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Yin-Yang spiraling transition of a confined buckled elastic sheet
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DNA in viral capsids, plant leaves in buds, and geological folds are examples in nature of tightly packed
low-dimensional objects. However, the general equations describing their deformations and stresses are chal-
lenging. We report experimental and theoretical results of a model configuration of compression of a confined
elastic sheet, which can be conceptualized as a one-dimensional (1D) line inside a 2D rectangular box. In this
configuration, the two opposite ends of a planar sheet are pushed closer, while being confined in the orthogonal
direction by two rigid walls separated by a given gap. Similar compaction of sheets has been previously studied
and was shown to buckle into quasiperiodic motifs. In our experiments, we observed a different phenomenon,
namely the spontaneous instability of the sheet, leading to localization into a single Yin-Yang pattern. The
linearized Euler Elastica theory of elastic rods, together with global energy considerations, allow us to predict
the symmetry breaking of the sheet in terms of the number of motifs, compression distance, and tangential force.
Surprisingly, the appearance of the Yin-Yang pattern does not require friction.
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I. INTRODUCTION

Packing problems in confined geometries have attracted
significant attention due to their relevance in science, engi-
neering, and technology. There is an attempt to optimize the
available space while maintaining the stability and integrity
of the packed objects. A useful classification of packing prob-
lems is via the dimensionalities of the packed objects d and of
the confining container D. A classical case is when D = d ,
such as in sphere packing or granular matter [1,2]. Not of
less interest are lower dimensional objects, which can strongly
deform due to possible high rotations, leading to nonlinear
geometrical deformations. One-dimensional (1D) fibers [3] or
1D rods in 2D or 3D containers [4–8] are ubiquitous in nature,
such as DNA in viral capsids [9,10] or spider-capture silk
inside droplets [11]. Similarly, a 2D plate in a 3D container
[12] exhibits interesting phases, which are relevant in plant
leaves in buds [13,14] or geological folds [15]. However,
the general equations describing deformations and stresses of
tightly packed sheets or rods are challenging to solve [16–18].

In this article, we study a model system consisting of a
compressed elastic sheet, which can be conceived as a 1D
line inside a 2D rectangular box. The two opposite ends of
a planar sheet are moved closer, while confined in the orthog-
onal direction by two rigid walls separated by a given gap.
A similar compaction was studied by Roman and Pocheau
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[19], but the gap between the two walls was decreased, while
keeping the lateral length fixed. One can wonder whether the
reported quasiperiodic buckled motifs [19–21] remain when
the direction of compression is modified [22–31] and if this
influences the stability diagram of the sheet. Surprisingly,
we observe a spontaneous instability of the sheet, leading to
the formation of a single Yin-Yang pattern. Interestingly, this
pattern is common to other confined configurations [32–38].
On the one hand, we measure experimentally both mechanical
and geometrical properties of the sheet, during the lateral
compression process. On the other hand, we develop a theo-
retical description based on the Euler Elastica theory of elastic
rods and inspired by the work of Chai [25]. We demonstrate
that the linearized theory describes well some regimes and
properties and we identify the mechanisms necessary for the
emergence of the spiraling instability. The appearance of the
Yin-Yang pattern does not require friction, although the latter
should influence the threshold of the instability.

II. EXPERIMENTAL SETUP

The experiment (Fig. 1) consists of the compression of a
planar sheet under bilateral confinement inside a limited box
of height h ∼ 1 cm and lateral length L = L0 − � ∼ 10 cm,
where � measures that compression (h/L ∼ 0.1). The friction
forces acting between the sheet and the confining walls are
reduced as much as possible by using lubrication powder.
Polyester (polyethylene terephtalate) sheets are characterized
by a Young modulus E ∼ 1 GPa, length L0 ∼ 10 cm, width
W ∼ 10 cm, and thickness t ∼ 100 μm (L0/t � 1 and h/t �
1). The bending modulus is determined by B = Et3/12(1 −
ν2) ∈ [10−5, 10−2] J, where ν � 0.4 is the Poisson ratio. See
Table I for the values of the experimental parameters. The
morphology of the sheet is observed to be uniform along the
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FIG. 1. Scheme of the experiment of compression of a planar
sheet under bilateral constraints: the length, width, and thickness of
the sheet are L0, W , and t ; the confining box is of height h and length
L = L0 − �. A force sensor measures the tangential force T .

z direction (namely along the width of the sheet), such that
the experiment can be modeled as the compression of a 1D
rod in a 2D rectangle. In essence, the lack of curvature along
the z direction allows pure bending strains without stretching.
Initially, the sheet is lying along the bottom wall, namely
along y = 0. The sheet ends are clamped.

During one realization, the gap height h is kept constant,
while the compression distance � is slowly increased, at a
velocity of around 0.5 mm/s. From one realization to another,
the experimental control parameters t , W , L0, E , and h are
varied and several realizations (3 or 4) are repeated for the
same control parameters to investigate both the experimental
reproducibility and the system multistability. A force sensor
(Sensel Measurement, Futek LSB200 model) measures the
tangential (compressive or tensile) force T exerted along the
x direction, to which both elasticity and friction contribute.
We denote the normal force exerted along the y direction
by N . Simultaneously, pictures of the sheet profile are taken
(NIKON D80 camera with 105 mm objective).

III. EXPERIMENTAL PHENOMENOLOGY

As soon as we impose the compression distance � �= 0,
compressive tangential forces T > 0 appear (Fig. 2) and the
sheet buckles (Fig. 3). As a result, the sheet comes into contact
with the top wall, leading to a response different from free
buckling (without constraint) [39]. With further compression,
the contacts with the walls extend, changing from point to
line contacts. This leads to a hierarchical process, where the
line contacts behave like shorter rod segments, which in turn
buckle, and so on (Fig. 3). After the first buckling event, one
motif is observed, made of two antisymmetric free segments

TABLE I. Properties of the different samples of polyester
sheet—Young modulus E , thickness t , width W , length L0, and bend-
ing moduli B—and of the confining geometry: gap h. The different
materials are sorted according to increasing thickness t .

E (GPa) t (μm) W (cm) L0 (cm) B (J) h (mm)

2.5 60 20 23.5 5 × 10−5 10
4.0 75 20 20 2 × 10−4 10
2.5 90 20 23.5 2 × 10−4 [5 : 5 : 40]
4.0 100 5, 10, 20 5, 10, 20 4 × 10−4 10,20,40
5.0 120 20 23.5 9 × 10−4 [5 : 5 : 40]
4.0 125 20 20 8 × 10−4 10
2.5 340 20 23.5 10−2 30,35

(a)

(b)

FIG. 2. Tangential force T as a function of the compression � for
two sets of experimental parameters: h = 10 mm and W = 20 cm;
(a) L0 = 10 cm, t = 100 μm, and E = 4 GPa; (b) L0 = 23.5 cm, t =
120 μm, and E = 5 GPa. Colored circles in (a) and (b) correspond
to pictures in Figs. 3(a) and 3(b), respectively.

(a free segment being limited by contacts at both ends) and
three contacts. Later, more motifs are formed when the longest
line contact buckles, such that, after n buckling events, the
sheet exhibits n motifs, made of 2n free segments and 2n + 1
contacts. The pattern of line contacts and free segments is
roughly periodic with more or less identical line contacts,
free segments, and motifs, due to metastability and friction
forces [40]. At each buckling event, when n changes to n + 1
motifs, the tangential force T suddenly drops to a smaller
value exhibiting a snap-through instability. In between buck-
ling events, T increases continuously while increasing the
compression distance � (Fig. 2).

Instead of an ever-repeating sequence, as usually observed
[19–31], these buckling events stop, when the sheet shows a
strong symmetry breaking. We observe that, after nmax buck-
ling events, the free segment located closest to the compressed
end deforms strongly and nonlinearly, by taking an S shape
(purple curves, Fig. 3) that leads finally to the Yin-Yang pat-
tern (orange curves, Fig. 3). Meanwhile, the tangential force
T changes its behavior—after reaching a maximum Tmax at
�max, T continuously decreases to a small value (purple data
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(a) (b)

FIG. 3. Pictures of a sheet profile at different compression distances � for the two configurations in Fig. 2. Between 1 and nmax motifs are
observed, before the spiraling of the sheet (the Yin-Yang pattern) which is the final pattern observed in the experiments. nmax = 2 in (a) and 4
in (b). The continuous and dashed lines are the experimental and theoretical predictions using the linearized Elastica (2), respectively.

points, Fig. 2). The final step is a last drop of T , corresponding
to a last snap-through instability, which occurs when the S
shape spirals instantaneously, making all the other previous
motifs disappear, and thus leaves the Yin-Yang pattern as the
ultimate state (orange data points, Fig. 2). See the Supplemen-
tal Material for a video showing both the sheet profile and the
tangential force during the compression [41].

IV. THEORETICAL ANALYSIS

We now wish to describe the sheet’s profile and the evolu-
tion of the force during its compression. We can parametrize
the sheet by the local slope θ (s) of the center line of a cross
section normal to the z direction at each curvilinear position
s ∈ [0, L0]. See Fig. 4(a) for a scheme indicating the notations
used for the calculations. This rod is modeled by the Euler
Elastica equation, which can be written for each free segment
as

BW θ̈ (s) = −T sin θ (s) + N cos θ (s), (1)

where T and N are the tangential and normal forces exerted
on the rod along the x and y axes, respectively. Considering
θ (s) � 1, Eq. (1) can be linearized, leading to

BWy′′′′(x) = −Ty′′(x). (2)

The assumptions underlying Eq. (2) are satisfied for moderate
compression distances (� � L0), but unjustified for large val-
ues of �, where any local slope θ reaches, and even exceeds,
π/2. Note that describing the sheet using y(x) in Eq. (2)
cannot parametrize the S shape or the Yin-Yang pattern where
the local slope θ is not small and hence y(x) is no longer a
function.

Additionally, the length conservation for n identical free
segments can be expressed as

� � n
∫ H

0
y′2(x)dx, (3)

where H = (L − � �)/2n is the projected length per free
segment, with � � being the total length of the line contacts
[Fig. 4(a)].

(a)

(b) (c) (d)

FIG. 4. (a) Notations: the sheet is parametrized by the local slope θ (s) of the center line of a cross section normal to the z direction at
each curvilinear position s ∈ [0, L0], of Cartesian coordinates [x(s), y(s)]. L0 is the total length of the sheet, � is the compression distance,
L = L0 − � is the horizontal distance, along the x axis, between the two opposite ends of the sheet, and h is the vertical gap. H is the projected
length per free segment, while � � is the total length of the line contacts. (b)–(d) Three different spatial patterns of line contacts: (b) a single
line contact; (c) 2n + 1 line contacts of equal length; (d) a perfectly periodic and symmetric pattern, the axes of which are represented by the
dashed and dotted lines, respectively. � is the length of the longest line contact.
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Solving the differential Eq. (2) with its boundary condi-
tions and imposing the length conservation (3) allows one to
obtain analytically the profile y(x) and the force-compression
relation T (�). Note that this analysis changes slightly for dif-
ferent situations: no contact, point contacts, or line contacts.

When there is no contact, the tangential force T is pro-
portional to the buckling force threshold TL0 , times (2π )2 for
clamped boundary conditions, just like in free buckling [39],
namely

TL0 = BW

L2
0

. (4)

When the sheet is in contact with the walls (n = 1), the tran-
sition between point and line contacts occurs when T L2

0 �
(4π )2BW (assuming contacts of identical lengths), so that,
already when � and T are moderate, the point contacts be-
come line contacts. It turns out that point contacts do not
appear anymore when n � 2: all the contacts are immediately
lines after each buckling event [25]. Since line contacts occur
much more often, we will focus on this configuration in the
following.

Assuming n identical motifs [40], the shape of a free seg-
ment is given by

y(x) = h[2πx/H − sin (2πx/H )]/2π, (5)

with T H2 = (2π )2BW and

T (�) � BW

h2

(
4π�

3hn

)2

. (6)

Note that the projected length of a single free segment, H ,
changes during the process. It decreases from L0/2n, by
�/2n, due to compression, and by � �/2n, due to the elon-
gation of line contacts.

The mode transition occurs when the line contact of maxi-
mal length � buckles, when T �2 = (2π )2BW [39]. Therefore,
different spatial patterns of line contacts may lead to differ-
ent thresholds of mode transitions, even for the same total
length � � (Fig. 4). Hence the mode transition thresholds n(�)
cannot be uniquely predicted nor experimentally reproduced,
because they are sensitive to the precise sequence of the buck-
ling events. However, these thresholds are bounded by

n + 2n2 � �

L0

2

3

(
h

L0

)−2

� n + 4n2. (7)

The lower boundary corresponds to the case of a single
line contact (� = � �), as shown in Fig. 4(b), while the up-
per boundary corresponds to (2n + 1) contacts of identical
lengths [� = � �/(2n + 1)], as shown in Fig. 4(c). An in-
termediate case is possible when each sequence of two line
contacts separated by a free segment is duplicated 2n times,
corresponding to a perfectly symmetric pattern (� = � �/2n),
as shown in Fig. 4(d), for which

�

L0
= 6n2

(
h

L0

)2

. (8)

FIG. 5. Tangential force T as a function of the compression
distance � for a given elastic sheet (W = 20 cm, L0 = 23.5 cm,
t = 120 μm, and E = 5 GPa) at different values of the gap h in the
main panel, while dimensionless data T/(BW/h2)(�/L0) are plotted
in the inset. The dashed curves are predictions from Eqs. (6) and (7),
while dotted lines are predictions of �max and Tmax from Eqs. (13)
and (14).

Thus, in the perfect symmetric and periodic case, one gets
from Eq. (8)

n =
⌊√

�L0

6h2

⌋
, (9)

where 	.
 is the floor function.

V. SPIRALING TRANSITION

Concerning the morphology, the agreement of the linear
approximation [Eqs. (5) and (9)] with experiments is quite
good, as shown for two configurations in Fig. 3 for moderate
values of �, especially when the motifs are fairly regular
[Fig. 3(a)].

Concerning the force, the analytical expression (6) for
T (�), with the number of motifs n that lies within the bounds
given by Eq. (7), quantitatively describes the experiments, as
can be seen in Fig. 5 for a given elastic sheet and different
values of the gap h. Obviously, Eq. (6) does not capture the
experimental measurement of T (�) for � � �max, where
the sheet profiles are not properly captured by the linearized
theory.

Combining Eqs. (6) and (9) highlights the characteristic
force scale

Th = BW

h2
(10)

that becomes relevant in bilaterally constrained systems, and
which replaces TL0 that is pertinent for free buckling. Indeed,
the inset of Fig. 5 shows that rescaling T by Th and � by L0

allows one to gather all curves.
Experimentally, the maximal number of motifs nmax before

the appearance of the Yin-Yang pattern decreases with h and
increases with L0 (Fig. 6). However, nmax is independent of all
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FIG. 6. Maximal number of motifs nmax observed before the spi-
raling of the sheet as a function of h/L0 and power law of exponent
−5/6 [Eq. (12)]. The circles were averaged for different W, t, E ,
and B at a constant L0 = 23.5 cm, while the squares correspond to
different L0 at a constant gap.

the other control parameters varied here (W, t, E ). In order to
understand nmax, we compare the bending energy, measured
by BW

∫ L0

0 θ̈2(s)ds/2, that we approximate by BW �̈2S/2, de-
noted by En for the configuration composed of n motifs, with
the typical curvature �̈ ≈ n2h/L2

0 along a length S ≈ L0, and
denoted by EYin-Yang for a single Yin-Yang pattern, with the
typical curvature �̈ ≈ L0/nh2 along a length S ≈ h. Figure 7
presents the typical curvature �̈ and the support length S for
two configurations and in Ref. [42] we provide some further
details. One finds

EYin-Yang

En
∝ 1

n6

(
L0

h

)5

. (11)

We expect a transition between the two patterns (for n = nmax)
when the energy EYin-Yang falls below En, leading to the scaling
law

nmax ∝
(

h

L0

)−5/6

, (12)

which is valid for small h/L0 and nmax = 1 for large h/L0.
This prediction is consistent with our experimental measure-

FIG. 7. Typical curvature �̈ and support length S for the two
configurations: n motifs vs Yin-Yang pattern.

FIG. 8. Experimental measurements of the maximal compressive
tangential force Tmax (for different values of t, W, L0, and h indicated
in legends) as a function of the prediction TYin-Yang [Eq. (14)], while
the raw data Tmax(h) are plotted in the inset.

ments, as shown in Fig. 6, with a prefactor 0.3. We observe
that nmax reaches 1 for h/L0 � 0.2, with this value appearing
to be the characteristic aspect ratio between small and large
h/L0.

Being interested in the compression distance �max at which
nmax is reached, we obtain from Eqs. (8) and (12) the scaling
law

�max

L0
∝

(
h

L0

)1/3

, (13)

valid for small h/L0.
Based on these results [Eqs. (6), (12), and (13)], we obtain

for the maximal force Tmax, which appears before the Yin-
Yang transition, Tmax ∝ TYin-Yang for small h/L0, where

TYin-Yang = BW

L1/3
0 h5/3

(14)

is the characteristic force scale of the Yin-Yang pattern. How-
ever, Tmax ∝ TL0 for large values of h/L0. This scaling law is
compared, in the main panel of Fig. 8, with our experimental
measurements, corresponding to different values of t , W , L0,
and h: the agreement is excellent, with a multiplicative con-
stant 37, while raw data sets Tmax(h) are shown in the inset.
Note the saturation of Tmax at large values of h/L0.

As a summary, Fig. 9 shows the phase diagram of a
confined elastic sheet, as a function of the lateral constraint
h/L0 and the compression constraint �/L0. The states with
n = 1, 2, 3, 4 motifs and the S-shape/Yin-Yang states are
plotted as triangles and circles, respectively. Several realiza-
tions with the same control parameters are presented in order
to show the multistability of this system and the experimental
reproducibility. Among the properties of the elastic sheet, only
its length L0 influences its state, through h/L0 and �/L0.
Thus this single phase diagram should describe any confined
compressed elastic sheet. The dashed lines are predictions
[Eq. (8)] based on the linearized Euler Elastica, assuming
perfectly periodic motifs, surrounded by shaded areas that rep-
resent uncertainty regions [Eq. (7)], which originate from the
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FIG. 9. Phase diagram that summarizes the possible configu-
rations of the buckled elastic sheet (from 1 to 4 motifs and the
S-shape/Yin-Yang state) in the plane of dimensionless bilateral con-
straints h/L0 and �/L0. The dashed and solid lines are predictions
from Eq. (8) for several values of n (from 1 to 4) and Eq. (13),
respectively. The shaded area around each dashed line represents
an uncertainty region based on Eq. (7), which originates from the
different possible patterns of line contacts.

different possible patterns of line contacts. The solid line rep-
resents the predicted threshold for the nonlinear deformation
of the sheet [Eq. (13)], with the prefactor 0.44, determined
from the previous experimental constants. All these mode
transitions experimentally reported are well described by our
predictions.

VI. CONCLUSION

In this article, we studied the response of a thin sheet
compressed from the side in a restricted volume. In particular,
we provide a full phase diagram of the equilibrium state of
a 1D line in a 2D container. We show that a pure elastic
linear analysis provides a good qualitative and even quanti-
tative description of the various mode transitions exhibited by
the system. However, it fails to capture the transition to the

Yin-Yang regime. Instead, a global energy consideration al-
lows one to determine this transition. We demonstrate the
relevance of three force scales in bilaterally constrained buck-
ling of an elastic sheet, namely TL0 for free buckling, Th for
buckling in a confined box, and most interestingly TYin-Yang for
the transition towards the single Yin-Yang pattern.

The phase diagram we report (Fig. 9) should apply to
any 1D elastic sheet restricted to a 2D container, including
the results reported in Roman et al. [19–21], where the con-
tainer was compressed from above. The phenomenology of
that system was apparently different, namely the modes were
symmetric and most importantly the Yin-Yang regime was not
observed. Our phase diagram can explain this difference. First,
typical initial conditions and the compression protocol used
in [19] avoid altogether the Yin-Yang regime. Second, the
presence of friction here, even if reduced as much as possible,
not accounted for in the model, tends to enhance the symmetry
breaking between the buckled segments, when the sheet is
compressed from the side.

It would be interesting to extend our analysis to a full non-
linear theory, particularly in order to describe the evolution
at the Yin-Yang transition and to explore much larger com-
pression lengths, inducing more contacts and self-contacts and
leading to complex patterns. Another important challenge is
to consider the role of friction [7,24,43–45]. In particular,
friction can block the sheet in places where the normal force
exceeds a certain threshold, thus creating a smaller subsystem
that continues to be compressed while screening the compres-
sive forces from the rest of the sheet. A solid description of
this system may lead to a better understanding of systems that
are composed of multiple layers [46–49] or when confinement
is induced by liquid interfaces [50,51] or granular materials
[52] and energy harvesting in bistable or multistable compos-
ites [29].
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