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Calculating the many-body density of states on a digital quantum computer
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Quantum statistical mechanics allows us to extract thermodynamic information from a microscopic descrip-
tion of a many-body system. A key step is the calculation of the density of states, from which the partition
function and all finite-temperature equilibrium thermodynamic quantities can be calculated. In this work, we
devise and implement a quantum algorithm to perform an estimation of the density of states on a digital quantum
computer which is inspired by the kernel polynomial method. Classically, the kernel polynomial method allows
us to sample spectral functions via a Chebyshev polynomial expansion. Our algorithm computes moments of the
expansion on quantum hardware using a combination of random-state preparation for stochastic trace evaluation
and a controlled unitary operator. We use our algorithm to estimate the density of states of a nonintegrable
Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18 qubits. This not only
represents a state-of-the-art calculation of thermal properties of a many-body system on quantum hardware, but
also exploits the controlled unitary evolution of a many-qubit register on an unprecedented scale.
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I. INTRODUCTION

The idea of using one quantum system to efficiently sim-
ulate another one was the vision of Feynman over 40 years
ago [1]. This paradigm is known as quantum simulation [2–5]
and is expected to be one of the first real applications of the
current generation of quantum computers [6]. In particular,
recent progress has been made in simulating the dynamics
of strongly correlated many-body systems on current de-
vices [7–11], albeit with systems which are still too small
to compete with calculations on classical supercomputing ar-
chitectures. The hope is that the achievable system sizes will
eventually become large enough to surpass what is classically
possible.

In terms of using quantum simulators to extract eigenen-
ergies of many-body systems, early ideas include algorithms
based on quantum Fourier transform [12] such as quantum
phase estimation [12–14] and adiabatic state preparation [15].
The development of algorithms for the extraction of ground-
state energies is central for the promise of being able to
perform quantum chemistry and materials simulations on
quantum computers [16–19] and ground state energy calcu-
lation is a target of many variational quantum algorithms
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[20,21]. Results for finite temperature and excited states are
more scarce. However, recent proposals to measure finite
temperature expectation values on hardware include sampling
[22–24] and imaginary time evolution [25], and more recently
algorithms which may have potential for computing micro-
canonical expectation values were proposed in Ref. [26].

The more general idea of using quantum computers to
do statistical mechanics is a topic which is gaining traction
[26,27]. In this work we focus on developing an algorithm that
gives a coarse-grained estimate of the density of states (DOS)
based on the classical kernel polynomial method (KPM) [28].
The KPM provides a reconstruction of a spectral function by
means of a Chebyshev polynomial expansion, weighted by
suitable kernels to damp the Gibbs oscillations that occur due
to finite series truncation. Chebyshev moments are computed
iteratively by applying functions of the Hamiltonian on some
initial state. This step is a challenge to implement on quantum
hardware.

Block encoding of a Hamiltonian is deeply connected with
the Chebyshev polynomials [29], implementing the Hamilto-
nian as a quantum walk as exploited in the context of the KPM
in Ref. [30] and more generally to estimate physical properties
in Refs. [31,32]. Alternatives are to compute the Chebyshev
moments iteratively in a variational quantum algorithm [33]
or to overcome the problem of implementing the Chebyshev
polynomials using suitably defined Fourier ones [34,35].

In this work we devise a hybrid algorithm which uses a
combination of pseudorandom-state preparation, Hadamard
test, and Suzuki-Trotter (ST) decomposition [36] to evaluate
Chebyshev moments. These moments are then used in the
standard KPM expansion. We use an arccosine approxima-
tion of the Hamiltonian to implement Chebyshev polynomials
from standard ST decomposition and implement our algo-
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rithm on the Quantinuum H1-1 trapped ion quantum simulator
[37]. We were able to approximate the DOS of a nonintegrable
spin chain for up to 18 qubits using a single ancillary qubit.
Our simulations represent one of the first explorations of
the use of near-term quantum computers for calculations in
statistical mechanics.

In Sec. II we introduce the KPM method and discuss its
use in the context of statistical mechanics. We discuss how
to compute the DOS and how a pseudorandom state can be
used for stochastic trace estimation. In Sec. III we explain
the quantum algorithm for extracting Chebyshev polynomials
and discuss the subroutines for random-state preparation and
implementing the arccosine approximation of the Hamilto-
nian. In Sec. IV we then introduce the model we simulate on
hardware and the corresponding gate decomposition used to
implement the controlled unitary. We display our results for
estimations of DOS computed using our hybrid algorithm for
systems sizes of 12 and 18 qubits.

II. CLASSICAL KERNEL POLYNOMIAL METHOD FOR
THE DENSITY OF STATES

A. Density of states

In this section we give an overview of the classical KPM
and discuss how it is used to calculate the DOS [28]. The DOS
of a system of L qubits described by the Hamiltonian Ĥ is
defined as

g(E ) = 1

2L

2L−1∑
k=0

δ(E − Ek ), (1)

where Ek are the energy eigenvalues, and |k〉 the correspond-
ing eigenvectors, i.e., Ĥ |k〉 = Ek |k〉. The DOS gives access
to all thermodynamic properties; in particular, the canonical
partition function can be evaluated as

Z (β ) =
∫

e−βE g(E )dE , (2)

and from Z (β ), the energy

E (β ) = −∂[lnZ (β )]

∂β
(3)

and the entropy S(β ) = β[E (β ) − F (β )], with F (β ) =
−β−1 ln[Z (β )] the free energy.

In order to extract the DOS from a system of size L one
would typically need exact diagonalization, which requires
memory resources scaling as O(23L ). In contrast, the KPM
described in the following section is able to approximate the
DOS with memory scaling as O(2L ) when combined with a
stochastic evaluation of the trace, as analysed in Sec. II D.

B. Kernel polynomial method

We consider a function f (x) defined on the interval x ∈
[−1, 1]. The KPM provides an approximation of this function
by a finite series of M Chebyshev polynomials. Mathemati-
cally, it is given by

fKPM(x) = 1

π
√

1 − x2

[
γ M

0 μ0 + 2
M∑

m=1

γ M
m μmTm(x)

]
, (4)

where γ M
m are the kernel coefficients used to damp Gibbs

oscillations, Tm(x) the Chebyshev polynomials, and μm the
Chebyshev moments. While a more detailed discussion can be
found in Appendix A, the Chebyshev polynomials are defined
as

Tm(x) = cos[m arccos (x)], with m ∈ N0, (5)

and obey the following recursion relation,

Tm(x) = 2xTm−1(x) − Tm−2(x), (6)

where T0(x) = 1, T1(x) = x. The KPM expansion in Eq. (4)
is thus reconstructed by computing the corresponding Cheby-
shev moments

μm(x) =
∫ 1

−1
f (x)Tm(x)dx. (7)

The KPM can be adapted to estimate general spectral func-
tions related to a given quantum mechanical Hamiltonian. In
this work, we use it to get an estimate of the DOS. We note that
recently the KPM has been implemented using tensor network
techniques [38], and was adopted to study thermalization [39]
as well as to extract the DOS of simple models in lattice gauge
theory [40]. One clear advantage of the KPM is that it does not
suffer from the sign problem that is synonymous with Monte
Carlo simulations.

C. Chebyshev moments of the DOS

In this section we discuss the key steps in computing the
KPM approximation of the DOS, D(E ). Since the domain of
the Chebyshev polynomials is the interval [−1, 1], Ĥ must
have a spectral norm ||Ĥ || � 1. If not, Ĥ can be normalized
as

Ĥ �→ Ĥ − a

b
, (8)

with

a := Emax + Emin

2
and b := Emax − Emin

2 − ε
, (9)

where Emax and Emin are the largest and smallest eigenvalues
of Ĥ . Additionally, a small cutoff ε is introduced to avoid
stability issues that can arise close to the boundaries of the
spectrum. After the rescaling, the expression for the moments
μm becomes

μm :=
∫ 1

−1
D(E )Tm(E )dE

=
∫ 1

−1

1

2L

2L−1∑
k=0

δ(E − Ek )Tm(E )dE

= 1

2L

∑
k

Tm(Ek ) = 1

2L

∑
k

〈k| Tm(Ĥ ) |k〉

= 1

2L
Tr[Tm(Ĥ )]. (10)

D. Stochastic trace evaluation

The first task in the extraction of Chebyshev moments in
the KPM is the efficient estimation of the trace in Eq. (10).
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Given an operator X̂ acting on L qubits, determining all the
elements Xii := 〈i| X̂ |i〉 in its trace requires O(22L ) operations
[41]. A common alternative method to this computational
procedure is stochastic trace estimation. The main idea is to
estimate X̂ on a set of randomly chosen states. Let {|r〉} be a
set of R random states on L qubits,

|r〉 =
2L−1∑
i=0

cri |i〉 with cri ∈ C, (11)

and the stochastic estimate

� = 1

R

∑
r

〈r| X̂ |r〉 . (12)

If the coefficients fulfill the following conditions,

〈〈cri〉〉 = 0, (13)

〈〈cricr′ j〉〉 = 0, (14)

〈〈c∗
ricr′ j〉〉 = δrr′δi j, (15)

where 〈〈·〉〉 indicates the statistical average over i, then the
variance in the estimate of Tr[X̂ ] is

(δ�)2 = 1

R

⎛
⎝Tr[X̂ 2] + (〈〈|cri|4〉〉 − 2)

2L−1∑
j=0

X 2
j j

⎞
⎠ (16)

(for more details see Ref. [28]). Therefore, the relative error
scales as O(1/

√
R2L ), which implies that fewer random states

will be needed to achieve a fixed level of precision as the size
of the system increases. Note that if the coefficients of the
random states are distributed as a Gaussian, then the variance
of � only depends on Tr[X̂ 2].

The stochastic trace is used in conjunction with the recur-
sion relation in Eq. (6) to estimate the Chebyshev moments.
Starting from a random state |r〉 = |r0〉, one can define

|r1〉 = Ĥ |r0〉 , (17)

and recursively generate a series of M vectors

|rm〉 = 2Ĥ |rm−1〉 − |rm−2〉 = Tm(Ĥ ) |r〉 . (18)

The moments can then be obtained from the overlap 〈rm|r〉 =
〈r|Tm(Ĥ )|r〉.

A potential issue of computing the moments in this way is
that it makes the precision of the mth moment dependent on
errors from the evaluation of the previous ones. As mentioned
earlier, the computation of the moments is the major bottle-
neck of the classical KPM method, limiting the size of the
systems it can be applied to. In the next section we describe
our algorithm to compute the mth Chebyshev moment on a
quantum computer.

III. KERNEL POLYNOMIAL METHOD HYBRID
QUANTUM ALGORITHM

In Fig. 1 we show the circuit used to compute Chebyshev
moments on quantum hardware. Our proposal is reminiscent
of the DQC1 protocol [42], which is a subuniversal compu-
tational paradigm that requires L + 1 qubits to estimate the
real or imaginary part of the trace of a unitary operator acting

FIG. 1. Proposed circuit for the computation of Chebyshev mo-
ments on the quantum computer. A pseudorandom state is generated
by means of a random circuit on a register of L qubits and an ancillary
qubit is prepared in the |+〉 state with a Hadamard operation. A
unitary operation eimĤK is then performed on the register and con-
trolled on the ancillary qubit (yellow rectangular). This is pursued
through a controlled unitary and a rotation Z , with η the coefficient
of the identity in ĤK . The subsequent gates and measurements on the
controlled qubit yield Tr[cos(mĤK )] and Tr[sin(mĤK )], where ĤK is
connected to the arc-cosine expansion defined by Eq. (39) and then
to the mth-order Chebyshev polynomial of the Hamiltonian.

on L qubits. L qubits are initialized in the maximally mixed
state while the remaining clean one acts as a control qubit of
a Hadamard test [43] applied on the whole register, similarly
as in Fig. 1. On a digital quantum computer, where states are
considered to be ideally pure, the maximally mixed state can
be approximated by random states. The initialization of the
L qubits in the maximally mixed state is responsible for the
subuniversality of the model [44]. However, the protocol still
enables potential exponential quantum speedup [45] and it
is strongly believed that no classical method can simulate it
efficiently [46,47].

On current hardware, the implementation of the control
unitary operator for the Hadamard test still faces certain
limitations. There are two main reasons for this. First, it
requires connecting each Pauli operator of the Hamiltonian
to the control qubit, which can be challenging for devices
with limited connectivity. Second, controlling the evolution
operator of a k-local Hamiltonian results in a (k + 1)-local
operator, leading to an increase in the number of two-qubit
gates required. We discuss our strategy to optimize the gate
count for our specific problem in Fig. 6. Additionally, the all-
to-all connectivity of the Quantinuum H1-1 device used here
avoids the issues related to the first problem. For devices with
more limited connectivity a delocalization of the control qubit
seems necessary, namely controlling the unitary operator of
the Hadamard test from more qubits at the same time. This
can be done by creating a GHZ state through different qubits
that one wants to treat as controllers of the local neighborhood
of qubits around them, as in Fig. 2.
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FIG. 2. Delocalization of the control qubit for a chain of L = 12
qubits using the heavy-hex mapping. The 6 orange qubits serve
as controls for the L gray qubits. If the Hamiltonian exhibits only
nearest-neighbor interactions, each control qubit can efficiently gov-
ern two pairs of qubits (shown with the yellow paths), requiring no
SWAP operations.

In the following, we discuss the two main parts of the
circuit in detail. In Sec. III A we analyze the random circuit
we use to mimic the maximally mixed state and in Sec. III B
the application of the controlled unitary for the extraction of
the Chebyshev moments.

A. Stochastic trace evaluation via state randomization

The generation of random states on quantum comput-
ers has recently garnered considerable attention due to their
important role in benchmarking [48]. However, producing
uniformly random states that sample the Haar distribution
is inefficient, as the number of required gates scales expo-
nentially with the register size [49,50]. T designs are a type
of circuit that replicate moments of the Haar distribution up
to order T or lower [51]. They offer some improvement in
terms of gate efficiency, with the number of required gates
scaling polynomially with the number of qubits. Nonetheless,
exact T designs are still costly and may be overly random for
specific purposes [52]. Here we take an alternative approach
based on pseudorandom-state generation [50]. This involves
the generation of states that do not uniformly sample the Haar
distribution [53], but still possess the desired properties such
as Eqs. (13) and (14). This method has been shown to generate
states that are sufficiently random in an efficient way.

Using pseudorandom states to stochastically evaluate the
trace has been proposed in various papers [34,54–58], and re-
cently used on quantum hardware to extract high-temperature
transport exponents [11]. In order to generate pseudorandom
states, one can use a circuit composed of alternating layers of
2-qubit gates and layers with random single-qubit rotations, as
suggested by Ref. [50] and adopted in Refs. [11,48,54] with
small variations.

This random composition has become a widely accepted
method for generating this type of random state. In Ref. [54]
the random state is aimed at generation on a quantum
computer where the qubits are connected in a ring ge-
ometry. Layers of 2-qubit gates connecting even-odd and
odd-even qubits are alternated and in between them, there
are layers of single-qubit gates randomly chosen among
{X̂ (π/2), Ŷ (π/2), Ẑ (π/4)} so that the same rotation is not
applied to the same qubit sequentially.

(a)

(b)

FIG. 3. The 6-layer randomized circuit used for trace evaluation
at L = 12 (the blue box on the L-1 qubit register in Fig. 1). (a) A
graphical representation of the circuit connectivity: the gray dots
represent the qubits, and the colored lines are the 2-qubit gates
numbered according to the order of application. Note that this par-
ticular structure is chosen to exploit the all to all connectivity of
the Quantinuum H1-1 device [37]. (b) Gate decomposition of the
random circuit. The colored lines represent ẐZ (π/2) gates, and the
dark gray squares are single-qubit rotations, randomly selected from
X̂ (π/2), Ŷ (π/4), and Ẑ (π/2). The latter two will be removed by
the compilation since they commute with ẐZ (π/2) and anticommute
with the other operators. Therefore, their effect is to add two more
types of single-qubit rotations.

In our case, we focus on a variation of this procedure
that takes advantage of the all-to-all connectivity and of the
specific set of elementary gates that can be implemented
directly on the Quantinuum H1-1 trapped-ion-based quantum
computer (see Fig. 3). The gate set of the Quantinuum H1-1
device includes

ẐZ (θ ) = e−iθ/2Ẑ⊗Ẑ ,

Ẑ (θ ) = e−iθ/2Ẑ ,

Û1q(θ, φ) = e−iθ/2[cos(φ)X̂+sin(φ)Ŷ ]. (19)

The device that we will use also supports parallelization (us-
ing quantum charge-coupled device (QCCD) architecture with
five parallel gate zones [59]). Inspired by existing techniques
to create shallow randomizers, we change the single-qubit
rotations to be chosen from {X̂ (π/2), Ŷ (π/4), Ẑ (π/2)}. Note
that the former two rotations can be applied as a single
Û1q(θ, φ) gate, while the latter can be implemented virtually
[60]. The 2-qubit gate will now be a ẐZ (π/2) with a different
connectivity. Each ẐZ (π/2) will connect the qubits 2i and
(2i + p) mod L with i = 0, . . . , L/2 and p an odd number
called a jump. The jumps are chosen so that each qubit is
narrowly connected to the other. For instance, as shown in
Fig. 3, the jumps of the first half of the layers can be chosen
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(a) (b)

FIG. 4. The convergence of different half-chain entanglement
entropies to the expected value, for L = 10, 12, 14, 16, and 18 av-
eraged over 20 different random states. The shadows are drawn by
the values of the individual random states. (a) The half-chain von
Neumann entropy S is shown as a function of random circuit depth
and shows the saturation to the Page value [61] (dark gray lines)
for different system size for the circuit used in this work (Par.).
(b) Comparison of the relative error of the von Neumann half-chain
entropy εs at L = 18 of the three different random circuits: the one
proposed in Richter et al. [54] (Ric.), the one used in this work (Par.)
(see Fig. 3), and one where the 2-qubit gates are applied sequentially
(Seq.). All three circuits lead to fast convergence to a maximally
bipartite entangled state. We note that the relative error in Seq. seems
to be most favorable but we have used Par. on the hardware here
because fewer layers are required to get a good estimate of the trace.

with p� = −(−1)�(2s� + 1) with s ∈ N0 and � the index of
the layer, and with p� = −p−� for the second half of the
layers. In particular, Fig. 3 shows the random compiler with
L = 12 and s = 1. Notice that s = 0 reproduces the same
pattern of 2-qubit gates as in [54].

Following Ref. [54], we quantify the randomizing effect
of our circuit by checking how well the half-system entan-
glement entropy converges to the Page value [61], which is
the entanglement entropy for a typical Haar-random state. The
von Neumann entanglement entropy of a state ρr = |r〉〈r| on
a space divided in subspaces Ha and Hb is

S(ρr(a) ) = −Tr[ρr(a) ln ρr(a)] (20)

with ρr(a) = Tr(b)[|r〉〈r|]. As shown in Ref. [61],
this value converges to the Page value ln(dim Ha) −
dim Ha/(2 dim Hb) for random pure states. For dim Ha =
dim Hb, it becomes ln(2L/2) − 1/2.

In Fig. 4, we present a classical simulation comparing
the convergence rates to the Page value of three different
approaches: Ric., which is the approach suggested by Richter
et al. [54]; Par., the approach used in this work; and Seq., a
variation of Par. where the 2-qubit gates are applied as a chain.
In this last method, the layers of 2-qubit gates are composed
of a sequence of gates; each of these has support overlapping
over half of the previous and half of the succeeding gate.
Therefore, we will compare these three methods in terms of
the number of 2-qubit gates used instead of the number of
layers. Although this last constraint limits the implementation
on Quantinuum’s hardware, it is helpful in analyzing the three
different random compilers. In fact, while Par. is not the fastest
at converging to the Page value, it performs best at estimating
the trace, as shown in Fig. 5. In contrast, the states produced
by Seq. converge to the Page value the fastest, but they are not
as effective for trace estimation as those built with Par. This

FIG. 5. Convergence of relative error εt of the stochastic trace
to the trace of the Hamiltonian defined by Eq. (48) with L = 18 for
the three random circuits used to generate Fig. 4. The results are
averaged over 20 different random states from which the shadows
are obtained.

suggests that the entanglement entropy alone is not sufficient
to determine a suitable state for stochastic trace estimation.
In fact, we have observed that, as the entropy converges to
the Page value, the fourth moment of the coefficients cri con-
verges to 2 [as required by Eq. (16)]. This suggests that the
states become Gaussian-distributed at the same rate as they
approach the Page value.

The shot-noise intrinsic feature of quantum computers ul-
timately limits the precision of the final measurements. This
limits the power of stochastic trace estimation, where even
if for larger systems, as described, one single random state is
enough on classical computers to achieve a sensible precision,
when it is performed on quantum computers we would still
need to run the circuit many times to create reliable statis-
tics from which to extract the probability. This leads to the
paradoxical outcome where random bit strings, except for
particular cases, are able to achieve the same precision of
typical states, since the overall error is still dominated by the
shot noise. Moreover, the randomization of the states can be
left to the quantum computer itself by operating a Hadamard
gate followed by a measurement on a qubit initialized in |0〉,
flipping the qubit only with a probability of 1/2. Unfortu-
nately, operating midcircuit measurements became available
on Quantinuum’s devices only after the ideation of this al-
gorithm. Nevertheless, as mentioned, the performances of
typical states are met by random bit strings only in some
instances. In case an amplitude amplification [62] is included,
for example, in the circuit, typical states still are useful.

B. Implementing the Chebyshev polynomials

Simulating the unitary evolution operator or other func-
tions of the Hamiltonian are central tasks in the field of
quantum simulation. In recent years there has been significant
progress, with various approximations, like qDrift [63–66],
LCU [67], Taylor expansion [68,69], and qubitization [70,71].
Importantly, the last method has been demonstrated to ex-
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hibit the most favorable asymptotic scaling in terms of the
number of gates required to reproduce the unitary evolution
operator of a Hamiltonian. This section briefly introduces this
technique before discussing an approximation that enables a
rough version of it to be implemented on current devices.
Qubitization relies on a routine of operators that naturally gen-
erates Chebyshev polynomials. However, plain qubitization
remains challenging for NISQ devices, as seen in Ref. [72].
Therefore, extensive use of this method is still prohibitive.

The backbone of qubitization are two operators: select (Ŝ)
and prepare (P̂). Consider a normalized Hamiltonian that can
be decomposed into a sum of unitary operators as

Ĥ =
P∑

p=1

ωpĤp with Ĥ2
p = Î and ωp ∈ R. (21)

The select operator is defined as

Ŝ :=
P∑

p=1

|p〉〈p|(a) ⊗ (Ĥp)(s), (22)

where (a) denotes an ancillary Hilbert space comprising a
qubits, where a � �log2 P� [71]. The prepare operator acts as

P̂ : |0〉(a) �→
P∑

p=1

√
ωp |p〉(a) =: |P〉(a) . (23)

These operators can be combined to obtain a block encoding
of the Hamiltonian as

〈P|(a) Ŝ |P〉(a) = Ĥ . (24)

The idea behind qubitization is to exploit the block encoding
of Ĥ in a quantum walk to generate any function of Ĥ . The
walk operator is defined as

Ŵ := (2|P〉〈P| − Î )(a)︸ ︷︷ ︸
R̂(a)

Ŝ

=
∑
p,q

(2
√

ωpωq|q〉〈p| − |p〉〈p|)(a) ⊗ (Ĥp)(s), (25)

where the operator R̂(a) acts as a reflection about the |P〉 state.
The walk operator can be decomposed as

Ŵ =
⊕

k

(
Ek

√
I − |Ek|2

−
√

I − |Ek|2 Ek

)

=
⊕

k

eiŶ(k)arccosEk , (26)

where Ek are the eigenvalues (with respective eigenstates |k〉)
of Ĥ and each term of the direct sum acts on the subspace Hk

generated by |φk〉 := |P〉 |k〉 and its orthogonal state |φ⊥
k 〉 ∝

(Ŝ − EkÎ ) |φk〉. Likewise the Ŷ(k) operator will act as a Pauli
Ŷ operator on this subspace. Equation (26) is also useful to
understand how Ŵ is isomorphic to

eiŶ ⊗arccosĤ =
(

Ĥ
√

Î − Ĥ2

−
√

Î − Ĥ2 Ĥ

)
, (27)

that is the minimal block encoding of Ĥ . A fundamental
feature of Ŵ , on which the efficiency of qubitization is based,

is that repeating it m times and projecting it on |P〉 generates
the Chebyshev polynomials:

〈P|(a) Ŵ m |P〉(a) = Tm(Ĥ ). (28)

Let us now consider the smallest decomposition of Ĥ in
unitaries, where Eq. (26) becomes easier to interpret. Given
any Hamiltonian Ĥ , there is a unitary operator ÛH such that

Ĥ = 1
2 (ÛH + Û †

H ), (29)

where

ÛH :=
∑

k

eiarccosEk |k〉〈k| = eiarccosĤ . (30)

It can be observed that Û 2
H �= Î as would seem to be required

by Eq. (21); however, we notice that this condition can be
relaxed by introducing a new walk operator V̂ := R̂(a)Ŝ† and
alternating it with Ŵ .

As shown in detail in Appendix F, an alternative decompo-
sition to Eq. (29) is

Ĥ = 1

2i
(ei arcsin Ĥ − e−i arcsin Ĥ ). (31)

For the decomposition of Ĥ in Eq. (29), the prepare operator
simplifies to

P̂ : |0〉(a) �→ 1√
2

|0〉(a) + 1√
2

|1〉(a) = |+〉(a) , (32)

while the select operator becomes

Ŝ = eiẐ(a)⊗arccosĤ(s) =
(

ÛH 0
0 Û †

H

)
. (33)

The reflection operator becomes

R̂(a) = (2|+〉〈+| − Î )(a) = X̂(a), (34)

and the walk operators can be constructed as

Ŵ =
(

0 ÛH

Û †
H 0

)
, V̂ =

(
0 Û †

H
ÛH 0

)
. (35)

The isomorphism between Ŵ and Eq. (27) is now clear since
it results in mapping the ancilla from Ẑ to Ŷ . The quantum
walk now generates

〈+|(a) . . . V̂Ŵ V̂Ŵ︸ ︷︷ ︸
m walk operators

|+〉(a) = Tm(Ĥ ). (36)

Finally, we notice that

X̂(a)Ŝ
†X̂(a) = Ŝ. (37)

Therefore, the iteration of the select operator already gener-
ates the desirable walk:

〈+|(a) Ŝm |+〉(a) = Tm(Ĥ ). (38)

We now want to utilize the decomposition in order to
exploit it for the evaluation of the DOS via our KPM inspired
algorithm. The KPM generally works better at the center of
the Hamiltonian spectrum, where exponentially many states
reside. Close to the spectral edges it can become unstable, par-
ticularly at smaller system size, and hence less reliable [28].
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Exploiting the fact that exponentially many eigenstates are
at the center of the spectrum, one can expand the arccos(Ĥ )
around Ek = 0:

arccos(Ĥ ) = π

2
−

∞∑
k=0

(2k)!

22k (k!)2(2k + 1)
Ĥ2k+1

= lim
K→∞

[
π

2
−

K∑
k=0

ckĤ2k+1

︸ ︷︷ ︸
ĤK

]
. (39)

It follows that the select operator (now depending on K)
becomes

ŜK = eiẐ⊗(π/2−ĤK ) = eiπ Ẑ/2e−iẐ⊗ĤK (40)

and

(ŜK )m = eimπ Ẑ/2e−imẐ⊗ĤK . (41)

The select operator can be implemented with just two con-
trolled operators as

ŜK = |0〉〈0| ⊗ ÛHK + |1〉〈1| ⊗ Û †
HK

. (42)

In what follows we choose to implement the ÛHK using the
standard ST decomposition since this decomposition is al-
ready known to require adequate resources on the hardware
platform [73,74].

A key limitation of the ST formulas in general is that the
only operator they can implement is the evolution operator.
However, the combination of the arccosine approximation,
ST decomposition, and qubitization allows us to approximate
polynomials of Ĥ . We will defer a comprehensive general-
ization of the combined use of these techniques for arbitrary
polynomials to future works. For now, utilizing Chebyshev
polynomials of the Hamiltonian will suffice in achieving our
goal.

From Eq. (41) we see that the Chebyshev moments can be
written as

T2m(Ĥ ) � (−1)m cos(mĤK ),

T2m+1(Ĥ ) � (−1)m sin(mĤK ) (43)

that correspond to the real and imaginary part of eimĤK up to a
sign. Hence, a Hadamard test on top of the random state will
correctly implement this operation, as depicted in Fig. 1. Note
that, as shown in Fig. 1, a final Ẑ (η) rotation on the control
qubit is needed to implement the component of ĤK that is
proportional to the identity. For K = 0 this rotation is simply

Ẑ (η) = ei(a/2b)Ẑ , (44)

i.e., η = −a/b, where a and b are defined in Eq. (8). Note
that since the random state is used to simulate the maximally
mixed state, the circuit of Fig. 1 is a variant of a DQC1.

With such an approximation Eq. (4) translates into

DK
M (E ) = 1

π
√

1 − E2

[
γ M

0 μK
0 + 2

M∑
m=1

γ M
m μK

mTm(E )

]
, (45)

where the Chebyshev moments have now been replaced by

μK
m = 1

2L
Tr{cos[m(π/2 − ĤK )]}. (46)

In the following we will mainly use the first order of this
approximation, namely K = 0:

μ0
m = 1

2L
Tr{cos[m(π/2 − Ĥ )]}. (47)

As discussed at the beginning of Sec. III, to estimate this
last quantity, we opted for a DQC1-like circuit, where only
one qubit needs to be measured. However, KPM can be ex-
tended, as can our method, to estimate other quantities (see
Appendix B), where the number of qubits to be measured
might increase. In such cases, less naive strategies for ap-
plying the final measurement could be beneficial, such as
informationally complete measurements [75] or shadow to-
mography [76]. Finally, it is worth noting that since μK

m can
be obtained by estimating Tr[e−imĤK ], many other protocols
could be used in place of the one employed here. In specific
cases of the Hamiltonian, the Hadamard test can be simpli-
fied by avoiding the application of the controlled operator,
as shown in Ref. [77]. An alternative to the Hadamard test
is the Loschmidt echo test [78], which has also been used
to compute the real and imaginary part of unitary operators.
Several other approaches to this problem can also be found
in [26], where qudits and analog devices are also taken into
account.

Computing many-body statistical properties appears as
something NISQ devices are already able to afford. A compar-
ison with other proposals to do it is presented in Appendix C
where in particular we show the close similarity of our method
with the one presented in Ref. [26].

IV. RESULTS ON THE QUANTINUUM H1-1 DEVICE

A. Example model to be simulated

As a test model to implement our algorithm on quantum
hardware we choose the nonintegrable spin- 1

2 XYZ Heisenberg
chain with a staggered interaction along the Z direction:

Ĥ =
L−1∑
i=0

JxX̂(i)X̂(i+1) +JyŶ(i)Ŷ(i+1) +JzẐ(i)Ẑ(i+1)

+
L−1∑
i=0

(−1)i�Ẑ(i)Ẑ(i+1). (48)

By choosing Jz = �, we can add a small advantage from the
perspective of gate count, without adding any symmetry to
the Hamiltonian. Indeed, the exponentiation of Ĥ [Eq. (48)]
can be split into two noncommuting terms: interactions be-
tween even-odd spins and between odd-even spins. The latter,
when � = Jz, have nonzero couplings only along the X and
Y direction. Then, even-odd terms require a gate composition
of Fig. 6(b), while odd-even terms require the even shallower
Fig. 6(a). The nonintegrability of this Hamiltonian arises from
the staggered interaction along the z axis, as discussed in
Ref. [79]. The absence of conserved quantities within these
systems not only renders computational tasks more challeng-
ing but also prevents the emergence of specific patterns in the
energy distribution. Consequently, the system exhibits a faster
convergence toward a Gaussian-like shape. This latter behav-
ior, which directly stems from the central limit theorem, is
a well-established characteristic observed in various physical
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(a) (b)

(c) (d)

FIG. 6. Gate decompositions used to implement the controlled
unitary (i.e., the orange gate of Fig. 1) for the Hamiltonian of Eq.
(48). The controlled ST decomposition of this Hamiltonian requires
a controlled exp (iαX̂ ⊗ X̂ + iβŶ ⊗ Ŷ ) for the odd-even spin pairs
(a) and a controlled exp (iαX̂ ⊗ X̂ + iβŶ ⊗ Ŷ + iγ Ẑ ⊗ Ẑ ) for the
even-odd spin pairs (b), with α, β, γ ∈ C. The hatched area in
(a) represents the part that for the first ST step will naturally mix
with the last layer of the random circuit, without requiring additional
gates; the hatched area of (b) in the last ST step can be neglected.
Panels (c) and (d) respectively represent the conversion of the C-
Ẑ (2α) and C-X̂ (2α) in the native gate set currently supported by the
system model H1-1. Note that this particular gate decomposition was
chosen in order to require as few gates as possible on the control
qubit, to enhance parallelization and reduce the probability of errors
occurring.

systems, such as lattices of interacting quantum systems in
arbitrary dimensions and arbitrary interactions [80].

B. Hardware results

We are now in a position to test our quantum algorithm
on physical hardware using the model described above. To
evaluate the effectiveness of the method at each stage of
approximation, we conducted quantum and classical simula-
tions of the chain defined by Eq. (48) at L = 12 and L = 18.
In Fig. 7, we compare the Chebyshev moments obtained by
various methods: by analytical calculation (using eigenvalues
obtained from ED), by approximating the arccos function,
by including the ST approximation, and by simulating the
circuit of Fig. 1 with and without noise. To generate the
random state, we implemented a series of gates on the L-qubit
register via the Par. method, as described in Sec. III A. The
Chebyshev moments were computed using the methods de-
scribed in Sec. III B, taking the arccosine expansion to order
K = 0, i.e., arccos(Ĥ ) ≈ π/2 − Ĥ , and using a single ST
step. Remarkably, we find that even with these parameters
it is possible to achieve an appreciable precision. We found
that hardware errors overcome any attainable improvements
from using arccosine expansions with K > 0 or more than a
single ST step. More detail on the error analysis is given in
Appendix D.

We found that for L = 12, the KPM expansion reaches
a sufficient degree of convergence to ED values at M ∼ 25.
Due to resource limitations on the Quantinuum device we
used only four different random states, running 1000 shots for
each one of these. We simulated up to m = 7 on the quantum
hardware, and approximate μm ≈ 0 for m > 7, since these
moments are too small to be distinguished from zero with

(a)

(b)

FIG. 7. Results for the Hamiltonian of Eq. (48) at L = 12 with
Jx = 1, Jy = 1/3, Jz = � = 1/2. In (a) the estimates for the first 25
Chebyshev moments. The comparison is between Chebyshev mo-
ments obtained in different ways: analytically (Cheb), applying the
arc-cosine approximation at the first order (Arccos), adding the ST
approximation with one single step (ST), and the results from the
circuit of Fig. 1 from Quantinuum, the emulator (H1-1e) and the
quantum computer (H1-1). We used 4 different random circuits (R =
4) with j = 5 and 1000 shots. Each cross represents the result from
a circuit with a different random circuit. Panel (b) is composed by
two parts. On top: the DOS obtained with the five different estimates
for the Chebyshev moments (using a kernel with M = 25) and the
DOS from the exact diagonalization (ED). On bottom we reported
the comparison of the DOS obtained with different approximation of
the Chebyshev moments with respect to the analytical ones.

our resources (see Appendix D). Figure 7(b) shows that the
moments extracted from the quantum computer are almost
indistinguishable from the exact values within the bulk of the
spectrum, and that the KPM with M = 25 is able to accurately
reconstruct the DOS using these moments.

We next attempted the same calculation on a register of
L = 18, which uses 19 out of 20 qubits currently available
on the H1-1 system [37]. Here the KPM requires M ∼ 50
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CALCULATING THE MANY-BODY DENSITY OF STATES … PHYSICAL REVIEW RESEARCH 6, 013106 (2024)

(a)

(b)

FIG. 8. Similarly to Fig. 7, the results for the Hamiltonian of
Eq. (48) at L = 18 with Jx = 1, Jy = 1/3, Jz = � = 1/2. In (a) the
estimates for the first 50 Chebyshev moments. Here, for the Quantin-
uum executions, we used 10 different random circuits (R = 10) with
j = 4 and 1000 shots. Each cross represents the result from a circuit
with a different random circuit. Panel (b) is composed by two parts.
On top: the DOS obtained with the five different estimates for the
Chebyshev moments and the DOS from the exact diagonalization
(ED). Since we computed μ2 only from the H1-1 system, we also
included what the DOS estimate from the μ2 from the real hardware
combined with the estimates from the emulator would look like
(H1-1*). On bottom we reported the comparison of the DOS obtained
with different approximation of the Chebyshev moments with respect
to the analytical ones.

to achieve an accurate approximation, while the moments
that can be simulated accurately range up to m = 11, beyond
which their values become too small to be distinguished from
zero given the number of shots we have used. Simulating a
larger system requires even more resources, and due to the
higher costs associated with these larger circuits, we ulti-
mately only simulated μ2 on the real hardware for the L = 18
case as it can be observed in the inset of Fig. 8(a). Our results

demonstrate that the emulator (H1-1e) consistently produces
accurate outcomes and we compute the rest of the moments
with it. Additionally, we note that the fidelity of the ẐZ gate
appears to improve with smaller angles. Our circuit heavily
employs these gates (see Fig. 6), and any discrepancies in
the emulator results can be attributed to an underestimation
of these gates’ fidelities. We report the results from this last
system in Fig. 8, where in the plot of the DOS we add a
projection obtained by combining the results from hardware
and emulator together. Finally, it is worth noting that all the re-
sults presented herein have been obtained without employing
error mitigation techniques. This observation demonstrates
the favorable performance of the algorithm on Quantinuum’s
hardware, while also facilitating the reproducibility of our
results and the scalability of our techniques.

V. CONCLUSIONS

In summary, we have performed an estimation of the
density of states of a nonintegrable many-body quantum
system on a digital quantum simulator. We have designed
and implemented a quantum algorithm that approximates
the Chebyshev moments as the amplitude of the evolution
operator of ĤK which for K = 0 is just the Hamiltonian.
In particular we extract them through a combination of the
Hadamard test, Suzuki-Trotter decomposition, and random-
state preparation. Proof-of-principle hardware simulations
were performed on registers of L = 12 and L = 18 qubits on
the Quantinuum H1-1 ion trap quantum computer, obtaining a
good approximation to the DOS for a nonintegrable Hamil-
tonian in the bulk of the spectrum (corresponding to high
microcanonical temperatures). We explored in detail the cru-
cial subroutines of stochastic trace evaluation and controlled
evolution with arccosine approximation. We believe that our
quantum hardware results represent the current state of the
art, in terms of both the generation of pseudorandom states
and the implementation of controlled unitary operations on
a many-qubit register. We emphasise that the accuracy of
our hardware results has been limited primarily by financial
constraints, and not by fundamental resource scalings or even
by noise on the H1-1 device.

For the DOS we found it was sufficient to take the arcco-
sine expansion to very low order (K = 0), which is ultimately
due to the concentration of energy levels at the center of the
spectrum in large systems. We note that our KPM-inspired
approach can easily be tailored to compute finite-temperature
expectation values in the diagonal and microcanonical
ensembles, in addition to other spectral functions such as the
Lehmann representation of multitime correlation functions.
In these cases, it may be necessary to consider higher-order
expansions (i.e., K > 0) to account for features away from the
center of the spectrum. Our methods could also be combined
with other quantum algorithms tailored to compute ground-
state and low-lying excited state properties [16–21], in order
to estimate thermodynamic properties across the full range of
temperature scales.

Our estimation of the DOS on current quantum hard-
ware represents an important step forward toward quantum
statistical mechanics calculations on quantum computers.
As the devices improve, we expect that this algorithm and
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subroutines can be used to extract useful approximations
to thermodynamic properties in regimes not accessible to
state-of-the-art classical numerical techniques for strongly
correlated systems.
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APPENDIX A: DECONSTRUCTING THE KEY
COMPONENTS OF KPM

Given a function f , a family of orthogonal functions {gM}
such that

f (x) ≈ gM (x) =
M∑

m=0

am�m(x) (A1)

is said to be a good approximation if it approximates f in at
least the square norm:

‖ f (x) − gM (x)‖2 =
[∫

[ f (x) − gM (x)]2dx

]1/2

. (A2)

A family of functions that are frequently used for this scope
is given by Fourier series. In this case, the polynomials are

gM (x) = 1

2
a0 +

M∑
m=1

[am cos(mx) + bm sin(mx)] (A3)

where the coefficients are

am = 1

π

∫
f (x) cos(mx)dx,

bm = 1

π

∫
f (x) sin(mx)dx. (A4)

The Fourier decomposition works well with signals, namely
with processes that happen to be periodic and extended in
time (its convergence domain is an infinite strip, symmetric
around the real axes [81]). Similarly, we can evaluate f (and
the coefficients am and bm) just in the [−π, π ] interval. The
Fourier series is then exponentially convergent for periodic
functions with derivatives bounded in [−π, π ]; namely its
coefficients am and bm decrease exponentially in m:

am, bm ∼ O[exp(−qnr )] (A5)

with n � 1 and q a constant for some r > 0. If f is even
(odd) all the sine (cosine) coefficients will cancel out and the
expansion becomes the Fourier sine (cosine) series.

Many physical phenomena are not periodic but bounded
(occur in a limited space). Since the Fourier series properly
works with periodic functions only, one can apply a change of
variable

x = cos(θ )

with then θ ∈ [−π, π ] → x ∈ [−1, 1]. This change of vari-
able transforms the function to a periodic one, allowing for the
application of the Fourier series. Noticing that f ( cos(θ )) =
f ( cos(−θ )) the expansion reduces to the Fourier cosine se-
ries:

gM ( cos(θ )) =
M∑

m=0

am cos[m cos(θ )], (A6)

where cos[m cos(θ )] are the Chebyshev polynomials
Tm( cos(θ )). Reformulating this last equation in x we have

gM (x) = 1

π
√

1 − x2

M∑
m=0

amTm(x), (A7)

where now

Tm(x) = cos[m arccos (x)] (A8)

and we added the coefficient 1/(π
√

1 − x2), which serves as
the weight for the orthogonality of these polynomials. Due to
this strong connection with the Fourier series, the Chebyshev
series inherits all its properties (among which the exponential
convergence) with now the advantage to be working also with
nonperiodic functions.

We can notice that cos[m arccos (x)] is actually a polyno-
mial in x by looking at the identity

cos(2φ) = cos2(φ) − 1 (A9)

which leads to the following iterative property of the Cheby-
shev polynomials:

T0(x) = 1,

T1(x) = x,

Tm+1(x) = 2xTm(x) − Tm−1(x). (A10)

The Chebyshev expansion, as established in Ref. [82],
stands out as the optimal expansion technique for continu-
ous functions. Nevertheless, when truncated, it engenders the
emergence of Gibbs oscillation effects. To effectively mitigate
these effects, one can convolve the expansion presented in Eq.
(A12) with a kernel function. Among the available options,
the Jackson kernel, which is also our chosen approach, stands
as the most widely adopted solution,

γ M
m = (M − m + 1) cos πm

M+1 + sin πm
M+1 cot π

M+1

M + 1
, (A11)

yielding to

gM (x) = 1

π
√

1 − x2

M∑
m=0

γ M
m amTm(x), (A12)

where this last expression correctly converges to the original
one:

‖ f − gM‖∞ ∼ O(1/M ). (A13)
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A detailed derivation of the Jackson kernel can be found in
Ref. [28].

APPENDIX B: ESTIMATING QUANTUM
THERMAL AVERAGES

While our method was initially benchmarked on the DOS,
the quantum subroutine can be readily adapted for the broader
purpose of estimating Chebyshev moments with respect to an
observable Â:

μm,A = Tr[ÂTm(Ĥ )], (B1)

and similarly for the arccosine approximated ones:

μK
m,A = Tr[Â cos(m(π/2 − ĤK ))]. (B2)

This adaptation allows us to construct the spectral function
AM (E ) using the KPM as

AM (E ) = 1

π
√

1 − E2

[
γ M

0 μ0 + 2
M∑

m=1

γ M
m μm,ATm(E )

]
,

(B3)

where in the arccosine-approximated version AK
M (E ), the mo-

ments μm,A are replaced by the approximated ones μK
m,A.

Thus, one can compute the canonical observables estimate
at finite temperature as

A(β ) = Tr[Âe−βĤ ]

Tr[e−βĤ ]
=

∫
e−βE AM (E )dE∫
e−βE DM (E )dE

. (B4)

To modify the circuit of Fig. 1, there are two options: inserting
an operator M̂A, where Â = M̂†

AM̂A, between the random cir-
cuit and the controlled unitary, or performing a basis change
after the controlled unitary and measuring the qubits on which
Â operates on [34]. The first approach necessitates ancillary
qubits to implement the nonunitary operator M̂A, while the lat-
ter requires measuring additional qubits in the L-qubit register.

To explore a specific segment of the spectrum, [η′ −
�, η′ + �], one can introduce a Hamiltonian shift, repre-
sented as dη = η′ − η, and then exclusively integrate Eq. (B3)
within this interval. In this case the Chebyshev polynomials
will become

μ
K (dη)
m,A = Tr[Â cos(m(π/2 − ĤK − dη))]. (B5)

In Fig. 9(a) we reconstructed the DOS of a spin chain with
L = 12 while in Fig. 9(b) we report the results for the spectral
distribution of the observable Â = Ẑ0Ẑ1 (see also Fig. 10).
We split the spectrum in seven parts with the same width and
finally we estimate the thermal average of Ẑ0Ẑ1(β ).

APPENDIX C: COMPARISON WITH OTHER METHODS

Based on Appendix B, the proposed methodology can
be effectively applied to estimate the statistical properties
of a quantum system. The computation of these properties
on quantum devices has witnessed significant advancements.
These advancements have predominantly focused on estimat-
ing observables through two primary strategies where the
observables are estimated either on a direct construction of
thermal states [83,84] or on an evolved ensembles of pure
states [23,25,26,85]. Constructing thermal states still presents

(a) (b)

FIG. 9. (a) Estimations of the density of states (DOS) and
(b) spectral distribution of the observable Â = Ẑ0Ẑ1 were conducted
using ED along with various executions of the KPM. The Hamilto-
nian employed is identical to the one depicted in Fig. 7 (L = 12),
and in this case, we used M = 75. In yellow (Cheb) the results
obtained by using the exact Chebyshev polynomials (μm and μm,A);
in green (Arccos) the ones from the first approximation of the ar-
ccosine approximation (μ0

m and μ0
m,A). Furthermore, we employed

a KPM approach to compute moments within seven distinct in-
tervals, each highlighted alternately in blue and light blue. These
intervals correspond to varying values of dη, specifically dη =
0, ±0.25, ±0.5, ±0.75. The computed moments, denoted as μ

0(dη)
m,A ,

were considered only within a range of ±� around the corresponding
dη values.

several challenges [86] and with a keen eye on the practical
constraints imposed by NISQ devices, two methodologies
using the latter strategy stand out: the cosine filter of Ref. [26]
and QMETTS, discussed in Refs. [25,87].

The former method [26] relies upon the utilization of the
cosine-filtering operator in lieu of the Hamiltonian to suppress
eigenvectors lying beyond a predefined energy spectral win-
dow. This operator is defined as

Pδ =
[

cos

(
Ĥ − E

L

)]�L2/δ2�2

, (C1)

FIG. 10. Calculation of the canonical average for Â = Ẑ0Ẑ1 is
achieved through the utilization of spectral functions acquired from
Fig. 9. The lower portion of the figure presents the relative error in
comparison to values obtained through ED. Integration is performed
over the energy range encompassing [−0.75, 0.75].
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where �·�2 indicates the nearest even integer and δ is either
a constant or a factor scaling poly(1/L). In the following we
will indicate �L2/δ2�2 as M. By using this operator canonical
observables are been estimated by measuring on the quantum
computer only quantities of the form

aψ (t ) = 〈ψ | e−it Ĥ |ψ〉 ,

aψ,A(t ) = 〈ψ | Âe−it Ĥ |ψ〉 . (C2)

For example the DOS can now be approximated as

Dδ,ψ (E ) = 1

2M

x
√

M∑
m=−x

√
M

(
M

M
2 −m

)
e−i 2m

L (E−Eψ )aψ (2m/L), (C3)

where the cosine filter operator of Eq. (C1) is approximated
with an error dominated by 2e−x2/2, where therefore the coef-
ficient x controls this error.

Eventually, to estimate canonical observables, the final ex-
pression of the cosine-filter method is

Aδ (β ) =
∫

dEe−βE
∫

dμψAδ,ψ (E )∫
dEe−βE

∫
dμψDδ,ψ (E )

, (C4)

where Aδ,ψ is obtained by replacing aψ (2m/L) with
aψ,A(2m/L) in Eq. (C3), adding its complex conjugate and
dividing everything by two.

Estimating aψ (t ) [aψ,A(t )] corresponds to being able to
estimate 〈ψ | cos(2mĤ/L) |ψ〉 [〈ψ | Â cos(2mĤ/L) |ψ〉] and
vice versa. To bridge the gap between the cosine-filter method
and ours we can start by splitting the spectrum in intervals,
as done in the previous section. As the width of the intervals
approaches zero, they increase in number, and the rearranged
expansion of the local KPM will make no use of Chebyshev
polynomials:

D0
M (E ) = 1

π

M∑
m=−M

γ M
|m|e

imπ/2ei m
b E aI (m/b), (C5)

where we considered the non-normalized Hamiltonian [i.e.,
before the mapping of Eq. (8)] as in the cosine-filter method
and we defined aI (m) = Tr[e−imĤ ]. Note that no sign problem
is caused by eimπ/2 as it only selects real or imaginary parts
of aI (m/b). Furthermore, we can notice that the coefficients
of Eq. (C5) are � 1/π while the ones of Eq. (C3) are �√

2/(πM ).
Therefore, the analog expression to Eq. (C4) reads

A(β ) =
∫

dEe−βE AM (E )∫
dEe−βE DM (E )

. (C6)

The most notable distinction between Eq. (C4) and Eq. (C6)
is the absence of integration over the states ψ as we only need
to compute the trace of the evolution operator. According to
Eq. (A13), the maximum time required to achieve an error of
O(1/M ) is M/b, where b scales with the system size.

In contrast, in Ref. [26], for a fixed error, the maximum
time is 2x/δ. As mentioned earlier, x determines the approxi-
mation to the original cosine-filter operator, while δ is either a
constant or scales maximally as poly(1/L) (depending on the
system). This results in the maximum time being independent
of the system size or scaling as ∼poly(L).

The latter method instead, QMETTS, is based on the
METTS algorithm [88] which is a sampling method to cal-
culate thermal properties based on imaginary time evolution.
Equation (B4) is so rephrased as

A(β ) �
∑

i ‖ψi‖2 〈ψi| Â |ψi〉∑
i ‖ψi‖ =

∑
i

pi 〈ψi| Â |ψi〉 , (C7)

where |ψi〉 = e−βĤ |φi〉 and φi are a randomly sampled set of
low-entanglement states, which in Refs. [25,87] are product
states. QMETTS is proposed to be the quantum version of
METTS and it is based on the QITE routine. In this routine an
initial state is evolved by an imaginary time by finding the ana-
log real time operator. Beginning with the φi states, QMETTS
leverages QITE to evolve these states before evaluating the
observable on them. As such, this last method also relies
on the quantum device’s ability to estimate the amplitude of
an evolution operator. A key distinction of QMETTS, which
complicates a direct comparison with ours and the cosine-
filter method is that the temperature of the thermal average β

corresponds to the imaginary time the initial states φi have to
be evolved to. In contrast, the other techniques, which operate
through the energy spectrum, provide an initial estimate of the
thermal average for any temperature.

APPENDIX D: ERROR ANALYSIS

Our method builds upon the standard KPM by employing
a quantum computer to store the Hamiltonian and compute an
approximation of the Chebyshev moments. This renders it an
approximation of the standard KPM, which then can be used
as a benchmark for evaluating the accuracy of our approach.
As previously described, the KPM converges uniformly as
O(1/M ), where M is the order of maximum Chebyshev mo-
ment. In our method, we simplify the Chebyshev moments by
approximating the arccosine function. To study the specific
scaling of this approximation, we will once again examine the
non-normalized Hamiltonian, (Ĥ − a)/b, as discussed in the
previous section. The error associated with this approximation
depends on the distribution of the Hamiltonian’s eigenvalues.
For odd terms we have∣∣Tr

[
T K

2M+1 − T2M+1
]∣∣ ∼ ∣∣Tr[(2M + 1)2(Ĥ/b)2K+4]

∣∣, (D1)

where T K
M (x) = cos[M(π/2 − ∑K

k=0 ckx2k+1)], and similarly
for evens∣∣Tr

[
T K

2M − T2M
]∣∣ ∼ O(|Tr[(2M )2(Ĥ/b)2K+3]|). (D2)

Therefore, the overall error in the DOS will go as∣∣DK
M (E ) − DM (E )

∣∣ ∼ O(M2/LK+1.5), (D3)

where we assumed again that b ∼ L. From this last equa-
tion we can observe that by increasing the order of the
Chebyshev expansion (M), the error will increase. Addition-
ally, notice that the error in Eq. (D3) depends on the ratio
∼(Ĥ/L)2K+3. The variance of the DOS only scales as L,
which yields to a final scaling of ∼L−(K+1.5). This scaling
of the variance of the DOS can be observed by connecting
this quantity with an extensive quantity, as the heat capacity.
In fact, by assuming the DOS to be roughly a Gaussian,
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the entropy will be S(E ) = ln D(E ) ∼ −(E − EI )2/(2σ 2
I ).

Therefore,

C = −β2

(
d2S(E )

dE2

)−1

= β2σ 2
I , (D4)

from which we can see that σI ∼ √
C ∼ √

L. While the
KPM error and this last from the arccosine approximation
are intrinsic errors of our method, the full digitalization still
requires two further approximations. Implementing the evo-
lution operator on a circuit is a well studied problem. Using
the Quantinuum device puts the constraint of minimizing
the number of different circuits, which made us choose the
standard ST approximation. Otherwise a better scaling can
be achieved with qDrift [63], with the advantage of having
to implement as complex operators as with the ST approx-
imation. As the coefficients ck decrease exponentially with
respect to k, and since higher powers of coefficients of a
normalized Hamiltonian also rapidly decrease, the evolution
of ĤK appears to be particularly well suited for this method.
Finally, stochastic trace estimation introduces an error that
decreases exponentially with L: O(1/

√
R2L ). However, as

noted at the end of Sec. III A, this error is still dominated by
shot noise, except when routines like amplitude amplification
are included. Therefore, pseudorandom states can be replaced
with random bit strings. The final error due to shot noise scales
as O(1/

√
shots).

APPENDIX E: HIGHER ORDERS OF THE ARCCOSINE
EXPANSION

As shown in Fig. 7(b) and Fig. 8(b), due to the con-
centration of eigenstates around zero, for a lot of physical
Hamiltonians the first-order expansion is enough to approx-
imate the DOS. In case a better precision is required, one can
truncate the arccos approximation to the second order (i.e.,
K = 1). At this order of approximation, a k-local Hamiltonian
would become 3k-local. However, the terms that are actually
3k-local contribute to a lesser degree. Moreover, a large part
of Ĥ3 will lie on the same operators of Ĥ . For instance, in
the Hamiltonian of Eq. (48) the only coefficients in Ĥ3 that
increase with the system size are the ones of Pauli operators
already present in Ĥ . Indeed, one can simply implement the
same combination of Pauli operators of Ĥ by updating the pa-
rameters to include the contributions from Ĥ3/6. Considering
the case Jz + � = Jx in Eq. (48), the coefficient of the terms
X̂(i)X̂(i+1) coupling even to odd sites is updated from Jx to

Jx
{
1 + 1

6

[
(9L/2 − 2)J2

x + (3L − 4)J2
y + 3β2 + 6Jyβ

]}
,

(E1)

while the coefficient of the odd to even terms is updated from
Jx to

Jx
{
1 + 1

6

[
(9L/2 − 6)J2

x + (3L − 4)J2
y + 3β2

]}
. (E2)

Similarly, the Jy for the terms Ŷ(i)Ŷ(i+1) coupling even to odd
sites is modified to

Jy + 1
6

[
(3L − 2)J3

y + (9L/2 − 4)JyJ2
x + 3Jyβ

2 + 6J2
x β

]
,

(E3)

FIG. 11. Comparison of the first 50 analytical Chebyshev mo-
ments with different approximations: the first-order arccosine
approximation (Arccos); the second, which involves the 3rd power of
the Hamiltonian (Arccos1); the normal ST approximation at the first
order (ST) and its version with the updated parameters (updated ST).
After m = 15 the difference between these last two approximations
becomes negligible.

and Jy of the odd-even ones to

Jy
{
1 + 1

6

[
(3L − 2)J2

y + (9L/2 − 8)J2
x + 3β2

]}
. (E4)

As for the z coupling, our Hamiltonian only has even terms
where the coefficient is updated as

Jx
{
1 + 1

6

[
(9L/2 − 6)J2

x + (3L − 4)J2
y + 3β2 + 6Jyβ

]}
,

(E5)

and, finally, the coefficient of the identity becomes

β + 1
6

(−β3 − 3LJ2
y − 9/2LβJ2

x − 3LJ2
x Jy

)
. (E6)

The comparison of how the ST decomposition is affected by
using these parameters instead of the initial ones is reported
in Fig. 11.

APPENDIX F: POWERS OF THE HAMILTONIAN

In this Appendix, we review how a similar approach to
the arccosine approximation can be adapted to implement the
powers of the Hamiltonian. In Ref. [89], Seki and Yunoki
devise a method to implement powers of a Hamiltonian as the
finite time derivative of the evolution operator, based on the
idea that

Ĥm = im dmÛ (t )

dtm

∣∣∣∣
t=0

. (F1)

At a finite time t , the authors suggest taking the central
derivative and for the first power of the Hamiltonian the equa-
tion becomes

Ĥ � i

2t
(e−it Ĥ − eitĤ ). (F2)

This is equivalent to approximating the Hamiltonian as

Ĥ � eitĤ − e−it Ĥ

2it
= sin(t Ĥ )

t
. (F3)
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A closer look reveals that the first-order approximation of
the sine corresponds to the first-order approximation of the
arcsine in

Ĥ = ei arcsin t Ĥ − e−i arcsin t Ĥ

2it

� 1

2it
(ei(t Ĥ )K − e−i(t Ĥ )K), (F4)

namely, an alternative two-unitary decomposition to the one of
Eq. (29) with the arcsine instead of the arccosine in Eq. (30).
This offers a path to increasing the precision of the method
in a more controlled way. Furthermore, the coefficients of
the expansion can be tailored so that the powers of Ĥ in the
expansion will elide together:

ck = − (−1)k

(2k + 1)!
− (−1)k′

(ck′ )2k′+1

(2k′ + 1)!
(F5)

if ∃ k′ ∈ N such that 2k′ + 1 = √
2k + 1, and

ck = − (−1)k

(2k + 1)!
− (−1)n′

c2n′+1
k′

(2n′ + 1)!
− (−1)k′

c2k′+1
n′

(2k′ + 1)!
(F6)

if ∃ k′, n′ ∈ N, k′ �= n′ such that 2k + 1 = (2k′ + 1)(2n′ + 1),
and otherwise

ck = − (−1)k

(2k + 1)!
. (F7)

In this way the error will scale as O[(t Ĥ )2K+1].

As highlighted, the probability of successfully selecting the
combination of unitaries will depend on the magnitude of the
trace of the product of t and Ĥ . Therefore, if the Hamiltonian
has a large trace, as

Ĥ = J
∑

i

Î + X̂(i)X̂(i+1) + Ŷ(i)Ŷ(i+1) + Ẑ(i)Ẑ(i+1), (F8)

it will be possible to take small time steps and still have a non-
negligible trace. Otherwise, if the Hamiltonian is normalized
it will be necessary to take t � 1.

Alternatively, since by including higher orders of the ar-
ccosine approximation the less local terms will have small
coefficient, the effective Hamiltonian will be suited for ap-
proaches like qDrift [63], where the unitary operator can be
controlled as described in [90]. In these procedures the deter-
ministic compiler is replaced by a stochastic one where the
operators employed in the standard Suzuki-Trotter decompo-
sition are picked randomly, with a probability that depends
on their coefficient. This protocol allows a simpler numerical
analysis. If the Hamiltonian is decomposed as

Ĥ =
P∑

p=0

hpĤp (F9)

the depth of the circuits required by qDrift will depend on
the sum of the hp coefficients, rather than just the largest
coefficient and P, as is the case for the standard Suzuki-Trotter
decomposition.
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