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Cavity optomechanical detection of persistent currents and solitons in a bosonic ring condensate
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We present numerical simulations of the cavity optomechanical detection of persistent currents and bright
solitons in an atomic Bose-Einstein condensate confined in a ring trap. This paper describes a technique that
measures condensate rotation in situ, in real time, and with minimal destruction, in contrast to currently used
methods, all of which destroy the condensate completely. For weakly repulsive interatomic interactions, the
analysis of persistent currents extends our previous few-mode treatment of the condensate [P. Kumar et al.
Phys. Rev. Lett. 127, 113601 (2021)] to a stochastic Gross-Pitaevskii simulation. For weakly attractive atomic
interactions, we present the first analysis of optomechanical detection of matter-wave soliton motion. We
provide optical cavity transmission spectra containing signatures of the condensate rotation, sensitivity as a
function of the system response frequency, and atomic density profiles quantifying the effect of the measurement
backaction on the condensate. We treat the atoms at a mean-field level and the optical field classically, account
for damping and noise in both degrees of freedom, and investigate the linear as well as nonlinear response of
the configuration. Our results are consequential for the characterization of rotating matter waves in studies of
atomtronics, superfluid hydrodynamics, and matter-wave soliton interferometry.
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I. INTRODUCTION

An atomic Bose-Einstein condensate (BEC) confined in
a ring potential exhibits superflow, i.e., transport without
dissipation [1–3]. It is therefore a natural platform for study-
ing superfluid hydrodynamical phenomena such as quantized
persistent currents [4], phase slips [5,6], excitations [7], two-
component rotation [8,9], hysteresis [10,11], and shock waves
[12]; a versatile enabler for applications such as matter-wave
interferometry [13,14], atomtronic circuits [15–18], and gy-
roscopy [19,20]; and a convenient simulator of topological
excitations [21–23], early universe cosmology [24], and time
crystals [25].

Inspired by the experimental activity in the field, a large
number of theoretical proposals have been put forward,
based on the BEC-in-a-ring system, characterizing plain wave
to soliton transitions [26], self-trapping [27], simulation of
Hawking radiation [28], the Berry phase [29], qubits for
computation [30], critical velocities [31,32], superflow decay
[33–36], phonon detection in a toroidal BEC [37], rotating
lattices [38], rotation sensing [39], the effect of gauge fields
[40], matter-wave interference [41], double-ring geometries
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[42–44], existence of persistent currents with nonquantized
angular momentum [45], etc.

In all these studies, knowledge of the condensate rotation
is an important consideration. At present, all demonstrated
methods of detecting such rotation in ring BECs are destruc-
tive of the condensate [46]. Due to issues related to optical
resolution, the methods typically also require time-of-flight
expansion of the atoms, making in situ measurements diffi-
cult. A theoretical proposal exists based on atom counting
for a minimally destructive measurement of the condensate
rotation [47].

Recently, our group suggested a method for detecting
condensate rotation in real time, in situ, and with minimal de-
struction to the condensate [48]. This method proposed to use
the techniques of cavity optomechanics, a discipline that ad-
dresses the coupling of mechanical motion to electromagnetic
fields confined in resonators [49]. Probably the best-known
optomechanical device in existence is the Laser Interfer-
ometer Gravitational-Wave Observatory, which detected the
gravitational waves predicted by Einstein’s theory of general
relativity, an accomplishment recognized by a Nobel prize
[50]. The minimally destructive measurement in our case re-
lied on the optomechanical coupling based on the dispersive
light-matter interaction [49].

Cavity optomechanics is now a mature field that is capable
of supporting the sensitive detection of any physical variable
that actuates the mechanical motion coupling to the electro-
magnetic fields in the cavity. Thus, cavity optomechanical
principles have been employed to construct accelerometers
[51], magnetometers [52], thermometers [53], mass [54] and
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force [55,56] sensors, etc. In our previous proposal, which
considered a rotating BEC in a cavity, it was shown that the
resulting sensitivity of BEC rotation measurement was three
orders of magnitude better than demonstrated hitherto [48].
This conclusion regarding the detection of a persistent current
was based on a few-mode approximation for the condensate.

In the present paper, we consider a BEC confined in a
ring trap and interacting with an optical cavity mode carrying
orbital angular momentum (OAM) [48]. This may be regarded
as the rotational analog of a BEC with a linear degree of
mechanical freedom combined with a standing wave optical
cavity lattice in an optomechanical context which has been
realized experimentally [57].

For weak repulsive atomic interactions, we extend the pre-
vious two-mode characterization of the condensate to a mean
field, i.e., Gross-Pitaevskii, treatment. Our method allows us
to confirm the basic results of the two-mode treatment regard-
ing the rotation detection of a persistent current, to investigate
the modifications resulting from taking the full condensate
dynamics into account, and to quantify the effect of mea-
surement backaction on the condensate. It also allows us to
consider the detection of a superposition of persistent current
states in the condensate.

We also investigate the case of weak attractive atomic
interactions [58]—which results in a bright-soliton ground
state in the ring condensate—in the optomechanical context.
Such solitons are of great interest, e.g., to rotation sensing
and matter-wave interferometry [59–65]. However, a soliton
is not amenable to a few-mode optomechanical treatment due
to the large number of matter-wave OAM states contributing
to the condensate dynamics. Our numerical simulations make
this case tractable, extracting, as in the case of the persistent
currents, cavity transmission spectra with signatures of soliton
rotation, the sensitivity of the measurement as a function of
system response frequency, and atomic density profiles show-
ing the effect of the measurement on the condensate. In all
simulations, the matter is treated at the mean-field level, light
is treated classically, and noise arising from both optical as
well as matter-wave fields are taken into account.

This paper is organized as follows. In Sec. II, the the-
oretical model and details of the numerical simulation are
presented. In Sec. III, we provide the dynamics, OAM con-
tent, optical spectra, measurement sensitivity, and condensate
density fidelity for the persistent current and bright soli-
ton detection, respectively. The conclusions are presented in
Sec. IV. Appendix A summarizes our theoretical model and
Appendix B presents results at higher optical power.

II. THEORETICAL MODEL AND DETAILS
OF NUMERICAL SIMULATION

In this section, we present the theoretical model for the
configuration of interest, shown in Fig. 1, i.e., a BEC con-
fined in a one-dimensional ring trap coupled to a cavity using
Laguerre-Gauss beams [48]. The coupling of a harmonically
trapped, simply connected, BEC to an optical cavity has been
realized experimentally [57]. Ring BECs have separately been
realized in other experiments [1,4,5] and may be readily com-
bined with optical modes carrying OAM in cavities [66].

FIG. 1. A schematic setup for the BEC with winding number
Lp rotating in a ring trap around the axis of the Fabry-Perot cavity.
The red beam represents the Laguerre-Gauss modes with the orbital
angular momentum of ±�h̄ used to probe the BEC rotation. The
output signal aout is the field transmitted from the cavity.

The dynamical equations governing the system are given
by [48,57,67–69]
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In the above, Eq. (1) is the stochastic Gross-Pitaevskii
equation, where ψ ≡ ψ (φ, τ ) represents the microscopic
wave function of the condensate with φ the angular variable
along the ring and τ the scaled time, to be defined below. The
wave function obeys, at any time, the normalization condition∫ 2π

0
|ψ (φ, τ )|2dφ = N,

where N is the number of atoms in the condensate. To obtain
the dimensionless Eq. (1), the energy and time have been
scaled using the quantities

h̄ωβ = h̄2

2mR2
and τ = ωβt, (3)

respectively, where m is the atomic mass and R is the radius
of the ring-shaped trap.

The first term inside the square bracket on the right-hand
side of Eq. (1) stands for the kinetic energy of the atoms due
to their rotational motion. The second term in the bracket
represents the optical lattice potential created with a super-
position of two Laguerre-Gauss beams having orbital angular
momenta ±�h̄, respectively, with U0 = g2

0/a, where g0 is the
single photon-single atom coupling and a is the detuning of
the driving laser from the atomic resonance. The third term
in the bracket corresponds to the chemical potential μ of the
condensate, which is corrected by μ at each time step (τ )
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as [70]

μ = (τ )−1 ln

[∫
|ψ (φ, τ )|2dφ/

∫
|ψ (φ, τ + τ )|2dφ

]

to conserve the normalization of the condensate in the pres-
ence of the dissipation

� = ωm

ωβ

, (4)

set by the lifetime ω−1
m of the persistent currents [1,48]. The

fourth term inside the bracket represents the scaled atomic
interaction:

χ = gN

2π h̄ωβ

. (5)

Here

g = 2h̄ωρas

R
, (6)

with as the s-wave atomic scattering length and ωρ the har-
monic trap frequency along the radial direction [48]. Thermal
noise ξ , with zero mean and correlations provided below, has
been added to the condensate in accordance with fluctuation-
dissipation theory [71].

The dynamics of the complex intracavity coherent field
amplitude α is described by Eq. (2). In our simulations,
we have treated α as a classical quantity, as this approx-
imation has been shown to be adequate for similar setups
experimentally. For example, in Ref. [57], although bistabil-
ity is observed at intracavity photon numbers below unity
(|α|2 � 1), the corresponding experimental data is very well
described using a classical theory for the optical field [72].
As explained in Ref. [73], this is due to the fact that in
the bad cavity limit [49], where the condensate mechanical
(i.e., side mode) oscillation frequencies are smaller than the
cavity linewidth, the number of photons passing through the
cavity during one mechanical period is much larger than one.
The quantum fluctuations in the photon number thus have a
negligible effect on the dynamics of the condensate density
modulations. In our simulations below, we have ensured that
the bad cavity limit always applies.

In the first term inside the square bracket on the right-hand
side of Eq. (2), c signifies the detuning of the driving field
frequency from the cavity resonance frequency ωc. The sec-
ond term represents the coupling between the light mode and
condensate, where the expectation value of the light potential
cos2(�φ) taken with respect to the condensate wave function
ψ (φ, τ ),

〈cos2 (�φ)〉τ =
∫ 2π

0
|ψ (φ, τ )|2 cos2 (�φ)dφ, (7)

is a time-dependent quantity. In the third term, γ0 is the
energy decay rate of the cavity field. The last term inside
the curly braces represents the laser drive with pump rate
η = √

Pinγ0/h̄ωc, where Pin is the input optical power. The
last term on the right-hand side of Eq. (2) signifies the optical
shot noise present in the system. The thermal and optical
fluctuations each have zero mean and their correlations are

given by [22,48]

〈ξ (φ, τ ) ξ ∗(φ′, τ ′)〉 = 2�T δ(φ − φ′) δ(τ − τ ′), (8)

〈αin(τ ) α∗
in(τ ′)〉 = ωβ δ(τ − τ ′), (9)

where T is the nondimensionalized temperature in units of
kB/(h̄ωβ ), with kB being the Boltzmann constant. For the
numerical simulation of these stochastic equations, the noise
terms are modeled as follows:

ξ (φ, τ ) =
√

2�T/(dφ dτ )N (0, 1, Nφ )N (0, 1, Nφ ), (10)

αin(τ ) = √
ωβ/dτ N (0, 1, 1), (11)

where N (0, 1, Nφ ) is a set of Nφ random numbers that are
normally distributed with zero mean and unit variance and Nφ

is the number of grid points along the φ direction. Two sets of
random numbers are being multiplied in ξ (φ, τ ) to capture
the inherent randomness of the condensate wave function
across both spatial and temporal dimensions. We have con-
sidered Nφ = 1024 for all simulations. The term N (0, 1, 1) in
Eq. (11) corresponds to a single random number, drawn from
a normal distribution having a zero mean and unit variance.

To attain the dynamics of the persistent current, we have
considered the initial state as a plane wave and then evolved
the system in real-time using the coupled BEC-cavity equa-
tions and the Runge-Kutta fourth-order (RK4) scheme [74]. A
different approach is taken for the case of the soliton. Initially,
we prepare a localized state with a Gaussian density profile,
and then we evolve it in imaginary time using the Strang
splitting Fourier method [75] to reach a soliton as its ground
state in the presence of an optical lattice as well as atomic
interactions. The resulting ground state is then used as the ini-
tial state for the subsequent real-time evolution using the RK4
scheme. We simulate a single trajectory of the cavity field
and condensate wave function over a duration of five seconds,
which is sufficiently long to capture the relevant dynamics of
the system. By applying a moving average of 30 Hz to the
cavity output spectrum, we obtain results that are comparable
to the ensemble average over multiple trajectories. We have
adopted the time step dτ = 10−7 for all simulations.

In this paper, we have considered the parameters that are
readily realizable in the experiment. We have utilized the fact
that BECs with cavities [57], ring BECs [1], and cavities with
OAM-carrying modes [66] have already been implemented
in the laboratory. On similar lines, the bound state cases
like solitons considered in the paper have been launched into
the magnetic waveguides, in which the ring trap could be
considered as a variation. As the methodology adopted in
the paper mainly considers the combination of the above-
mentioned different experimental setups, for the ease of the
readers, wherever required we have provided the parameters
taken from the relevant experiments for our simulations.

III. RESULTS

A. Persistent currents

1. Rotational eigenstate

In this section, we present the dynamics accompanying the
detection of a persistent current in the ring BEC. Such currents
can exist for macroscopic times as metastable flow states of
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FIG. 2. (a) Angular profile of the condensate density per par-
ticle for a persistent current rotational eigenstate (b) OAM state
content of the condensate. Parameters used here are � = 0.0001,
T = 10 nK ×kB/(h̄ωβ ), g/h̄ � 2π × 0.02 Hz, Lp = 1, � = 10, N =
104, ̃ = −2π × 173 Hz, U0 = 2π × 212 Hz, γ0 = 2π × 2 MHz,
Pin = 0.2 pW, ωc = 2π × 1015 Hz, m = 23 amu, and R = 12 µm
[1,57].

the condensate with atoms that weakly repel each other [1].
The basic idea is for the circular optical lattice to act as a probe
of the angular momentum, and hence the winding number,
of the condensate [48]. For low intracavity photon numbers,
the matter wave Bragg diffracts from the weak optical lattice.
This results, in the first order, in two additional OAM states
(side modes), which modulate the condensate density. These
modulations add sidebands to the optical modes, which can
subsequently be detected in the cavity transmission.

In our simulation, for which we have used 23Na atoms [1],
a phase gradient is imprinted initially on the condensate to
impart a winding number Lp to it. The resulting persistent
current then gets coupled to the angular optical lattice, which
displays 2� interference maxima along the ring, on which the
BEC is trapped.

For all our simulations related to the persistent current, we
consider an initial state for the condensate wave function of
the form

ψ (φ) =
√

N

2π
eiLpφ, (12)

which corresponds to an eigenstate of condensate rotation in
the absence of the optical lattice, with Lp being the wind-
ing number of the condensate. In writing Eq. (12), we have
assumed that the temperature of the BEC is far below its
critical value, so the thermal fraction is negligible; ring-BEC
experiments in the relevant parameter regime support this
assumption [2,4,5].

The resulting condensate density (|ψ (φ)|2) obtained from
the Eqs. (1) and (2), modulated by the presence of the con-
densate side modes created by the optical lattice, is shown in
Fig. 2(a). The OAM content of the modulated condensate den-
sity (|ψ̃ (l )|2), where ψ̃ (l ) is the Fourier transformation of the
condensate wave function ψ (φ), is shown in Fig. 2(b), which
displays the first-order peaks, resulting from matter-wave
Bragg diffraction, at Lp ± 2�. The figure, which accounts for
the full Gross-Pitaevskii condensate dynamics, implies that
only three OAM modes are dominant and therefore provides
justification for the few-mode model proposed earlier [48].

In Fig. 3(a), we show the phase quadrature of the resulting
cavity transmission spectrum [48],

S(ω) = |Im[αout(ω)]|2, (13)

FIG. 3. (a) Power spectra of the output phase quadrature of
the cavity field as a function of the system response frequency.
The vertical dashed lines (grey and green) correspond to the an-
alytical predictions for the side-mode frequencies of Lp = 1 and
Lp = 2, respectively, including atomic interactions; see Eq. (A13)
[48]. (b) Rotation measurement sensitivity ζ [Eq. (14)] as a function
of the system response frequency ω. Here G = 2π × 7.5 kHz and
|αs|2 = 0.096, which corresponds to Pin = 0.2 pW. Other parameters
are the same as in Fig. 2.

where αout is the output field, transmitted from the cavity, and
it is related to the input field into the cavity through the input-
output relation αout = −αin + √

γ0α [49]. The vertical dashed
lines for Lp = 1 correspond to the sidemode frequencies ω′

c,d
from Eq. (A13) [48,76]. The agreement between the vertical
lines and the peak locations shows that the Gross-Pitaevskii
simulation retains the results predicted by the analytical the-
ory presented earlier. It also shows that our classical treatment
of α, the optical field, reproduces the results of Ref. [48],
which treated the optical field quantum mechanically. It can
also be seen that the peaks for Lp = 2 are spectrally distinct
from those for Lp = 1. Thus, our method can reliably distin-
guish between neighboring values of the condensate winding
number Lp. We have analyzed the effect of high cavity power
drive Pin on the power spectra of the output phase of the cavity
and find that increasing the Pin leads to the deviation of the
different peaks of S(ω) from the analytical results as well as
generation of the other OAM modes at higher frequencies as
shown in Fig. 10.

We quantify the performance of our scheme by
using the sensitivity of the rotation measurement,
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FIG. 4. Variation of the fidelity [Eq. (16)] of the ring condensate
density for a persistent current with time. The dashes correspond
to the fidelity measured for the wave functions having the same
phase profile over time. The set of parameters used are the same as
mentioned in Fig. 2.

defined as

ζ = S(ω)

∂S(ω)/∂�
× √

tmeas, (14)

where t−1
meas = 8(αsG)2/γ0 is the optomechanical measure-

ment rate in the bad cavity limit, G = U0

√
N/2

√
2, αs is

the steady state of the cavity field. Here � is the angular
momentum of the condensate, defined as [48]

� = h̄Lp. (15)

The sensitivity of Eq. (14), obtained from a fit to the spectrum
[Eq. (13)], is displayed in Fig. 3(b), and matches the result
from [48] quite well.

To quantify to what extent the measurement backaction
affects the condensate, we display the fidelity F (t ), i.e., the
position-averaged autocorrelation function of the condensate
density

F (t ) =
∫ 2π

0
|ψ∗(φ, t )ψ (φ, 0)|2dφ (16)

as a function of the unscaled time t in Fig. 4. As can be
seen, the density fidelity stays close to unity for small times.
For macroscopic times, it decays mainly due to the damping
(�) and noise (ξ ) of the persistent current. This indicates
that the measurement backaction on the condensate is small.
Certainly, unlike existing techniques, the measurement does
not completely destroy the condensate [1,5].

Before concluding this section, we note that the fidelity can
be measured experimentally by absorption imaging, which
would destroy the condensate [1,4,16]; our technique of
minimally destructive measurement thus applies only to the
condensate winding number and not to the fidelity.

2. Two-state superposition

In this section, we investigate the dynamics of the con-
densate prepared in a superposition state of two different
winding numbers, i.e., Lp1 	= Lp2, with Lp2 > Lp1 without loss
of generality. These states could be of interest in the context of
quantum information processing, matter-wave interferometry,

FIG. 5. (a) Angular profile of the condensate density per parti-
cle for a persistent current superposition [Eq. (17)] with Lp1 = 1,

Lp2 = 3. (b) OAM state content of the condensate. Here Pin = 0.7
pW and the other parameters are the same as in Fig. 2.

as well as studies of mesoscopic quantum mechanics [77,78].
We restrict our discussion to low values of (Lp1, Lp2) as su-
perpositions of matter wave vortex states in BECs have so
far been produced with winding numbers of magnitude unity
[78–80].

We start with the initial state:

ψ (φ) =
√

N

4π
(eiLp1φ + eiLp2φ ). (17)

Figures 5(a) and 5(b) show the condensate density and
OAM distribution of the condensate wave function resulting
from the superposition of two persistent currents with winding
numbers Lp1 = 1 and Lp2 = 3 with Pin = 0.7 pW. The larger
modulation in the condensate density and increased complex-
ity in the OAM content of the state (compared to the case
of the rotational eigenstate above, see Fig. 2) is due to the
complicated interference emerging from the superposition.

All the obtained peaks in the resulting cavity transmission
spectrum are presented in Figs. 6(a) and 6(b) for superposi-
tion states with winding numbers Lp1 = 1, Lp2 = 3 and Lp1 =
2, Lp2 = 3, respectively. In these simulations, the peaks were
identified in the following manner. The dominant peak(s) were
used to identify the smaller winding number Lp1 (this effect
can be traced to the dependence of the optomechanical cou-
plings on the sidemode frequencies [48]). For example, the
two dominant peaks in Fig. 6(a) were found to correspond
to the analytical predictions of Eq. (A13) [48,76] for the
side modes at Lp1 ± 2l. In Fig. 6(b), the dominant peak near
760 Hz was found to correspond to Lp1 + 2l . These identifica-
tions allowed for all other peaks related to Lp1 to be assigned
in Figs. 6(a) and 6(b), respectively. On the other hand, the
outermost peaks in both spectra were found to be due to the
larger of the two winding numbers when the numerical peak
positions were compared with the analytical predictions of
Eq. (A13) [48,76]. For example, in Figs. 6(a) and 6(b), the
outermost peaks correspond to the winding numbers Lp2 ± 2l .
To show the absence of peaks beyond these positions in the
spectrum, purple vertical dashed lines have been drawn to
indicate the analytical predictions for the peaks corresponding
to Lp2 ± 2l + 1. In both cases, we notice some mismatch be-
tween the analytical predictions, given by the vertical dashed
lines and the positions of the simulated peaks, but they are
close enough to make the assignments unambiguous. For
general values of Lp1 and Lp2, the identification strategy will
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FIG. 6. Persistent current superposition of two combinations of winding numbers: Left column for Lp1 = 1 and Lp2 = 3 and right column
for Lp1 = 2 and Lp2 = 3. (a) and (b) represent the cavity output spectrum, (c) and (d) show the rotation measurement sensitivities, and (e)
and (f) are the temporal evolutions of the fidelity for Lp1 = 1, Lp2 = 3 and Lp1 = 2, Lp2 = 3, respectively. Vertical dashed lines represent
the analytical prediction corresponding to the Lp1 ± 2l , Lp2 ± 2l modes and their combinations (Eq. (A13) [48,76]. Here G = 2π × 7.5 kHz,
|αs|2 = 0.33, and the optomechanical measurement time (tmeas) is 2.1 ms. All other parameters used are the same as in Fig. 5.

likely involve comparing the experimental data with templates
from the numerical simulation.

The sensitivities of the rotation measurement for the
above-discussed two cases are shown in Figs. 6(c) and 6(d),
respectively. We achieve improved sensitivity in the proximity
of each of the side modes resulting from the superposition of
the Lp1 and Lp2 states.

Figures 6(e) and 6(f) illustrate the fidelity over time for
the two above-mentioned cases. The degradation of fidelity
is notably faster in this scenario compared to the single-state
persistent current case (Fig. 4). This dissimilarity arises from
the presence of multiple states due to the superposition and
their resulting interference pattern, which is not robust against
external noise and phase fluctuations. The dashed curve

provides a clear visual representation of the highest fi-
delity levels attained throughout the temporal evolution of
the system, which is near ∼ 0.5 − 0.75 in the best case.
Although such fidelities may seem low for a technique
that aims at minimal destruction, they compared very fa-
vorably to currently available techniques, all of which give
a fidelity of zero, since they are totally destructive of the
condensate [1,4,5].

B. Bright soliton

This section presents the dynamics accompanying the de-
tection of a bright soliton in the ring BEC. Such solitons can
be sustained by condensates in which the atoms weakly attract
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FIG. 7. (a) Temporal evolution of the soliton density pro-
file (b) OAM content of the soliton. Here N = 6000, as =
−27.6a0, where a0 is the Bohr radius, m = 7.01 amu, Lp = 1, and
Pin = 0.4 pW, and all other parameters are same as in Fig. 2.

each other [81–91] and have been considered for interferome-
try on a ring [62].

In our simulations, we imprint a density and phase modula-
tion on a uniform condensate of 7Li atoms [88] and this leads
to a bright soliton rotating on the ring and carrying a winding
number Lp (e.g., see Eq. (43) of Ref. [76]). For this situation,
we consider the initial state as

ψ (φ) =
√

N√
π

e−φ2/2eiLpφ. (18)

For Lp = 1, the temporal evolution of the soliton density
profile is shown in Fig. 7(a). As can be seen, the spatial profile
of the soliton stays close to its initial shape as it moves in
the ring and is probed by the weak optical lattice. The OAM
distribution of the soliton, when it has interacted with the
optical lattice, is shown in Fig. 7(b).

The resulting cavity transmission spectrum used to detect
the winding number of the soliton is shown in Fig. 8(a). As
can be seen, the Lp = 1 and Lp = 2 peaks are resolvable, in-
dicating that our method can distinguish between neighboring
winding numbers for the soliton. Remarkably, the predictions
for the spectral locations of the side-mode peaks from the an-
alytical treatment of the persistent current case, see Eq. (A13)
[48,76], are quite close to the numerical results for the full
Gross-Pitaevskii treatment of the soliton [48]. This can be
seen from the comparison of the numerically obtained side
mode peak locations and the vertical dashed lines in Fig. 8(a).

FIG. 8. (a) Power spectrum of the output phase quadrature of
the cavity field as a function of the system response frequency for
a soliton. The vertical dashed lines (grey and green) correspond to
the analytical predictions for the side modes (Lp ± 2�) of Lp = 1 and
Lp = 2, respectively, see Eq. (A13) [48,76]. Only the correspond-
ing peaks have been labeled. (b) Variation of rotation measurement
sensitivity ζ with the system response frequency ω for Lp = 1.
Here G = 2π × 5.8 kHz and |αs|2 = 0.192, which corresponds to
Pin = 0.4 pW. The other set of parameters used here are the same as
in Fig. 7.

The corresponding measurement sensitivity is shown in
Fig. 8(b). As can be seen, the benefits of high measurement
sensitivities in our optomechanical scheme carry over from
the persistent current case (where it was three orders of mag-
nitude better than demonstrated previously [48]) to the case of
the bright soliton. The fidelity of the density profile is shown
in Fig. 9 and remains close to unity for macroscopic times.
The decay in fidelity is largely due to the dissipation (�) and
noise (ξ ) in the system and not so much due to measurement
backaction. Hence, our scheme represents a minimally de-
structive measurement of the motion of a bright soliton in a
ring BEC.

We note that, in contrast to the case of the fidelity of
the superposition of two persistent currents, which decays
more rapidly [Figs. 6(e) and 6(f)], the fidelity of a soliton,
which is a superposition of many persistent currents, decays
much more slowly (Fig. 9). This is because, unlike the case
of the two-current superposition, which involves repulsive
atomic interactions, the soliton involves attractive atomic in-
teractions. This attraction maintains the form of the soliton
and, hence, the fidelity for longer times. We have found in
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FIG. 9. Fidelity [Eq. (16)] of the soliton density profile versus
time. The dashes correspond to the fidelity measured for the wave
functions having the same phase profile over time. The set of param-
eters used is the same as in Fig. 7.

our simulations that the soliton shape is less well preserved
if the strength of the atomic interactions is lowered. We also
note that our technique is not capable of identifying whether
the excitation is a soliton or not. Thus, we have assumed, as
in experiments, that this is known beforehand [61].

IV. SUMMARY AND CONCLUSIONS

Using a stochastic mean-field Gross-Pitaevskii formalism
for modeling atoms in a BEC in a ring trap, and a classical ap-
proximation for the optical mode, we have demonstrated that
cavity optomechanics can make real-time, in situ, and min-
imally destructive measurements of both persistent currents
as well as bright solitons. In support of our conclusions, we
have presented numerical simulations of cavity transmission
spectra, measurement sensitivities as a function of the system
response frequency, and the fidelities of condensate density
profiles.

Our numerical simulations have verified and extended the
analytical model proposed by us earlier [48]. Remarkably, the
previously analytically found locations of the peaks in the
cavity transmission crucial for determining condensate rota-
tion agree well with the numerical results for both persistent
current states as well as solitons.

We expect our findings to be of interest to studies of super-
fluid hydrodynamics, atomtronics, and soliton interferometry.
The technique we have presented could be extended to other
systems such as polariton ring condensates [92]. One of the
future directions of the work will include the systematic in-
vestigation of the effect of optical power and relative phase on
the interference.
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APPENDIX A: SUMMARY OF THE THEORETICAL
MODEL

In this Appendix, we summarize the mathematical model
of our system, which was presented in an earlier publication
[48], to make the present work self-contained.
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1. Light-matter interaction

As described in the main text, we consider a ring BEC
confined inside an optical resonator driven by a superposition
of Laguerre-Gaussian beams carrying OAM ±�h̄, as shown in
Fig. 1. Using a two-level description of the condensate atoms
and working in the limit of large atom-photon detuning, the
dispersive light-matter interaction is governed by [48]

Ha− f ≈ h̄D2
egE2

0 |u+�0(r) + u−�0(r)|2
a

a†a, (A1)

where Deg is the matrix element of the atomic transition
dipole moment operator, a is the detuning of the drive laser
from atomic frequency, and E0 is the single photon elec-
tric field. The field bosonic operators obey the commutation
relation [a, a†] = 1. Here, u±�0(r) are the mode functions
corresponding to the optical beams of OAM ±�h̄. To a
good approximation, the magnitude of these mode functions
near z = 0 can be written as |u+�0(r) + u−�0(r)|2 ≈ cos(�φ).
Using this information, we write the following coupling
Hamiltonian governing the interaction of the condensate with
the cavity field:

Ha− f ≈ h̄g2
a cos2(�φ)

a
a†a = h̄U0 cos2(�φ)a†a. (A2)

Taking into account the above light-matter interaction, the
atomic many-body Hamiltonian in the frame rotating at the
drive laser frequency and describing the azimuthal motion of
BEC is written as

H =
∫ 2π

0
dφ�†(φ)

[
H(1) + g

2
�†(φ)�(φ)

]
�(φ) + Hc,

(A3)

where g denotes the strength of two-body atomic interaction.
The single-atom Hamiltonian,

H(1) = − d2

dφ2
+ Ha− f , (A4)

includes the contribution from the rotational kinetic energy
of the atoms (first term) and the dispersive interaction be-
tween the atoms and the drive (second term). The last term
in Eq. (A3),

Hc = −h̄oa†a + ih̄η(a† − a), (A5)

contains contributions from the energy of the cavity field
and the laser drive. Using Eq. (A3), the classical mean-field
equations can be derived, which, after including fluctuations,
are expressed in Eqs. (1) and (2). This derivation is quite
involved; the general technique is provided in Refs. [67,68],
and equations analogous to Eqs. (1) and (2) are typically
presented as the starting point of BEC-cavity systems analysis
[93,94].

We note that the stochastic term ξ (φ, τ ) in Eq. (1) is anal-
ogous to the Brownian noise and arises from the randomness
of the incoherent collisions in the system [68]. Through the
fluctuation-dissipation theorem, this also sets the damping of
the persistent current. On the other hand, the physical origin of
the noise term αin(τ ) in Eq. (2) is due to the leakage of photons
and the entry of vacuum fluctuations through the mirrors,
which provide dissipation and noise to the cavity [49].

FIG. 11. Location of the peak in the output spectrum (ω′
d/2π )

[Eq. (A13)] [48,76] versus input optical power (Pin). All other pa-
rameters are the same as in Fig. 2. For Pin � 0.5 pW, the location of
the ω′

d/2π peak remains constant, implying the presence of linear
response; while for higher power (Pin � 0.5 pW), the ω′

d/2π peak
begins to deviate from the linear regime, indicating the nonlinear
response.

2. Other relevant equations

The detection of ring BEC rotation in our model is based
on the cavity transmission signal. To make our model self-
contained, here we discuss the relevant physical processes
governing the transmission. For this, we consider a weak
dipole potential and take into account only the first-order
Bragg diffraction of atoms from their rotational state of wind-
ing number Lp to Lp ± 2�. This two-side-mode description
is equivalent to an optomechanical interaction coupling two
mechanical oscillators with a single cavity mode. The relevant
quantum Langevin equations of motion for such a model are
written in terms of dimensionless position quadratures Xj ,
(where j is defined below) in the following form [48]:

Ẍ j + γmẊj + �2
jXj ± AXk = −ω̃ jGa†a + ω jε j, (A6)

ȧ +
[
γo

2
− i

(
̃ − G

∑
j=c,d

Xj

)]
a = η + √

γoain, (A7)

where j, k = c, d ( j 	= k), ̃ = c − (U0N )/2 and G =
Uo

√
N/8. Other quantities are defined as

�2
j = (ω j + 2ωcoll )

2 − ω2
coll, (A8)

ω̃ j = ω j + ωcoll, (A9)

A = ωcoll(ωc − ωd ), (A10)

where ωcoll = 2g̃N , g̃ = g/(4π h̄), and side-mode frequencies
in the absence of atomic interactions are expressed in terms of
ωβ as

ωc = ωβ (Lp + 2�)2, (A11)

ωd = ωβ (Lp − 2�)2. (A12)

While ωc,d (�c,d ) are the side-mode frequencies in the absence
(presence) of collisions obtained by the linearization proce-
dure which considers two modes of the condensate, a full

013104-9



NALINIKANTA PRADHAN et al. PHYSICAL REVIEW RESEARCH 6, 013104 (2024)

FIG. 12. (a)–(c) Temporal evolution of the moving soliton density profile. (d)–(f) OAM states of the condensate occupied by the soliton.
(g)–(i) Power spectrum of the phase quadrature of the cavity field versus system response frequency. Vertical dashed lines indicate the analytical
predictions of the side modes for Lp ± 2�, Eq. (A13) [48,76]. (j)–(l) Soliton rotation measurement sensitivity as a function of system response
frequency for Pin = 0.7 pW, 1 pW, and 2 pW, respectively. Here G = 2π × 5.8 kHz and |αs|2 = 0.33, 0.48, 0.96, respectively, for the above
input power values. The remaining parameters are the same as in Fig. 7.
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Bogoliubov analysis yields the frequencies [48,76]

ω′
c,d = [ωc,d (ωc,d + 4g̃N )]1/2, (A13)

which are actually the appropriate quantities to be compared
to the numerical simulations. Further, in Eqs. (A6) and (A7),
γm and γo represent the damping of the side modes and cavity,
respectively. The quantities ε j and ain are delta-correlated
mechanical side-mode and optical fluctuations of zero mean.

In the analytical treatment, to model the detection of ring
BEC rotation, we write the equations for fluctuations by lin-
earizing Eqs. (A6) and (A7) around the steady-state values of
the system variables. Then we model homodyne measurement
of the cavity output field aout(t ) = −ain(t ) + √

γoa to obtain
the noise spectrum of the phase quadrature.

APPENDIX B: RESULTS FOR HIGH INPUT POWER

In this Appendix, we present the effect of increasing the
cavity drive power Pin and thus making a stronger measure-
ment of the persistent current and bright soliton rotation. For
simplicity, we omit the results for persistent current super-
positions. Generally, we find that increasing the power leads
to shifts in the positions of the desired peaks (which yield
the condensate winding number) and to the appearance of
additional peaks that are irrelevant to the measurement of
the condensate winding number. These observations imply
the conclusion that, since measurement is our main aim, the
high-power, nonlinear regime must be avoided.

1. Persistent currents: Rotational eigenstate

In Fig. 10, we show the power spectra of the output phase
quadrature of the cavity field in the frequency domain for three
different input powers, namely, Pin = 0.5 pW, 1 pW, and 2 pW
for the persistent current rotational eigenstate [Eq. (12)].

We find that increasing the power [from Fig. 10(a) to
Fig. 10(c)] leads to the nonlinear response of the system since
the optical lattice becomes deeper and can no longer be treated

perturbatively via linearization as in previous work [48]. This
results in the undesirable deviation of the peak locations from
the analytically predicted values (which interferes with the
measurement of the condensate winding number) and the
emergence of higher frequencies in the cavity output spectrum
(which are irrelevant to the measurement in addition to being
complicated to characterize).

To characterize the parameter regime where this deviation
occurs, we have depicted the shift in peak location of ω′

d/2π

[Eq. (A13)] with respect to the input optical power in Fig. 11.
As can be seen from the figure, the BEC-cavity system op-
erates linearly within a regime of Pin < 0.5 pW. Beyond this
threshold, an increase in the input power propels the system
into the nonlinear regime.

2. Soliton

Density profiles of the ring condensate with the soliton
have been shown for various Pin in Figs. 12(a)–12(c). We can
see that at low powers, Pin the density profile is only slightly
modulated, while it is quite heavily modulated at high Pin.
Thus, as expected, the measurement backaction increases with
cavity power. However, in the entire regime of the powers pre-
sented, the soliton does not break up as a result of interaction
with the probe lattice, and thus the measurement is not fully
destructive.

The OAM content of the soliton for the corresponding
powers has been shown in Figs. 12(d)–12(f). The cavity output
spectra are displayed in Figs. 12(g)–12(i), with peaks labeled
by the winding number Lp. For clarity, only the vertical dashed
lines corresponding to the analytical Lp ± 2� side-mode fre-
quencies Eq. (A13) [48,76] have been shown. As can be seen,
the use of higher optical powers results in additional peaks,
more noise, and increasing deviation from the analytical peak-
location values due to the nonlinear response. Finally, the
sensitivities are shown in Figs. 12(j)–12(l), revealing com-
parable patterns to those observed in the low-power version
(Fig. 8).
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