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Finding optimal pathways in chemical reaction networks is essential for elucidating and designing chemical
processes, with significant applications such as synthesis planning and metabolic pathway analysis. Such a
chemical pathway-finding problem can be formulated as a constrained combinatorial optimization problem,
aiming to find an optimal combination of chemical reactions connecting starting materials to target materials in
a given network. Due to combinatorial explosion, the computation time required to find an optimal pathway
increases exponentially with the network size. Ising machines, including quantum and simulated annealing
devices, are promising novel computers dedicated to such hard combinatorial optimization. However, to the best
of our knowledge, there has yet to be an attempt to apply Ising machines to chemical pathway-finding problems.
In this article, we present the Ising/quantum computing application for chemical pathway-finding problems. The
Ising model, translated from a chemical pathway-finding problem, involves several types of penalty terms for
violating constraints. It is not obvious how to set appropriate penalty strengths of different types. To address
this challenge, we employ Bayesian optimization for parameter tuning. Furthermore, we introduce a technique
that enhances tuning performance by grouping penalty terms according to the underlying problem structure.
The performance evaluation and analysis of the proposed algorithm were conducted using a D-Wave Advantage
system and simulated annealing. The benchmark results reveal challenges in finding exact optimal pathways.
Concurrently, the results indicate the feasibility of finding approximate optimal pathways, provided that a certain
degree of relative error in cost value is acceptable.
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I. INTRODUCTION

Since the inception of modern chemistry in the 18th
century, scientists have designed and discovered numerous
chemical reactions. These discoveries are recorded in chemi-
cal databases such as Reaxys [1] and SciFindern [2]. The vast
collections of chemical reactions stored in these databases
are big data in chemistry and have experienced rapid growth.
For instance, Reaxys contains more than 60 million chemical
reactions as of 2023. The number of chemical reactions added
to Reaxys each year is more than hundreds of thousands,
which has more than doubled between 2000 and 2015 [3].
Additionally, emerging technologies for automatic reaction
exploration, such as chemical synthesis robots [4,5], artifi-
cial intelligence and machine learning [6,7], and quantum
chemical calculation [8], will further accelerate the growth of
chemical databases.
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A chemical reaction database can be represented by a
gigantic chemical reaction network. A chemical reaction
network (CRN) is a graph-theoretical representation of a col-
lection of chemical reactions, modeled as a directed bipartite
graph with two types of nodes: chemical reactions and species
[9,10]. This representation is used in chemistry and systems
biology to visualize, elucidate, and design the mechanisms of
complex chemical processes.

Finding optimal pathways in CRNs is a static analysis of
CRNs, which has significant applications such as synthesis
planning [10–13] and metabolic pathway analysis [14,15].
Such a chemical pathway-finding problem can be formulated
as a combinatorial optimization problem to find an optimal
combination of chemical reactions connecting starting mate-
rials to target materials in a given CRN. In chemical synthesis,
chemists aim to find synthesis pathways from readily available
materials to target compound(s). Moreover, they seek syn-
thesis pathways with better properties, such as low monetary
costs, short execution times, low risks, and ecofriendliness.
In systems biology, identifying metabolic pathways is fun-
damental to characterizing the function and mechanism of
a living system. Furthermore, metabolic engineers aim to
design artificial metabolic pathways to maximize the target
metabolite production of cells. There are several algorithms
for these pathway-finding problems, including recursive net-
work search algorithms [11,12], optimization/enumeration
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algorithms using a mixed integer programming solver [13,15],
and a simulated annealing algorithm designed for synthesis
planning [11].

However, finding optimal pathways in CRNs is NP-hard
in general [14]; the computation time to find an optimal so-
lution increases exponentially as the network size increases
due to combinatorial explosion. Consequently, the contin-
uous improvement of software and hardware for pathway
finding in CRNs is crucial to address the rapidly increasing
computational demands associated with growing data size in
chemistry.

In recent years, Ising machines have gained considerable
attention as next-generation hardware devices dedicated to
combinatorial optimization [16]. Ising machines are specially
designed to find the ground state(s) of an Ising model charac-
terized by the Hamiltonian

HIsing(σ) = −
Nσ −1∑
i=1

Nσ∑
j=i+1

Ji jσiσ j −
Nσ∑
i=1

hiσi. (1)

Here, σi ∈ {−1,+1}, σ, Nσ , Ji j , and hi denote, respectively,
a spin variable, the spin configuration (σ1, σ2, . . . , σNσ

), the
number of spins, the interaction coefficient between two
spins σi and σ j , and the local field interacting with σi. Ising
machines include quantum annealing devices developed by
D-Wave Systems [17,18] and classical simulated annealing
devices [19–23]. Many combinatorial optimization problems
are efficiently reducible to the ground state finding prob-
lems of Ising models [24,25]. If chemical pathway-finding
problems are also reducible to Ising model problems, these
physics-inspired, novel computers may potentially offer a so-
lution to the challenges posed by the accelerating growth in
chemical data and the concurrent slowdown in performance
growth for conventional von Neumann computers due to the
end of Moore’s law [26]. However, to the best of our knowl-
edge, there has yet to be an attempt to apply Ising machines to
chemical pathway-finding problems.

Pathway-finding problems in CRNs, as potential applica-
tion targets of Ising machines and quantum annealing, exhibit
the following notable features: (1) The available data size is
enormous and increasing rapidly. (2) Various problem settings
exist, including multiobjective and mixed integer program-
ming formulation of synthesis planning [13] and exhaustive
enumeration of possible metabolic pathways [15]. (3) The bi-
partite graph representation of a CRN can be viewed as a Petri
net [27], a graphical, mathematical modeling tool for discrete
event systems. Hence, chemical pathway-finding problems
can be model cases for developing various general-purpose
algorithms using Ising machines, which are anticipated to be
transferable to other systems.

In this article, we present an Ising computing framework
for pathway finding in CRNs. In Sec. II, we formulate a
synthesis-planning problem as a typical chemical pathway-
finding problem for algorithm development. In Sec. III, we
detail our proposed algorithm, which includes a translation
procedure of a chemical pathway-finding problem into an
Ising model problem and postprocessing methods for enhanc-
ing the feasibility and optimality of solutions. Additionally,
to address the challenge of tuning penalty strengths in the
translated Ising model, we introduce Bayesian optimization

and a technique to enhance tuning performance by reducing
the search complexity in Sec. III C. In Sec. IV, we evaluate
the performance of the proposed algorithm using a D-Wave
Advantage quantum annealing machine [18] and simulated
annealing on a classical computer. Finally, we summarize the
present study and remark on possible directions for the future
development of chemical pathway-finding algorithms using
Ising machines in Sec. V.

II. PROBLEM FORMULATION

A. Chemical reaction networks and pathways

Figure 1 shows an example of chemical reaction net-
works (CRNs) in the bipartite graph representation [9,10],
also known as the Petri net representation [27]. The network
illustrates the Solvay process, an industrial chemical produc-
tion process of soda ash (Na2CO3). The overall process is
represented as 2NaCl + CaCO3 → Na2CO3 + CaCl2, which
consists of five chemical reactions:

(1) NaCl + CO2 + NH3 + H2O → NaHCO3 + NH4Cl
(2) 2NaHCO3 → Na2CO3 + CO2 + H2O
(3) CaCO3 → CaO + CO2

(4) CaO + H2O → Ca(OH)2
(5) Ca(OH)2 + 2NH4Cl → CaCl2 + 2NH3 + 2H2O

In Fig. 1, these five chemical reactions involved in the Solvay
process are depicted as squares, and 11 chemical species are
represented as ellipses. Each directed edge (arrow) connects
a reaction with one of its reactants or products. The edge
direction is either from a reactant species to a reaction or from
a reaction to a product species. The number of directed edges
between a reaction and a species indicates the stoichiometric
coefficient, that is, the coefficient of the species in the chemi-
cal equation of the reaction.

A CRN may include inflow and outflow dummy reactions
representing mass exchange between a chemical system and
its environment. The network depicted in Fig. 1 includes four
dummy reactions represented as dashed squares: the inflow
reactions of NaCl and CaCO3 (the purchase of the starting
materials); the outflow reaction of Na2CO3 (the shipping of
the chemical product); and the outflow reaction of CaCl2
(either the shipping or disposal of the byproduct). Dummy
reactions are useful for modeling pathway-finding problems,
as detailed below. Henceforth, we will use the term“reaction”
to refer to both chemical and dummy reactions.

We define a pathway in a CRN as a combination of chemi-
cal and inflow/outflow reactions, taking into account reaction
multiplicity. Reaction multiplicity, which indicates the num-
ber of occurrences of a reaction, is essential for a quantitative
description of complex reaction processes [13,15,28]. For in-
stance, in Fig. 1, the numbers in black circles indicate the
multiplicity of each reaction of the Solvay process. During
a single cycle of the overall reaction, chemical reaction 1
occurs twice, while the other chemical reactions 2–5 occur
once each. This specific combination of the multiplicities
of the five chemical reactions enables the reuse of ammo-
nia and carbon dioxide, resulting in an economical chemical
transformation. In addition, the multiplicity of each inflow
or outflow reaction corresponds to the consumption of the
starting material or production of the (by)product during a
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FIG. 1. An example of a chemical reaction network and a pathway: The Solvay process.

single overall process, respectively. It is important to men-
tion, however, that the definition of pathways here does not
consider the order of occurrence of chemical reactions, as
in [13,15].

Physically feasible pathways must satisfy the mass balance
equations for all chemical species in a network. The mass
balance equation for species s is given by

∑
r∈R νsrmr = 0,

where R, mr , and νsr are the set of all reactions in the network,
the multiplicity of reaction r, and the signed stoichiometric
coefficient of species s in reaction r, respectively. The sign of
νsr is defined as positive if r is a chemical reaction producing s
or an inflow reaction supplying s into the system; conversely,
it is defined as negative if r is a chemical reaction consuming s
or an outflow reaction exporting s from the system; otherwise,
it is zero. The mass balance equation states that the sum of
the total production and input equals the sum of the total
consumption and output. The mass balance constraints ensure
that no species are created from nothing nor annihilated to
nothing during the chemical process, in accordance with the
law of conservation of mass.

B. Synthesis-planning problem

Let us formulate a synthesis-planning problem to find the
minimum monetary cost synthesis pathway from commer-
cially available substrates to target compound(s).

Let R be a set of chemical and inflow/outflow reactions
potentially used for synthesizing the target species. Let S be
the set of all chemical species participating in chemical reac-
tions of R. Here, the candidate reactions in R and species in S
can be listed in advance while the multiplicities of reactions
of the desired synthesis pathway are unknown. For example,
the chemical reactions in R can be either extracted from a
chemical reaction database (see Appendix A) or generated by
computer-aided retrosynthesis [13]. Only commercially avail-
able species have inflow reactions in R. All target species must

have outflow reactions, while others may also have outflow
reactions representing disposal.

The decision variables in the synthesis-planning problem
are the multiplicities of each reaction in R. Let xr denote
the variable representing the multiplicity of r ∈ R. In this
article, we assume each variable xr is a nonnegative integer
variable with lower bound lr (� 0) and upper bound ur . Since
feasible synthesis pathways must ensure the positive outflow
of each target species, the lower bound of the outflow reaction
multiplicity for each target species must be positive; in this
way, positive-outflow constraints specify which species are
targets of the chemical synthesis.

The monetary costs can be categorized into two types: vari-
able costs and fixed costs. Variable costs vary with changes
in the multiplicities of reactions. For example, the costs of
substrate purchase and byproduct disposal are proportional to
the substrate inflows and the byproduct outflows, respectively.
The simplest model of such variable costs can be represented
as cunit

r xr , where cunit
r is the unit cost of reaction r. On the

other hand, fixed costs depend only on whether reactions are
carried out. For example, the costs of equipment preparation
for reactions are overhead costs for carrying out the reactions
and are independent of the amounts of the reactions. These
fixed costs can be modeled as cfixed

r χ+(xr ), where cfixed
r is the

fixed cost of reaction r and χ+ denotes the positivity indicator
function defined as χ+(x) = 0 for x = 0 and χ+(x) = 1 for
x > 0.

In summary, the synthesis-planning problem is formulated
as follows:

minimize
x∈N |R|

0

∑
r∈R

cunit
r xr +

∑
r∈R

cfixed
r χ+(xr ),

subject to ∀s ∈ S,
∑
r∈R

νsrxr = 0,

∀r ∈ R, lr � xr � ur . (2)
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FIG. 2. The overview of the proposed algorithm for finding path-
ways in chemical reaction networks using Ising machines.

Here, x denotes the vector representation of the reaction mul-
tiplicity variables {xr}.

Note that a gap still exists between the Ising model
[Eq. (1)] and the pathway-finding problem [Eq. (2)]. In the
next section, we will present a connection between them.

III. PROPOSED ALGORITHM

This section presents an algorithm for finding pathways in
chemical reaction networks using Ising machines. Figure 2
illustrates the overview of the proposed algorithm. This algo-
rithm first translates a chemical pathway-finding problem into
a quadratic unconstrained binary optimization (QUBO) prob-
lem, mathematically equivalent to an Ising model problem.
Then, the translated problem is solved by an Ising machine.
Here, the algorithm embeds the logical QUBO problem into
a physical Ising model of the device if the device hardware
has limited spin connectivity. Finally, the algorithm decodes
binary solutions returned from the Ising machine and applies
postprocessing methods to enhance the feasibility and opti-
mality of the solutions.

In the following subsections, we will elaborate on (1) the
translating procedure, (2) the postprocessing methods, and
(3) the automatic tuning of parameters in the QUBO/Ising
form of a pathway-finding problem. In addition, we review
Ising machines and the embedding process in Appendix B for
readers unfamiliar with Ising computing.

A. Translating into QUBO

We translate our pathway-finding problem [Eq. (2)] into
a quadratic unconstrained binary optimization (QUBO) prob-
lem. This QUBO problem is mathematically equivalent to the
energy minimization problem of an Ising model. QUBO is

TABLE I. Integer-to-binary encoding methods. Here, an integer
variable x ∈ [l, u] is expressed by n binary variables q ∈ {0, 1}n.
The number n of required binary variables is d (:= u − l ) for the
unary and order encoding methods, K + 1 (K := �log2 d�) for the
log encoding method, and d + 1 for the one-hot encoding method.

Integer variable Additional
Type expression x(q) penalty Px (q)

Unary l + ∑d
k=1 qk 0

Order l + ∑d
k=1 qk

∑d−1
k=1 qk+1(1 − qk )

Log l + ∑K−1
k=0 2kqk 0

+ [d − (2K − 1)]qK

One-hot l + ∑d
k=0 kqk (

∑d
k=0 qk − 1)2

defined as

minimize
q∈{0,1}Nq

Nq∑
i=1

Nq∑
j=i

Qi jqiq j, (3)

where qi ∈ {0, 1}, q, Nq, and Qi j denote, respectively, a bi-
nary variable, the binary variables vector (q1, q2, . . . , qNq ), the
number of binary variables, and a constant associated with qi

and q j . The binary variables are interconvertible with the Ising
spin variables as qi = (1 − σi )/2. Note that the diagonal term
Qiiq2

i is essentially linear due to the idempotent law q2
i = qi

for qi ∈ {0, 1}.
First, we translate the objective function into a quadratic

function. To achieve this, we devised the following mapping
from the positivity indicator function into a quadratic expres-
sion. The positivity indicator function of nonnegative integer
variable x can be expressed as

χ+(x) = min
y∈{0,1}

[y + (1 − y)x]. (4)

Therefore, we can replace χ+(xr ) in the original cost function
with [yr + (1 − yr )xr], adding an auxiliary binary variable
yr ∈ {0, 1}.

Next, instead of imposing the mass balance constraints
directly, we add the penalty term

∑
s∈S

Ms

(∑
r∈R

νsrxr

)2

(5)

to the QUBO objective function. Here, Ms is a positive con-
stant. This term equals zero if solution x satisfies all the
mass balance constraints and a positive value otherwise. Thus,
this term penalizes solutions violating the mass balance con-
straints. The penalty strength is determined by Ms. In theory,
large-enough penalty strength ensures that the optimal solu-
tion of this unconstrained problem equals that of the original
problem. However, the penalty strength requires careful tun-
ing in practice, as extremely large penalty strength can impair
the annealing performance. Section III C describes the penalty
strength parameter tuning in detail.

Finally, we encode integer variables into binary variables.
We employ four types of integer-to-binary encoding methods:
unary, order, log, and one-hot [29]. Table I summarizes these
encoding methods. In the table, an integer variable x ∈ [l, u]
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is expressed by a linear expression x(q) of n binary vari-
ables q ∈ {0, 1}n. The number n of required binary variables
is d (:= u − l ) for the unary and order encoding methods,
�log2 d� + 1 for the log encoding method, and d + 1 for the
one-hot encoding method. In addition, the order and one-hot
encoding methods require a penalty term in the QUBO ob-
jective function. The additional penalty in the order encoding
method corresponds to constraints that qk = 0 ⇒ qk+1 = 0
for k = 1, . . . , d − 1. Note that the order constraints are not
necessarily hard constraints; even if the order constraints are
not satisfied, the integer variable expression x(q) takes an inte-
ger value in [l, u]. On the other hand, the additional penalty in
the one-hot encoding method corresponds to a constraint that
only one binary variable takes the value one and all the others
zero. In contrast to the order encoding method, if the one-hot
constraint is violated, x(q) may take an infeasible value of
x; thus, the one-hot constraint is a hard constraint. We will
compare the performance of these four encoding methods in
Sec. IV B.

In summary, the synthesis-planning problem [Eq. (2)] can
be represented in QUBO form as follows:

minimize
q∈{0,1}Nq

∑
r∈R

cunit
r xr (qr ) +

∑
r∈R

cfixed
r [yr + (1 − yr )xr (qr )]

+
∑
s∈S

Ms

(∑
r∈R

νsrxr (qr )

)2

+
∑
r∈R

LrPxr (qr ). (6)

Here, each xr is expressed by binary variables qr by one
of the four encoding methods listed in Table I. Pxr (qr ) and
Lr (> 0) are the additional penalty term and its strength pa-
rameter for the encoding of xr , respectively. Each yr (∈ {0, 1})
is an auxiliary binary variable for translating the positivity
indicator function χ+(xr ). Finally, the symbol q collectively
denotes all binary variables {qr | r ∈ R} ∪ {yr | r ∈ R}, and Nq

is the total number of the binary variables.

B. Postprocessing

Ising machines often return nonoptimal or infeasible so-
lutions. To improve the quality of solutions, we employ two
postprocessing methods: steepest descent and inflow/outflow
adjustment.

Steepest descent is a standard postprocessing method in
Ising computing. This method iteratively descends the energy
landscape of an Ising model by single-spin flips. At each
step, it performs the spin flip that reduces the energy the
most among all possible single-spin flips. This postprocessing
method is implemented in the D-Wave Ocean Software [30].
We employ it to enhance the optimality and feasibility of
Ising/QUBO solutions returned by an Ising machine.

Inflow/outflow adjustment, which we developed, is aimed
at adjusting the inflow and outflow of each species so that the
mass balance equals zero. Specifically, this method (1) sets the
inflow and outflow of each species to their minimum values
and (2) increases either the inflow or outflow as much as nec-
essary to satisfy the mass balance constraint. The pseudocode
is given in Fig. 3. We apply this postprocessing method at the
end of the workflow to enhance the feasibility of solutions.

FIG. 3. Inflow/outflow adjustment algorithm. The input argu-
ments are a set of chemical species S, a set of chemical and
inflow/outflow reactions R, a signed stoichiometric coefficient func-
tion ν : S × R → Z; (s, r) 	→ νsr , a lower bound function l : R →
N0; r 	→ lr , an upper bound function u : R → N0; r 	→ ur , and the
multiplicity function representing a pathway m : R → N0; r 	→ mr .
This algorithm, first, resets the multiplicity of each inflow/outflow
reaction to its lower bound. Then, it increases the outflow of over-
produced species (� > 0) and the inflow of overconsumed species
(� < 0). Finally, it returns the multiplicity function of the improved
pathway m : R → N0; r 	→ mr . Note that this postprocessing does
not ensure that a postprocessed pathway satisfies all mass balance
constraints. For example, if a species is overconsumed, but the
associated inflow is unavailable, this method cannot adjust the in-
flow/outflow to make the mass balance zero.

C. Penalty strength tuning

The QUBO form of the pathway-finding problem [Eq. (6)]
has penalty strength parameters. Moreover, when the QUBO
problem is embedded into a physical Ising machine with lim-
ited connectivity of spins, the physical Ising model has chain
strength parameters (see Appendix B 3). In the following dis-
cussion, we consider parameter tuning to improve algorithm
performance.

Parameter tuning aims to find parameter values that maxi-
mize the quality of solutions returned by the Ising computing
algorithm. The parameter tuning problem is formulated as

minimize
λ∈D

f (λ), (7)

where λ is the parameter vector to be tuned (in this study,
penalty and chain strength parameters), D is the domain of
λ, and f : D → R is a function measuring the quality of
solutions (smaller is better).

Let us define the parameter search space D. In the present
case, we can estimate an upper bound of penalty strength
parameters, which is large enough to ensure the equivalence

013115-5



YUTA MIZUNO AND TAMIKI KOMATSUZAKI PHYSICAL REVIEW RESEARCH 6, 013115 (2024)

between the original and QUBO problems. A simple upper
bound is the maximum cost among all feasible and infeasible
pathways,

C =
∑
r∈R

(
cunit

r ur + cfixed
r

)
. (8)

If all penalty strength parameters (i.e., {Ms} and {Lr}) equal C,
the QUBO objective function value for any feasible solution
is less than C1; in contrast, that for any infeasible solution is
greater than or equals to C. Therefore, the penalty strength
C ensures the equivalence between the original and QUBO
problems. This upper bound estimation is also valid for chain
strength parameters; if the chain strength equals C, a spin
configuration with chain breaks has an energy greater than any
feasible solution without chain breaks. Therefore, we define
the search space as

D = [0,C]Nparams ⊂ RNparams, (9)

where Nparams is the total number of penalty and chain strength
parameters to be tuned.

Next, we define the evaluation function f . Multiple runs
of the algorithm produce a set of synthesis pathways. This
set contains feasible and infeasible pathways with various
synthesis costs. Our goal here is (1) to get many feasible
solutions and (2) to get low costs solutions. Therefore, we use
the following function to evaluate a single solution:

E (x) =
∑
r∈R

(
cunit

r xr + cfixed
r χ+(xr )

) + C
∑
s∈S

(∑
r∈R

νsrxr

)2

.

(10)
Here, the first term evaluates the total costs of synthesis,
and the second is the penalty for infeasible solutions. Since
the penalty strength equals C in the formula, all infeasible
solutions have a higher value of E than any feasible solution.
Using this measure of single solution quality, we define f (λ)
as the expected value of E (x),

〈E〉λ =
∑

x∈N |R|
0

E (x)p(x|λ), (11)

where p(x|λ) is the probability that the algorithm returns solu-
tion x when using parameters λ. In practice, 〈E〉λ is evaluated
by a sample mean of E (x) from a finite set of samples of x.

We adopt Bayesian optimization (BO) to minimize 〈E〉λ
over parameters λ. Specifically, we employ a BO algorithm
implemented in the Optuna library [31,32]. BO is a sequential
black-box optimization technique that selects points to be
evaluated in an iteration step based on a surrogate model of
f constructed with previous evaluation results. The Optuna’s
algorithm uses the tree-structured Parzen estimator (TPE) [33]
as a surrogate model. BO-TPE is known to be effective in
a wide range of hyperparameter tuning in machine learning

1If solution xr = ur (∀r ∈ R) is feasible, this statement is false; in
that case, a value greater than C can be employed as the upper bound
of the parameter values. However, in every benchmark problem
used in the present article, the solution xr = ur is confirmed to be
infeasible.

TABLE II. Grouping methods for penalty strength parameters
associated with mass balance constraints. The right column lists
species groups corresponding to mass balance constraint groups. See
the text for details on the chemical species classifications.

Type Groups

Unified all species
Degree degree-1 species, degree-2 species, . . .

Depth targets, depth-1 precursors, depth-2 precursors, . . .,
byproducts

Category targets, substrates, intermediates,
substrates/intermediates, byproducts

and has less computational time complexity than standard BO
algorithms using the Gaussian process [34].

However, the high dimensionality of the search space D
may impair the efficiency of BO. Although BO is applicable
to parameter tuning in a complex and high-dimensional search
space, its efficiency decreases rapidly as the dimension of the
search space increases [34]. The dimension of D is Nparams,
which is on the same order of magnitude as the total numbers
of species and reactions. Therefore, reducing the dimension-
ality of D is crucial for efficient parameter tuning.

To address the issue of high dimensionality in D, we
devised parameter grouping methods. In these grouping meth-
ods, penalty and chain strength parameters are grouped
according to the associated constraint type, and all parameters
in each group are constrained to take the same value. We first
classify parameters into three major categories: (1) penalty
strength parameters associated with mass balance constraints,
(2) penalty strength parameters related to integer-to-binary
encoding, and (3) chain strength parameters for embedding.
In this article, we further consider four types of subdivisions
of the mass balance constraints group according to chemical
species classifications listed in Table II and detailed below.
For simplicity, we leave the other groups related to encoding
and embedding intact, although these groups can be further
subdivided according to reaction classifications.

The details of the four grouping methods for mass bal-
ance constraints are as follows. The first method, “unified,”
consolidates all mass balance constraints into one group
without any further subdivision. The second method, “de-
gree,” classifies mass balance constraints by the associated
species’ node degree. Here, the node degree is defined as
the number of reactions involving the species. The third and
fourth methods have been designed based on the specific
structure of synthesis-planning problems. The third method,
named “depth,” organizes mass balance constraints by the
associated species’ depth. The depth of a precursor species
is defined as the minimum number of synthesis steps from
the species to one of the target species, as detailed in Ap-
pendix A. The fourth method, termed “category,” categorizes
mass balance constraints by the associated species’ category:
“targets,” “substrates” (species that are exclusively starting
materials and not synthesized from others), “intermediates”
(species that need to be synthesized from others), “sub-
strates/intermediates” (species that can be either starting
materials or synthesized from others), and “byproducts.” We
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will compare the performance of parameter tuning using these
grouping methods in Sec. IV B.

We note that the Optuna library has already been used
in parameter tuning for Ising computing in [35,36]. In [35],
Optuna was applied to tuning parameters of the Digital An-
nealer, not penalty strength parameters. In [36], all penalty
strength parameters are consolidated into one group, and
the single, unified penalty strength parameter was tuned by
Optuna. In contrast to these studies, the present study system-
atically elucidates the effects of several different parameter
grouping methods on tuning performance. In the next section,
we will demonstrate that appropriate choices of parameter
grouping methods significantly contribute to performance
improvement.

IV. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
the proposed algorithm using a D-Wave Advantage quantum
annealing machine and a simulated annealing software. The
primary objective of these experiments is to assess the feasi-
bility and efficacy of the proposed algorithm.

A. Experimental setting

We generated 100 benchmark problems of synthesis plan-
ning based on the USPTO dataset of chemical reactions [37].
In our benchmark problems, fixed reaction costs and substrate
purchase costs are randomly assigned to all chemical reactions
and commercially available species, respectively. The bench-
mark problem generation process is detailed in Appendix C.
These benchmark problems have been designed to assess the
feasibility of the proposed algorithm using a D-Wave Ad-
vantage quantum annealer with a limited number of qubits.
Thus, they are relatively small-scale problems: the number of
integer variables Nx, equivalent to the number of chemical and
inflow/outflow reactions |R|, ranges from 3 to 116; the number
of chemical species |S|, ranges from 2 to 80. All of these prob-
lems can be embedded into the D-Wave Advantage’s Pegasus
topology QPU [38], with the number of required physical
qubits ranging from 18 to 3752 when utilizing the unary or
order encoding method. Refer to Appendix D 1 for the details
of the embedding results.

We solved the benchmark problems using our proposed
algorithm. The Ising machines employed were (1) the D-
Wave Advantage system 4.1 quantum annealer [18] and (2)
the SimulatedAnnealingSampler of the D-Wave Ocean
Software [30]. We used the minorminer.find_embedding
function of the D-Wave Ocean Software to find embed-
dings of QUBO problems into the D-Wave Advantage
system 4.1. Note that the simulated annealing software
does not require the embedding process, as it can solve
Ising models with any spin connectivity. We employed the
SteepestDescentSolver of the D-Wave Ocean Software
for the steepest descent postprocessing. We implemented the
other components of the algorithm, that is, the translation pro-
cess based on SymPy [39] and the inflow/outflow adjustment
postprocessing, in Python. We integrated all these components
into the workflow illustrated in Fig. 2. We utilized the multi-
variate version of the TPESampler of the Optuna library [32]

to tune penalty and chain strength parameters. Unless other-
wise noted, we used default settings for the functions from
the D-Wave Ocean Software and the Optuna library in the
benchmarking. The simulated annealing, embedding finding,
translating, postprocessing, and parameter tuning were exe-
cuted on a local Linux machine with Intel Xeon Gold 6248R
processors (3.0 GHz, 24 cores × 2). Our local machine in
Hokkaido, Japan, communicated with the D-Wave Advantage
system 4.1 in British Columbia, Canada, via the internet, using
the Leap quantum cloud service.

For performance comparison, we solved the benchmark
problems also with the Gurobi Optimizer version 9.5.1 [40].
The Gurobi Optimizer is a commercial state-of-the-art solver
for mathematical programming, including integer linear pro-
gramming, and was employed in a previous study on chemical
pathway-finding problems [13]. To solve the synthesis plan-
ning problems with the Gurobi Optimizer, we translated them
into integer linear programming by replacing the positivity in-
dicator function in a fixed cost term, χ+(xr ), with an auxiliary
binary variable yr ∈ {0, 1} satisfying xr � uryr . The chemical
pathway-finding algorithm with the Gurobi Optimizer was
executed on our local machine using up to 32 threads.

B. Results and discussion

1. Best choice of parameters

We first investigated the best combination of an integer-to-
binary encoding method (unary, order, log, or one-hot) and a
parameter grouping method (unified, degree, depth, or cate-
gory). This investigation was conducted on five representative
problems selected from the 100 benchmark problems to cover
a wide range of problem sizes. The problems selected were
(a) the 20th, (b) the 40th, (c) the 60th, (d) the 80th, and
(e) the 100th in ascending order of the number of integer
variables. For each combination of encoding and grouping
methods, we tuned penalty and chain strength parameters for
the five representative problems. During the tuning processes,
the annealing time for quantum annealing (QA) was fixed
to 20 µs, and the number of sweeps (corresponding to the
annealing time) for simulated annealing (SA) was fixed to
1000. These are the default values for the D-Wave Advantage
system and the SA program we used. We set the number of
Bayesian optimization iterations to 300, which we consider
sufficient to check for convergence trends. We sampled 200
solutions per tuning iteration to compute the tuning score
function, Eq. (11), with balancing statistical uncertainty and
computational cost. We measured the performance of each
combination of encoding and grouping methods by the best
score of the tuning objective function over the 300 tuning tri-
als. The performance comparisons for the D-wave Advantage
system and SA are shown in Figs. 4 and 5, respectively.

Concerning the encoding methods, the unary and order
encoding methods demonstrate the highest performance. Sub-
sequently, the log encoding method also yields satisfactory
results, whereas the one-hot encoding method exhibits the
poorest performance. These results on the performance of the
encoding methods are consistent with a previous study [41].

Among the four grouping methods, the depth and category
grouping methods outperform the others when employing the
unary or order encoding methods for both QA and SA. The
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FIG. 4. Performance comparison of different combinations of an integer-to-binary encoding method (unary, order, log, or one-hot) and a
parameter grouping method (unified, degree, depth, or category) in the proposed algorithm using the D-Wave Advantage system 4.1. Each
panel displays the results for (a) the 20th, (b) the 40th, (c) the 60th, (d) the 80th, and (e) the 100th from the 100 benchmark problems sorted
in ascending order by the number of integer variables, respectively. The performance measure 〈E〉best is the best score of the tuning objective
function, Eq. (11), during 300 iterations of Bayesian optimization (smaller is better). The insets in panels (d) and (e) provide magnified views.

performance difference between these two methods and the
others is prominent, especially for large problems (d) and (e).
Furthermore, the degree grouping method exhibits the least
performance in many cases, although the degree grouping
method offers more degrees of freedom for parameter tun-
ing due to the subdivision of mass balance constraints than
the unified grouping method. These findings suggest that the
appropriate design of parameter groups based on the specific
structure of problems is crucial for performance improvement.

Next, we examined the optimized penalty and chain
strength values for the depth and category grouping methods
to clarify the reason for the advantage of these grouping
methods as well as the trends in penalty and chain strength
parameter values of each group with respect to the problem
size. This examination was conducted on all 100 bench-
mark problems and employed the unary and order encoding

methods. The settings for the tuning processes were the same
as those described above.

Figure 6 depicts the penalty and chain strength parame-
ter values optimized through Bayesian optimization for the
combination of the category grouping and order encoding
methods. We found that: (1) the penalty strength for the mass
balance constraints of the target species is larger than that of
the others and has a strong linear correlation with the number
of integer variables Nx; (2) the chain strength parameter also
exhibits a linear correlation with Nx; and (3) the other penalty
strength parameters do not show any noticeable linear corre-
lation with Nx. These penalty strength scaling patterns (1)–(3)
are common across all four combinations of the unary/order
encoding and depth/category grouping methods. Refer to Ap-
pendix D 4 for the results of the other combinations not shown
in Fig. 6.

FIG. 5. Performance comparison of different combinations of an integer-to-binary encoding method (unary, order, log, or one-hot) and a
parameter grouping method (unified, degree, depth, or category) in the proposed algorithm using simulated annealing. The notation is the same
as that in Fig. 4.
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FIG. 6. Scaling of the tuned penalty and chain strength parameter values with respect to the number of integer variables in the case of using
the order encoding and category grouping methods. Panels (a)–(e) depict the penalty strength parameters for mass balance constraints of species
in each group, panel (f) shows the penalty strength parameter for order encoding, and panel (g) shows the chain strength for embedding. Linear
fits are plotted for datasets with a coefficient of determination (R2) greater than 0.5. The R2 values are 0.88 [panel (a) for D-Wave Advantage],
0.83 [panel (a) for simulated annealing], and 0.65 [panel (g) for D-Wave Advantage], respectively.

The observed penalty strength scaling patterns and the
advantage of the depth and category grouping methods can be
explained as follows. The minimum-cost infeasible solution,
x = 0 (i.e., the plan of doing nothing), violates the mass
balance constraints for the target species. An Ising machine
is likely to sample this solution with a high probability un-
less the penalty for violating the mass balance constraints
of the target species is sufficiently larger than feasible solu-
tions’ cost values. The steepest descent postprocessing may
not improve this solution as it relies on the same QUBO
formulation as the Ising machine. The inflow/outflow adjust-
ment postprocessing also cannot reform the solution x = 0
because the target species are overconsumed in the pathway,
but the inflow reactions of the target species are unavailable
by definition. Therefore, the penalty strength for the mass
balance constraints of the target species must be large enough
so that the Ising machine hardly samples the solution x = 0.
Furthermore, as the order of magnitude of feasible solutions’
cost values increases almost linearly with respect to Nx, the
penalty strength for the mass balance constraints of the target
species must also increase linearly. In contrast, the violation
of the mass balance constraints for nontarget species can
often be reconciled by adjusting the associated inflow and
outflow, although the effectiveness of the postprocessing may
depend on the problem structure. Thus, the penalty strength
associated with nontarget species can be moderate. Keeping
penalty strengths moderate may enhance the exploration in
the solution space during the annealing process, potentially
leading to high performance in finding solutions. For the depth
and category grouping methods, the penalty strength for the
mass balance constraints of the target species and the others
can be tuned separately; this is likely the reason for their
advantage.

2. Computation time

We next examined the computation time scaling of the
pathway-finding algorithms using the D-Wave Advantage
system and SA. Since the algorithms output approximate so-
lutions in a stochastic manner, the computation time should be
evaluated by the time taken to find a solution within a certain
cost tolerance ρ with a specified tolerant failure probability
ε. This computation time metric is known as time-to-solution
(TTS) [16,18], defined by

TTS(ρ, ε, τ ) = τalgo(τ )

⌈
log ε

log (1 − ps(ρ, τ ))

⌉
. (12)

Here, τ is the annealing time; τalgo(τ ) is the average execution
time of a single run of the algorithm under the annealing
time τ ; ps(ρ, τ ) is the success probability for the algorithm
under the annealing time τ to find a solution whose cost is at
most ρCmin, where Cmin denotes the minimum cost of feasible
solutions.

The computation time analysis was conducted on all 100
benchmark problems and employed the order encoding and
category grouping methods. We set the cost tolerance ρ to (a)
1, (b) 2, or (c) 3 and fixed the failure tolerance ε to 0.01. We
measured the TTS for different annealing time τ : 1, 2, 5, 10,
20, 50, 100, 200, and 500 µs for QA; 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, and 10 000 sweeps for SA. For each
problem and τ , we ran the algorithm 1000 times with tuned
penalty and chain strengths as illustrated in Fig. 6. In the mea-
surement, we took into account only the runtime of annealing
and postprocessing as τalgo and excluded the execution time of
embedding, translating, tuning, and network communication
from τalgo. Lastly, we recorded the minimum value of TTS
with respect to τ as the computation time metric for each ρ.

013115-9



YUTA MIZUNO AND TAMIKI KOMATSUZAKI PHYSICAL REVIEW RESEARCH 6, 013115 (2024)

FIG. 7. Computation time scaling for the pathway-finding algorithms using the D-Wave Advantage system, simulated annealing, and the
Gurobi Optimizer. The computation times of the algorithms using the D-Wave Advantage system and simulated annealing are the time-to-
solution defined by Eq. (12), the time taken to find a solution whose cost is at most ρ × (the minimum cost) with a probability of at least 99%.
Here, the cost tolerance ρ is (a) 1, (b) 2, and (c) 3, respectively. For the Gurobi Optimizer, the time-to-solution refers to the runtime it takes
the solver to find a solution guaranteed to satisfy the cost tolerance requirement. Refer to the main text for additional details on the computing
procedure.

We also computed the average runtime of the pathway-
finding algorithm using the Gurobi Optimizer for comparison.
For each cost tolerance ρ, the “MIPGap” parameter of the
Gurobi Optimizer was set to 1 − 1/ρ so that the optimizer
terminates when it is assured that the cost value of the current
best solution is less than or equal to ρCmin. We recorded the
average runtime of 1000 runs for each problem and ρ.

Figure 7 shows the scaling of computation times for the
pathway-finding algorithms using the D-Wave Advantage
system, SA, and the Gurobi Optimizer. When ρ = 1, the
computation times for the D-Wave Advantage system and SA
increase drastically as the number of variables Nx increases,
compared to that for the Gurobi Optimizer. As ρ increases,
the rates of increase in the computation times with respect to
Nx for the D-Wave Advantage system and SA become slower.
Consequently, these computation times approach that of the
Gurobi Optimizer. In addition, the pathway-finding algorithm
using the D-Wave Advantage system succeeded in finding
optimal solutions (ρ = 1) for 34 out of the 100 benchmark
problems, while the SA-based algorithm found optimal so-
lutions for 43 problems. Approximate solutions with ρ = 2
were found for 96 problems when using the D-Wave Advan-
tage system and all problems when using SA. Both methods
found approximate solutions with ρ = 3 for all problems.

In the case of ρ = 1, the fast increasing rate of the TTS
of SA with respect to Nx is likely attributed to the increase
in the maximum penalty strength Mmax. The reasoning behind
this statement is as follows. As discussed in Appendix B 1, the
initial temperature in SA should be proportional to the largest
absolute energy difference between any two states capable of
direct transition, denoted by �. Such a high initial temper-
ature enhances exploration in the solution space. The final
temperature, in contrast, should be sufficiently low relative to
the energy gap between the optimal and the second optimal
solutions, denoted by δ. This ensures that the Boltzmann fac-
tor, and consequently the sampling probability, for the optimal
solution(s) are sufficiently larger than those for the others. A
larger difference between the initial and final temperatures,
or equivalently between � and δ, leads to longer annealing
time. In fact, according to an estimate for the computational
complexity of SA [Eq. (B3) in Appendix B 1], the necessary

annealing time exponentially increases with respect to �/δ.
In the present Ising model, � is O(Mmax) as the penalty
terms dominate energy barrier heights. Thus, the computa-
tional complexity is expected to depend on Mmax/δ. This ratio
increases as Nx increases, as shown in Fig. 8. This occurs
because Mmax is O(Nx ) as already shown in Fig. 6, whereas the
cost difference δ may not necessarily depend on the problem
size. Therefore, the increase of Mmax is likely to cause the

FIG. 8. The ratio of the maximum penalty strength Mmax relative
to (1) the cost difference δ between the optimal and the second
optimal solutions and (2) the minimum cost Cmin of feasible solu-
tions. The maximum penalty strength Mmax was computed for the
optimized penalty and chain strengths for simulated annealing (SA)
shown in Fig. 6. The minimum cost Cmin was computed by the Gurobi
Optimizer. The cost difference δ was estimated as follows: first, we
gathered nonoptimal feasible solutions from the samples used to
compute the time-to-solution for SA shown in Fig. 7; then, among
these nonoptimal feasible solutions, we identified the minimum cost,
denoted by C′; finally, we estimated δ as δestimate = C′ − Cmin. This
estimate provides an upper bound of δ as C′ is always greater than or
equal to the true second minimum cost. Note that for some problems
(especially with small sizes), all feasible solutions sampled by the
SA-based algorithm are the optimal solution, thus Mmax/δestimate is
not plotted.
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FIG. 9. The relationship between the time-to-solution and the
ratio of the maximum penalty strength to the minimum cost. Pan-
els depict the time-to-solution with cost tolerance ρ = 2 for the
algorithms using (a) the D-Wave Advantage system and (b) simu-
lated annealing, respectively. The time-to-solution data correspond
to that in panel (b) in Fig. 7. Each data point is colored according
to the value of the ratio of the maximum penalty strength to the
minimum cost. For clarity, outlier values (colors) of the penalty-cost
ratio were treated using the following standard method based on the
inter-quartile range: values outside the interval [Q1 − 1.5IQR, Q3 +
1.5IQR] were truncated, where Q1 and Q3 represent the first and third
quartiles, respectively, and IQR(:= Q3 − Q1) is the inter-quartile
range; smaller outliers were set to the lower bound of the interval,
while larger outliers were set to the upper bound.

increase of �/δ, leading to the rapid increase in the TTS of
SA for ρ = 1.

In the cases of ρ = 2 and 3, the relatively slow in-
creasing rate of the TTS of SA with respect to Nx can
be explained by a theoretical expectation that the compu-
tational complexity of SA depends on Mmax/[(ρ − 1)Cmin]
instead of Mmax/δ, contrasting the case of ρ = 1. This ex-
pectation is based on the following arguments. The sampling
probability of the optimal solution(s) is desired to be suf-
ficiently higher than those of nonallowable solutions whose
costs are greater than ρCmin but not necessarily than those
of solutions within the cost tolerance range. This insight
suggests that the final temperature should be sufficiently
low compared to the cost difference between the optimal
and the least-cost nonallowable solutions, (ρ − 1)Cmin, in-
stead of δ in the case of ρ = 1. Therefore, based on a
similar discussion presented in Appendix B 1, the neces-
sary annealing time is expected to depend on Mmax/[(ρ −
1)Cmin]. In fact, as demonstrated in Fig. 9, problems with
larger Mmax/Cmin tend to have longer TTS for ρ = 2.
Furthermore, Mmax/Cmin does not exhibit a clear increasing
trend with respect to Nx, as shown in Fig. 8. This observation
is explained by the fact that the minimum cost Cmin also
tends to increase almost linearly as the problem size increases.
Therefore, the reason for the moderate increase in the TTS
of SA for ρ = 2 and 3 is likely that Mmax/Cmin does not
necessarily increase with respect to Nx.

For the case of using the D-Wave Advantage system, the
increasing trend of the TTS with respect to Nx can be par-
tially explained in terms of Mmax/δ and Mmax/Cmin, in a way
similar to the case of SA. According to an estimate for the
computational complexity of QA [Eq. (B8) in Appendix B 2],
the necessary annealing time required to find the optimal so-
lution(s), i.e., for the case of ρ = 1, increases exponentially as
log(1/δ′) increases, where δ′ denotes the energy gap between
the ground and the first excited states of the physical Ising

model. When using the D-Wave Advantage system, the Ising
Hamiltonian must be rescaled by the maximum of |Ji j | and
|hi| due to their finite ranges. This rescaling factor scales
as O(Mmax). Therefore, the factor 1/δ′ in the necessary an-
nealing time is O(Mmax/δ) for ρ = 1. Similar to the above
arguments for SA with ρ > 1, the factor 1/δ′ can be replaced
by O(Mmax/Cmin) for ρ > 1. Thus, Mmax/δ and Mmax/Cmin are
likely important factors determining the computational time
scaling for QA as well as SA. In fact, Fig. 9 demonstrates
that problems with longer TTS tend to have larger Mmax/Cmin

value, for problems with fewer than 50 variables.
However, despite the theoretical prediction that QA ex-

hibits an advantage over SA in terms of the computational
complexity scaling with respect to Mmax/δ or Mmax/Cmin

(see also Appendix B 2), the results presented in Fig. 7 do
not demonstrate an apparent quantum advantage. This gap
between theory and reality can be due to various factors,
including device-specific characteristics of the D-Wave Ad-
vantage system, which are further discussed in the following
paragraph.

Device-specific characteristics, such as the finite setting
precision of Ji j and hi and embedding overheads, must im-
pact the TTS for the D-Wave Advantage system. First, the
precision in setting Ji j and hi is limited. Since the energy
gap between the ground and the first excited states of the
rescaled Ising Hamiltonian is O(δ/Mmax), the energy gap can
be smaller than the setting errors of Ji j and hi for large-
size problems, leading to poor performance of sampling the
optimal solution(s). Second, minor embedding necessitates
more physical qubits compared with the original logical
Ising/QUBO formulation. As presented in Appendix D 1, the
necessary number of physical qubits to represent a pathway-
finding problem on the device increases almost quadratically
as the number of logical binary variables increases. This
embedding overhead contributes to the increased compu-
tation time of QA. Lastly, other hardware characteristics,
such as thermal noises and readout errors, may also affect
performance. These limitations specific to QA hardware de-
vices may nullify the theoretical quantum advantage in the
computational complexity scaling with respect to Mmax/δ or
Mmax/Cmin.

3. Computed synthesis pathways

Finally, we compare synthesis pathways computed by the
D-Wave Advantage system, SA, and the Gurobi Optimizer.
Figs. 10 and 11 depict synthesis pathways computed for two
representative problems shown in panels (d) and (e) of Figs. 4
and 5, that is, the 80th and 100th problems in ascending
order of the number of integer variables, respectively. In this
computation, we employed the order encoding method and
the penalty and chain strength parameters optimized using
the category grouping method. The annealing time for the
D-Wave Advantage system and the number of sweeps for
SA were set to their default values, i.e., 20 µs and 1000,
respectively. We ran the proposed Ising-computing algorithm
1000 times for each problem and each Ising machine. The
feasible synthesis pathways at the minimum cost among the
1000 solutions for each problem and each Ising machine are
shown in panels (a) and (b) of Figs. 10 and 11. The synthesis
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(a) D-Wave Advantage (b) Simulated Annealing

(c) Gurobi Optimizer

FIG. 10. Synthesis pathways computed by (a) the D-Wave Advantage system, (b) simulated annealing, and (c) the Gurobi Optimizer. The
problem solved is the 80th problem in ascending order of the number of integer variables [the same problem shown in panel (d) of Figs. 4
and 5]. Circles and squares represent chemical species and reactions, respectively. Each reaction’s multiplicity is indicated inside the reaction
node. Colored parts correspond to computed synthesis pathways, whereas light gray parts are not included in these pathways; in other words,
the multiplicity of each light gray reaction is zero. The green arrows in the upper left area of panels (b) and (c) indicate different choices of
alternative reactions in these two pathways. The costs of the three synthesis pathways are (a) 372.7, (b) 251.4, and (c) 250.0, respectively.

pathways computed by the Gurobi Optimizer shown in panel
(c) of these figures are the exact optimal synthesis pathways
for each problem.

The synthesis pathways computed by the D-Wave Ad-
vantage system and SA differ from the optimal synthesis

pathways computed by the Gurobi Optimizer in the
following two aspects. First, it has been observed that synthe-
sis pathways computed by the D-Wave Advantage system and
SA make suboptimal choices when alternative reactions are
available, in certain cases. Pathways in panels (b) and (c) of

013115-12



FINDING OPTIMAL PATHWAYS IN CHEMICAL REACTION … PHYSICAL REVIEW RESEARCH 6, 013115 (2024)

(a) D-Wave Advantage (b) Simulated Annealing

(c) Gurobi Optimizer

FIG. 11. Synthesis pathways computed by (a) the D-Wave Advantage system, (b) simulated annealing, and (c) the Gurobi Optimizer. The
problem solved is the 100th problem in ascending order of the number of integer variables [the same problem shown in panel (e) of Figs. 4 and
5]. The green frame in the upper left area of panel (a) encloses a subpathway that produces an unnecessary precursor. See the caption of Fig. 10
for the details of other symbols’ meaning. The costs of the three synthesis pathways are (a) 552.1, (b) 471.4, and (c) 328.3, respectively.

Fig. 10 exemplify such a situation; these two pathways differ
only in the choice of reactions indicated by the green arrows in
the upper left area. Second, there are instances where synthe-
sis pathways computed by the D-Wave Advantage system and
SA include synthesis subpathways which produce precursors
not used for synthesizing any target. Panel (a) of Fig. 11
clearly exemplifies such a situation; the subpathway enclosed
by the green frame in the upper left area is disconnected with

the other part and is not included in the optimal pathway; this
subpathway produces a precursor not used for synthesizing
any target. In general, such unnecessary subpathways are not
always separated from main pathways and often overlap with
them.

These differences between the optimal pathways and those
computed by the D-Wave Advantage system and SA may
be attributed to the large penalty strength issue and device-
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specific noise and errors mentioned above. When the penalty
strength is high, constraint satisfaction is more prioritized than
cost minimization, often leading to feasible but suboptimal
solutions. If the multiplicity of an unnecessary reaction in a
chemical reaction network becomes positive due to device-
specific noise or errors, the postprocessing methods may add
additional reactions to make the returned solution feasible,
which may form an unnecessary subpathway.

It may be possible to address the issue of unnecessary
subpathways through the following postprocessing steps: (1)
detecting disposed precursors; (2) finding subpathways that
produces the excess precursors at maximum cost in the
original pathway, using the proposed pathway-finding algo-
rithm; (3) subtracting the subpathways—which are likely
unnecessary—from the original pathway. Unnecessary sub-
pathways may also be suppressed by imposing additional
penalties for precursors disposal in the QUBO formulation.
Introducing these treatments, however, necessitates careful
consideration as precursor disposal does not necessarily in-
dicate wasteful pathways and economical reactions may
produce precursors as byproducts in some cases. Methods to
remove or suppress unnecessary subpathways remain open for
further investigation.

4. Other examinations

Additionally, we confirmed that the BO-based parameter
tuning used in the present study contributes to perfor-
mance improvement, outperforming random search (see
Appendix D 2). An examination into the postprocessing meth-
ods showed that the postprocessing methods indeed enhance
the algorithm’s performance (see Appendix D 3).

V. CONCLUSIONS

We have developed an algorithm for finding optimal path-
ways in chemical reaction networks using Ising machines.
A pathway-finding problem in a chemical reaction network
is formulated as a combinatorial optimization problem that
involves integer variables representing reaction multiplic-
ity and mass balance constraints corresponding to the law
of conservation of mass. The proposed algorithm translates
a chemical pathway-finding problem into the ground-state
finding problem of an Ising model and solves the translated
problem using an Ising machine. In addition, the proposed
algorithm applies two postprocessing methods to enhance the
feasibility and optimality of solutions returned from the Ising
machine.

We utilized Bayesian optimization to tune parameters
determining penalty strengths for constraint violations. To en-
hance tuning performance, we have devised a dimensionality
reduction technique for the parameter search space. In this
technique, parameters are grouped together according to the
associated constraint type, and all parameters in each group
are constrained to take the same value. We systematically
elucidated the effects of several different parameter grouping
methods on tuning performance. We found that it is crucial
to design parameter groups tailored according to the specific
structure of problems for performance improvement. Most
Ising/QUBO formulations do not consider such elaborate pa-

rameter grouping; instead, all penalty strengths of the same
type are often consolidated into one group, like our “unified”
method (for instance, see [24] and applications reviewed in
[25]). Our findings may inform the future development of
automatic parameter tuning methods for complex constrained
problems in Ising computing.

Our performance evaluation and analysis of the proposed
algorithm using the D-Wave Advantage system and simulated
annealing indicate that: (1) the computation time required to
find optimal pathways rapidly increases as the problem size
increases, likely due to the growth of penalty strengths with
respect to the problem size and hardware limitations of quan-
tum annealing devices; (2) the scaling of the computation time
can be moderated if a relative error in a cost value is allowable
and if the maximum penalty strength to the minimum cost
hardly increases with respect to the problem size. These find-
ings provide insights into future directions of the algorithm
development for chemical pathway-finding problems.

In the development of chemical pathway-finding algo-
rithms utilizing the penalty-based Ising/QUBO formulation,
it might be advisable for the algorithms to aim at finding
approximate solutions within a relative cost error tolerance.
In addition, appropriate applications may be problems with
a moderate ratio of the maximum penalty strength to the
minimum cost. For further performance improvement, the
advancement of parameter tuning methods is needed. For
instance, annealing schedule optimization [42,43] likely
reduces the required annealing time, and transfer learning
techniques [43] may reduce the overhead runtime for param-
eter tuning by leveraging tuning results for other problem
instances. Hardware improvements, especially reducing
embedding overheads, are also necessary. Furthermore, a
method presented in [44] may mitigate the challenges in the
penalty-based formulation by transforming quadratic penalty
terms into linear terms using the Hubbard–Stratonovich
transformation.

An alternative approach is to apply penalty-free quantum
optimization algorithms, such as constrained quantum anneal-
ing [45] and quantum alternating operator ansatz (QAOA)
[46], which may help bypass the penalty related issues.
However, these algorithms introduce their own challenges,
such as the need for a quantum processing unit capable of
handling complex qubit interactions like XX and YY inter-
actions and the difficulty of designing an effective driver
Hamiltonian [47]. Despite these technical difficulties, ad-
vancements in algorithms along this direction hold promise
for resolving the challenges identified in the present study
when solving chemical pathway-finding problems using Ising
machines.

Furthermore, extending the scope of the chemical pathway-
finding problems targeted by the Ising computing frame-
work is a future challenge. For example, a chemical
pathway-finding problem may involve continuous variables
representing real-valued reaction multiplicity in moles. Real-
valued reaction multiplicity is necessary to be considered in
synthesis planning when taking into account reaction yields
because the optimal multiplicity may differ from a theoretical
integer value based on stoichiometry. In such a case, the
problem can be generally formulated as mixed integer pro-
gramming. For another instance, a chemical pathway-finding
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problem can be formulated as multiobjective optimization
involving multiple objectives such as low monetary costs
and low harmfulness [10]. Moreover, chemists are sometimes
interested in enumerating near-optimal pathways or even all
feasible pathways [12,15].

Several Ising/quantum-computing algorithms aim at solv-
ing mixed integer programming [48,49], multiobjective op-
timization [50], and exhaustive enumeration [51,52]. These
algorithms may unlock further potential in chemical reaction
network analysis using Ising machines. Note also that all
chemical pathway-finding problems inherently involve mass
balance constraints due to the law of conservation of mass;
hence, our methods and findings related to penalty strength for
mass balance constraints are likely broadly applicable across
these problems.

We hope this study will serve as a starting point for future
interdisciplinary technological advancements in chemical re-
action network analysis using next-generation computers such
as Ising machines and quantum computers.
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APPENDIX A: CHEMICAL REACTION NETWORK
UNDERLYING A SYNTHESIS-PLANNING PROBLEM

A synthesis-planning problem to find the optimal synthesis
pathway toward specified targets does not require considera-
tion of all chemical reactions in chemical databases such as
Reaxys. As illustrated in Fig. 12, chemical reactions can be
classified into two types: (1) chemical reactions relevant to
synthesizing the targets, which should be taken into account
in the synthesis planning, and (2) other irrelevant chemical

reactions. Relevant chemical reactions are recursively defined
as follows:

(1) All chemical reactions that directly produce target
species are relevant to the synthesis planning.

(2) If a chemical reaction produces any potential precursor
for the target species, that is, a reactant of another relevant
reaction, the chemical reaction is relevant to the synthesis
planning.

We also define relevant chemical species as chemical
species participating in the relevant chemical reactions. Such
species can be either targets, precursors, or byproducts. In
Fig. 12, species 0a and 0b are targets, species 1a–1e and
2a–2i are precursors, and species 
a is a byproduct. Here,
the number in the label of a target or precursor node indicates
the depth of the species node. The node depth is defined as the
minimum number of synthesis steps from the species node to
any target node. The depth of a byproduct node is undefined.

The above recursive definition establishes an algorithm for
collecting chemical species and reactions relevant to the syn-
thesis planning (Fig. 13). This algorithm significantly reduces
the number of chemical reactions to be considered compared
to that of the whole dataset.

In addition to the relevant chemical reactions enumerated
by Algorithm 2 (Fig. 13), the inflow and outflow dummy
reactions associated with the relevant species are also relevant
to the synthesis planning. In synthesis planning, only commer-
cially available species have their inflow reactions. All target
species must have outflow reactions; others may also have
outflow reactions representing disposal. Note that inflow reac-
tions of purchasable relevant byproducts and outflow reactions
of relevant precursors never produced by chemical reactions
in the database (e.g., species 1c in Fig. 12) can be omitted
because the purchase of byproducts and disposal of purchased
substrates are not economical choices.

Target species

Commercially-available species
(relevant)

Other species
(relevant)

Commercially-available species
(irrelevant)

Other species
(irrelevant)

Chemical reaction
(relevant)

Chemical reaction
(irrelevant)2g

2ε

2d2c2b2a

2γ2β2α

1b1a

1α

2i2h2f2e

2ζ2δ

Πa1e1d1c

1γ1β

0b0a

FIG. 12. Chemical reactions and species relevant and irrelevant to the synthesis planning of specified targets. Relevant chemical reactions
(solid squares) are candidates for synthesis steps because they yield one of the targets or the potential precursors for the targets. On the other
hand, irrelevant chemical reactions (dashed square) are never used for synthesizing the targets. Relevant chemical species (solid circles) are
defined as those participating in relevant chemical reactions. Note that not all relevant chemical reactions are always used in chemical synthesis.
For instance, four chemical reactions, namely 1β, 1γ , 2δ, and 2ζ , constitute a feasible synthesis pathway, indicated in dark black in the figure.
Determining the optimal combination of the candidate reactions is central to the synthesis-planning problem.
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FIG. 13. An algorithm for collecting relevant chemical species
and reactions. The input arguments are a set of chemical species S ,
a set of chemical reactions R, a set of targets T , and the maximum
search depth dmax. This algorithm iteratively enumerates relevant
chemical species and reactions up to depth dmax, then returns the
sets S and R of the collected species and reactions. Note that the
maximum recursive depth dmax does not exceed the number of all
chemical reactions |R|. For example, in Fig. 12, a square node with
a label starting with integer d represents a relevant reaction in Rd at
line 5 of the code, and a circle node with a label starting with integer
d signifies a relevant species in Sd at lines 3 and 7. In addition, the
byproduct species “
a” is added to S at line 10.

APPENDIX B: ISING MACHINES
AND MINOR EMBEDDING

Ising machines are dedicated computing devices for find-
ing the ground state(s) of Ising models [16]. Major algorithms
underlying Ising machines are simulated annealing [53] and
quantum annealing [54]. This Appendix surveys the simulated
and quantum annealing algorithms. Moreover, we also explain
the minor embedding required for using Ising machines with
limited spin connectivity.

1. Simulated annealing

Simulated annealing (SA) is a physics-inspired heuristic
algorithm for optimization, proposed by Kirkpatrick et al.
in 1983 [53]. SA simulates a thermal annealing process in
a statistical mechanics system by a Markov chain Monte
Carlo method. The system is designed such that its lowest
energy state(s) correspond to the optimal solution(s) of an op-
timization problem to be solved. In the annealing process, the
temperature of the system gradually decreases. If the cooling
process is slow enough, the system is expected to remain in
thermal equilibrium. Since the Gibbs distribution assigns a
high probability to the lowest energy state(s) at sufficiently
low temperatures, the system is likely to reach the lowest
energy state(s) after annealing.

The annealing schedule, which dictates the rate of temper-
ature decrease, determines the success probability of sampling
the lowest energy state(s). Geman and Geman [55] proved that
the sampling-probability distribution in SA converges to the
uniform distribution on the lowest energy state(s) as t → ∞

if the temperature decreases in time as

T (t ) = Nσ�

log t
(t > t0). (B1)

Here, t denotes time (Monte Carlo step), t0(> 1) is a constant,
T (t ) is the temperature at time t , Nσ is the number of spin vari-
ables, and � is the largest absolute energy difference between
any two states such that the system can directly transition
between them in a single step of the Markov chain.

The computational complexity of SA with the inverse-
logarithmic annealing schedule [Eq. (B1)] is estimated as
follows. Assume that the probability distribution stays close
to the Gibbs distribution during the annealing process. Let
E0 and E1 denote the lowest and the second lowest energies,
respectively. The temperature at final time τ needs to be low
enough compared with the energy gap δ (:= E1 − E0); this
is because the lowest energy state(s) should have a suffi-
ciently larger Boltzmann factor than the second lowest energy
state(s),

e− E0
T (τ )

e− E1
T (τ )

= e
δ

T (τ ) � 1

⇒ T (τ ) = Nσ �

log τ
� δ. (B2)

This suggests that the necessary annealing time in SA scales
as

τ ∼ exp

(
c

Nσ �

δ

)
, (B3)

where c is a positive constant of O(N0
σ ). This computational

complexity is consistent with that implied by a theoretical re-
sult in [56]: the total-variation distance between the sampling
probability distribution in SA with the annealing schedule
given by Eq. (B1) and the Gibbs distribution at absolute zero
temperature is upper bounded by O((t/Nσ )−δ/Nσ �).

Note that most SA algorithms do not employ the inverse-
logarithmic schedule due to impractical slowness in real-
world applications. Practical implementations of SA utilize
other fast cooling schedules, such as the geometric sched-
ule T (t ) = T (0)rt

T (0 < rT < 1), to find approximate optimal
solutions. For instance, the SA algorithm implemented in
the D-Wave Ocean Software [30] employs the geometric
annealing schedule as default, which was also used in our
benchmarking in Sec. IV. Thus, we reference the theoreti-
cal computational complexity given by Eq. (B3) merely as
a coarse measure to help interpret the observed computation
time scaling of SA with respect to the problem size in Sec. IV.

2. Quantum annealing

Quantum annealing (QA) is a heuristic quantum optimiza-
tion algorithm inspired by SA. QA for Ising models was first
proposed by Kadowaki and Nishimori in 1998 [54]. The QA
algorithm utilizes the time evolution of a quantum system with
the time-dependent Hamiltonian

ĤQA(t ) = − A(t )
Nσ∑
i=1

σ̂ x
i

− B(t )

⎡
⎣Nσ −1∑

i=1

Nσ∑
j=i+1

Ji j σ̂
z
i σ̂ z

j +
Nσ∑
i=1

hiσ̂
z
i

⎤
⎦, (B4)
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from time 0 to τ . Here, A(t ) and B(t ) are monotonic functions
such that A(0) = 1, B(0) = 0 and A(τ ) = 0, B(τ ) = 1, and σ̂ x

i
and σ̂ z

i are the Pauli x and z operators acting on the ith qubit,
respectively. The system Hamiltonian varies with time from
the first term (the transverse field Hamiltonian) to the second
term (the quantum Ising Hamiltonian). In the computation, the
quantum system is initialized to the ground state of the ini-
tial Hamiltonian |+〉⊗Nσ , where |+〉 = (|↑〉 + |↓〉)/

√
2, and

|↑〉 and |↓〉 are the eigenstates of the Pauli z operator with
eigenvalues 1 and −1, respectively. According to the quantum
adiabatic theorem, if the system Hamiltonian varies slowly
enough, the quantum state is expected to stay close to the
instantaneous ground state. Therefore, after the adiabatic time
evolution of the quantum system, it reaches a quantum state
close to the ground state of the Ising Hamiltonian at time τ ,
allowing us to observe the lowest-energy spin configuration(s)
with a high probability.

A convergence condition of QA is known for the following
transverse-field Ising model,

Ĥ ′
QA(t ) = −�(t )

Nσ∑
i=1

σ̂ x
i −

Nσ −1∑
i=1

Nσ∑
j=i+1

Ji j σ̂
z
i σ̂ z

j −
Nσ∑
i=1

hiσ̂
z
i .

(B5)
This Hamiltonian is related to the Hamiltonian in Eq. (B4)
as Ĥ ′

QA(t ) = ĤQA(t )/B(t ). The function �(t ) [= A(t )/B(t )]
controls the magnitude of quantum fluctuation induced by the
transverse field. Morita and Nishimori [57,58] proved that
the excitation probability is bounded by an arbitrarily small
constant ε at each time if �(t ) decreases in time as

�(t ) = a(
√

εt + b)−
1

2Nσ −1 (t > t0), (B6)

where a and b are constants of O(N0
σ ) and t0 is a positive

constant.
The computational complexity of QA with the power-law

annealing schedule [Eq. (B6)] is estimated as follows. At the
final time τ , the perturbative transverse field needs to be small
enough compared with the energy gap δ between the ground
and the first excited states of the nonperturbed Ising model.
This is because the contributions of excited states of the non-
perturbed Ising model to the perturbed ground state should be
sufficiently small,∣∣∣∣ 〈k|�(τ )

∑
i σ̂

x
i |0〉

Ek − E0

∣∣∣∣ ∝ (
√

ετ + b)−
1

2Nσ −1

Ek − E0
(k �= 0)

� (
√

ετ + b)−
1

2Nσ −1

δ
� 1, (B7)

where |k〉 denotes the (k + 1)th lowest energy eigenstate of
the nonperturbed Ising model with energy Ek . This suggests
that the necessary annealing time in QA scales as

τ ∼ exp

[
(2Nσ − 1) log

(
c′

δ

)]
, (B8)

where c′ is a positive constant. Therefore, QA exhibits an
advantage over SA in terms of the computational complexity
scaling with respect to δ.

Note that D-Wave quantum annealing devices are based
on the Hamiltonian defined by Eq. (B4) and do not employ
the power-law annealing schedule given by Eq. (B6). Thus,

the theoretical computational complexity given by Eq. (B8) is
merely a coarse measure to help interpret the observed com-
putation time scaling of QA with respect to the problem size.
In addition, due to minor embedding, the necessary number
of qubits Nσ is often greater than the number of spins of an
Ising model that one wants to solve. We explain the minor
embedding in the next subsection.

3. Minor embedding

Due to physical hardware topology, some Ising machines,
including D-Wave quantum annealing devices, can only solve
Ising models with limited spin interactions. Therefore, one
needs preprocessing to represent the logical Ising model one
wants to solve by the physical Ising model implemented in
hardware.

The mapping from the logical model to the physical model
is called minor embedding [59]. In the embedding, a collec-
tion of multiple physical spins, termed a chain, represents a
single logical spin. To ensure that the physical spins in a chain
collectively behave as a single logical variable, a constraint
that all spins in the chain take the same value is imposed.
This constraint can be physically implemented by strong fer-
romagnetic interactions (Ji j � 1) between adjacent spins in
the chain. The strength of the ferromagnetic interactions is
called chain strength. In addition, the embedding ensures that
if logical spin variables σ and σ ′ interact, at least one physical
spin in the chain of σ and one spin in the chain of σ ′ interact.

Finding minor embedding is an NP-hard problem. How-
ever, several heuristic algorithms exist for finding embeddings
[59,60]. The algorithm proposed in [59] is available in the
minorminer package of the D-Wave Ocean Software [30].

Physical spins in a chain often take different values. In such
a case, postprocessing is performed on a classical computer,
assigning the most common physical spin value in the chain
to the corresponding logical spin variable. The probability
of such chain breaks mainly depends on the chain strength.
Therefore, careful tuning of the chain strength is necessary
to obtain feasible, low-cost solutions. Section III C describes
chain strength tuning in detail.

APPENDIX C: BENCHMARK PROBLEM GENERATION

The benchmark problems used in Sec. IV were generated
as follows.

First, we constructed a chemical reaction network from
the USPTO dataset, a dataset of chemical reactions extracted
from the United States patents published between 1976 and
September 2016 [37]. The dataset contains invalid entries,
such as species with invalid chemical structures and chem-
ical reactions with no reactants/products; we removed these
invalid reactions from the network. In addition, we ignored
catalysis information. The numbers of chemical reactions and
species in the whole network of the USPTO dataset are around
1.1 and 1.5 million, respectively.

Second, we defined a set of commercially available sub-
strates and a set of target candidates. Instead of referring
to actual chemical makers’ catalogs, we generated a set of
commercially available substrates and a set of target can-
didates based solely on the USPTO network structure as
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FIG. 14. Scaling of (a) the computation time required to find an embedding using the minorminer.find_embedding function, (b) the
mean chain length, and (c) the maximum chain length, with respect to the number of integer variables.

follows: (1) We identified species with an indegree or
outdegree of 20 or more as hub. We assumed that a hub species
has an established standard way of purchasing or synthesizing
it because it can be regarded as popular in chemistry. In
other words, we assumed that the hub species are virtually
commercially available and that finding synthesis pathways to
them is unnecessary. Thus, we omitted deeper searches from
hub species in Algorithm 2 (Fig. 13). This treatment prevents
a synthesis planning problem from becoming too large and
complex to solve by the D-Wave Advantage machine. (2) We
classified nonhub species into source (with zero indegree),
sink (with zero outdegree), and nonterminal (others). (3) We
assumed that all source species are commercially available
because source species are always used as starting materi-
als in the dataset. (4) Nonterminal species may be either
commercially available or not; we randomly assigned 25%

of nonterminal species as commercially available substrates.
(5) We designated all commercially unavailable species
to target candidates. These target candidates comprise the
sink species and the commercially unavailable nonterminal
species.

Third, we randomly determined a unit purchase price of
each commercially available species and a fixed execution
cost for each chemical reaction. In our experiment, we used
uniform distribution ranging from 1 to 10 for the random cost
assignment.

Fourth, we randomly selected multiple targets for each
synthesis planning: The number of targets was determined
at uniformly random between 1 to 10; we then randomly
selected a set of multiple species with high Tanimoto sim-
ilarity [61] based on Morgan fingerprints [62,63] from the
set of target candidates. Synthesis plans for multiple similar

FIG. 15. Convergence plots of parameter tuning for the D-Wave Advantage case. The solid lines illustrate the convergence trends for
Bayesian optimization with the multivariate tree-structured Parzen estimator (TPE), and the dotted lines illustrate those for random search. We
performed parameter tuning three times for each problem, grouping, and encoding. The thick, dark lines represent the mean of the three tuning
processes, while the thin, light lines depict each individual process to highlight variations in the tuning processes. The problems selected are
the same as those in Fig. 4.
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FIG. 16. Convergence plots of parameter tuning for the simulated annealing case. The notation is the same as that in Fig. 15.

species can save monetary costs by sharing precursors and
reactions [11].

Fifth, we extracted a subnetwork underlying each synthesis
planning from the USPTO chemical reaction network. Algo-
rithm 2 (Fig. 13) identified the relevant chemical species and

reactions for each synthesis. Here, the maximum search depth
parameter dmax was set to |R|, the upper bound of synthesis
steps in a chemical reaction network with |R| reactions. Then,
inflow dummy reactions of commercially available precursors
were added to represent purchasing starting materials; outflow

FIG. 17. Effectiveness of the postprocessing methods. Panels (a) and (b) depict the tuning score 〈E〉, defined by Eq. (11), for solutions at
each step illustrated in Fig. 2, i.e., QUBO solutions, QUBO solutions (improved), and pathway solutions (improved). Red triangles represent
the score of QUBO solutions sampled by an Ising machine 〈E〉A. Green squares denote the score of improved QUBO solutions processed by
steepest descent 〈E〉+SD. Blue circles indicate the score of improved pathway solutions processed by both steepest descent and inflow/outflow
adjustment 〈E〉+IOA. Panels (c) and (d) illustrate changes in the score relative to the score of raw solutions 〈E〉A. Points at position X (X =
A, +SD, +IOA) represent the relative score 〈E〉X /〈E〉A. Each line corresponds to one problem and is colored according to the criteria shown
in the lower legend to highlight the type of improvement process.
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FIG. 18. Scaling of the tuned penalty and chain strength parameter values with respect to the number of integer variables in the case of
using the unary encoding and category grouping methods. The notation is the same as that in Fig. 6 in Sec. IV B. Note that panel (f) is blank
because the unary encoding method does not require any penalty for encoding. The R2 values are 0.92 [panel (a) for D-Wave Advantage], 0.63
[panel (a) for simulated annealing], and 0.65 [panel (g) for D-Wave Advantage], respectively.

FIG. 19. Scaling of the tuned penalty and chain strength parameter values with respect to the number of integer variables in the case of
using the order encoding and depth grouping methods. Panels (a)–(j) depict the penalty strength parameters for mass balance constraints of
species in each group, panel (k) shows the penalty strength parameter for order encoding, and panel (l) shows the chain strength for embedding.
Linear fits are plotted for datasets with a coefficient of determination (R2) greater than 0.5, excluding those with fewer than ten data points.
The R2 values are 0.91 [panel (a) for D-Wave Advantage], 0.86 [panel (a) for simulated annealing], 0.52 [panel (b) for D-Wave Advantage],
and 0.54 [panel (l) for D-Wave Advantage], respectively.
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dummy reactions of species other than the source species
(with zero indegree) were added to represent shipments of
target chemicals or disposals of synthesized byproducts.

Finally, we created optimization problems of synthesis
planning based on the random costs and the underlying chem-
ical reaction networks. In all problems, the multiplicity of
the outflow reaction of each target was fixed to 1 by setting
the lower and upper bounds to 1, and the lower and upper
bounds of the multiplicity of other reactions were set to 0 and
5, respectively.

Note that problems with disconnected relevant chemical re-
action networks were not adopted as the benchmark problems
because such problems can easily be decomposed into smaller
problems. In addition, problems that are infeasible or unable
to be embedded into the D-Wave Advantage machine were
also not adopted as the benchmark problems.

APPENDIX D: SUPPLEMENTAL PERFORMANCE
EVALUATION

1. Embedding performance

We calculated embeddings of the benchmark QUBO prob-
lems into the D-Wave Advantage Pegasus topology QPU

using the minorminer.find_embedding function from the
D-Wave Ocean Software [30]. For each problem, we per-
formed the calculation ten times and selected the embedding
with the shortest maximum and mean chain length from those
obtained.

Figure 14 illustrates the scaling of (a) the computation
time required to find an embedding, (b) the mean chain
length, and (c) the maximum chain length, with respect to
the number of integer variables. The computation time of the
minorminer.find_embedding function tends to increase
nearly quadratically as the problem size increases. The mean
and maximum chain lengths exhibit roughly linear scaling,
leading to quadratic scaling of the number of physical qubits
with respect to the number of logical qubits. Since the log
encoding method requires fewer binary variables than the
other encoding methods, both the computation time and chain
length for the log encoding method are less than those for the
others.

2. Tuning performance

To evaluate the effectiveness of Bayesian optimization in
penalty strength tuning, we compared its results with those of

FIG. 20. Scaling of the tuned penalty and chain strength parameter values with respect to the number of integer variables in the case of
using the unary encoding and depth grouping methods. The notation is the same as that in Fig. 19. Note that panel (k) is blank because the
unary encoding method does not require any penalty for encoding. The R2 values are 0.79 [panel (a) for D-Wave Advantage], 0.82 [panel
(a) for simulated annealing], and 0.61 [panel (l) for D-Wave Advantage], respectively.
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random search. The results for the D-Wave Advantage system
and simulated annealing are depicted in Figs. 15 and 16,
respectively. For the smallest size problem, both Bayesian op-
timization and random search converged rapidly to the same
value. However, for larger problems, Bayesian optimization
converged to a better value than random search when using
the same encoding and grouping methods.

3. Postprocessing performance

To evaluate the effectiveness of the two postprocessing
methods, we analyzed changes in the tuning score function
〈E〉, defined by Eq. (11), during postprocessing. The results
are shown in Fig. 17. In the D-Wave Advantage case, the

postprocessing enhances the 〈E〉 score by several orders of
magnitude. The score improvement was primarily due to
steepest descent (SD) or inflow/outflow adjustment (IOA). On
the other hand, in the simulated annealing case, SD does not
contribute to score improvement, whereas IOA does enhance
solution quality for some problems.

4. Penalty strength scaling (supplemental)

Figure 6 in Sec. IV B and Figs. 18–20 in this
Appendix demonstrate that the optimized penalty strength for
the mass balance constraints of the target species tends to be
larger than that of the others and exhibits a strong linear cor-
relation with the number of integer variables when using the
unary/order encoding and depth/category grouping methods.
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