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Periodically driven quantum systems can exhibit a plethora of intriguing nonequilibrium phenomena that can
be analyzed using Floquet theory. Naturally, Floquet theory is employed to describe the dynamics of atoms
interacting with intense laser fields. However, this semiclassical analysis cannot account for quantum-optical
phenomena that rely on the quantized nature of light. In this paper, we take a significant step to go beyond
the semiclassical description of atom-photon coupled systems by unifying Floquet theory with quantum optics
using the framework of full-counting statistics. This is achieved by introducing counting fields that keep track
of the photonic dynamics. This formalism, which we dub “photon-resolved Floquet theory” (PRFT), is based
on two-point tomographic measurements, instead of the two-point projective measurements used in standard
full-counting statistics. Strikingly, the PRFT predicts the generation of macroscopic light-matter entanglement
when atoms interact with multimode electromagnetic fields, thereby leading to complete decoherence of the
atomic subsystem in the basis of the Floquet states. This decoherence occurs rapidly in the optical-frequency
regime, but is negligible in the radio-frequency regime. Our results thus pave the way for the design of
efficient quantum memories and quantum operations. Finally, employing the PRFT, we propose a quantum-
communication protocol that can significantly outperform the state-of-art few-photon protocols by two orders of
magnitude or better. The PRFT potentially leads to insights in various Floquet settings including spectroscopy,
thermodynamics, quantum metrology, and quantum simulations.

DOI: 10.1103/PhysRevResearch.6.013116

I. INTRODUCTION

In recent years, periodic driving has emerged as a pow-
erful tool for the coherent control of many-body systems.
This has led to the realization of novel quantum phases of
matter like dynamical topological states [1–16] and discrete
time crystals [17–32] as well as breakthroughs in applications
like spectroscopy [33–36], metrology [37–39], and quantum
simulation [40–51]. These nonequilibrium quantum systems
are generally analyzed using Floquet theory—a method first
developed by Jon Shirley in 1965 [52]. Interestingly, Flo-
quet theory is also employed to investigate the dynamics of
quantum systems interacting with a single-frequency quantum
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field. A particularly striking example of this is the case of
atoms interacting with an intense laser field [53,54]. Despite
decades of extensive progress in quantum optics, it remains
extremely challenging to employ a completely quantum me-
chanical treatment to this situation, due to the large number
of photons involved [55]. Often, a semiclassical approach
is used instead, where the photon fields are assumed to be
high-energy coherent states, and their dynamics is neglected.
This leads to an effective Floquet description of the atomic
dynamics, which can be employed to engineer materials with
novel emergent properties [56–65]. Unfortunately, while this
semiclassical treatment is very powerful in modeling the mat-
ter subsystem, it fails to describe the photonic driving field.

In this paper, we take a significant step beyond the semi-
classical Floquet theoretic description of light-matter inter-
actions by developing a framework dubbed “photon-resolved
Floquet theory” (PRFT). The PRFT bridges Floquet theory
and quantum optics by introducing full-counting statistics
(FCS) of photons in the semiclassical description of the quan-
tum system. Originally developed in the context of quantum
optics [66–68], FCS is a powerful method that has been em-
ployed to study mesoscopic transport [69–76], quantum dots
[77–81], spin chains [82,83], spontaneous photon emission
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FIG. 1. Schematic illustration of the fundamental difference between FCS and the PRFT. (a) The standard FCS extracts the statistical
information based on two-point projective measurements at times t0 and t1. The counting statistics in the PRFT relies on two-point tomographic
measurements of two independent batches. One of which is used to determine the photon statistics pn(t ) at time t0, and the other determines the
statistics of the time-evolved state t1 without being measured at t0. (b) Illustration of the light-matter entanglement in a two-mode Rabi model.
As explained in details in Secs. II F and III B, the two-level system controls the photon transport between the two photonic modes, which leads
to entanglement in the Floquet basis. Consequently, this entanglement gives rise to decoherence, which is incorrectly described by the standard
Floquet theory, but correctly predicted by the PRFT. (c) Overview of some important implications and applications of the PRFT.

[84–87], thermodynamics [88,89], and the entanglement en-
tropy of noninteracting fermions [90–92]. However, we must
exercise caution in applying the standard FCS framework
to coherently laser-driven systems described in the previ-
ous paragraphs. This is because FCS is inherently based on
two-point projective measurements [93]. Unfortunately, such
measurements destroy the coherent photonic states, thereby
rendering the Floquet description of the matter system invalid.

The PRFT developed here can track the photonic dynam-
ics, without destroying the Floquet description of the matter
system. This is achieved by introducing a framework based on
two-point tomographic measurements of the photonic field,
instead of the usual projective measurements. The distinc-
tion between two-point projective and two-point tomographic
measurements is illustrated in Fig. 1(a). Formally, the PRFT
introduces counting fields into the semiclassical equations of
motion, leading to a dynamical cumulant-generating function.
This in turn enables us to investigate the redistribution of
photons amongst the Fock states and gain a clear picture
of the photonic dynamics. We note that while some recent
interesting works have investigated the photonic dynamics
of driven systems in Sambe space [94–96], these approaches
scale exponentially with the number of frequency modes; the
PRFT does not suffer from this limitation. The PRFT thus
enables us to go beyond the previous approaches that connects
Floquet theory to cavity dressed states as in Ref. [53], since
those approaches do not provide correct results for the photon
statistics.

Based on analytical derivations and extensive numerical
benchmarking, we demonstrate that the PRFT is valid for
coherent and number squeezed states with a moderate mean
photon number n > 500 and photon standard deviation as low
as σ = 4. The PRFT thus covers all types of moderate and
highly occupied photonic fields in experiments, such as radio
frequencies, microwaves, and lasers, i.e., all driving fields
for which standard Floquet theory is believed to be valid. In
other words, the PRFT approach here assumes the same level
of generic conditions as the standard Floquet theory, but is
found remarkably capable of capturing the dynamics of matter
system as well of its photonic counterpart.

We employ the PRFT to analyze multimode driving, and
discover that this leads to macroscopic light-matter entan-
glement at long times due to the matter-system-controlled
transport of photon between distinct modes. This light-matter
entanglement causes a complete decoherence of the matter
system in the basis of the Floquet states. This effect is de-
picted for a pardigmatic two-mode Rabi model in Fig. 1(b).
The PRFT thus provides a quantum-optical interpretation of
Floquet states as the decohering basis for the matter system.
As the standard Floquet theory is unable to describe this
fundamental decoherence effect, it will incorrectly predict the
dynamics of the matter system in general. The PRFT thus
demonstrates that even in the semiclassical regime, funda-
mental physical implications of the standard Floquet theory
are not understood and require further investigation. In this
context, it is worth noting that light-matter entanglement can
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arise even in single-mode models due to the photon shot noise
[97–101]. However, this shot-noise-induced entanglement has
a much smaller impact on the photonic dynamics compared to
the transport-related entanglement revealed by the PRFT. A
detailed analysis of these issues is presented in Sec. III A.

Furthermore, the transport-entanglement-related decoher-
ence effect has far-reaching experimental consequences. In
particular, we demonstrate that the quantum-optical coher-
ence time is reasonably short (a few ms) for typical optical
fields used in experiments, but it can be very long for
radio-frequency driving. This implies that the radio-frequency
regime is optimal for realizing quantum memories and quan-
tum operations. Furthermore, we argue that quantum time
crystals provide a powerful platform for realizing quantum
memories irrespective of the driving frequency. Intriguingly,
we demonstrate that the light-matter entanglement described
by the PRFT can be deployed in a quantum-communication
protocol that is intrinsically robust against photon loss. In par-
ticular, we demonstrate that using coherent light, it is possible
for the quantum state transfer rate to reach the 0.1 KHz regime
over 500 km, thereby far exceeding the Hz regime that is
predicted in current theoretical protocols [102]. Our analysis
thus demonstrates that the PRFT can play a pivotal role in the
development of future quantum technologies.

This paper is organized as follows: In Sec. II, we in-
troduce the theoretical framework of the PRFT. In Sec. III,
we apply the PRFT to mulitmode quantum Rabi models for
benchmarking, and investigate the light-matter entanglement.
In Sec. IV, we discuss the experimental verification of the
theory and implications for quantum memories, quantum time
crystals, and other quantum applications. In Sec. V, we de-
vise a quantum-communication protocol employing the PRFT
framework. Finally, we summarize the main findings of this
paper and discuss avenues for future research in Sec. VI.

II. PHOTON-RESOLVED FLOQUET THEORY

In this section, we introduce the basic ideas and main
results of the PRFT. We emphasize that even though we pri-
marily analyze Floquet systems in this paper, the formalism
can also be used to analyze aperiodically driven systems. For
a more detailed analysis, we refer the reader to Appendix A.

A. System

We consider the following generic Hamiltonian describing
a matter system interacting with a multimode photonic field:

HQ = H0 +
R∑

k=1

ωkâ†
k âk +

R∑
k=1

g̃Hk (â†
k + âk ), (1)

where k denotes the different photonic modes, âk are annihi-
lation operators quantizing these modes, and Hk acts on the
matter system. The light-matter interaction strength is param-
eterized by g̃. The dynamics of this system can be determined
by representing the photonic operators with Fock states, which
are the eigenstates of the occupation operators N̂k = â†

k âk , i.e.,
N̂k|n〉k = n|n〉k . However, for typical laser fields, the photonic
modes are highly occupied, such that an analytical or numeri-
cal treatment becomes infeasible for more than two modes.

Alternatively, one can employ a semiclassical description
of the system by assuming that it is initially in the state

|ψ (t0)〉 = |φ(t0)〉 ⊗
R∏

k=1

|αkeiϕk 〉, (2)

where |αkeiϕk 〉 are coherent states of the photon operators âk

with real-valued amplitudes αk > 0 and phases ϕk ∈ [0, 2π ),
and the state |φ(t0)〉 is the initial state of the matter system
[52,54]. In this semiclassical limit, we can substitute âk →
αkeiϕk−iωkt in Eq. (1) such that we obtain the corresponding
semiclassical Hamiltonian

H(t ) = H0 +
R∑

k=1

2Hkgk cos(ωkt − ϕk ), (3)

where we have introduced the effective light-matter interac-
tions gk = g̃αk . This description is valid as long as the back
action of the quantum system on the photonic field is negligi-
ble, i.e., if g̃ � ωkαk . Nevertheless, the impact of the photonic
field on the matter system can be large because of the product
g̃αk . The semiclassical approach is thus valid for large mean
occupation numbers 〈N̂k〉 = α2

k .
For a single photonic frequency ωk or for commensurate

frequencies (where all ωk′/ωk are rational numbers), the semi-
classical Hamiltonian is time periodic H(t ) = H(t + τ ) with
a driving period τ . Under these conditions one can apply the
celebrated Floquet theory to analyze the system [52]. Un-
fortunately, this effective semiclassical description loses the
microscopic information about the photonic field. The PRFT
resolves the problem by introducing counting fields into the
semiclassical description.

Before proceeding further, we would like to point out that
the transition from the quantum Hamiltonian in Eq. (1) to
the mean-field Hamiltonian in Eq. (3) corresponds to the
transition from Fock space to Sambe space. In the latter, the
photonic operators are replaced by their unbounded counter-
parts

â†
k âk →

∞∑
nk=−∞

nk|nk〉〈nk|,

â†
k →

∞∑
nk=−∞

gk|nk + 1〉〈nk|, (4)

which can be formally derived by a Fourier transformation
of the Schrödinger equation determined by the Hamiltonian
in Eq. (3). It is worth noting that the photon number de-
pendence of the matrix elements of â†

k in Fock space can
lead to a light-matter entanglement even for coherent states,
which has been extensively investigated [97–101]. This is
a consequence of the photon-number-dependent light-matter
interaction gk (nk ) ∝ √

nk , which results in a photon-number-
dependent dynamics of the matter system. As this effect is
induced by the finite photon number uncertainty of the co-
herent light fields, we will refer to it as photon shot-noise
entanglement. We emphasize that this form of light-matter
entanglement has a minor effect on the photonic dynamics.
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B. Photon-resolved time evolution

The time-evolution operator U (t ) corresponding to the
Hamiltonian in Eq. (3) does not contain the information about
the microscopic state of the photonic fields. In order to track
the photonic dynamics, we introduce real-valued counting
fields χk ∈ [0, 2π ), and define the generalized time-evolution
operator,

Uχ(t ) = exp

(
−i

∑
k

χkN̂k

)
U (t ) exp

(
i
∑

k

χkN̂k

)
, (5)

where U (t ) is the time-evolution operator corresponding to
the Hamiltonian in Eq. (1). This transformation implies that
the annihilation (creation) operators transform as âk → âkeiχk

(â†
k → â†

ke−iχ
k ), leading to the following generalized time-

evolution operator in the semiclassical limit:

Uχ(t ) ≡ T e−i
∫ t

0 Hχ(t ′ )dt ′
, (6)

Hχ(t ) = H0 +
R∑
j

Hkαk (eiωkt−iχk + e−iω j t+iχk ), (7)

where χ = (χ1, . . . , χR) is a vector of counting fields (see
Appendix A for a detailed derivation). Based on the gen-
eralized time-evolution operator in Eq. (6), we define the
photon-resolved time-evolution operators

U (m)(t ) = 1

(2π )R

∫ 2π

0
dRχUχ(t )eim·χ, (8)

where m = (m1, . . . , mR) is a vector of photonic transition
numbers. In terms of the photon-resolved time-evolution op-
erator, we can now express arbitrary system observables. For
example, the probability that the photonic modes are in the
Fock states n = (n1, . . . , nR) is given as

〈P̂n〉t =
∑
m,m′

〈U (m)†(t )U (m′ )(t )〉t0

R∏
k=1

a(k)∗
nk−mk

a(k)
nk−m′

k
, (9)

where P̂n denotes the projector onto the Fock states with
quantum numbers n, a(k)

m are the expansion coefficients of
the photonic initial state |αkeiϕk 〉 = ∑

m a(k)
m |m〉k , and 〈Ô〉t ≡

〈ψ (t ) | Ô | ψ (t )〉, where |ψ (t )〉 can be either a state in the
matter system or the composite light-matter system depending
on the enclosed operator Ô. Thus, by semiclassically calculat-
ing the generalized time-evolution operators in Eq. (6), we can
evaluate genuine quantum properties of photonic observables.

C. Full-counting statistics

While the analytical (or numerical) evaluation of the
photon-resolved time-evolution operators in Eq. (8) is an
infeasible task in many cases, it is relatively easy to com-
pute the moments and cumulants of the photonic modes âk .
Importantly, the counting statistics within the PRFT is fun-
damentally different from the standard FCS formalism. As
shown in Fig. 1(a), the standard FCS framework is based
on two-point projective measurements, where the state is
formally projected to the Fock state basis at the beginning
t0 and at the end t1 of each experimental run [69,93,103]
(see Appendix B for more details). However, performing a

projective photon number measurement at the beginning
of the experiment would completely destroy the coherent
photonic state. To circumvent this issue, we propose using
two-point tomographic measurements, which are performed
at the beginning and the end of the time evolution. The to-
mography is independently carried out for two batches of
experimental runs with the same initial states. As illustrated
in Fig. 1(b), the photon statistics is determined by photon-
number measurements at t = t0 for the first batch, and at
t = t1 for the second batch. This alternative approach to FCS
has been investigated for heat transport between incoherent
baths in Ref. [104].

Formally, the counting statistics of the photon modes can
be calculated via the cumulant- or the moment-generating
functions, which are defined by

Kχ(t ) = log[Mχ(t )], (10)

Mχ(t ) = 〈e−i
∑

k χk N̂k 〉t , (11)

respectively. The associated nth cumulant and moment of
mode k are determined via

κ (k)
n (t ) = dn

d (−iχk )n
Kχ(t ),

m(k)
n (t ) = dn

d (−iχk )n
Mχ(t ). (12)

We are interested in the time evolution of the cumulant- and
moment-generating functions. To this end, we define the dy-
namical cumulant-generating function Kdy,χ(t1) via

Kχ(t1) = Kdy,χ(t1) + Kχ(t0), (13)

where Kχ(t0) and Kχ(t1) can be determined by independent
tomographies at the beginning and the end of the time evolu-
tion [104]. As shown in detail in Appendix A 3, the dynamical
cumulant-generating function can be expressed as

Kdy,χ(t ) = log 1
2 〈U†

ϕ(t )Uϕ+χ(t ) + U†
ϕ−χ(t )Uϕ(t )〉t0 , (14)

where ϕ = (ϕ1, . . . ϕR) is the vector of phases of the photonic
states. Employing Eq. (13), we can now obtain the change of
the cumulants,

κ
(k)
dy,n(t ) ≡ dn

d (−iχk )n
Kdy,χ(t )

∣∣∣∣
χ=0

= κ (k)
n (t ) − κ (k)

n (t0), (15)

which describes the change of the photon statistics in the two-
time tomographic measurement sketched in Fig. 1(b). We can
see for instance that the first and second dynamical cumulants

�〈N̂k (t )〉 = κ
(k)
1 (t ) − κ

(k)
1 (t0),

�σ 2
k (t ) = κ

(k)
2 (t ) − κ

(k)
2 (t0), (16)

correspond to the change of the mean photon number 〈N̂k〉
and the variance σ 2

k , respectively. In the rest of this paper,
we will analyze Eq. (14) in a variety of contexts to gain a
transparent picture of the photonic dynamics. The derivation
of Eq. (14) assumes a separable initial state of the form in
Eq. (2). In Appendix A 6, we explain how the PRFT can be
generalized to more general initial states such as entangled
states in a similar fashion.
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It is worthwhile to point out that the well-defined phase
in the PRFT is in contrast to the well-defined particle num-
ber in the standard FCS. This is the origin of the difference
in the measurement protocols for the two cases. As shown
in Appendix B the cumulant-generating function is K̃χ(t ) =
log〈U†

ϕ−χ/2(t )Uϕ+χ/2(t )〉t0 according to the standard FCS,
where the phases ϕ have been evaluated heuristically. This
results is a profound difference with the predictions of the
PRFT, and highlights the crucial role played by two-point
tomographic measurements in the PRFT. We note that the first
cumulant in Eq. (16) agrees with the standard semiclassical
calculation as shown in Appendix A 7.

D. Probability redistribution

Using the moment-generating function of the final state
given in Eq. (11), we can calculate the probability distribution
of the Fock states at time t via

pn(t ) = 1

(2π )R

∫ 2π

0
dRχ Mχ(t )eiχ·n

=
∑

m

qn−m(t )pm(t0), (17)

where we have introduced the quasiprobabilities as

qn(t ) = 1

(2π )R

∫ 2π

0
dRχ Mdy,χ(t )eiχ·n, (18)

where Mdy,χ(t ) = exp[Kdy,χ(t )]. Akin to regular probabilities,
these quasiprobabilities are real valued and fulfill∑

n

qn = 1. (19)

However, due to interference effects, qn may also be negative.
Such negativity is a characteristic signature of nonclassi-
cal temporal correlations [105]. We note that according to
Eq. (17), the quasiprobabilities may be interpreted as the
kernel of the probability redistribution.

E. Full-system state

The PRFT not only predicts the photonic probability dis-
tribution, but also the state of the matter system, from which
we can even reconstruct the state of the total system. We can
express Eq. (17) in the form

pn(t ) = 〈φ(t0)|P̂n(t )|φ(t0)〉, (20)

where we have defined the probability operators

P̂n(t ) =
∑

m

Q̂m(t )pn−m,

Q̂m = 1

2

∫ 2π

0

dRχ

(2π )R
U†

ϕ(t )Uϕ+χ(t )eim·χ + H.c. (21)

It is easy to show that the set of probability operators fulfill
∞∑

n=0

P̂n(t ) = 1. (22)

Moreover, in the parameter regime and time scope in which
the PRFT is valid, we have 0 � P̂n(t ) � 1, which is equivalent

to 0 � pn(t ) � 1 in Eq. (20). Thus, the operators P̂n(t ) de-
fine a positive-operator-valued measurement (POVM) [106],
which consistently describes the photon measurement process
sketched in Fig. 1.

According to the theory of quantum measurements
[106,107], the reduced density matrix of the matter system
after the measurement is given by

ρM(t ) =
∑

n

pn(t )ρn(t ),

ρn(t ) = 1

pn(t )
Uϕ(t )

√
P̂n(t )ρ(t0)

√
P̂n(t )U†

ϕ(t ), (23)

where ρ(t0) = |φ(t0)〉〈φ(t0)| is the initial density matrix, and
ρn denotes the reduced density matrix conditioned on the
measured photon number n. As the POVM P̂n(t ) acts on the
initial state, the time-evolution operator Uϕ(t ) has been added
heuristically to account for the dynamics of the matter system.
Equation (23) thus defines a valid set of Krauss operators
describing photon-number-dependent quantum channels. If
ρ(t0) is a pure state, then ρn(t ) ≡ |un〉〈un| will be also pure
as P̂n(t ) is positive semidefinite. A purification of ρM is given
by

|�(t )〉 =
∑

n

√
pne−i(ωt−ϕ)·n|un〉|n〉, (24)

where we have assigned the phases e−i(ωt−ϕ)·n in terms of
the frequency vector ω = (ω1, . . . , ωR), such that we can
interpret the states |n〉 as the Fock states of the photonic sys-
tem. Tracing over the light system, we can verify that indeed
trL[|�(t )〉〈�(t )|] = ρM(t ). Thus, we can identify the |�(t )〉 as
the state of the total light-matter system.

F. Floquet-state analysis

We now proceed to analyze systems subjected to mul-
timode driving where the photonic field is composed of
multiple commensurate photonic frequencies ωk . In this sce-
nario, the matter subsystem is still described by a Floquet
Hamiltonian in the semiclassical limit. However, we find that
the PRFT leads to some important insights about such systems
(like light-matter entanglement), that are beyond the reach of a
standard Floquet analysis and imply a fundamental limitation
on its validity.

According to Floquet theory, the generalized time-
evolution operator can be written as

Uχ(t ) = Ukick,χ(t ) exp(−iHFl,χt ), (25)

where the generalized Floquet Hamiltonian can be expanded
as

HFl,χ =
∑

μ

Eμ,χ|uμ,χ〉〈uμ,χ|. (26)

As the kick operator Ukick,χ(t ) = Ukick,χ(t + τ ) is time pe-
riodic, it accounts only for periodic changes in the pho-
ton redistribution. Thus, the asymptotic dynamics of the
cumulant-generating function in Eq. (14) is determined by the
generalized quasienergies Eμ,χ. The stroboscopic dynamics of
the matter system is characterized by the Floquet states |uμ,χ〉,
that generalize the common eigenstates in time-independent
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systems. When expanding the initial state in the Floquet-state
basis |uμ,ϕ〉,

|�(t0)〉 =
∑

μ

cμ|uμ,ϕ〉 ⊗ |A(t0)〉, (27)

where |A(t0)〉 is the initial state of the photonic field,
the asymptotic dynamical cumulant- and moment-generating
functions read as

Kdy,χ(t ) → log Mdy,χ(t ),

Mdy,χ(t ) →
∑

μ

|cμ|2
2

(ei(Eμ,ϕ−Eμ,ϕ+χ )t + ei(Eμ,ϕ−χ−Eμ,ϕ )t ). (28)

This derivation is rigorously explained in Appendix A 4.
Thus, Mdy,χ is a weighted average of the dynamical moment-
generation functions of the Floquet states, with the weights
given by the expansion coefficients |cμ|2. We can now obtain
the mean photon number change,

�〈N̂k〉 = −
∑

μ

|cμ|2 dEμ,ϕ

dϕk
t =

∑
μ

|cμ|2�〈N̂k〉|μ t, (29)

where we have evaluated the quasienergies at the phases of
the photonic fields ϕ, and we have denoted the mean photon
change in a specific Floquet state by �〈N̂k〉|μ. Intriguingly,
when preparing the system initially in an arbitrary Floquet
state μ, we find

�σ 2
k

∣∣
μ

= 0, (30)

i.e., the variance change �σ 2
k vanishes.

For a superposition of Floquet states, Eqs. (18) and (28)
imply that the quasiprobabilities are given by a weighted av-
erage of Floquet-state-dependent quasiprobabilities qn|μ, i.e.,
qn = ∑

μ |cμ|2qn|μ. Similarly, from Eq. (17), we can infer that

pn =
∑

μ

|cμ|2 pn|μ. (31)

Thus, pn|μ defines a conditional probability distribution, and
the dynamics of the photonic state is controlled by the Floquet
states.

Our results lead to a quantum-optical interpretation of Flo-
quet states. To see this, we consider the time evolution of the
generic initial state in Eq. (27). According to Eq. (31), the
light-matter state becomes entangled in the course of the time
evolution,

|�(t )〉 =
∑

μ

cμe−iEμ,ϕ (t−t0 )|uμ,ϕ(t )〉 ⊗ |Aμ(t )〉, (32)

where |uμ,ϕ(t )〉 = Ukick,ϕ(t )|uμ,ϕ〉, and the photonic wave
functions for long times is given by

|Aμ(t )〉 =
∑

n

√
pn|μe−i(ωt−ϕ)·n|n〉, (33)

which is in agreement with Eq. (24). Thereby, the mean
photon number of each |Aμ〉 changes linearly in time [see
Eq. (29)], while its variance remains unchanged [see Eq. (30)].
This means that the conditional probability can be approxi-
mated by

pn|μ(t ) = pn−�nμ(t )(t0), (34)

where [�nμ(t )]k = −dEμ,ϕ/dϕkt , which can be numerically
efficiently evaluated.

Consequently, the photonic states |Aμ(t )〉 will become mu-
tually orthogonal for sufficiently long times, and the reduced
density matrix of the matter system becomes

ρM =
∑

μ

|cμ|2|uμ,ϕ(t )〉〈uμ,ϕ(t )|. (35)

Thus, from a quantum-optical point of view, Floquet states act
as the decohering basis. We note that this interpretation holds
as long as there is a nonvanishing photon flux between distinct
photonic modes. This effect is illustrated in Fig. 1(b) and will
be further analyzed in Sec. III B for a two-mode Rabi model.

We emphasize that a large-scale photon flux cannot de-
velop when the quasienergy does not depend on the counting
field, as we see from Eq. (28). This situation occurs for
single-mode systems, where the single counting field can be
transformed away by a counting-field-dependent shift in time
t → χ/ω, which can be seen in Eq. (7). Consequently, the
transport-induced light-matter entanglement can strictly ap-
pear only in two- or higher-mode systems. We recall, however,
that there are always two polarization modes of light, such
that this decoherence effect discussed here has practical im-
portance.

At this point, it is instructive to compare our results with
Ref. [53], which has computed photonic observables by con-
sidering a static phase for photonic coherent states. However,
the static-phase assumption leads to unphysical predictions
such as the diverging higher-order moments and cumulants
and, thus, is not suitable to quantitatively capture the dynam-
ics of the photon field or the decoherence of the matter system.
It is worth mentioning that the PRFT formally operates in
the Sambe space rather than in Fock space. Thus, the PRFT
cannot account for the shot-noise induced entanglement dis-
cussed in Sec. II A. However, as we demonstrate in Sec. III A,
this effect has a minor influence on the photonic dynamics.

G. Error analysis

To describe the deviation from the exact time evolution
quantitatively, we specify the initial state to be

|ψ (t0)〉 = |φ(t0)〉
R⊗

k=1

|nk, σk, ϕk〉, (36)

where |φ(t0)〉 is the initial state of the matter system, and the
photonic state of mode k is given by

|nk, σk, ϕk〉 = N
∑

n

e− (n−nk )2

4σk
+iϕk n|n〉k . (37)

Thereby, nk is the mean photon number, σk is the standard
deviation, ϕk is the mean phase, and N is a normalization
factor. For σk <

√
nk (σk >

√
nk) the system is in a number

(phase) squeezed state, while for σk = √
nk it is in a coherent

state. As discussed in details in Appendix A 5, the deviation
of the probabilities pn in Eq. (17) from the exact ones p(Ex)

n
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scales as

�pn(t ) ≡ pn(t ) − p(Ex)
n (t )

= F
[{

gkt

σ 2
k

,
σk

nk
,

gkt

nk

}
k

]
, (38)

where F[x] denotes the scaling function, which depends on
the set of ratios gk ·t

σ 2
k

, σk
nk

, and gk ·t
nk

of all photonic modes k.

This shows that the PRFT performs well for photonic states
with a large standard deviation σk and large mean photon
number nk . Large σk makes sure that the phase is well defined,
which is reflected by the first argument of the function F in
Eq. (38). A large nk guarantees that the matrix elements of the
photonic operators âk do not depend on the photon number,
which is described by the second and third argument of F .
Clearly, the latter source of error is absent when considering
the Floquet theory in Sambe space [introduced in Eq. (4)].
All requirements are naturally fulfilled for coherent states with
σk = √

nk � 1 in the thermodynamic limit nk → ∞. Intrigu-
ingly, the PRFT makes accurate predictions, even when σk is
small; we discuss this in Sec. III B.

The linear change of the mean photon number in Eq. (29)
is a consequence of the vanishing photon-number depen-
dence of the matrix elements 〈n + 1|â†

k |n〉 = √
n + 1 ≈ √

nk

for −√
nk < n − nk <

√
nk . This establishes a “translational

invariance” in Fock space. In each unit of time, the matter sys-
tem can pump a certain number of photons from one driving
mode into another independent of the photon number. When
the mean photon number change reaches the order nk , the
translational invariance in Fock space is lost, and the PRFT
theory breaks down.

III. APPLICATIONS

We apply the PRFT to three versions of the quantum Rabi
model, and demonstrate that the framework is accurate in the
semiclassical limit. The Hamiltonian describing the system is

HQR = hz

2
σ̂z +

R∑
k=1

ωkâ†
k âk +

R∑
k=1

g̃k σ̂x(âk + â†
k ), (39)

where the two-level system is described by the common
Pauli matrices σ̂α with α = {x, y, z}, and hz denotes level
splitting of the two-state model. We denote the eigenstate
of σ̂z with eigenvalue 1 (−1) by |↑〉 (|↓〉). The photonic
system operators and parameters have been described in
Sec. II A.

To compare the photonic probability distributions pre-
dicted by the numerical exact quantum calculation p(Ex)

nk
and

by the PRFT pnk of mode k, we employ the trace distance

d1
(
pnk , p(Ex)

nk

) =
∑

nk

∣∣pnk − p(Ex)
nk

∣∣. (40)

We quantify the entanglement of the light and matter systems
in terms of the purity of the two-level system P ≡ tr(ρ2

M),
where ρM is the reduced density matrix of the two-level sys-
tem. For a pure state P = 1, while for a completely mixed,
i.e., maximally entangled, state P = 0.5.

A. Rabi model

First, we investigate the paradigmatic single-mode quan-
tum Rabi model with R = 1. In the semiclassical limit,
the atomic dynamics is described by HR = hzσ̂z/2 +
2g1σ̂x cos(ω1t ). In the following discussions, we neglect the
index k = 1. Since there is no possibility for large-scale pho-
ton transport in the single-mode Rabi model, the error will
be mainly determined by the photon shot-noise of the ini-
tial states. As we will see, this error is small as compared
to the transport dynamics introduced in Sec. II F and dis-
cussed in Sec. III B. In Appendix C 1, we also benchmark the
PRFT against the dynamics in the Sambe space [introduced
in Eq. (4)], where the accuracy of the PRFT is even further
improved.

Time evolution. In Fig. 2(a), we depict the dynamics for
n = 105 photons and two different σ = √

n (red, dash-dotted)
and σ = 0.1

√
n (yellow, solid), i.e., for a coherent and a num-

ber squeezed photonic state. The PRFT results are depicted
by a black dashed line. We observe that the PRFT results of
the spin observables 〈σ̂α〉 with α ∈ {x, y, z} agree perfectly to
the numerical results for the coherent and number-squeezed
initial conditions. Likewise, we do not observe differences
in the mean photon number change �〈N̂〉. For the photon
variance change �σ , we observe that the PRFT prediction
agrees reasonable well with the exact calculation for the num-
ber squeezed state for short times. Yet, the PRFT strongly
deviates for the coherent photonic initial state. These findings
are in agreement with the error analysis in Eq. (38), which
shows that the error scales with σk/

√
nk due to the photon shot

noise. Yet, we note that deviations in the probability distribu-
tions are heavily enhanced by the definition of the variance,
which disproportional weights photon numbers away from the
mean value with ∝ (n − n)2. Intriguingly, the PRFT agrees
perfectly with the numerical results when the dynamics is
simulated in the Sambe space instead of the Fock space as
demonstrated in Appendix C 1. For these reasons, we continue
to analyze the photon statistics in terms of the trace distance
defined in Eq. (40). Moreover, we mention that the observed
variance values in Fig. 2 are small compared to the rapidly
diverging variance, which can appear in multimode systems
due to photon transport.

Photon probabilities. In Fig. 2(b), we benchmark the
photon probability distribution in the weak- (upper row),
intermediate- (middle row), and strong-coupling (bottom row)
regimes for number-squeezed (left) and the coherent (right)
initial states, respectively. To test the validity of the PRFT,
we choose a scaled time tσ ≡ (2π/g)6σ , which agrees with
the analytically predicted validity according to the first ar-
gument in Eq. (38). The scaled time tσ is a sufficient time
scale to observe the transport entanglement effect explained
in Sec. II F and demonstrated in Sec. III B. In the weak- and
the intermediate-coupling regime, we observe that the PRFT
agrees well with the exact numerical calculations. For the
coherent photonic state, we observe some minor deviations
exhibiting an oscillating dependence with photon number,
which will be explained below.

Error scaling. In Fig. 2(c), we investigate the error
quantified by Eq. (40) in the weak-, intermediate-, and strong-
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FIG. 2. (a) Time evolution of the spin components and the first two photonic cumulants in the quantum Rabi model in the intermediate-
coupling regime ω = hz = g. The initial condition is given in Eq. (36) with |φ(t0)〉 = (|↓〉 + |↑〉)/

√
2 for n(t0) = 105 photons, as well as for

σ = √
n(t0) (red, dash-dotted) and σ = 0.1

√
n(t0) (yellow, solid). (b) Probability distribution at the scaled time tσ ≡ (2π/g)6σ for the same

coherent (right) and number-squeezed (left) initial states as in (a) and for the resonance condition hz = ω. (c) Analysis of the trace distance in
Eq. (40) as a measure of the error at the scaled time tσ as a function of noise σ (left) and mean photon number n(t0) with scaled σ = 0.3

√
n(t0)

and tσ (right).

coupling regimes at the scaled time tσ . Thereby, we investigate
the error for three different level splittings hz. In the left col-
umn, we investigate the error as a function of σ for n = 105.
In the weak- and intermediate-coupling regimes we find that
the error increases with σ in agreement with the second and
third argument in Eq. (38). For very small σ ≈ 0.05

√
n, we

also observe a rapid error increase, which is due to the first
argument in Eq. (38). In contrast, the error exhibits an overall
decaying behavior as a function of σ in the strong-coupling
regime, suggesting that the first argument in Eq. (38) plays a
more prominent role.

In the right column of Fig. 2(c) we investigate the er-
ror as a function of n(t0) while simultaneously scaling σ =
0.3

√
n(t0). In the weak- and intermediate-coupling regime, we

find that the error scales approximately as d1 ∝ n(t0)−0.5 ∝
σ/n, i.e., according to the second argument in Eq. (38). While
it might appear that the error scales as d1 ∝ n(t0)−1 ∝ 1/σ 2

in the strong-coupling regime, we interpret this as a conse-
quence of numerical fluctuations, which are caused by the
σ -dependent evolution time tσ . Similar observations can be
also found for other ratios of σ/

√
n(t0) and matter initial states

(not shown).
Overall, we find that the error is smaller than d1 � 0.01 for

the Rabi model at resonance hz ≈ ω. Away from the resonance
condition hz > ω, we find that the error even decreases. We
explain this by a reduced shot-noise entanglement, which
occurs most efficient at resonance.

Analytical analysis. When |hz − ω| � g, we can neglect
the counter-rotating terms σ+â†, σ−â and the Hamiltonian
reduces to the Jaynes-Cummings model HJC = hzσ̂z/2 +
gσ̂+â + gσ̂−â†

1. In this case, the photon-resolved time-
evolution operators in Eq. (8) are

U (0)(t ) = e−i ω
2 σ̂zt [cos (Et )1 + i sin (Et ) cos θσ̂z],

U (±1)(t ) = ie−i ω
2 σ̂zt sin (Et ) sin θσ̂∓, (41)

where E = 1
2

√
(hz − ω)2 + 16g2 is the energy of the excited

eigenstate (see Appendix C 2 for a detailed derivation).
This form of the photon-resolved operators encodes the

conservation of the quantity, Ntot = â†â + σ̂z, which is a
salient feature in the Jaynes-Cummings model. To illustrate
this, let us consider the initial state |ψ (t0)〉 = |↑〉 ⊗ |n〉, that
gives rise to the following photonic occupations of the Fock
states n and n + 1:

〈P̂n〉 = [cos (Et )]2 + [cos θ sin (Et )]2,

〈P̂n+1〉 = [sin θ sin (Et )]2, (42)

which maintains the probability 〈P̂n〉 + 〈P̂n+1〉 = 1. Intrigu-
ingly, the occupations in Eq. (42) are identical to the exact
time evolution of the quantum Jaynes-Cummings model.
Thus, we have determined the dynamics of a genuine quantum
model by employing semiclassical methods of the PRFT.

Analysis of Eq. (42) explains the minor oscillating de-
viations in the weak- and intermediate-coupling regimes in
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Fig. 2(b) for the coherent photonic state. The PRFT assumes
a fix Rabi frequency g = g̃

√
n. Taking a more microscopic

perspective, each initial Fock state |n〉 determines its specific
oscillation frequency g(n) = g̃

√
n, such that the probabilities

in Fig. 2(b) oscillate slower (faster) for photon numbers n be-
low (above) the mean photon number, leading to the observed
minor derivations. This interpretation is further underpinned
by the improved accuracy of the PRFT in Sambe space, which
is analyzed in Appendix C 1.

B. Two-mode Rabi model

We found for the R = 1 Rabi model that the shot-noise
entanglement causes a small error for the photonic proba-
bilities (d1 � 0.01 in Fig. 2), which is even vanishing in the
thermodynamic limit n → ∞, σ → ∞ or when working in
the Sambe space defined in Eq. (4). As a more advanced
example, that still allows for numerical benchmark calcula-
tions, we consider now the two-mode quantum Rabi model
in Eq. (39) with R = 2. This model allows for a large-scale
photon transport between the two photonic modes, which
leads to a more prominent photonic dynamics as in the R = 1
model, and a light-matter entanglement effect, that persists in
the thermodynamic limit.

The initial state is given in Eq. (36) for nk = 5000 and
three different photonic distribution widths σk ∈ {2, 3, 4} for
both modes k = 1, 2. Larger values for σk cannot be numer-
ically simulated. According to the error scaling in Eq. (38),
the PRFT requires large values of σk . However, we find that
the PRFT is already very accurate for σk = 4 and improves
quickly. In Appendix C 1, we also benchmark the PRFT for
various mean photon numbers nk , and in the dephasing, adia-
batic, and high-frequency driving regimes.

As explained in Sec. II F, the time evolution sensitively
depends on the initial state. For this reason, we carry out
benchmarking for an initial Floquet state |φ(t0)〉 = |uμ〉, and
an initial spin-up state |φ(t0)〉 = |↑〉 in Figs. 3 and 4, respec-
tively. In the first column of Figs. 3 and 4 we depict the
variational distance d1 defined in Eq. (40). The second column
depicts the probability distribution at selected times. The third
column shows the expectation value 〈σ̂y〉 of the two-level
system, while the forth column depicts the purity of the matter
system.

For short simulation times t < 2π/ω, we use Eq. (17) to
determine the photon probability distribution, while for longer
times t > 2π/ω we employ Eq. (34). To calculate 〈σ̂y〉 and P
within the PRFT, we use Eq. (23) for short simulation times.
For long times, we employ the reduced density matrix of the
state in Eq. (32). For the spin observables, we also depict
the predictions of the standard Floquet theory. In the follow-
ing, we discuss the performance of the PRFT in the weak-,
intermediate-, and strong-light-matter-coupling regimes.

Weak coupling. In the weak-coupling regime for an ini-
tial Floquet state depicted in Fig. 3(a), we observe that the
photonic probability distribution is shifted to smaller photon
numbers n1 with increasing time. For small σ1 = 2, the com-
pact initial photon distribution significantly diffuses with time.
However, when increasing to σ1 = 4, we already find a very
good agreement with the exact probabilities. The improve-
ment with increasing σ1 can be also clearly seen in the trace

distance d1. This improvement with increasing σ is according
to the first argument in Eq. (38), while the two other arguments
have a negligible influence on the dynamics. An excellent
agreement of both the standard Floquet theory and PRFT to
the exact calculation can be also observed for 〈σ̂y〉 and the
purity.

As we investigate here the resonant system with hz = ω1 =
ω2 in the weak-coupling regime, we can apply the rotating-
wave approximation, and investigate the corresponding two-
mode Jaynes-Cummings model. As explained in Sec. II F, the
asymptotic dynamics is defined by the counting-field depend
quasienergies, which in this case can be exactly calculated and
read as

Eχ,μ = ±2|G(χ)| (43)

with μ = 1, 2, where we have defined G(χ) =∑
k=1,2 gke−iχk . The corresponding Floquet states are given

by
√

2|uμ,χ〉 = eiφχ |↓〉 ± e−iφχ |↑〉 with φχ = arg G(χ).
Interestingly, the quasienergies depend only on the difference
χ = χ1 − χ2. Evaluating the first dynamical cumulant, we
obtain

�〈N̂1〉|μ = (−1)μ
2g1g2

Eϕ

sin(ϕ)(t − t0) + O[(t − t0)0], (44)

where ϕ = ϕ1 − ϕ2 is the phase difference of the two photonic
states. For ϕ �= {0, π}, there is a net photon flux between the
photon modes. The variance change �σ1 vanishes according
to Eq. (30). The current vanishes for ϕ = {0, π} due to the
symmetry of the initial condition. In Fig. 3(a), we consider
Floquet state μ = 1, such that photons are transported from
mode k = 1 to k = 2, as can be inferred from Eq. (44). Like-
wise, photons would be transported from k = 1 to k = 2 when
the system is initialized in Floquet state μ = 2.

Figure 4(a) depicts the same as Fig. 3(a) but for the initial
state |φ(t0)〉 = |↑〉 ≈ (|u1,ϕ〉 + |u2,ϕ〉)/

√
2, which is here a

balanced superposition of the two Floquet states. The overall
accuracy is similar for both initial conditions. According to
Eq. (29), the photon flow is controlled by the Floquet state,
such that the photon redistribution in the long-time limit be-
comes entangled with the two-level system. This effect can be
clearly observed for σ1 = 4, where the left peak is entangled
with the Floquet state |u1,ϕ〉, while the right peak is entangled
with |u2,ϕ〉 [see also Fig. 1(c)].

The light-matter entanglement leads to decoherence as
is clearly manifested in the time evolution of 〈σy〉. It is
noteworthy that the PRFT agrees almost perfectly with the
exact quantum calculation, while the standard Floquet theory
strongly deviates. In particular, the PRFT accurately predicts
the evolution of an initial pure state (with purity P = 1) to a
maximally entangled state (purity P = 0.5). In contrast, the
purity remains 1 in standard Floquet theory.

Intermediate coupling. In Fig. 3(b) we depict the dynamics
for an initial Floquet state in the intermediate-coupling regime
for hz = ω = gk = g. As in the weak-coupling regime, we ob-
serve that the PRFT calculation rapidly approaches the exact
probabilities for increasing σ1. The mean photon number n1(t )
increases linearly, while the width σ1(t ) stays almost constant,
which can be seen for σ1 = 4. We note that even though the
difference between exact numerics and the PRFT is larger than
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FIG. 3. Benchmark calculations of the PRFT for an initial Floquet state and various photon number widths σ1 = σ2 in the two-mode Rabi
model. The first column depicts the trace distance d1(pn1 , p(Ex)

n1
) as a function of time. The second column shows the photonic probability

distributions for selected times t1g = 4, t2g = 8, and t3g = 20 as labeled in the panels. The third column depicts the expectation value of 〈σ̂y〉
as a function of time. The fourth column shows the purity. (a), (b), and (c) depict the dynamics in the weak-, intermediate-, and strong-light-
matter-coupling regime, respectively. Colored lines depict the numeric quantum calculations. We choose a symmetric coupling of both modes
to the two-level system gk = g and nk (t0) = 5000 for k = 1, 2. Other parameters are specified in the figure.

in the weak coupling case, the convergence can be clearly an-
ticipated even for small σ1. In general, large couplings g result
in more Fourier components in the periodic dynamics of the
Floquet states, that require an initial probability distribution
with larger σ1 to be smoothed out (see also Appendix A 5).

Furthermore, similar to the dynamics in Fig. 4(a), we ob-
serve that the probability distribution eventually splits into
two peaks in Fig. 4(b), each being entangled with a Floquet
state. The height of each peak is thereby determined by the

amplitude of the expansion coefficients in the Floquet basis
according to Eq. (31).

Strong coupling. In Figs. 3(c) and 4(c) we analyze the
dynamics in the strong-coupling regime. As in the weak-
and intermediate-coupling regime, we observe that the PRFT
calculations for both the photonic and spin observables ap-
proach the exact calculation for increasing σ1. In contrast, the
standard Floquet theory clearly fails to reproduce the correct
dynamics of the two-level system.
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FIG. 4. Same as in Fig. 3, but for the initial state |φ(t0)〉 = |↑〉.
Due to numerical limitations, the probability distribution

is depicted only for times t smaller than the driving period
ti � τ = 2π/ω in Fig. 3(c). As the findings in Sec. II F are
only valid at stroboscopic times t = nτ , we do not observe a
steady photon flux towards a higher (lower) photon number as
in Fig. 3(a) [Fig. 3(b)]. However, we expect that both peaks
will merge at stroboscopic times t = nτ at a mean photon
number as predicted by Eq. (29). Similarly, we cannot asso-
ciate the two peaks with the two Floquet states in Fig. 4(c) for
the depicted times t j � τ .

C. Three-mode Rabi model

To illustrate that the light-matter entanglement explained in
Sec. II F is a generic effect, we now investigate a three-mode

Rabi model with distinct commensurate photonic frequencies
ωk . For concreteness, we choose ω2 = 2ω1 and ω3 = 3ω1.
In this case, the semiclassical Hamiltonian is a periodically
driven Rabi model with period 2π/ω1, and we compute the
photon-mean and photon-variance changes using the PRFT.
Noteworthy, a simulation of the full quantum Rabi model in
Eq. (39) is numerically hardly tractable due to the three pho-
tonic modes. When representing each mode with m states, the
Hilbert space has dimension D = 2 × m3, i.e., D = 2 × 106

states for a moderate m = 100. Similar to the analysis for the
two-mode Rabi model, we consider the three initial conditions
|φ(t0)〉 = |u1,ϕ〉, |φ(t0)〉 = |u2,ϕ〉, and |φ(t0)〉 = 1√

2
(|u1,ϕ〉 +

|u2,ϕ〉), where the |uμ〉 are the Floquet states of the two-level
system, i.e., the eigenstates of Eq. (26) for χ = 0.
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FIG. 5. Analysis of the photon statistics in the Rabi model in
Eq. (39) for R = 3. (a) Change of the mean photon occupation of
mode k = 3. (b) Change of the corresponding variance. Parameters
are hz = 2.1ω1, ω2 = 2ω1, ω3 = 3ω1, and gk = αk g̃k = ω1, ϕ1 =
ϕ3 = 2ϕ2 = 0.5.

In Fig. 5, we depict the photonic mean and variance change
of mode k = 3 for each initial condition. When the initial state
is the Floquet state |u1〉 (|u2〉), the mean photon number grows
(decreases) linearly in time, while the variance remains almost
unchanged. This is analog to the probability distributions in
Fig. 3 (a) in the two-mode model, where the variance remains
constant for a Floquet initial state.

In contrast, the mean photon number change is close to
zero for the superposition state, while the variance increases
rapidly. This corresponds to the probability distributions for
an initial superposition in Fig. 4(a). Since we have chosen a
balanced superposition of the two Floquet states with c1 =
c2 = 1/

√
2, the mean photon number remains unchanged ac-

cording to Eq. (29). However, as the Floquet state μ = 1
linearly increases the photon number, while Floquet state
μ = 2 simultaneously linearly decreases the photon number,
the variance diverges quadratically.

IV. EXPERIMENTAL AND TECHNOLOGICAL
IMPLICATIONS

In this section, we discuss the light-matter induced de-
coherence for coherently driven systems. This effect can be
detected in experiments and has a significant impact on the
design of quantum memories and quantum operations. The
following analysis therefore focuses on the transport-induced
entanglement and neglects the shot-noise entanglement.

A. Quantum-optical coherence time

To estimate the quantum-optical coherence time for peri-
odically driven systems, we consider the mean photon number
changes �〈N̂k〉|μ = −E ′

μ(ϕk )t for two distinct Floquet states

μ1 and μ2, where E ′
μ(ϕk ) = dEμ(ϕ)/dϕk . The system is com-

pletely decohered at time tc when the difference in the mean
photon number for these two Floquet states exceeds the width
of the photon distribution in Fock space, i.e.,

tc|E ′
μ1

(ϕk ) − E ′
μ2

(ϕk )| = σk, (45)

where σ 2
k is the initial variance of photon mode k. We recall

that the variance does not change with time for Floquet states
as shown in Sec. II F. To estimate σk in terms of physical
quantities, we distinguish two cases: (i) a closed light-matter
system, where the photonic field is confined in a cavity; (ii) an
externally driven quantum system, where the photonic field is
a traveling wave. Each case gives a different scaling behavior
for tc.

Closed light-matter systems. For simplicity, we consider
coherent states, whose mean and variance are equal nk = σ 2

k .
The mean photon number in a cavity mode is given by nk =
ε0E2V/(2h̄ωk ) where E is the electromagnetic field, V is the
cavity volume, and ε0 is the dielectric constant. This implies
that the quantum-optical coherence time is given as

tc = min
k,μ1,μ2

√
ε0E2V
2h̄ωk∣∣E ′

μ1
(ϕ j ) − E ′

μ2
(ϕ j )

∣∣ . (46)

We note that the coherence time in Eq. (46) is an approxima-
tion, since the above arguments have assumed that the photon
modes decohere independently.

Externally driven quantum systems. For the experimentally
more relevant situation, in which the matter system is driven
by a traveling wave, the estimate for the coherence time has to
be modified. Here we establish a connection to a cavity setup
to get an estimate for the coherence time. Consider that the
light field is a pulse of duration tp with central frequency ωk

and spectral width �ω ∝ 1/tp. For long times tp, the spectral
width vanishes and we assign all pulse photons to the cen-
tral frequency. The mean photon number in a pulse is nk =
P(ωk )tp, where P(ωk ) is the power of the electromagnetic
field at frequency ωk . Now, we model the pulse as a cavity
mode with initial occupation nk . Consequently, we find that
the quantum-optical coherence time is

tc = min
k,μ1,μ2

P(ωk )

h̄ωk

∣∣E ′
μ1

(ϕk ) − E ′
μ2

(ϕk )
∣∣2 . (47)

We note that since each photonic mode contributes to the
decoherence effect, the coherence time in Eq. (47) can be
considered as an upper bound.

B. Experimental verification

The decoherence effect discussed above provides a route to
verify the PRFT without measuring photon statistics, which
may be a challenging task. We explain our approach for the
two-mode Rabi model for illustration. The key idea is to
determine the decoherence effect by purity measurements of
the atomic system. For this, it is crucial to isolate the quantum-
optical decoherence from other decoherence sources. We
achieve this by varying the amplitudes of the coherent states
αk and the light-matter interactions g̃k such that the effective
parameters gk = g̃kαk remain constant. In doing so, the spin
system experience the same semiclassical driving fields [see
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Eq. (C5)] and, thus, is subject to the same decoherence sources
other than the quantum-optical decoherence. As for a coherent
driving field σk ∝ αk ∝ P(ωk )1/2, the quantum-optical deco-
herence dynamics can be accessed by measuring the purity
decay for various driving-field powers P(ωk ).

To get an estimate for the coherence time in the optical
regime, we evaluate Eq. (47) for the two-mode Rabi model,
where the photonic frequency is assumed to be ω = 400 THz.
The quasienergy difference in the denominator in Eq. (47) can
be approximated by a typical Rabi frequency of atomic sys-
tems �R = 40 MHz, generated by a laser with power P(ω) =
10 µW. For these parameters, the quantum-optical coherence
time is tc = 5 ms, which is comparable to the duration of
typical cold-atom experiments [108–110], but significantly
shorter than quantum information storage times achieved with
trapped ions [111].

We obtain the order of magnitude of the coherence time
for radio frequencies using the following parameters: ω =
10 MHz, �R = 10 kHz, and P(ω) = 10 W, which are typical
in current experiments [112]. In this regime, the quantum-
optical coherence time is very long (tc ≈ 3×1018 s). This
is a consequence of the high photon occupation of radio-
frequency modes for realistic experimental parameters. Thus,
in the radio-frequency regime, the electromagnetic field can
be considered as completely classical, and the decoherence
can be neglected.

C. Quantum memories and quantum operations

The quantum-optical decoherence in driven systems can
have a significant impact on the design of quantum memories
and quantum operations. To achieve long quantum infor-
mation storage times, sophisticated control protocols have
been developed, that typically involve time-periodic elec-
tromagnetic fields. Using dynamical decoupling, quantum
information could be conserved for more than six hours in
rare-earth atoms embedded in a crystal structure [112], and
more than 50 s in trapped ions [111]. In both cases, the
quantum information is stored in the hyperfine levels of the
ground-state manifold, which are energetically separated in
the radio-frequency regime.

Depending on the control protocol, the quantum-optical
coherence time in Eq. (46) influences the performance
of quantum memories. The quantitative considerations in
Sec. IV B suggest that driving protocols involving optical
frequencies should be avoided, while radio-frequency control
protocols are optimal. We note that quantum information stor-
age and retrieval protocols often employ optical frequencies
[113]. Even though the pulse duration in these cases may
be rather short, tp < 1 µs, an inappropriately adjusted pulse
sequence might lead to a degradation of the quantum infor-
mation via the quantum-optical decoherence effect. Similar
considerations also apply to other quantum operations based
on periodic driving, such as two-qubit gates. As quantum error
correction usually requires high fidelities >99% [114], even
a minor quantum-optical decoherence can have a significant
effect on quantum operations. Furthermore, inspection of the
coherence time in Eq. (47) reveals that the coherence time
can be enhanced by choosing control protocols for which the

difference of quasienergies are not sensitive to the driving
phases.

As the coherence time depends on the specific system, no
general statements can be made about how to eliminate the
quantum-optical decoherence effect. An alternate intriguing
approach to mitigate this decoherence would be to employ
quantum time crystals [23–25]. Discrete time crystals, that are
driven by an external driving field with period τ = 2π/ω, ex-
hibit subharmonic response with a frequency ω/n, where n >

1 is an integer. This intriguing subharmonic response arises
from the structure of the eigenspectrum, which is composed
of Floquet eigenstates that are separated by a quasienergy of
ω/n. Since time crystals are robust to generic perturbations,
the difference of quasienergies would have little dependence
on the driving phases, leading to stable quantum memories.

V. QUANTUM COMMUNICATION

The light-matter entanglement discussed in the previous
section can be employed in a quantum-communication pro-
tocol that is robust against photon loss. To this end, we
consider that Alice and Bob—the two participants in the
communication—successively carry out the light-matter en-
tanglement process described for the two-mode Rabi model
and postselect the measurement results. We now proceed to
explain how Greenberger-Horne-Zeilinger (GHZ) states can
be employed to speedup the light-matter entanglement gen-
eration, before delving into the details of the communication
protocol in Sec. V B.

A. Rapid generation of light-matter entanglement

Typically, the light-matter interaction between a single
atom and the light-field is relatively weak, which slows down
the generation of maximally entangled light-matter states as
depicted in Fig. 1(b). To enhance this effect, we again employ
the setup in Fig. 1(b), but with NA atoms. The corresponding
Hamiltonian reads as

H =
∑

j

hz

2
σ̂ ( j)

z + g̃
∑

j,k

σ̂
( j)
+ âk + σ̂

( j)
− â†

k +
∑

k

ωâ†
k âk, (48)

where the Pauli operators σ̂
( j)
z , σ̂

( j)
+ , σ̂

( j)
− act on the atoms

j = 1, . . . , NA. This is a rotating-wave approximation version
of the Hamiltonian in Eq. (39) with many two-level systems,
i.e., the Tavis-Cummings model, in which the many-body in-
teraction is mediated via the quantized electromagnetic field.
As in Sec. III B, we consider two photonic modes k = 1, 2,
which are initially in coherent states |αkeiϕk 〉.

The PRFT is a powerful tool to analyze this system when
the atom numbers are large and exact numerical calculations
are very expensive. Upon introducing the counting fields χ1

and χ2, the corresponding semiclassical Hamiltonian reads as

H(t ) =
NA∑
j=1

H( j)(t ),

H( j)(t ) = hz

2
σ ( j)

z +
2∑

k=1

σ
( j)
+ gke−iωt+iχk + H.c., (49)
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where H( j)(t ) denotes the semiclassical Hamiltonian of atom
j. The atoms are formally decoupled in the semiclassical
description, yet, the interaction is still implicitly encoded in
the counting fields. The quasienergy of the total system can
be written as the sum of the quasienergies of the individual
atoms

E (NA )
μ,χ =

NA∑
j=1

Eμ j ,χ, (50)

where Eμ j ,χ is the quasienergy of atom j in Floquet state μ j .
We have introduced the vector notation μ = (μ1, . . . , μNA ),
that contain the quantum numbers μ j of the NA atoms. The
corresponding Floquet states read as

|�μ,χ〉 =
⊗

j

∣∣u( j)
μ j ,χ

〉
, (51)

where |u( j)
μ j ,χ〉 denotes the Floquet state of atom j with quan-

tum number μ j .
To drastically enhance the number of photons transported

from mode k = 1 to k = 2 (or vice versa), we prepare the
system in either of the Floquet states characterized by the
NA-component quantum numbers μ(1) = (1, . . . , 1) or μ(2) =
(2, . . . , 2), i.e., the state in which all atoms j are in the same
Floquet state μ j = α ∈ {1, 2}. The quasienergy of the atom
ensemble in either of these states is then

Eμ(α),χ = NAEα,χ. (52)

According to Sec. II F, this leads to an enhancement of the
photon transport proportional to the atom number. To be
more specific, we choose hz = ω and the driving phases ϕ1 =
π/4, ϕ2 = −π/4. In this case, the Floquet states of the matter
system |uμ〉 for each atom are |u1〉 = |−〉 = (|0〉 − |1〉)/

√
2

and |u2〉 = |+〉 = (|0〉 + |1〉)/
√

2, and the Floquet states of
the atom ensemble in Eq. (51) are |�μ(1)〉 = | − · · · −〉 ≡ |−〉
and |�μ(2)〉 = | + · · · +〉 ≡ |+〉.

By constraining the system to the collective states |−〉 and
|+〉, we restrict the model to an effective two-level system
with a renormalized quasienergy, for which the findings in the
Jaynes-Cummings model in Appendix C 3 are valid. To create
light-matter entanglement in the basis |+〉 and |−〉, we use the
initial condition

|�(0)〉 = Û NA
H |GHZ〉, (53)

where |GHZ〉 is the celebrated GHZ state. This state is
defined by a superposition |GHZ〉 = (|0〉 + |1〉)/

√
2, where

|0〉 ≡ |0 . . . 0〉 and |1〉 ≡ |1 . . . 1〉. The Hadamard gate ÛH =
exp[−iπσ̂y/4] that locally rotates the state of each atom is
independently applied to all atoms. For later purpose, we
illustrate the light-matter entanglement generation in Fig. 6(a)
showing a superposition of states, where either driving field
is enhanced and the other is reduced. We emphasize that even
though we take the Tavis-Cummings model as an example,
this enhancement effect is valid for general Floquet systems
according to the PRFT.

B. Remote entanglement generation

The most crucial task of the quantum-communication pro-
tocol is the generation of remote entanglement between two

FIG. 6. Remote entanglement generation protocol. (a) Illus-
tration of the local light-matter entanglement process. After the
interaction of two coherent light fields at a GHZ state, the final state
is a superposition of states where either coherent field is enhanced
(thick arrow) while the other is reduced (thin arrow). (b) Entangle-
ment protocol outlined in Sec. V B. After light-matter entanglement
with Alice’s GHZ state, the light is transmitted to Bob, where it
interacts with Bob’s GHZ state. The dashed lines sketch the light
paths. After Bob’s light-matter entanglement, the coherent fields are
measured (gray half circles). A vanishing signal difference heralds
success of the protocol. The three insets show the photon distribu-
tions pn before and after Alice’s entanglement process, and after
Bob’s process. (c) Analysis of the which-path information. After
interaction with Bob’s GHZ state, the system is in a superposition of
four states. In two of which, the two output fields have changed their
amplitude, which reveals the path of quantum information and results
in failing of the protocol. In the other two states, the which-path
information remains hidden and results in success of the protocol.

atomic ensembles possessed by Alice and Bob. Quantum state
transfer can then be carried out via quantum teleportation
[107]. As schematically sketched in Fig. 6(b), this is achieved
by repeating the light-matter entanglement process using the
same driving fields. The three steps of the protocol are as
follows:

(1) State preparation. For an efficient light-matter entan-
glement generation, we assume that both Alice and Bob have
prepared a GHZ state such that the initial state |�AB(t0)〉 =
|GHZA〉 ⊗ |GHZB〉 is separable. Alice and Bob carry out local
Hadamard gates such that their states become

U NA
H,X |GHZ〉X = |−〉X + |+〉X , (54)

where X = A,B. The choice of the basis |−〉 and |+〉 is
thereby determined by the driving phases, which we assume
to be ϕ1 = −π/4 and ϕ2 = π/4.

(2) Light-matter interaction. Alice impinges two coherent
light beams onto her atom ensemble leading to the generation
of a light-matter entangled state according to the explanations
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in Secs. II F and III B,

(|−〉A|A−〉 + |+〉A|A+〉)(|−〉B + |+〉B), (55)

where |A+〉 (|A−〉) denotes a photonic state with enhanced
(diminished) amplitude. The output light fields are transmitted
to Bob, where they interact with Bob’s atom ensemble. The
resulting state can be written as

|−〉A|−〉B|A2−〉 + |+〉A|−〉B|A0〉
+|−〉A|+〉B|A0〉 + |+〉A|+〉B|A2+〉,

where the photonic states |A2−〉, |A0〉, |A2+〉 are close to co-
herent states with amplitudes smaller, comparable, and larger
compared to the initial coherent states. The change of ampli-
tude refers to mode k = 1, while mode k = 2 will conversely
have a larger, comparable or smaller amplitude. The photon
distribution of the modes at different stages of the protocol is
sketched in Fig. 6(b).

(3) Measurement and postselection. Bob makes a projec-
tive measurement defined by the operator |A0〉〈A0|. If the
measurement is successful, Alice and Bob carry out Hadmard
gates (and other local operations to correct for phases accumu-
lated during the light-matter interactions). Finally, Alice and
Bob hold a share of the entangled state

|0〉A|1〉B + |1〉A|0〉B (56)

in the basis of collective excitations |0〉X and |1〉X . The pro-
jective measurement can be implemented by measuring the
intensity difference of both output fields. If the difference
is close to zero, then the two atoms have been successfully
entangled. Otherwise, the process has failed and must be
repeated.

The working principle of the protocol is based on the
which-path information, that is illustrated in Fig. 6(c). After
interacting with Alice ensemble, either of the output fields will
be enhanced. This effect can be either repeated or reversed
after interaction with Bob’s ensemble. If the field k = 1 is two
times enhanced, the intensity measurement reveals that it is
in the photonic state |A2+〉. Consequently, Alice’s and Bob’s
ensemble both are in the state |+〉 and thus not entangled. A
similar reasoning applies to the state |A2−〉. If the effect is
reversed and the intensities of the output modes are equal,
the which-path information of the photonic fields remains
hidden, such that both ensembles preserve their uncertainty
and become entangled. From Fig. 6(c) we find that the success
probability is 50%. We note that the photon probability dis-
tribution of the coherent states decay exponentially from the
mean value such that the states |A2+〉, |A0〉, and |A2+〉 can be
distinguish with only a small error probability in the intensity
difference measurement.

C. Quantum state transfer rate

The major obstacle in quantum communication is pho-
ton loss. A typical damping rate of optical fibers is γ ≈
0.051 1/km, leading to a loss of more than 99% of pho-
tons after 100 km. This heavily limits the reach of quantum
state transfer protocols based on few photons. Current theo-
retical transfer protocols predict transmission rates of up to
1 Hz over 500 km [102]. These protocols typically employ

quantum repeaters strategically placed between the transmis-
sion endpoints.

The coherent-light protocol introduced in Sec. V B is
naturally robust against photon loss. The information of
Alice’s qubit is encoded as an enhanced or diminished light
amplitude during transmission [see inset in Fig. 6(b)]. When
a photon is lost, it is hardly possible to determine from which
transmission peak it originated. Still, while the which-path
information is preserved, photon loss has a detrimental
effect, as it leads to a broadening of the photonic probability
distribution. When the broadening exceeds the distance of the
two peaks, i.e., 〈�N̂1〉 ≈ �σ1 the quantum information is lost.

Along the same arguments for photon loss, the quantum
information is also robust against classical amplification. To
compensate the photon loss, we assume that it will be am-
plified with rate γAmp = γ , such the mean photon number
is conserved during transmission. Yet, the amplification will
lead to a broadening of the probability distributions. Model-
ing photon loss and amplification as independent Poissonian
processes with rate γ , the width of each peak increases by
�σ1 = √

2γ dPtp/(h̄ω), where P is the power of the trans-
mitted pulse, tp is the pulse duration, and d the transfer
distance. We recall from Sec. IV A that the separation between
the two peaks is given as 〈�N̂1〉 = |E ′

1,ϕ − E ′
0,ϕ|t . In atomic

systems, the quasienergy splitting can be associated with the
Rabi frequency �R. Using the GHZ amplification in Eq. (52),
the probability peaks are separated by 〈�N̂1〉 = NA�Rtp. The
quantum state transfer rate can be thus estimated as

f = 1/tp = SN2
A�2

Rh̄ω

2γ P

1

d
, (57)

where we introduced S ≡ σ/
√

n as the ratio of the photonic
distribution widths of a number-squeezed state σ and a coher-
ent state

√
n. For instance, we assume a photonic frequency

ω = 400 THz and a typical Rabi frequency of atomic systems
�R = 40 MHz, corresponding to a laser power P = 10 μW.
Recent experiments of the Lukin group have successfully cre-
ated GHZ states with NA = 12 Rydberg atoms [115]. When
assuming a coherent state with S = 1, the transfer rate is
122 Hz over 500 km, thus exceeding typical few-photon pro-
tocol by two orders of magnitude.

D. Discussion

Even though strongly idealized, the proposed protocol mer-
its a thorough discussion. As quantum information is often
stored in the ground-state manifold of atoms, that are coupled
via Raman transitions, a more realistic modeling in terms of
a three-or-more level system is required. We emphasize that
the proposed protocol is not restricted to the Tavis-Cummings
model used here for illustration, as the light-matter entangle-
ment is a generic effect appearing in all Floquet systems as
predicted by the PRFT.

There is a series of points that can be discussed inde-
pendent of the concrete physical implementation. Along with
future progress in quantum control, the suggested protocol has
enormous development potential:

(1) Atom number. The quantum state transfer rate in
Eq. (57) scales quadratically in the number of atoms NA. It has
been estimated that for fault-tolerant quantum computation
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NA = 1000 physical qubits in a highly entangled state are
required. This would increase the transfer rate by a factor of
104 compared to the estimate in Sec. V C.

(2) Transmission power. The transfer rate is inversely pro-
portional to the laser power P. When Alice deamplifies the
beam after interaction with her GHZ state prior to transmis-
sion by a factor of α, the transfer rate can be increased by
that factor α. Bob must amplify the received signal before
interaction with his GHZ state. Noiseless deamplification and
amplification can be implemented with additional atom en-
sembles, which are prepared in Floquet states as discussed in
Sec. II F and shown in Figs. 1(b) and 3(a). This might enhance
the transfer rate by an additional factor of α = 10.

(3) Number squeezing. According to Eq. (57), the transfer
frequency scales linearly with the number squeezing parame-
ter S . Moreover, a moderate S also minimizes the shot-noise
entanglement discussed in Sec. III A. We consider a number
squeezing of S = 0.1 for the following estimation.

Taking these points into account, the transfer rate will be on
the order of f ≈ 100MHz, and thus commercially relevant.
Compared to few-photon quantum protocols, the coherent-
state protocol comes with a serious of advantages:

(1) Distance dependence. The transfer rate scales inverse
proportional with the distance d . This is a more favorable
scaling than for few-photon protocols whose quantum state
transfer rate typically decrease exponentially due to intensive
postselection in quantum repeaters [102].

(2) Simple implementation. The implementation is based
on the light-matter entangling process. It does not require
sophisticated encoding and decoding schemes to protect the
quantum information that are experimentally and computa-
tionally challenging.

(3) On-demand light fields. Presently, the absence of on-
demand single photon sources pose a major challenge to
several quantum-communication protocols. This problem is
circumvented in the proposed protocol, as coherent pulses of
light can be easily produced and controlled.

(4) Photon detection. The efficiency of single-photon de-
tectors strongly influences the transfer rate of few-photon
protocols. As the success flag in the coherent-light proto-
col is determined by measuring the intensity difference [c.f.,
Fig. 6(b)], a standard photon multiplier will be sufficient.

Compared with few-photon quantum-communication pro-
tocols, the coherent-state entanglement protocol has two
major disadvantages, though these can be overcome:

(1) GHZ generation. To establish an efficient protocol,
Alice and Bob must generate high-fidelity GHZ states, that
might be technically challenging for large atom numbers.
However, quantum information will be always stored in an
encoded form. While the GHZ state is the basis of Shor’s
quantum repetition code [116], other quantum error correction
codes are based on graph states, that are generalizations of the
GHZ states [114]. Thus, the generation of GHZ states will
only lead to negligible overhead.

(2) Noise and decoherence. As the quantum information
is encoded in the photon number, the transmitted photonic
state will be sensitive to phase noise and decoherence related
to the operators â†

k âk for k = 1, 2. Fortunately, as the ratio
of �〈N̂k〉 and 〈N̂k〉 is on the order 10−5, the environment

can learn only little about the quantum state, such that the
which-path information is not leaked. To further enhance the
protection of the quantum information, dynamical decoupling
can be employed by periodically switching |−〉X ↔ |+〉X for
X = A, B, leading to a periodic variation of �〈N̂k〉.

The entanglement generation based on coherent light can
be interpreted as a physical encoding of the quantum informa-
tion, which is in contrast to the logical encoding of quantum
information typically deployed in quantum-communication
protocols [114]. Assuming a pulse length of tp = 20 ms, the
two peaks are separated by �〈N̂1〉 ≈ 107 photons, which cor-
responds to a Hamming distance of log2(�〈N̂1〉) ≈ 24 bits.
As the total number of photons is on the order of 〈N̂1〉 =
Pt/h̄ω ≈ 1012 corresponding to 40 qubits, the physical en-
coding presented here is thus comparable to a [[40, 1, 24]]
quantum error correction code.

VI. SUMMARY AND OUTLOOK

A. Summary

In this subsection, we compare the PRFT with other well-
established methods for analyzing light-matter systems. The
PRFT combines important features of established frame-
works, while avoiding their shortcomings:

Floquet theory. The PRFT introduces counting fields into
the semiclassical equation of the light-matter system to track
the quantum dynamics of the photonic driving field, thereby
making an important advancement to the framework of Flo-
quet theory. Crucially, the PRFT defines a quantum channel
for the dynamics of the driven matter system, that describes
the decoherence induced by the light-matter interaction in
the Floquet basis. This inherently quantum effect is com-
pletely neglected in the standard Floquet theory, which treats
the matter subsystem as an effectively closed quantum sys-
tem. We note that while this eventual decoherence may be
anticipated from other semi-classical techniques [53], a quan-
titative calculation is generally beyond the reach of these
methods. Our investigations clearly demonstrate that Floquet
theory suffers from fundamental limitations in describing
light-matter-coupled systems. The PRFT provides a semiclas-
sical approach to address these issues, and emphasizes the
need to carefully investigate the standard Floquet theory even
in parameter regimes, in which it has been thought to be valid.
The PRFT renders the Floquet theory as an open quantum
system framework, by providing a microscopic derivation of
the Kraus operators.

We emphasize that the PRFT has the same computational
complexity as the standard Floquet theory, since it requires the
integration of semiclassical equations. As a consequence, the
PRFT has significant computational advantages over Sambe
space methods that investigate photonic dynamics by effec-
tively requantizing the semiclassical driving field [94–96].
Finally, we note that, unlike other approaches, the PRFT
can distinguish between modes with commensurate frequen-
cies, thereby extending its reach over a wide class of driven
systems. The phase representation approach in Ref. [53] de-
rives photonic observables by formally considering the photon
phase as a dynamical variable. However, this approach be-
comes problematic when specifying to coherent photonic
states, for which the phase has been considered as static
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leading to unphysical prediction such as diverging higher-
order moments and cumulants. For this reason, the method
in Ref. [53] comes short to describe the light-matter entangle-
ment, which takes a prominent role within the PRFT.

Quantum optics. An extremely appealing feature of the
PRFT is that it makes accurate predictions about photonic
observables, even though it only relies on semiclassical equa-
tions. Our framework thus provides a drastic computational
advantage over established methods in quantum optics. In
particular, we note that while it is extremely difficult to numer-
ically investigate systems with more than two photon modes
using traditional methods such as phase-space frameworks
[55,117,118], the numerical effort is independent of the mode
number in the PRFT. Intriguingly, the PRFT predicts the gen-
eration of light-matter entangled states in general multimode
driven systems, which is essentially infeasible to describe with
standard quantum optical methods. This entanglement effect
is a fundamental consequence of the photon transport between
different modes, which is controlled by the matter quantum
system. It is thus distinct from the entanglement resulting
from the photon-number uncertainty (i.e., the shot-noise) of
a single mode in a coherent state [97–101]. Our analysis has
shown that the transport induced entanglement has a profound
impact on the photon dynamics in contrast to the more well-
studied shot-noise induced entanglement. Furthermore, the
PRFT is nonperturbative in nature, and thus capable of mak-
ing predictions beyond methods from nonlinear spectroscopy
[119].

Before proceeding further, we note that there are several
straightforward applications of the PRFT that could not be
addressed in this work. For instance, in the benchmarking of
the quantum Rabi model, it has been assumed that the photon
field is switched on in a quantum quench. A more realistic sit-
uation is a smooth switching of the photon density, that could
be modeled as a coherent superpostion in continuum mode
photon field, or by a time-dependent light-matter coupling
g̃(t ). In all of these cases, the overall framework remains valid.

Full-counting statistics. The PRFT provides a stochastic
description of photonic fields in terms of probabilities, mo-
ments, and cumulants in a manner analogous to the standard
FCS [69,120]. The standard FCS is based on two-point pro-
jective measurements, and can describe spontaneous photon
emission [66–68]. However, the coherences in the photon
number basis are formally destroyed in this method, thereby
leading to wrong predictions for photon modes in coher-
ent states. In contrast, the photon counting statistics in the
PRFT is obtained by two-point tomographic measurements,
that are compatible with coherent states. The formalism pro-
vides an exact expression for the change of the dynamical
moment- and cumulant-generating functions, that describe the
change in the photonic statistics of the photon modes. Finally,
the quasiprobabilities capture the redistribution of the initial
probability distribution and therefore describe the photonic
dynamics.

B. Discussion and outlook

The PRFT has far-reaching implications for quantum sci-
ence and technologies. In particular, the quantum optical
decoherence predicted by the PRFT has serious consequences
for quantum memories and quantum operations.

Quantum memories often use sophisticated Floquet con-
trol protocols, where the control fields can unintentionally
induce quantum-optical decoherence. In the optical-frequency
regime, the quantum-optical coherence time predicted by the
PRFT is reasonably short (≈ms), which is orders of mag-
nitude smaller than the targeted storage time of quantum
information. This analysis suggests that optical frequencies
should be avoided in quantum memories and quantum oper-
ations, as even a small decoherence is detrimental to maintain
the high fidelity required for quantum error correction. More-
over, we have argued that quantum time crystals are ideal
candidates for quantum memories. Finally, we have employed
the PRFT to propose a quantum-communication protocol that
is robust against photon loss. Our proposal employs coherent
photonic states instead of single photons to establish remote
entanglement. The robustness of this protocol originates from
the fact that the width of the photonic probability distribution
increases only with the square root of the number of lost
photons. Consequently, the quantum state transfer rate scales
inversely with distance, thereby outperforming few-photon
protocols based on quantum repeaters, that typically decay
exponentially with distance. We plan to investigate detailed
implementations of this protocol in future work.

The PRFT developed in this paper can potentially have
a significant impact on various research directions. Some
promising applications include thermodynamics [121], heat
engines [88,122,123], and quantum phase transitions in in-
teracting spin chains in a cavity [124–126], and control of
many-body localization [127,128] in the presence of external
driving. Thereby, the PRFT has a significant computational
advantage over quantum optical methods, where accurate nu-
merical calculations are extremely challenging in this regime.
An extension to open quantum systems can also clarify the
compatibility with the standard FCS. We further speculate
that a suitable development of the PRFT will have important
implications in spectroscopy and metrology. The PRFT can be
applied in the analysis of highly occupied Fock-state lattices,
which have been shown to exhibit an intriguing collapse and
revival dynamics [129]. Methods developed for noise suppres-
sion in electron transport can be also combined with the PRFT
to control the photonic counting statistics [130].
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APPENDIX A: PHOTON-RESOLVED FLOQUET THEORY:
DERIVATIONS

In this Appendix, we study the PRFT in more details. In the
following derivations, we focus on the special case of a single
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counting field to enhance the readability. The generalization
to multimode photon fields works along the same lines.

1. Unraveling of the quantum dynamics

To reveal the quantum properties of the Floquet theory, we
start from the underlying quantum Hamiltonian in Eq. (1) with
a single photonic mode k = 1. We unravel the corresponding
time-evolution operator in a perturbation picture defined by
HS = H0 + ωâ†â. In doing so, we find

U (t ) = e−iHQt

=
∞∑

n=0

∫ t

0
dtn · · ·

∫ t2

0
dt1Ũ

(n)(t ), (A1)

where we have defined the perturbation-resolved propagation
operator

Ũ (n)(t ) = e−iHS(t−tn ) · · · e−iHS(t2−t1 )H1(â† + â)e−iHSt1 , (A2)

in which the term H1(â† + â) appears n times. Next, we in-
troduce the counting field χ into the expansion in Eq. (A1)
by replacing â → âeiχ and â† → â†e−iχ . This generalizes
the time-evolution operator U (t ) → Uχ (t ), which can be for-
mally written as

Uχ (t ) = e−iχN̂U (t )eiχN̂ . (A3)

We can expand the generalized time-evolution operator as

Uχ (t ) =
∞∑

m=−∞
U (m)(t )e−iχm, (A4)

where the photon-resolved time-evolution operators U (m) con-
tain all terms in which the difference of the number of creators
mC and the number of annihilators mA is m = mC − mA. Each
U (m)(t ) can be thus represented as a polynomial of â and â†.
The nonunitary U (m) can be obtained from Uχ (t ) by perform-
ing a Fourier transformation with respect to χ , i.e.,

U (m)(t ) = 1

2π

∫ 2π

0
dχUχ (t )eimχ . (A5)

Using these photon-resolved time-evolution operators, we can
express expectation values of arbitrary observables Ô (can be
either matter-like, photonic, or mixed observables) as

〈ψ (t )|Ô|ψ (t )〉 =
∑

m1,m2

〈ψ (t0)|U (m1 )†(t )ÔU (m2 )(t )|ψ (t0)〉.
(A6)

We assume a product state as initial state

|ψ (t0)〉 = |φ(t0)〉 ⊗
∞∑

n=0

an|n〉, (A7)

where the expansion coefficients an shall fulfill the conditions
(i) and (ii) explained later in Appendix A 5. For illustration,
we consider the projector onto a particular Fock state

P̂n = |n〉〈n|, (A8)

but more complicated operators can be treated accordingly.
For this specific operator, the expectation value can be written

in terms of the photon-resolved time-evolution operators as

〈P̂n〉 ≡ 〈ψ (t )|P̂n|ψ (t )〉
=

∑
m1,m2

〈[U (m1 )†(t )]n−m1,n[U (m2 )(t )]n,n−m2〉t0 a∗
n−m1

an−m2 ,

(A9)

where we have defined the photon-resolved propagation ma-
trices by

[U (m)†(t )]n1,n2 ≡ 〈n1|U (m)†|n2〉, (A10)

which act on the states in the matter system. The expectation
value in Eq. (A9) is taken with respect to the matter initial
state |φ(t0)〉.

2. Transition to the photon-resolved Floquet theory

The derivations in Appendix A 1 have been carried out in
the Fock space. The connection of the photon-resolved quan-
tum time evolution and the PRFT is established via Eq. (A4).
We recall that Uχ (t ) can be represented as a polynomial of â†

and â operators. As in the standard semiclassical approxima-
tion, we now replace

eiωâ†ât âe−iωâ†ât → αe−iωt+iϕ, (A11)

where α � 1 and ϕ are the amplitude and the phase of the
photon field. We denote the resulting operator as Uχ (t ), which
acts on the matter system. The transition to the PRFT is
readily done by realizing that

Uχ (t ) = T e−i
∫ t

0 Hχ (t ′ )dt ′
, (A12)

where T is the time-ordering operator and the generalized
time-periodic Hamiltonian on the right-hand side is defined
as

Hχ (t ) = H0 + g̃H1α(eiωt−iχ + e−iωt+iχ ). (A13)

The calculation of Uχ (t ) can be thus performed by analyti-
cally or numerically solving the time-dependent Schrödinger
equation with Hχ (t ) for all χ ∈ [0, 2π ). The final step in the
transition is done by evaluating

U (m)(t ) = 1

2π

∫ 2π

0
dχ Uχ (t )eimχ (A14)

and replacing

[U (m)†(t )]n1,n2 → U (m)(t ) (A15)

in Eq. (A9). This replacement is well justified as the matrix
elements of the terms such as â

†nâm depend only weakly on
the photon number for large n1, n2. The expectation value of
P̂n in the PRFT thus reads as

〈P̂n〉 =
∑

m1,m2

〈U (m1 )†(t )U (m2 )(t )〉t0 a∗
n−m1

an−m2 , (A16)

where the expectation value is taken in the matter initial state.

3. Full-counting statistics

In the following, we derive the dynamical cumulant-
generating function of the photon field given in Eq. (14). As
the physical background and interpretation has been already
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explained in Sec. II, we focus here on the merely technical
details. For simplicity, we count only the photons in mode
k = 1. Nevertheless, we still implicitly allow for other photon
modes, which are not explicitly counted. In this case, the
cumulant- and moment-generating functions are given as

Kχ (t ) = log[Mχ (t )], Mχ (t ) = 〈e−iχN̂ 〉t , (A17)

where the time evolution is calculated with the full quantum
Hamiltonian in Eq. (3). The moment-generating function in
Eq. (A17) can be rewritten as

Mχ (t ) = 1
2 〈U †(t )Uχ (t )e−iχN̂ + e−iχN̂U †

−χ (t )U (t )〉t0 , (A18)

where Uχ (t ) is the generalized time-evolution operator in
Eq. (A3). Here, the moment-generating function is presented
in a symmetric way. At this stage, an unsymmetrical rep-
resentation would be also correct, however, this will get

problematic when taking the semiclassical limit later. In doing
so, we make sure that the essential transformation property
M∗

χ (t ) = M−χ (t ) is maintained in the semiclassical limit,
which guarantees that all moments and cumulants are real
valued.

We assume that the initial state is separable

|�(t )〉 = |φ(t0)〉 ⊗ |A(t0)〉, (A19)

where |φ(t0)〉 is the initial state of the matter system. We can
expand the initial state of the light field in the Fock basis

|A(t0)〉 =
∑

n

an|n〉. (A20)

Using now the photon-resolved time-evolution operator in
Eq. (A5), we can expand Eq. (A18) in terms of photon pro-
cesses such that

Mχ (t ) ≡ 1

2

∑
n,m1,m2

〈φ(t0)|U (m1 )†(t )e−iχm2U (m2 )(t )e−iχ (n−m2 )|φ(t0)〉a∗
n−m1

an−m2 + (c.c., χ → −χ )

≡ 1

2

∑
m1,m2,n

〈φ(t0)|U (m1 )†(t )e−iχm2U (m2 )(t )|φ(t0)〉a∗
n−m1+m2

ane−iχn + (c.c., χ → −χ ). (A21)

In this expression, we have already carried out the semiclassical replacement of the photon-resolved time-evolution operators
introduced in Eq. (A15). The validity of this replacement will be analyzed in Appendix A 5. To make progress, we apply a
Fourier transform to the photonic expansion coefficients

an = 1

2π

∫ 2π

0
dϕ aϕein·ϕ. (A22)

Moreover, using the representation of the photon-resolved time-evolution operators in Eq. (A14), the moment-generating
function reads as

Mχ (t ) = 1

2(2π )4

∫
dχ1dχ2dϕ1dϕ2

∑
m1,m2,n

〈φ(t0)|e−im1χ1U†
χ1

(t )Uχ2 (t )eim2(χ2−χ )|φ(t0)〉

× e−i(n−m1+m2 )ϕ1 a∗
ϕ1

aϕ2 einϕ2 e−iχn + (c.c., χ → −χ ).

= 1

2(2π )4

∫
dχ1dχ2dϕ1dϕ2

∑
m1,m2,n

〈φ(t0)|eim1(ϕ1−χ1 )U†
χ1

(t )Uχ2 (t )eim2(χ2−χ−ϕ1 )|φ(t0)〉

× a∗
ϕ1

aϕ2 ein(−χ−ϕ1+ϕ2 ) + (c.c., χ → −χ ).

= 1

2(2π )2

∫
dϕ1dϕ2

∑
n

〈φ(t0)|U†
ϕ1

(t )Uϕ1+χ (t )|φ(t0)〉a∗
ϕ1

aϕ2 ein(−χ−ϕ1+ϕ2 ) + (c.c., χ → −χ ). (A23)

Albeit general, Eq. (A23) is inconvenient to evaluate both
analytically and numerically. Motivated by the abundant use
of lasers and other coherent electromagnetic fields in experi-
ments, we focus in the following on Gaussian photonic states,
for which the expansion coefficients are given by

an = 1

(2π )
1
4
√

σ
e− 1

4σ2 (n−n)2

eiϕn, (A24)

where n is considered as a continuous variable, n � 1 and
σ denote the mean photon number and width, respectively,
and ϕ is the phase. For σ 2 = n, the state is a coherent state,
while for σ 2 < n (σ 2 > n) it is denoted as a number-squeezed
(phase-squeezed) state. More general photonic states, such as

multimode squeezed states and light-matter entangled states
will be discussed in Appendix A 6. Expressed as a function of
phase, the coefficients in Eq. (A22) read as

aϕ1 = 2π
√

2σ

(2π )
3
4

e−(ϕ1−ϕ)σ 2(ϕ1−ϕ)ei(ϕ1−ϕ)n. (A25)

For large σ the coefficients aϕ1 quickly decay with |ϕ1 − ϕ|,
such that it is justified to expand the expectation value in
Eq. (A23) in a Taylor series as

Ft,χ (ϕ1) ≡ 〈φ|U†
ϕ1

(t )Uϕ1+χ (t )|φ〉
= Ft,χ (ϕ) + ∂ϕFt,χ (ϕ) · (ϕ1 − ϕ)

+ 1
2∂2

ϕFt,χ (ϕ)(ϕ1 − ϕ)2 + O[(ϕ1 − ϕ)3]. (A26)
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Accordingly, we can expand the moment-generating function
as

2Mχ (t ) = M (0)
χ (t ) + M (1)

χ (t ) + M (2)
χ (t ) + · · ·

+ (c.c., χ → −χ ). (A27)

For the first term, evaluation of the Gaussian integral gives

M (0)
χ (t ) =

∑
n

∫
dϕ1dϕ2Ft,χ (ϕ)

× 2σ

(2π )
3
2

∏
j=1,2

e−ϕ jσ
2ϕ j e(−1) j iϕ j (n−n)e−inχ

= Ft,χ (ϕ)
∑

n

a∗
nane−inχ

= Ft,χ (ϕ)Mχ (t0), (A28)

where in the last equality we have identified the moment-
generating function at time t0, i.e., Mχ (t0) = ∑

n a∗
nane−inχ .

Evaluating the Gaussian integrals of the second and third
terms in Eq. (A27), we obtain

M (1)
χ (t ) =

∑
n

∫
dϕ1dϕ2(∂ϕFt,χ )ϕ1

× 2σ

(2π )
3
2

∏
j=1,2

e−ϕ jσ
2ϕ j ei(−1) jϕ j (n−n)e−inχ

=
∑

n

∫
dϕ1dϕ2(∂ϕFt,χ )

2σ 2

2π
ϕ1

×
∏
j=1,2

e−[ϕ j+i(n−n) 1
2σ2 ]σ 2[ϕ j+i 1

2σ2 (n−n)]

×a∗
nane−inχ

=
∑

n

(∂ϕFt,χ )σ−2i(n − n) · a∗
nane−inχ , (A29)

and

M (2)
χ (t ) =

∑
n

∫
dϕ1dϕ2

(
∂2
ϕFt,χ

)
ϕ2

1

× 2σ

(2π )
3
2

∏
j=1,2

e−ϕ jσ
2ϕ j ei(−1) jϕ j (n−n)e−inχ

=
∑

n

(
∂2
ϕFt,χ

)
σ−4(n − n)2a∗

nane−inχ

+
∑

n

(
∂2
ϕFt,χ

)
σ−2a∗

nane−inχ , (A30)

respectively.
As explained in the error analysis in Appendix A 5,

the terms M (1)
χ , M (2)

χ and higher order terms do not pro-
duce leading-order contributions to the moment-generating
function for large n and σ with n � σ . Thus, the moment-
generating function is mainly determined by M (0)

χ in Eq. (A28)
and reads as

Mχ (t ) = Mdy,χ (t )Mχ (t0) + F
[
σ

n
,

gt

n
,

gt

σ 2

]
, (A31)

where we have defined the dynamical moment-generating
function by

Mdy,χ (t ) ≡ 1
2 〈U†

ϕ (t )Uϕ+χ (t ) + U†
ϕ−χ (t )Uϕ (t )〉t0 , (A32)

and F[x] denotes an appropriate scaling function. Impor-
tantly, in this form, the moment-generating function fulfills
the correct transformation properties under inversion of the
counting field χ → −χ . A nonsymmetric representation, e.g.,
when only taking the first term in Eq. (A31), does violate
this basic property. Using the relation Kχ (t ) = log Mχ (t ), and
recalling the definition of the dynamical cumulant-generation
function in Eq. (13),

Kχ (t ) ≡ Kdy(χ, t ) + Kχ (t0), (A33)

we find that Kdy(χ, t ) = log Mdy,χ (t ), which is the expression
given in Eq. (14) after generalization to multiple counting
fields.

4. Periodically driven systems

The PRFT makes intriguing predictions for the important
class of periodically driven systems. According to Floquet
theory, the time-evolution operator can be written as

Uχ (t ) =
∑

μ

e−iEμ,χ (t−t0 )|uμ,χ (t )〉〈uμ,χ (t0)|, (A34)

where Eμ,χ are the quasienergies and |uμ,χ (t )〉 = |uμ,χ (t +
τ )〉 are the time-periodic Floquet states. Both depend on
the counting field. Consequently, the probability operator in
Eq. (21) can be expressed as

P̂n(t ) =
∑

m,μ,m1,μ1

q̃m|μQ̂μ1,μ
m1

(t )ei(Eμ1 ,ϕ−Eμ,ϕ )(t−t0 ) pn−m−m1 (t0)

+ H.c., (A35)

where

q̃m|μ = 1

4π

∫ 2π

0
ei(Eμ,ϕ−Eμ,ϕ+χ )(t−t0 )eimχ dχ (A36)

describes the stroboscopic dynamics of the system, and

Q̂μ1,μ
m1

= |uμ1,ϕ (t0)〉〈uμ1,ϕ (t )|

× 1

2π

∫ 2π

0
|uμ,χ (t )〉〈uμ,χ (t0)|eim1χdχ

contains the information about the so-called micromotion.
The later has the property

∞∑
m1=−∞

Q̂μ1,μ
m1

= δμ1,μ|uμ1,ϕ (t0)〉〈uμ1,ϕ (t0)|, (A37)

which will become important later.
Equation (A35) is too complicated to allow for a clear

physical picture and requires simplification. We observe that
Q̂μ1,μ

m1
is constructed via a Fourier analysis of the opera-

tor |uμ,χ (t )〉〈uμ,χ (t0)|. Under physical reasonable conditions,
the Fourier components are physically restricted by finite
mmin � m1 � mmax. Thus, when the initial probability distri-
bution varies only slowly with photon number, we can replace
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pn−m−m1 (t0) → pn−m(t0) in agreement with the explanations
in Appendix A 5 below. Consequently, Eq. (A35) simplifies to

P̂n(t ) =
∑

μ

pn|μ(t ) |uμ,ϕ (t0)〉〈uμ,ϕ (t0)| (A38)

pn|μ(t ) =
∑

m

qm|μ pn−m(t0)

qm|μ = 1

4π

∫ 2π

0
ei(Eμ,ϕ−Eμ,ϕ+χ )(t−t0 )eimχ dχ + c.c, (A39)

which shows that the photon redistribution is mainly deter-
mined by the quasienergies. Moreover, the state of the total
system in Eq. (24) can be specified as

|�(t )〉 =
∑

μ

cμe−iEμ,ϕ (t−t0 )|uμ,ϕ (t )〉 ⊗ |Aμ(t )〉, (A40)

where we have identified the Floquet-state conditioned pho-
tonic states as

|Aμ(t )〉 =
∑

n

√
pn|μe−i(ωt−ϕ)|n〉. (A41)

To bring the total system state in this form, we took advantage
of Baye’s theorem pμ|n pn = pn|μ pμ.

5. Error analysis

Here we analyze the error of the semiclassical moment-
generating function in Eq. (A31). To allow for a quantitative
statement about the error, we consider the generic photonic
state in Eq. (36). To simplify the notation, we consider here a
single photon mode, while the generalization to a multimode
system works along the same lines.

Informally speaking, the derivations in the PRFT make the
following assumptions for the expansion coefficients a(k)

m in
the Fock basis of the photonic initial states

∑
m a(k)

m |m〉k: The
amplitudes |a(k)

m | vary slowly with the photon number m. The
phases are well defined in the sense that arg a(k)

m = ϕkm with
constant ϕk . These assumptions are naturally fulfilled for the
coherent state in Eq. (2) when αk is large, such that |a(k)

m |2
obeys the Poisson distribution.

To quantify the error, we have to investigate two approx-
imations: (i) the semiclassical replacement of the photon-
resolved time-evolution operators in Eq. (A21); (ii) the
higher-order contributions M (l�1)

χ in Eq. (A27).
(i) Semiclassical replacement. In the semiclassical replace-

ment in Eq. (A21), we have assumed that the matrix elements
of the photonic operator a†

C(n) = 〈n + 1|â†|n〉 = √
n + 1 (A42)

are independent of the photon number during the time evo-
lution. To estimate the validity of this approximation, we
consider the ratio of matrix elements for the photon numbers
n = N and n = N + κdy,1t + σ , where κdy,1t describes the
change of the mean photon number and σ is the initial photon
number standard deviation. As the ratio scales as

C(n + κdy,1t + σ )

C(n)
= 1 + κdy,1(t )

n
+ σ

n
+ O

(
1

n2

)
, (A43)

the semiclassical replacement is correct as long as the ratio
κdy,1t/n is small. As κdy,1(t ) is of the order of light-matter

interaction times time, we conclude that the semiclassical
approximation gives an error of the order gt/n as indicated
in Eq. (A31). Moreover, the standard deviation σ is required
to be small compared to the mean photon number n to ensure
the photon number independence of the matrix elements. This
analysis thus justifies the first and second error scalings in
Eq. (A31).

(ii) Expansion contributions. Here, we examine the mag-
nitude of the term M (1)

χ , which contributes the lowest-order
correction to the semiclassical moment-generating function in
Eq. (A31). The analysis of the terms M (l>1)

χ works along the
same lines and gives the same estimate. Transforming the sum
over the photon number n into an integral, we find

M (1)
χ (t ) →

∫
dn(∂ϕFt,χ )

in

σ 2

1

σ
√

2π
· e− n2

2σ2 e−i(n+n)χ

= (∂ϕFt,χ )e− σ2χ2

2 e−inχσ−2i(−iσ 2χ ). (A44)

To make progress, we represent the auxiliary function Ft,χ

defined in Eq. (A26) as an exponential

Ft,χ (ϕ) = ei ft,χ (ϕ). (A45)

In doing so, the first-order correction of the moment-
generating function can be written as

M (1)
χ (t ) = ∂ϕe−i[n− f ′

t (ϕ)]χ−[ σ2

2 −i f ′′
t (ϕ)]χ2+O(χ3 )χ, (A46)

where f ′
t (ϕ) and f ′′

t (ϕ) denote the first and second derivatives
of ft,χ (ϕ) with respect to the counting field at χ = 0. Using
Eqs. (A44) and (A45), we can evaluate the contribution of
M (1)

χ to the probability distribution to be

p(1)
n = 1

2π

∫
dχ

[
M (1)

χ (t ) + M (1)∗
−χ (t )

]
eiχn

= ∂ϕ

i√
2

n − n + f ′
t (ϕ)

σ 2/2 − i f ′′
t (ϕ)

e
− (n−n+ f ′t )2

σ2/2−i f ′′t (ϕ)

√
2π

√
σ 2/2 − i f ′′

t (ϕ)
+ c.c.

+O
(

1

σ 4

)
. (A47)

The terms O(χ3) in the exponent in Eq. (A46) generate terms
of order O( 1

σ 4 ). Inspection of the probabilities p(1)
n reveals that

they are small if σ 2 � f ′
t (ϕ) and σ 2 � f ′′

t (ϕ)t . Both f ′
t (ϕ)

and f ′′
t (ϕ) are defined via the logarithm of Ft,χ (ϕ), which is

defined in Eq. (A26). As the time-evolution operators are an
exponential of the Hamiltonian, we conclude that both f ′

t (ϕ)
and f ′′

t (ϕ) scale with the product of the light-matter coupling
g and time t . Consequently, we can estimate that the error
magnitude scales as p(l=1)

n = O( gt
σ 2 ). Carrying out a similar

analysis for M (l>1)
χ , we find the same error scaling, such that

we can conclude

p(l�1)
n = F

(
gt

σ 2

)
, (A48)

i.e., all terms l � 1 can be neglected in the large σ limit.
As the moment-generating function can be expressed as the
Fourier transformation of the probabilities, we arrive at the
third error scaling given in Eq. (A31).
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6. Generalizations

The expression of the moment-generating function in
Eq. (A31) can be generalized to more general initial states
along the same lines as in Appendix A 3. As the notation is
tedious, we state only the final result here.

We consider a generic light-matter initial state of the form

|�(t0)〉 =
∑

λ

cλ|φλ(t0)〉 ⊗ |Aλ(t0)〉, (A49)

where we make no further assumption about the matter initial
state |φλ(t0)〉. The cλ are expansion coefficients. In contrast to
the initial state in Eq. (A19) considered before, we here allow
for an entangled initial state. The photonic states are Gaussian
states and parameterized as

|Aλ(t0)〉 =
∑

n

aλ,n|n〉, (A50)

where the expansion coefficients in the Fock basis |n〉 can be
written as

aλ,n = 1

(2π )
NR
4
√

det �λ

e− 1
4 (n−nλ )�−2

λ
(n−nλ )T

eiϕλ·n. (A51)

Thereby, nλ = (nλ,1, . . . , nλ,R) is the vector of the initial mean
photon numbers, �λ is a Hermitian matrix describing the
corresponding standard deviation, and ϕλ = (ϕλ,1, . . . , ϕλ,R)
denotes the phases of the R photon modes. This parametriza-
tion covers coherent photonic states, number-squeezed pho-
tonic states, phase-squeezed photonic states, and multimode
entangled photonic states. A suitable linear combination of
the Gaussian states also allows for the description of Fock
states. However, this would be numerically very expensive
and eradicate the simplicity of the PRFT.

Generalizing the derivations in Appendix A 3 with regard
to the initial state in Eq. (A49), we finally arrive at the generic
moment-generating function

Mχ(t ) = 1

2

∑
λ1,λ2

[〈
φλ1 (t0)

∣∣U†
ϕλ1

(t )Uϕλ1
+χ(t )

∣∣φλ2 (t0)
〉

+ 〈
φλ1 (t0)

∣∣U†
ϕλ2

−χ(t )Uϕλ2
(t )

∣∣φλ2 (t0)
〉]

Mλ1,λ2
χ (t0).

+F
[{

1

σ 2
λ,k

,
σλ,k

nλ,k
,

gλ,k · t

nλ,k

}
λ,k

]
, (A52)

where the initial moment-generating function is given by

Mλ1,λ2
χ (t0) =

∑
n

a∗
λ1,naλ2,neiχ·n. (A53)

The consequences of the initial light-matter entanglement in
Eq. (A49) may lead to new dynamical effects, whose analysis
would exceed the scope of this paper.

7. Standard classical derivation

Here, we show that the cumulant-generating function in
Eq. (13) reproduces the standard semiclassical definition of
the energy current as considered in, e.g., Refs. [94,95]. We
first consider the cases of a single driving mode. Using
the definition of the first dynamical cumulant in Eq. (12),

we find

κdy,1(t ) = �〈N̂ (t )〉t0

= −i

2

〈
U†

ϕ (t )
d

dχ
Uϕ+χ (t )

〉
t0

∣∣∣∣
χ→0

+ c.c. (A54)

To evaluate the derivative, we use the identity

Uχ (t ) = Uχ (t, t0) = U0(t − χ/ω, t0 − χ/ω), (A55)

from which we can easily show that

i
d

dχ
Uχ (t ) = 1

ω
[H(t )Uχ (t ) − Uχ (t )H(t0)]. (A56)

Consequently,

ωκdy,1(t ) = 〈H(t )〉t − 〈H(t0)〉t0 . (A57)

Deriving with respect to time, we readily find the energy
current from the matter system to the photon mode

ω
d

dt
κ dy,1(t ) =

〈
d

dt
H(t )

〉
t0

≡ I (t ), (A58)

which is the expression of the semiclassical energy current
commonly used in the literature.

The generalization of Eq. (A58) to multiple modes can be
easily performed by requantizing the photon modes, which
are not counted: Assuming we are interested in the counting
statistics of mode k, we only quantize the modes k′ �= k in the
semiclassical Hamiltonian in Eq. (3), such that

H(t ) = Hk (t ) + H0 +
∑

k′
g̃Hk′ (âk′ + â†

k′ ), (A59)

where Hk (t ) = gHk cos(ωkt + ϕk ). This is just the Hamil-
tonian in Eq. (3) with a complicated H0 and a single
semiclassical photon mode. Using the same reasoning as be-
fore, we can directly conclude that the photon flux into mode
k is given as

Ik (t ) ≡ d

dt
ωk〈�N̂k〉 =

〈
d

dt
Hk (t )

〉
. (A60)

This implies that the photon-number change in mode k is
captured by the operator

�N̂k =
∫ t

t0

[
d

dt
Hk (t )

]
dt, (A61)

which is thus an operator in space and time. Clearly, an anal-
ysis of the transport dynamics in terms of �N̂k does not offer
the convenience of the PRFT.

APPENDIX B: STANDARD FULL-COUNTING STATISTICS

Here we review the derivation of the standard FCS
[69,120]. We assume that the system is described by Hamil-
tonian HQ in Eq. (1). We want to count the change of photons
in photonic mode â between times t0 and t1. The system is as-
sumed to be initially in state ρ(t0). The photon number change
shall be determined by two-point projective measurements as
sketched in Fig. 1(a).
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At time t0, we perform a projective measurement defined
by the projector P̂n0 = |n0〉〈n0|, where |n0〉 denote the Fock
states of â, to determine the initial photon number n0. The
resulting density operator of the light-matter system is given
as

ρpr(t0) =
∑

n0

P̂n0ρ(t0)P̂n0 =
∑

n0

pn0 (t0)ρpr,n0 , (B1)

where pn0 (t0) denotes the probabilities to find n0 photons. The
density matrix ρpr,n0 is the system state conditioned on the
measurement outcome n0.

We define pn|n0 (t1) as the probability distribution to mea-
sure n photons by a projective measurement at time t1, given
that there have been n0 photons at time t0. This conditional
probability distribution can be formally written as

pn|n0 (t ) = Tr

[
ρpr,n0 (t )

∑
m

δn,mP̂m

]

= Tr

[
ρpr,n0 (t )

1

2π

∫ π

−π

dχe−iχn
∑

m

eiχmP̂m

]

= 1

2π

∫ π

−π

dχe−iχnTr
[
ρpr,n0 (t )eiχN̂

]
, (B2)

where N̂ = â†â. The time-evolved density matrix is given
as ρpr,n0 (t ) = Û (t )ρpr,n0Û

†(t ). For the density matrix condi-
tioned on the first projective measurement, we can replace

ρpr,n0 = ρpr,n0 eiχ n̂0 e−iχN̂ . (B3)

We note that this step is the reason why we have applied a
projective measurement at time t0. In doing so, the conditional

probability distribution can be written as

pn|n0 =
∫ π

−π

dχ

2π
eiχ (n−n0 )Tr[Ûρpr,n0 e−iχN̂Û †eiχN̂ ].

We are interested in the probability distribution of the pho-
ton number change �n = n − n0, that we denote as p�n.
This distribution is the average of the conditional probabil-
ity distribution pn0+�n|n0 weighted by the initial probability
distribution, i.e.,

p�n ≡
∑

n0

pn0+�n|n0 (t )pn0 (t0)

= 1

2π

∫ π

−π

dχeiχ�nTr
[
Û (t )ρpr(t0)e−iχN̂Û †(t )eiχN̂

]
= 1

2π

∫ π

−π

dχeiχ�nM (pr)
dy,χ

(t ). (B4)

In the last step, we have introduced the dynamical moment-
generating function of the two-point projective measurement,
that can be alternatively expressed as

M (pr)
dy,χ

(t ) = Tr[Ûχ/2(t )ρpr(t0)Û †
−χ/2(t )] (B5)

in terms of the generalized time-evolution operator

Ûχ (t ) = e−iχN̂Û (t )eiχN̂ = e−iHQ,χ t . (B6)

In the second equality, we have expressed the time-evolution
operator in terms of the Hamiltonian

HQ,χ = e−iχN̂ HQeiχN̂ . (B7)

We emphasize that the projective measurement in Eq. (B1)
destroys coherences in the photon basis and thus modifies the

FIG. 7. Same as Fig. 2, but with the numerical time evolution simulated in the Sambe space instead of the Fock space.
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FIG. 8. Same as in Fig. 3, but for different initial mean photon numbers n1 = n2 as indicated in the panels.

initial state. If the initial state ρ(t0) is already diagonal in
the photon basis, such as the vacuum state or thermal states,
it remains unchanged and the standard FCS makes correct
predictions. For this reasons, the standard FCS correctly de-
scribes spontaneous photon emission.

In contrast, coherences in the number basis are de-
stroyed due to the projection at time t0 in Eq. (B1).
When one blindly replaces HQ,χ → Hχ (t ) in Eq. (B6) with
the semiclassical Hamiltonian Hχ (t ) to mimic a coher-
ent field, the resulting expression is not equivalent to the
dynamical cumulant-generating function of the PRFT in
Eq. (14) and thus makes wrong predictions about the photon
statistics.

APPENDIX C: DETAILS TO THE APPLICATION
OF THE MODEL CALCULATIONS

1. Benchmark calculations

In Figs. 7–9, we depict more benchmark calculations of the
PRFT for the single-mode and two-mode Rabi models. Here
we shortly discuss the agreement of the PRFT to the exact
quantum calculation, while the detailed interpretation of the
physical effects exceeds the scope of this paper.

Sambe space simulation. In Fig. 7, we investigate the ac-
curacy of the PRFT for the same parameters as in Fig. 2, but
with the photonic subsystem represented in the Sambe space
[introduced in Eq. (4)] instead of the Fock space. In doing so,
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FIG. 9. Same as in Fig. 3, but in different parameter regimes as indicated in the panels.

we can assess the impact of the photon number dependence
of the operators âk and â†

k on the accuracy. Here we shortly
discuss the major differences between Figs. 2 and 7: The
variance change in Fig. 7(a) predicted by PRFT agrees now
perfectly to the numerical simulation. Note that the dynam-
ics for σ 2 = n(t0) lies exactly under the other two curves.
The probability distributions in Fig. 7(b) of the PRFT and
the numerical simulations agree perfectly to each other. The
minor oscillations of the numerical simulation in Fig. 2(b)
for σ 2 = n(t0) have completely disappeared, as they are a
consequence of the photon number dependence of âk and â†

k .
The error in Fig. 7(c) is significantly reduced compared to
Fig. 2(c), especially for larger σ values, demonstrating that

the error is caused by the photon number dependence of âk

and â†
k . Moreover, the error Fig. 7(c) decreases significantly

faster as function of n(t0) than in Fig. 2(c). We note that the
error is bounded by d1 > 10−5 − 10−6 due to the computer
precision in the numerical simulation.

Mean photon number. In Fig. 8 we investigate the PRFT
for three initial mean photon numbers nk (t0) = 50, nk (t0) =
500, and nk (t0) = 5000 for the two photon modes k =
1, 2. The standard derivations are equally σk = σ = 4. We
observe that the PRFT time evolutions nk (t0) = 500 and
nk (t0) = 5000 agree well to the exact numerical ones. We
thus conclude that the error is mainly determined by the
small σ .
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Mixed benchmarking. In Fig. 9 we carry out more bench-
mark calculations for different photon standard deviations
σk = σ for k = 1, 2 in various parameters regimes, namely, in
the dephasing, adiabatic, and high-frequency driving regime.
We observe an overall precise agreement of the photonic
probability distribution predicted by the PRFT to the ex-
act numerical calculation in the full quantum model. Minor
deviations can be explained by numerical fluctuations. Inter-
estingly, in the high-frequency driving regime ωk � hz, gk in
Fig. 9(c), we find a perfect agreement of the PRFT and exact
quantum calculations. However, in this regime there is no
photon flux between the photon modes as the two-level system
cannot be resonantly excited.

2. Jaynes-Cummings model

Here we study the photonic dynamics in a solvable model
of atom-photon interactions—the Jaynes-Cummings model.
This model describes a single two-level atom interacting with
a near-resonant cavity mode of the photonic field [131,132],

HJC = hz

2
σ̂z + ωâ†â + g̃1(σ̂+â + σ̂−â†), (C1)

where σ̂± = σ̂x ± iσ̂y and σ̂z represents the usual Pauli ma-
trices for spin-1/2 particles. Assuming the photon field to
be classical, the corresponding semiclassical Hamiltonian de-
scribing the atomic subsystem is

H(t ) = hz

2
σ̂z + g1(σ̂+e−iωt + σ̂−eiωt ), (C2)

where g = g̃α with α being the amplitude of coherent pho-
tonic state. The generalized time-evolution operator is then
given by Eq. (6) where Hχ (t ) can be obtained from Eq. (C2)
by replacing σ̂± → σ̂±e±iχ . In the interaction picture defined
by U0(t ) = exp[−i ω

2 σ̂zt], the generalized time-evolution op-
erator becomes

Uχ (t ) = cos (Et )1 + i sin (Et )σ̂χ , (C3)

where

E = 1

2

√
(hz − ω)2 + 16g2

1,

tan θ = 2g1

hz − ω
,

σ̂χ = cos θσ̂z + sin θ (cos χσ̂x + sin χσ̂y).

The photon-resolved time-evolution operators can be obtained
by applying Eq. (8) and are given in Eq. (41).

3. Two-mode Jaynes-Cummings model

The two-mode generalization of the Jaynes-Cummings
model [133,134] allows for an analytical calculation of the
counting statistics. The Hamiltonian reads as

HTMJC = hz

2
σ̂z +

2∑
k=1

ωâ†
k âk +

2∑
k=1

g̃k (σ̂+âk + σ̂−â†
k ), (C4)

where both modes have the same frequency ωk = ω, and the
photonic modes are initially in coherent states |αkeiϕk 〉 with
real-valued αk and ϕk . For a notation reason, we choose t0 = 0
in the following calculations.

Moment-generating function. Following the procedure in
Sec. II, we proceed to calculate the moment-generating func-
tion. The semiclassical Hamiltonian including the counting
fields is given by

Hχ(t ) = hz

2
σ̂z + [σ̂+e−iωt G(χ) + σ̂−eiωt G∗(χ)],

where we have defined G(χ) = ∑
k=1,2 gkeiχk . In an inter-

action picture defined by U0(t ) = e−i ω
2 σ̂zt , the time-evolution

operator reads as

Uχ(t ) = e−iHχt

= cos(Eχt )1 + i sin(Eχt )σ̂χ, (C5)

where Hχ = hz

2 σ̂z + [σ̂+G(χ) + σ̂−G∗(χ)] is the Floquet
Hamiltonian and

σ̂χ = cos θχσ̂z + sin θχ(cos φχσx + sin φχσ̂y),

Eχ = 1

2

√
(hz − ω)2 + 16|G(χ)|2,

tan θχ = 2|G(χ)|
hz − ω

,

φχ = arg G(χ). (C6)

The counting-field-dependent Floquet states |uμ,χ〉 are the
eigenstates of σχ with quasienergies Eμ,χ = ±Eχ. The dy-
namical moment-generating function then becomes

2Mdy(χ, t ) = [cos(Eϕt ) cos(Eϕ+χt ) + sin(Eϕt ) sin(Eϕ+χt )〈σ̂ϕσ̂ϕ+χ〉0]

+ i[cos(Eϕt ) sin(Eϕ+χt )〈σϕ+χ〉0 − sin(Eϕt ) cos(Eϕ+χt )〈σ̂ϕ〉0] + (c.c.,χ → −χ)

≈ cos[(Eϕ − Eϕ+χ)t] + i sin[(Eϕ − Eϕ+χ)t]〈σ̂ϕ〉0 + (c.c.,χ → −χ), (C7)

where ϕ = (ϕ1, ϕ2). In the approximate expression,
we have neglected the counting fields in σ̂ϕ+χ → σ̂ϕ,

as it only accounts for sub-leading contributions in
time.
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Cumulants. For the approximated moment-generating
function in Eq. (C7), the moments are

m(1)
2l+1 = (−1)l

[
2g1g2

Eϕ

sin(ϕ)t

]2l+1

〈σ̂ϕ〉t0 + O(t2l ),

m(1)
2l = (−1)l

[
2g1g2

Eϕ

sin(ϕ)t

]2l

+ O(t2l−1), (C8)

which grow as t2l+1 and t2l in time, respectively. In this form,
we can study the dependence of the transport processes on
the relative phase ϕ = ϕ2 − ϕ1. Interestingly, only the odd
moments depend on the expectation value of σϕ.

When the initial state is a Floquet state, the mean and the
variance changes of the photon number distribution are

�〈N̂1〉|μ = (−1)μ
2g1g2

Eϕ

sin(ϕ)t + O(t0),

�σ 2
1

∣∣
μ

= 0 + O(t0). (C9)

For ϕ �= {0, π}, there is a net photon flux between the photon
modes. The variance vanishes up to minor temporal fluctua-
tions. According to Eq. (C9), the direction and magnitude of
the photon flux can be controlled by the relative phase ϕ. In
agreement with the analysis of the probability redistribution,
the photon flux can be controlled by the initial state. The
variance change vanishes exactly as predicted by Eq. (30).

The situation changes dramatically when the initial state
is a balanced superposition of two Floquet states |φsp〉 =
(|u1,ϕ〉 + |u2,ϕ〉)/

√
2. In this case, the first two cumulants be-

come

�〈N1〉||φsp〉 = O(t0),

�σ 2
1

∣∣
|φsp〉 =

[
2g1g2

Eϕ

sin(ϕ)

]2

t2 + O(t1), (C10)

which shows that the mean photon flow between the two
modes approximately vanishes, while the variance increases
quadratically in time. The variance change in Eq. (C10) is
equal to the squared mean change in Eq. (C9). This time
dependence is easily understood from Fig. 4(a), as the rapid
variance increase is a consequence of the linearly growing
distance between the two Floquet-state-dependent peaks.

Light-matter entanglement. Here, we apply the PRFT to
calculate the purity in the Jaynes-Cummings model in order to
describe the light-matter entanglement as a function of time.
According to the PRFT and Eq. (32), the time-evolved state
can be written as

|�(t )〉 = c1e−iE1,ϕt |u1,ϕ〉|A1〉 + c2e−iE2,ϕt |u2,ϕ〉|A2〉, (C11)

with the in general nonorthogonal photonic states |Aμ〉.
The photon probability distribution conditioned on the Flo-
quet state approximately reads as pnk |μ(t ) = e(nk−nk,μ(t ))/2σ 2

/

(
√

πσ ), where σ is the width, and nk,μ(t ) = nk (0) + κ
(k)
dy,1|μ(t )

is the time-dependent mean of mode k = 1, 2. The mean is
determined by the quasieneriges as κ

(k)
dy,1|μ(t ) = −∂ϕk E ′

μ,ϕt ≡
(−1)kE ′

ϕt , while the width stays constant.

FIG. 10. Purity as an entanglement measure of the light-matter
state in the two-mode Jaynes-Cummings model as a function of
time: (a) shows the purity for an initial Floquet state for different
initial photon-number variances σ 2 = Var N̂1(t0), and (b) shows the
purity for a balanced superposition of Floquet states as initial state.
The black and red lines depict the quantum simulation and PRFT
respectively. Overall parameters are hz = ω = 10g and nk (t0) = 106

for k = 1, 2.

To calculate the purity, we evaluate the reduced density
matrix of ρ(t ) = |�(t )〉〈�(t )|, i.e.,

ρM = TrL(ρ) =
( |c1|2 c∗

1c2υ

c∗
2c1υ

∗ |c2|2
)

, (C12)

where υ = 〈A1 | A2〉 is the overlap of the two photonic states.
For the following calculation, we use that the phases in
the Fock state expansion of both photonic states are equal,
meaning that arg〈nk | A1〉 = arg〈nk | A2〉 for k = 1, 2, which
is consistent with the PRFT. In this case, the overlap υ is com-
pletely determined by the conditional probabilities pnk |μ(t ).
Considering the photon number as a continuous variable, we
can then evaluate

υ =
∏

k=1,2

[
1

σ
√

π

∫
dnk e− (nk −nk,1 )2

4σ2 e− (nk −nk,2 )2

4σ2

]

=
∏

k=1,2

e− [nk,1 (t )−nk,2 (t )]2

4σ2 , (C13)

where each photon mode k = 1, 2 has been integrated individ-
ually to obtain the correct overlap υ.

The purity is related to the eigenvalues pr of the reduced
density matrix via P = Tr(ρ2

M) = p2
1 + p2

2, where the eigen-
values are explicitly given as

p1/2 = 1

2
± 1

2

√
(|c1|2 − |c2|2)2 + 4|c1|2|c2|2|υ|2. (C14)

013116-27



ENGELHARDT, CHOUDHURY, AND LIU PHYSICAL REVIEW RESEARCH 6, 013116 (2024)

Using Eq. (C13) we thus finally obtain the time-dependent
purity in the two-mode Jaynes-Cummings model

P = 1 + (|c1|2 − |c2|2)2

2
+ 2|c1c2|2e− (E ′

2,ϕ
−E ′

1,ϕ
)2t2

2σ2 . (C15)

Our results are shown in Fig. 10 together with the numer-
ically calculated exact purity to confirm the accuracy of the

PRFT calculation. We find that for an initial Floquet state
(e.g., c1 = 1 and c2 = 0), the purity stays close to P ≈ 1 [see
Fig. 10(a)] in agreement with Eq. (C15). On the other hand,
for the balanced superposition state (|c1|2 = |c2|2 = 1/2 and
c2 = 0), the purity rapidly decays to P ≈ 1/2 [see Fig. 10(b)],
showing maximal light-matter entanglement. According to
Eq. (C15), the purity degrades faster for a smaller initial
variance σ 2.
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