langevin equations, along
with the theoretical results for Mint. We used the parame-
ters (X0, l0, ε1, ε2) = (5, 2, 1, 1)a with the diffusion constant
DT/a2 = 10 to integrate over time t ∈ [0, T ]. For both shape
gaits, the analytical solutions are in excellent agreement with
the numerical solutions, which, in turn, validates the approxi-
mations for deriving Eq. (35).

C. Net diffusion and shape gait

We further investigate the relations between the shape gait
and the emerging net velocity and diffusion by analyzing the
impulse response function exp(L(t1, t2)). From the definition
presented in Eq. (26), this function characterizes the effect of
noise at time t2 on the locomotion at time t1 and is therefore
interpreted as sensitivity to environmental noise. Furthermore,
as expressed in Eq. (30), the impulse function affects 〈Y 2〉.

To visually understand this effect, we first decompose
the response generator into L(t1, t2) = L(t1, 0) − L(t2, 0).
A schematic of this function L(t, 0) is shown in Fig. 5.
Therefore, the response generator L(t1, t2) is regarded as the
difference between the two points on the graph of L(t, 0).

FIG. 4. Net displacement from the zero-noise solution for a
swimmer in a spherical container with two shape gaits, l (t ) = l1(t )
(blue) and l (t ) = l2(t ) (green). The solid lines indicate the theoretical
prediction given by Eq. (35) and the dotted lines indicate a〈Y 〉t/D,
which is the numerical solution to the Fokker-Planck equation. The
ensemble average of stochastic simulation of the Langevin equa-
tion is plotted by the dashed line for each shape gait, although the
plots almost overlap with the Fokker–Planck solutions. The parame-
ters are set as (X0, l0, ε1, ε2) = (5, 2, 1, 1)a and DT/a2 = 10.

To gain an intuitive understanding, we consider a poly-
nomial function M(X, l ), where M(X, l ) = λ−(m+1)lX m and
m is an integer m �= 1 that includes Mflat, Mext, and Mquad as
m = −2,−3, and 2, respectively.

Notably, the expressions derived in Sec. II A are written as
a sum of polynomial functions. With this simplified form, we
can exactly solve the response generator L(t, 0). Expectedly,
substituting the form of M and integrating (3) lead to the
expression of the zero-noise solution, as follows:

X0(t ) =
[

(1 − m)

2
λ−(m+1)l2(t ) + c

]1/(1−m)

, (41)

where c is the constant of the integral given by c =
X (0)(1−m) − (1 − m)Kl2(0)/2. Thereafter, using this expres-
sion to integrate Eq. (27), we obtain the response generator in

FIG. 5. Illustration of the value of the response generator
L(t1, t2) using a graph of L(t, 0).
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FIG. 6. (a) Plots of L(t, 0) obtained from the exact solution
Eq. (42) with Mquad. The shape gait is given by l1(t ), and the param-
eters are the same as shown in Fig. 3(b). The green and blue plots
correspond to cases with ε1 = 0.1λ and ε1 = −0.1λ, respectively.
(b) Variance 〈X 2〉t for the same swimming gaits. The solid lines
indicate the results from direct computation and the dashed lines
show the theoretical predictions obtained using Eq. (30). We compare
these lines with the normal diffusion Dt/λ2 plotted by the black-
dotted line. For both signs of ε1, the shape change can contribute to
enhancing and suppressing net diffusion.

the following form:

L(t, 0) = m log

(
X0(t )

X0(0)

)
. (42)

Notably, when m > 1, the shape gait l (t ) cannot be arbi-
trarily taken. As the first term in the bracket of Eq. (41) is
negative, the second term c needs to be positive, leading to a
diverging X0 parameter at some finite values of l2(t ).

The exact solution is plotted in Fig. 6(a) for m = 2 or
Mquad, with the initial position given as X0(0) = 10λ and a
shape gait of l1(t ) in Eq. (24). We employ the same parameter
set as in Figs. 2(b) and 3(b), where l0 = 0.5λ and ε1 = ±0.1λ.

When m = 2, as in Mquad, the exact solutions Eqs. (41) and
(42) are simply written as

L(t, 0) = −2 log

(
1 − X0(0)

2λ3
(l2(t ) − l2(0))

)
. (43)

Thus, the response generator becomes positive when the
swimmer is elongated from the initial configuration (ε1 > 0)

and negative when the swimmer is shortened from the initial
configuration (ε1 < 0). After one period of deformation at t =
T , the response generator satisfies L(T, 0) = L(0, 0) = 0.

To examine the impact of the swimmer’s shape gait on
the variance 〈Y 2〉t , we numerically evaluated this function
by a direct numerical simulation of the Fokker–Planck equa-
tion and the small-deviation theory. The results are presented
in Fig. 6(b), with the normal diffusion Dt/λ2 plotted as the
black-dotted line. As shown in the figure, the numerical re-
sults and theoretical predictions are in good agreement. In
particular, the shape deformation contributes to enhancing
or suppressing the net diffusion depending on the sign of
L(t1, t2), as expressed in Eq. (30). The response generator
does not change its sign for t < 0.5T because the function
L(t, 0) is monotonic. The value of the variance 〈Y 2〉t therefore
deviates from the normal diffusion with enhancement (ε1 > 0)
or suppression (ε1 < 0) [Fig. 6(b)]. However, later during the
deformation, the sign and impact of the impulse response
on the variance 〈Y 2〉t change and subsequently reverse (i.e.,
suppression when ε1 > 0 or enhancement when ε1 < 0), as
evidenced in the figure.

The fluctuating diffusion during one beat cycle holds for
a general swimmer with an arbitrary M(l, t ), according to
the small-deviation theory. Indeed, by integrating Eq. (27)
from l (t = 0) to l (t = T ) after a change of variable, we have
L(T, 0) = L(0, 0) = 0. Thus, the function L(t, 0) exhibits at
least one extremum in t ∈ (0, T ) if the swimmer’s shape is
deformed. Therefore, for a general deforming object under a
noisy environment, we conclude that there exist time periods
where the net diffusion exceeds the normal diffusion D and
where the net diffusion is suppressed more than the normal
diffusion.

VI. CONCLUDING REMARKS

In this paper, we theoretically investigated the dynamics of
a reciprocal microswimmer in a noisy environment. Focusing
on a microswimmer moving in one direction, we showed that
the statistical average of its displacement 〈X 〉t can produce
net locomotion if the swimmer’s dynamics are confined by
external boundaries. As the scallop theorem states, such a
reciprocal swimmer returns to its original position after one
beat cycle in the absence of environmental noise. Its dynamics
were introduced as the zero-noise solution and denoted as
X0(t ). The mathematical structure behind the net displacement
lies in the convexity of M(X, l ). Hence, the scallop theorem is
expected to be violated in the statistical sense in more general
situations than our assumption of one-dimensional dynamics.
The small-deviation theory for multiple dimensions, however,
requires a noncommutative integral for an impulse response,
which yields theoretical challenges. Therefore, the details of
these extensions will be reported elsewhere in the future.

For a quantitative analysis of net locomotion in a statistical
sense based on an impulse response function, we established
a theory to analyze the deviation from the zero-noise solu-
tion, given by 〈Y 〉t = 〈X 〉t − X0(t ). Focusing on a two-sphere
model swimmer located in a spherical container, we nu-
merically and theoretically demonstrated that the reciprocal
swimmer can result in net displacement in a statistical sense;
the displacement linearly increases as time progresses. This
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dominates the unidirectional diffusion of passive particles,
with its net displacement scaling as O(

√
t ) after a long time.

Reciprocal swimming should be enhanced near a wall, which
can be estimated as Mquad. This provides a net velocity of
Unet ≈ 0.47 µm/s, where we use the physical units of λ =
a = 1 µm, � = 300 K, and T = 1s. We may also estimate the
characteristic timescale t∗ at which the active locomotion is
of the same order in magnitude as the passive diffusion. With
the same parameter sets, from Unett∗ = √

Dt∗, we obtain t∗ ≈
2.2s. Further, we demonstrate that by controlling its shape
gait, the swimmer can migrate in both directions, which is
remarkably different from the unidirectional diffusive motion
of passive particles.

Although our theory is based on a small deviation over a
short timescale, it is sufficient to analyze the key mathemat-
ical structures of the shape gait that produce net statistical
locomotion. Based on this theory, we found that a time-
reversal deformation produces the net swimming velocity at
the leading order, whereas the skew-symmetric part of the
deformation only contributes to the second order of the defor-
mation amplitude. Further, we found that the shape gait affects
the net diffusion constant through the behavior of the impulse
response function and demonstrated that net diffusion is both
enhanced and suppressed during one beat cycle.

The perturbation method used in this paper is similar to
that used for nonlinear phenomena with very high dimensions,
such as high-Reynolds-number turbulence. The high-order
moments of the probability distribution function are gener-
ally not negligible in these systems. Thus, further theoretical
treatments are required to include these moments, such as
direct interaction approximation in turbulent flows [59–61]
and the renormalization group theory in quantum field theory.
In contrast, the perturbation analysis around a given nonlinear
solution, as used in this paper, does not require high-order
moments, for which our small-deviation theory was matched
with the full dynamics [62].

Another remark on the small-deviation theory is that it
is limited to short-time behavior (i.e., when the deviation
from the zero-noise solution is sufficiently small). Long-time
asymptotic behavior is also important because it can be used
to predict the accumulation or depletion of swimmers around
the external boundaries, such as the surface accumulation of
microswimmers [63] as well as the fluctuation of polymers
and enzymes inside biological and artificial cell membranes
[64]. Numerical works with such a singular function, however,
require careful treatment to satisfy the no-penetration condi-
tion at the boundary. Further, precise cell–wall hydrodynamic
interactions frequently incur considerable numerical cost be-
cause of the fine numerical meshes [65].

In conclusion, we theoretically and numerically studied
the fundamental features of the statistical properties of a
microscopic object with reciprocal deformation in a fluctu-
ating and geometrically confined environment. We focused
on the short-time, small-deviation situation to elucidate the
nontrivial, deformation-driven net locomotion of a reciprocal
swimmer. Our findings on the relation between the symmetry
of the shape gait and the net locomotion and the theoretical
formulation obtained based on the impulse response provide
a fundamental basis for environment-coupled statistical loco-
motion. Thus, this paper will be beneficial for understanding

biophysical dynamics in fluctuating environments, designing
artificial microrobots, and conducting laboratory experiments.
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APPENDIX: DERIVATION OF EQ. (4)

In this Appendix, we provide an error estimate to derive
the equation of motion Eq. (4). The balance among the drag
force, propulsion, and external noise force, Fd + Fp + Fext =
0, should be formulated by a stochastic differential equation of
the Stratonovich type, as follows:

C(X, t )dX = A(X, t )dt + B(X, t )dW, (A1)

where C(x, t ) = 2γ and A = Fp from Eqs. (14) and (15); dW
indicates a Wiener process. Thus, the corresponding equa-
tion motion in the sense of Itô is given by(

C + C′

2
dX

)
dX = Adt +

(
B + B′

2
dX

)
dW, (A2)

where the prime denotes a derivative with respect to X . With
Itô’s rules, Eq. (A2) is rewritten in the order of dt as

C(X, t )dX =
(

A + BB′

2
− C′B2

2C2

)
dt + BdW. (A3)

By introducing the diffusion D as D = B2/C2, we arrive at the
equation of motion in the following form:

dX

dt
= Fp

2γ
+

(
1

2γ

d

dX
(γ 2D) −

√
D

dγ

dX

)
+

√
Dξ, (A4)

where ξ is the zero-mean Gaussian noise, which satisfies
〈ξ (t )〉 = 0 and 〈ξ (t1)ξ (t2)〉δ(t1 − t2), as in the main text. The
respective terms on the right-hand side of Eq. (A4) represent
the deterministic swimming, effective drift, and noise-induced
velocities.

Let us rewrite Eq. (A4) as dX/dt = Vs + Vp + Vn and eval-
uate the magnitude of each velocity. We first consider the
ratio of the drift velocity to swimming velocity. With the
expressions of Vd = −Dγ ′

2γ
and Fp = −γ 2(G̃11 − G̃22)(dl/dt )

[Eq. (15)], we estimate the ratio by neglecting prefactors as
follows:

Vd

Vs
∼ Vd

γ 2G̃(dl/dt )
∼ G̃′

G̃

D

(dl/dt )
∼ D

LW (a/T )
, (A5)

where G̃ represents the characteristic size of G̃11 − G̃22. T is
the time of the deformation and LW is the distance between the
swimmer and wall boundary of the geometrical confinement,
as introduced in the main text. Here, we define the char-
acteristic timescale of the (passive) diffusion as τD = a2/D.
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Therefore, the ratio of the two terms is evaluated as

Vd

Vs
∼ T

τD

a

LW
� 1, (A6)

which is asymptotically small.
The ratio of the swimmer and the noise term, in contrast,

is evaluated using the displacement during the time interval
�t ∼ T and spatial interval �l as follows:

Vn

Vs
∼

√
D�t

γ G̃�l
∼

√
D

a

√
�t

γ G̃
∼

√
T√
τD

1

M
. (A7)

Although the magnitude of M depends on the geometrical
confinement, for a swimmer in a spherical container, it can
be estimated from Eq. (21) as M ∼ a2X/L3

W � 1, indicating
that the noise term is dominant.

Notably, Sancho et al. [53] also suggested using the
Stratonovich product for the drag force, as on the left-hand
side of Eq. (A1). However, based on physical reasoning,
they suggested using the Itô product in the stochastic part of
Eq. (A1). Nonetheless, this difference in interpretation only
affects the prefactor of the drift velocity; the estimate argued
in this Appendix remains unchanged.

In summary, in our asymptotic regime, the drift terms are
negligible; thus, we arrive at our equation of motion Eq. (4).
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