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Precursory Cooper flow in ultralow-temperature superconductors
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Superconductivity at low temperature—observed in lithium and bismuth, as well as in various low-density
superconductors—calls for the development of reliable theoretical and experimental tools for predicting ultralow
critical temperatures Tc of Cooper instability in a system demonstrating simply normal Fermi liquid behavior
in a broad range of temperatures below the Fermi energy TF. Equally important are controlled predictions of
stability in a given Cooper channel. We identify such a protocol within the paradigm of precursory Cooper
flow—a universal ansatz describing logarithmically slow temperature evolution of the linear response of the
normal state to the pair-creating perturbation. Applying this framework to the two-dimensional uniform electron
gas, we reveal a series of exotic superconducting states, pushing controlled theoretical predictions of Tc to the
unprecedentedly low scale of 10−100 TF.
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I. INTRODUCTION

The conceptual elegance of the Kohn-Luttinger theorem
establishing that the Fermi liquid state is unstable in high-
angular momentum Cooper channels at low temperatures
comes at the price of lacking accurate predictions as to which
channels get unstable first and at what temperatures. Exper-
imentally, each new discovery of the ultralow-temperature
superconductor, be it lithium [1] or bismuth [2], exhibiting
superconductivity at about 0.1 mK, emerges as a surprise. The
potential for observing analogous phenomena in traditionally
nonsuperconducting metals such as gold, copper, or sodium,
as well as in low-density superconductors [3–5], adds to the
scientific intrigue, with no a priori knowledge of the critical
temperature Tc that one should expect for a given system.

There is, however, a fundamental reason to expect that
the desired answers can be controllably extracted—definitely
theoretically and, hopefully, experimentally as well—from the
system’s properties in the normal Fermi liquid regime at tem-
peratures much lower than the Fermi energy TF, but still many
orders of magnitude higher than Tc. Indeed, the (ultra-)low
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value of Tc is due to the emergent Bardeen-Cooper-Schrieffer
(BCS) regime of instability, when the system that is strongly
correlated at the ultraviolet level gets renormalized into the
Fermi liquid with a weak effective BCS interaction character-
ized by a dimensionless negative coupling constant |g| � 1.
The result is an exponentially small critical temperature,
Tc ∼ TFe−1/|g|. The BCS nature of the transitions implies a
rather characteristic temperature evolution of the pair sus-
ceptibility, χ0(T ), defined as the linear response to a static
pair-creating perturbation. On the approach to the critical
point, χ0(T ) should behave as [6,7]

χ0(T ) ∝ 1/ ln (T/Tc) (T → Tc + 0). (1)

Experimental studies across a range of superconduc-
tors have validated this prediction using superconductor-
superconductor tunnel junctions [8–13].

While providing a proof-of-principle result for the idea of
extracting Tc from properties of the normal state at T � Tc,
relation (1) turns out to be rather impractical, and sometimes
even misleading, when it comes to a controlled quantitative
analysis of (in)stability in a given pairing channel (for an
illustration, see the blue curve in Fig. 1). The reason is that
ansatz (1) ignores a logarithmic prefactor (its physical origin
is discussed below) that is slowly evolving with temperature,
making a naïve extrapolation of an apparent linear dependence
of 1/χ0(T ) on ln T from high temperature to the temperature
when it is supposed to hit zero very inaccurate, not to mention
that it may predict finite Tc for a Cooper-stable channel (see a
similar discussion in Ref. [14]).
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FIG. 1. Finite-temperature flows of the largest s-wave eigen-
value, λmax, of the standard gap function equation (blue squares
connected by line) and linear response functions χ0 (green triangles)
and R0 (red circles) computed for the 2D UEG at rs = 1.156. The
1/χ0 and 1/R0 data are fitted using Eqs. (2) and (3), demonstrating
excellent agreement. The role of the logarithmic numerator in Eq. (2)
is clearly visible as the difference between the solid green line [fitted
with ansatz (2)] and the dashed green line [fitted with ansatz (1)].
The inset shows how linear in ln T scaling of 1/R0 is extrapolated to
extract Tc in the f channel at several densities. All 1/χ0 and 1/R0

flows undergo qualitative changes near T/TF ∼ 10−1, where TF is
the Fermi temperature; this sets an energy scale � below which the
attractive Cooper-channel interaction emerges.

Recently, a numeric method—the so-called implicit renor-
malization (IR)—allowing one to accurately predict Tc from
the field-theoretical properties of the system at T � Tc was
proposed in Ref. [14] and further developed in Refs. [15,16],
with an application to the model of uniform electron gas.
Despite unquestionable success, the IR approach encounters
certain technical limitations and lacks a direct connection with
what can be measured experimentally. Technical limitations
of IR are most pronounced in the vicinity of the “quantum
transition point” (QTP) at which a given channel undergoes a
transition from a Cooper-stable to Cooper-unstable regime. It
is thus crucial to find an approach that is complementary to
the IR and one compatible with experimental protocols.

In this paper, we show that the desired solution is
simply provided by an expression that is more accu-
rate than (2), but still physically transparent, for the pair
susceptibility. Specifically, we find that the following three-
parametric ansatz (universal to all ultralow-temperature BCS-
type superconductors)—the precursory Cooper flow (PCF)
ansatz—perfectly captures the temperature evolution of χ0

within a broad temperature range:

χ0 = c ln(�/T )

1 + g ln(�/T )
+ O(T ) (Tc < T � �). (2)

The nonuniversal parameters c, g, and � are tied to the micro-
scopic properties of the system, with � being the lowest rele-
vant energy/frequency scale (we set h̄ = kB = 1), such as TF,
Debye, or plasma frequency. Negative g implies the BCS tran-
sition at Tc = �e−1/|g|, while g > 0 implies its absence, with
g = 0 corresponding to QTP. The logarithmic factor in the

numerator—distinguishing (2) from (1)—has the same math-
ematical origin and, thus, the same expression as the “Tol-
machev’s logarithm” in the denominator. However, the two
logarithms describe distinctively different physics. The one in
the numerator is the pair susceptibility of an ideal Fermi liquid
(a system with no coupling in the Cooper channel), while
the one in the denominator is responsible for Tolmachev’s
renormalization of the effective interaction [17,18]. A sharp
difference between the stable and unstable regimes develops
only at |g| ln(�/T ) > 1; otherwise, susceptibility increases in
both regimes regardless of interactions. In the former case,
χ0 saturates to c/g at temperatures T � T∗ � �e−1/|g|. These
pair correlations (diverging as g → 0) play a crucial role in
the scenario of strange metal behavior discussed in Ref. [19].

For a model with weak momentum-independent interac-
tion, the expression (2) is readily obtained by Bethe-Salpeter
summation of the Cooper-channel diagrammatic ladder. Far
less trivial is our result shedding light on the previous IR
observations [14–16] that Eq. (2) also works in the case of a
dynamically screened Coulomb interaction with complex mo-
mentum and frequency dependence of the effective coupling
in the Cooper channel.

In the context of ab initio calculations employing the PCF
methodology, we introduce an optimized field-theoretical
counterpart of the pair susceptibility, R0. As opposed to
χ0, the flow of R0 is free of the “confusing” ideal-Fermi-
liquid logarithmic numerator and is characterized by only two
parameters,

R0(T ) = 1

1 + g′ ln(�′/T )
+ O(T ). (3)

[Consistency with (2) implies ln(�′/�) = 1/g′ − 1/g.] This
yields an exciting opportunity for precise theoretical and
numerical determination of Tc and QTP from normal state
calculations using a minimal number of fitting parameters (see
Figs. 1 and 2).

With the precise method at hand, we performed a model
study of the two-dimensional (2D) uniform electron gas
(UEG) in the regime of weak-to-moderate interactions, which
is interesting for its intrinsic (no-phonons) superconductiv-
ity driven by the dynamically screened Coulomb interaction
[20–24], as opposed to the original Kohn-Luttinger scenario
[25]. Our results (see Fig. 3) reveal a series of QTPs associated
with ultralow-temperature superconducting instabilities that
we can resolve down to 10−100 TF.

II. FIELD-THEORETICAL ANALYSIS

Without loss of generality, we study the universal s-wave
linear response scaling laws in a d-dimensional spheri-
cally symmetric homogeneous system (other channels and
realistic superconductors are discussed in Appendix A).
The linear response functions (2) and (3) originate from
the two-electron Green’s function with zero incoming mo-

mentum and frequency, G(4)
kp = 〈T ψ̂

†
k↑ψ̂

†
−k↓ψ̂−p↓ψ̂p↑〉, where

ψ̂/ψ̂† are the electron annihilation/creation operators. We
define the shifted momentum-frequency vector as k =
(k − k

|k|kF, ωn), where ωn = (2n + 1)πT is the fermionic
Matsubara frequency. Pair susceptibility χ0 is then the
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FIG. 2. Temperature evolution of the standard pair susceptibility χ0 and modified pair susceptibility R0 of the 2D uniform electron gas in
the s channel for various values of rs. Red circles correspond to QTP rs = 0.6339, squares stand for stable regimes (g > 0), and triangles are
used for the unstable regimes (g < 0). The lines are the fits with the ansatz (2) for χ0 and ansatz (3) for R0. (a) Function χ0(T ). For stable
regimes, χ0(T ) saturates to a constant at T � T∗ � �e−1/|g|; for unstable regimes, χ0(T ) diverges at T = Tc; at the QTP, χ0(T ) diverges as
T → 0. (b) Inverse χ0(T ) rescaled with the ideal-gas logarithmic factor. (c) Inverse R0.

linear response to the static uniform pair-field perturbation (of
unit amplitude), χ0 = ∫

k

∫
p G(4)

kp , where
∫

k ≡ T
∑

n

∫ dk
(2π )d .

The momentum-dependent linear response is defined as Rk =∫
p G(4)

kp /(GkG−k ), where Gk denotes the dressed one-electron
Green’s function.

We start by analyzing the analytic structure of Rk as it
follows from the self-consistent Bethe-Salpeter equation,

Rk = 1 −
∫

p
�kpGpG−pRp, (4)

where � is the particle-particle irreducible four-point vertex
with zero incoming momentum and frequency. It encodes
all effective pairing interactions, such as screened Coulomb
potential. The second term on the right-hand side of (4) is
a sum of ladder diagrams generated by repeated products of
� and GG, each carrying its own set of singularities. The
finite-temperature cutoff of GG at the Fermi surface is re-
sponsible for the logarithmic flow that ultimately leads to
BCS instability. Concurrently, the vertex function � has sin-

FIG. 3. Superconducting phase diagram of the 2D UEG. For
each channel, the line starting at QTP shows the (would-be) critical
temperature. Critical values of rs for 	 as large at 10 are presented in
the inset.

gular momentum dependence due to incomplete screening of
the long-range Coulomb interaction at any finite frequency.
The possible interplay between the two singularities raises the
question of whether the flow of the pair susceptibility still
follows the same law as in the case of short-range interaction.

The key observation is that Coulomb singularity does not
produce large terms when �GG is integrated over p, and the
dominant contribution still comes from the BCS logarithm.
That is,

∫
p �kpGpG−p = g̃k ln T + f̃k + O(T ), where g̃k and

f̃k are temperature-independent and regular-in-k functions,
and the finite-T corrections vanish at least linearly with T .
Further technical details are provided elsewhere [26]. This
observation allows one to parametrize �GG as

�kpGpG−p → [g̃k ln T + f̃k]δp + φkp, (5)

where δp = (2π )d �( d
2 )

4πd/2T δ(|ωm| − πT )δ(|p| − kF) (as expected,∫
p δp = 1), and the regular correction satisfies

∫
p φkp = O(T ).

By incorporating this form into Eq. (4), we obtain the temper-
ature dependence of the linear response,

Rk = 1 + ( fk − f0) + (gk − g0) ln T

1 − f0 − g0 ln T
+ O(T ), (6)

where fk and gk are regular functions representing f̃k and g̃k

renormalized by pair fluctuations. Remarkably, the logarith-
mic correction in the numerator vanishes in the low-energy
limit k → 0, resulting in a simple relation for R0 ≡ Rk→0

given by Eq. (3) with g′ = g0 and �′ = e− f0/g0 . The pair
susceptibility χ0 = ∫

k RkGkG−k , on the other hand, involves
Rk with finite k and, thus, retains the global logarithmic factor.

III. SUPERCONDUCTIVITY IN THE 2D UNIFORM
ELECTRON GAS

In the absence of electron-phonon interaction, supercon-
ductivity in this model is of the emergent BCS type, and the
values of Tc are supposed to be extremely low. The theory
presented above and advanced numerical techniques not only
allow us to study many pairing channels, but also accurately
locate QTP when Tc goes to zero.
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Previous studies [15,22] revealed the existence of high-
orbital-momentum 	 superconducting states in the 3D UEG in
the weak-coupling limit when the random phase approxima-
tion (RPA) becomes controllably accurate. The pairing comes
from dynamic nature screening in Coulomb systems, as dis-
cussed by Rieschel and Sham [20,27], and not from the static
Kohn-Luttinger mechanism [25]. In light of the pioneering
work by Takada [21], we expect that the dynamic character
of screening will play a crucial role in 2D as well.

In the weak-coupling limit, the RPA vertex function � has
the form

�k,ωn
p,ωm

≈ Vp−k

1 + Vp−k · �0(p − k, ωm − ωn)
, (7)

where Vq = 2πe2/q is the bare Coulomb repulsion and
�0(p − k, ωm − ωn) is the RPA polarization. At this level
of accuracy, we consider bare Green’s functions Gk,ωn =
1/(iωn − k2/2m + EF) in Eq. (4), where m is the elec-
tron mass [Fermi temperature can be expressed as TF =
1/(ma2

Br2
s ), where rs = √

2/(kFaB) with the Bohr radius aB].
To efficiently solve Eq. (4) at ultralow temperatures,

we employ the discrete Lehmann representation (DLR)
[16,28,29] to radically reduce the computational cost of rep-
resenting the linear response and Green’s functions from
O(1/T ε) for uniform grids to O[ln(1/T ) ln(1/ε)], where ε

is the error tolerance. The codes are available online [30].
We performed systematic calculations of R0 for various

orbital channels 	 and values of rs. For each 	 and rs, we de-
termine the transition temperature by extrapolating 1/R0(T )
flows to zero using the least-squares criterion. Subsequently,
for each 	, we extrapolate results for −1/ ln[Tc(rs)/TF] to zero
to reveal critical values of rs. The phase diagram of competing
superconducting states in the 2D UEG is shown in Fig. 3.

As expected, by increasing density (decreasing rs), one
suppresses Tc in all orbital channels. While all channels are
superconducting at rs ∼ 1, they successively go through QTPs
so that only large 	 channels stay superconducting at small
rs. Accordingly, the orbital index of the dominant (highest-
Tc) channel also increases with density [we obtain it from
crossing points between the T (	)

c (rs) and T (	+1)
c (rs) curves].

The smooth dependence of −1/ ln(Tc/TF) on rs leads to the
accurate determination of the QTP by linear extrapolation.
We observe that −1/ ln[T (	)

c /TF] ≈ (rs − r (	)
c )/c	, where c	

is a dimensionless constant, i.e., in the vicinity of QTP, the
transition temperature obeys T (	)

c = TFe−1/λ	 [31,32], with
λ	 = (rs − r (	)

c )/c	.
Data in the inset in Fig. 3 suggest that superconductivity

in the 2D UEG survives in the high-density limit (rs → 0) for
large enough 	. We emphasize that this outcome cannot be
explained by the Kohn-Luttinger mechanism because, in 2D,
this mechanism simply does not exist at the RPA level [33].
Similar to the 3D case, we are dealing with the consequences
of dynamic screening in systems with long-range interactions.
To explore how the interaction range changes the picture, we
took density corresponding to rs = 0.8 (when all channels are
superconducting) and replaced the Coulomb potential with the
Yukawa one. We find that for screening length ∼1/kF, all of
the channels mentioned in Fig. 3 are no longer superconduct-
ing. For more details, see the Appendix.

Finally, we recalculated the phase diagram by account-
ing for renormalization of the Green’s function within the
G0W0 approximation for the proper self-energy. Qualitative
(and quantitative at small rs) agreement between the phase
diagrams presented in the Appendix and Fig. 3 demonstrates
the robustness of our conclusions.

IV. CONCLUSIONS AND OUTLOOK

We have shown that pair susceptibility (linear response to
a static spatially uniform pair-creating perturbation) of the
normal Fermi liquid features is universal for all BCS su-
perconductors’ temperature dependence, or “flow,” given by
Eq. (2), irrespective of the emergent pairing mechanism. The
ansatz (2) applies to both stable and unstable pairing channels.
In both cases, the higher-temperature part of the flow is the
same, up to small corrections, and represents a response that
is singular in the T → 0 limit of an ideal Fermi liquid. A
sharp difference between the stable and unstable cases de-
velops only at exponentially low temperatures: the unstable
channel hits finite-temperature singularity at Tc, while the sta-
ble channel develops nontrivial correlations suppressing the
zero-temperature singularity. The T = 0 singularity survives
only at the quantum transition points (QTPs) separating the
stable and unstable regimes.

Using two-dimensional uniform electron gas as a paradig-
matic model of intrinsic superconductivity mediated by
dynamic screening of Coulomb interaction, we demonstrated
that fitting the normal Fermi liquid data to the ansatz (2)—and
its numeric counterpart (3)—allows one to accurately predict
ultralow critical temperatures of unstable Cooper channels
and locate QTPs.

We anticipate that our method for controlled quantita-
tive predictions of ultralow-temperature Cooper instability
(or its absence) from finite-temperature flows of the linear
response to a spatially uniform pair-creating perturbation can
be extended to cases where the perturbation is applied at the
boundaries of the normal state. This would be the theoretical
basis for experimental studies of precursory Cooper flows
in the normal metallic state by using superconductor–normal
metal–superconductor tunnel junction setups [8–13] in the
high-temperature range Tc � T � TF. For metals such as Cu,
Au, and Na, where superconductivity at ultralow temperature
remains uncertain, it would be equally informative to observe
whether flows (2) correspond to negative or positive values of
g in the s channel.
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APPENDIX A: ANGULAR MOMENTUM
DECOMPOSITION IN TWO AND HIGHER DIMENSIONS

In an isotropic system, the particle-particle four-point ver-
tex with zero incoming momentum and frequency, �k,ωn

p,ωm
, only

depends on the angle between k and p (θk̂ p ≡ θk̂ − θp̂), their
moduli, and the Matsubara-frequencies difference ωn − ωm.
This allows us to simplify the analysis by projecting � onto
different orbital channels 	. In this Appendix, the frequency
variables and Matsubara summation are omitted for brevity as
they do not affect the decomposition.

Considering the Bethe-Salpeter equation for the linear re-
sponse function R,

Rk = ηk −
∫

dp
(2π )d

�k
pFp, (A1)

where ηk is the sourced term and Fp = GpG−pRp, we can
project it onto decoupled orbital channels 	 via an expansion.
After the projection to the angular momentum sector, R and �

are solely dependent on the momentum amplitudes, allowing
a unified treatment of generic dimension.

In two dimensions, the vertex function can be expressed as
a Fourier expansion,

�|k−p| = �(0)

2π
+

∞∑
	=1

�
(	)
k,p

cos 	θk̂ p

π
,

�
(	)
k,p =

∫ 2π

0
dθk̂ p�(

√
k2 + p2 − 2kp cos θk̂ p) cos 	θk̂ p.

(A2)

Apart from the � expansion, given by Eq. (A2), we also
need to expand functions that depend only on one momentum
variable,

Ok = O(0)
k

2π
+

∞∑
	=1

O(	)
k

cos 	θk̂

π
+ O

(	)
k

sin 	θk̂

π
, (A3)

where O represents R, F , or η, O(	)
k = ∫ 2π

0 dθk̂ cos 	θk̂Ok, and

O
(	)
k = ∫ 2π

0 dθk̂ sin 	θk̂Ok. The convolution term in Eq. (A1)
can also be expanded in Fourier series,

∫
dp

(2π )2
�|k−p|Fp

=
∫

dp
(2π )2

[(
�

(0)
k,p

2π
+

∞∑
	=1

�
(	)
k,p

cos 	θk̂ p

π

)(
F (0)

p

2π
+

∞∑
	′=1

F (	′ )
p

cos 	′θp̂

π
+ F

(	′ )
p

sin 	′θp̂

π

)]

=
∫

pd p

(2π )2

{
�

(0)
k,p

F (0)
p

2π
+

∞∑
	=1

�
(	)
k,p

∫ 2π

0

dθp̂

π
(cos 	θk̂ cos 	θp̂ + sin 	θk̂ sin 	θp̂)

∞∑
	′=1

[
F (	′ )

p

cos 	′θp̂

π
+ F

(	′ )
p

sin 	′θp̂

π

]}

=
∫

pd p

(2π )2

[
�

(0)
k,p

F (0)
p

2π
+

∞∑
	=1

�
(	)
k,p

(
F (	)

p

cos 	θk̂

π
+ F

(	)
p

sin 	θk̂

π

)]
, (A4)

where F (	)
p = GpG−pR(	)

p and R(	)
p = ∫ 2π

0 dθp̂ cos 	θp̂Rp (the
product of two Green’s functions is isotropic). Therefore, the
linear response function for each channel is given by

R(	)
k = 1 −

∫
pdp

(2π )2
�

(	)
k,pGpG−pR(	)

p . (A5)

Here, by setting η(	) ≡ 1 and projecting into channel 	, we
break the U(1) symmetry and the rotation symmetry so that
the result for different channels can be obtained separately.

In three or higher dimensions, the angular momentum
decomposition can be achieved by a similar approach using
expansion in the spherical harmonics. The vertex function can
be expressed as an expansion in Legendre polynomials P	(x),

�|k−p| =
∞∑

	=0

N (d, 	)

2
�

(	)
k,pP	(x),

�
(	)
k,p =

∫ 1

−1
dx�(

√
k2 + p2 − 2kpx)P	(x), (A6)

where x = cos θk̂ p and N (d, 	) = 2	+d−2
	

(	 + d − 3
	 − 1 ) denotes the

number of linearly independent Legendre polynomials of
degree 	 in d dimensions. Using the addition theorem for

spherical harmonics [34],

P	(x) = �d

N (d, 	)

N (d,	)∑
m=1

Y	m(θk̂ )Y ∗
	m(θp̂), (A7)

where �d = (2π )
d
2 /�(d/2) is the solid angle in d dimensions

and Y	m(θ ) is the spherical harmonic function, the vertex func-
tion can be expressed further on as

�|k−p| = �d

2

∞∑
	=0

�
(	)
k,pY	0(θk̂ )Y ∗

	0(θp̂). (A8)

Here we set m = 0 because the decomposed equation is inde-
pendent of m for a system with rotation symmetry. The linear
response function can also be decomposed as

Rk =
∞∑

	=0

R(	)
k Y	0(θk̂ ), (A9)

where R(	)
k = ∫

dθk̂RkY	0(θk̂ ). Projecting the convo-
lution term in Eq. (A1) on the spherical harmonics,
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we obtain∫
dp

(2π )d
�|k−p|Fp

= �d

2

∫
dp

(2π )d
GpG−p

×
∞∑

	=0

�
(	)
k,pY	0(θk̂ )Y ∗

	0(θp̂)
∞∑

	′=0

R(	′ )
k Y	′0(θk̂ )

=
∞∑

	=0

�d

2

∫
pd−1d p

(2π )d
�

(	)
k,pR(	)

k Y	0(θk̂ ), (A10)

where the orthonormal property of the spherical harmonics as∫
dθk̂Y	m(θk̂ )Y ∗

	′m′ (θk̂ ) = δ		′δmm′ is utilized.
Finally, we have the decoupled self-consistent linear

response equation for each orbital channel in d (� 3) dimen-
sions as

R(	)
k = 1 − �d

2

∫
pd−1dp

(2π )d
�

(	)
k,pGpG−pR(	)

p , (A11)

where only the measure of momentum integral is differ-
ent from two dimensions. We can unify both Eq. (A5) and
Eq. (A11) with the following simplified expression:

RK = 1 −
∫

dP�K,PG(2)
P RP, (A12)

where we introduce the momentum-frequency variable P =
(�p, ωm) with �p = p − kF and G(2)

P ≡ GPG−P. The integral
is defined as

∫
dP ≡ T

∑
m

∫
d�p. We have also defined

�K,P = p
4π2 �

(	)
k,p in two dimensions and pd−1�d

2(2π )d �
(	)
k,p in higher

dimensions to absorb the measure of momentum integral. The
	 label in R(	)

k is omitted.

APPENDIX B: SUPERCONDUCTING PHASES OF THE
TWO-DIMENSIONAL ELECTRON GAS WITH G0W0

SELF-ENERGY RENORMALIZATION

We employed the precursory Cooper flow approach to in-
vestigate dynamic-screening-driven superconductivity in the
two-dimensional uniform electron gas (2D UEG) model,
parametrized by the Wigner-Seitz radius rs = √

2/(kFaB),
where kF is the Fermi momentum and aB is the Bohr radius.
As shown in Fig. 1, we obtained a rich phase diagram for
several channels.

To verify the robustness of the pairing mechanism in the
2D UEG, here we computed the same phase diagram using the
RPA interaction for � and the G0W0 renormalized propagator
GR (referred to as RPA-GR), as shown in Fig. 4. A comparison
with the RPA-G0 results presented in the main text reveals
small shifts of the phase boundaries, but all key features of
the RPA-G0 phase diagrams are preserved for RPA-GR, as fol-
lows: (i) The critical temperature Tc in all orbital channels is
suppressed as the density increases (rs decreases) and eventu-
ally becomes zero at the quantum transition point (QTP) r (	)

c ,
below which the 2D UEG no longer superconducts. (ii) On
the logarithmic scale, −1/ ln[Tc(rs)/TF] still demonstrates a
linear dependence on rs near the QTP, indicating that the BCS
transition temperature obeys T (	)

c = TFe−1/λ	 with the cou-
pling parameter λ	 = (rs − r (	)

c )/c	, where c	 is a constant.

FIG. 4. Phase diagram of superconducting states in the 2D UEG
within the RPA-GR framework showing s-, p-, d-, and f -wave
superconducting states. Each orbital channel features a QTP with
T (	)

c (rs → r (	)
c ) → 0. Critical values of rs for 	 as large as 10 are

presented in the inset.

(iii) The data for 1/	 versus rc in the inset of Fig. 4 suggest that
superconductivity survives in the high-density limit for large
enough 	. The qualitative agreement between the RPA-G0 and
RPA-GR phase diagrams reflects the robustness of dynamic-
screening-driven superconductivity in the 2D UEG.

APPENDIX C: SUPERCONDUCTING PHASES OF THE
TWO-DIMENSIONAL ELECTRON GAS WITH

YUKAWA-TYPE INTERACTION

To investigate the impact of interaction range on the
dynamic-screening-driven superconductivity in two dimen-
sions, we consider the 2D electron gas with the Yukawa-type

interaction VY(q) = 2πe2/

√
q2 + q2

0, also known as a stati-
cally screened Coulomb interaction, where q0 is the screening
momentum. Specifically, we examine the behavior of the su-
perconducting state in the 2D electron gas at rs = 0.8 when
all channels exhibit superconductivity in the Coulomb system.
We performed systematic and extensive calculations of the
linear response function R for various channels 	 and values
of q0 using RPA-G0 and RPA-GR, respectively.

For each 	 and q0, we determined the transition tem-
perature Tc by extrapolating the precursory Cooper flow to
1/R0(Tc) = 0. Subsequently, we used extrapolation to deter-
mine the critical values of q0 (q0c), where −1/ ln[Tc(q0)/TF]
becomes zero and superconductivity vanishes. Finally, we
obtained the phase diagrams in the 2D electron gas with the
Yukawa-type interaction under the RPA-G0 [Fig. 5(a)] and
RPA-GR [Fig. 5(b)] approximations, respectively. The qual-
itative agreement between the two phase diagrams indicates
that the approximations are controlled.

As the range of interaction decreases (i.e., as q0 increases),
the superconducting critical temperature Tc decreases for any
given channel 	 and eventually drops to zero at the QTP
with the critical screening momentum q(	)

0c . Since the rate of
the Tc drop slows as 	 increases, the dominant superconduct-
ing channel, determined from the crossing point of T (	)

c (q0)
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FIG. 5. Ultralow-temperature phase diagram of a 2D electron gas with rs = 0.8 and a Yukawa-type interaction VY(q) = 2πe2/
√

q2 + q2
0,

calculated using the (a) RPA-G0 and (b) RPA-GR approximations. The superconducting temperature (Tc) as a function of the screening
momentum (q0) is represented by lines going through data points for different channels, with the colored shadow indicating the dominant
channel. For any given channel 	, T (	)

c decreases with increasing q0 until it disappears at the critical value q(	)
0c .

and T (	+1)
c (q0), increases as q0 increases. Surprisingly, for

q0 > 0.2kF, all of the orbital channels shown in Fig. 5 are
no longer superconducting. These observations suggest that
the long-range character of the Coulomb interaction is essen-
tial in dynamic-screening-driven superconductivity and that
decreasing the interaction range suppresses superconductiv-
ity in the 2D electron gas. Furthermore, for q0 → q−

0c, a
linear relation exists between the inverse logarithmic scale
−1/ ln[Tc(q0)/TF] and q0, indicating that the superconductiv-
ity near the QTP can be described by the emergent BCS theory
with a coupling parameter λ′

	 ∝ (q0c − q0)/kF � 1.

TABLE I. The critical rs parameters for the 2D electron gas
under the RPA-G0 and RPA-GR approximations for various orbital
channels 	. In this table, rRPA−G0

c and rRPA−GR

c denote the critical rs

values for the disappearance of superconductivity in each channel un-
der RPA-G0 and RPA-GR approximations, respectively. Meanwhile,
rRPA−G0

st (	 → 	 + 1) and rRPA−GR

st represent the critical rs values for
the transition from channel 	 to 	 + 1 under the respective approxi-
mations.

	 rRPA−G0
c rRPA−GR

c rRPA−G0
st (	 → 	 + 1) rRPA−GR

st

0 0.6339(12) 0.8041(25) 1.156(3) 1.391(16)
1 0.4196(10) 0.4838(20) 0.8484(16) 0.9547(16)
2 0.3287(10) 0.3658(17) 0.6234(16) 0.6891(16)
3 0.2806(10) 0.3067(11) 0.5359(16) 0.5891(16)
4 0.2479(6) 0.2678(11) 0.4672(16) 0.5078(16)
5 0.2244(7) 0.2405(18) 0.4234(16) 0.4578(16)
6 0.2062(5) 0.2198(20) 0.3859(16) 0.416(3)
7 0.1918(8) 0.2033(10) 0.3578(16) 0.3828(16)
8 0.1798(5) 0.1898(10) 0.3359(16) 0.3578(16)
9 0.1698(4) 0.1787(10) 0.3141(16) 0.331(6)
10 0.1611(5) 0.1692(14)

APPENDIX D: DATA TABLE OF QUANTUM
TRANSITION POINTS

The results for quantum transition points r (	)
c and left

boundaries of the dominant superconducting channel rst (	 →
	 + 1) for various orbital channels 	 are given in Table I. The
data for dimensionless critical screening momentum q(	)

0c at
rs = 0.8 are given in Table II.

TABLE II. Critical screening momentum q0c (in units of the
Fermi momentum kF) of the 2D electron gas with a Yukawa-type
interaction under the RPA-G0 and RPA-GR approximations at rs =
0.4 and 0.8. Note that s-wave superconductivity is absent in the 2D
electron gas with RPA-GR at rs = 0.8 and q0 = 0.

rs 	 qRPA−G0
0c qRPA−GR

0c

2 0.00674(15) 0.00152(7)
3 0.0193(2) 0.0110(3)
4 0.0313(3) 0.0216(5)
5 0.0409(4) 0.0306(7)

0.4 6 0.0490(5) 0.0382(8)
7 0.0557(6) 0.0445(9)
8 0.0615(6) 0.0500(10)
9 0.0666(6) 0.0546(11)

10 0.0713(7) 0.0588(13)
0 0.0205(5)
1 0.1190(11) 0.0748(7)
2 0.1936(13) 0.1446(18)

0.8 3 0.2270(11) 0.177(6)
4 0.263(4) 0.205(5)
5 0.299(7) 0.228(9)
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APPENDIX E: DATA TABLE OF SUPERCONDUCTING TEMPERATURES
OF THE TWO-DIMENSIONAL ELECTRON GAS

All of the superconducting transition temperature T (	)
c data are given in Table III with RPA-G0 and Table IV with RPA-GR.

TABLE III. Superconducting temperatures T (	)
c (in units of the Fermi temperature TF) for different rs from RPA-G0. The “−” symbol

means that the Tc value is lower than the limit of double-precision floating-point number resolution.

rs T (0)
c T (1)

c T (2)
c T (3)

c

0.300000 0 0 0 1.406 × 10−237

0.312500 0 0 0 4.072 × 10−147

0.315625 0 0 0 2.579 × 10−134

0.318750 0 0 0 1.469 × 10−123

0.325000 0 0 0 1.695 × 10−106

0.331250 0 0 1.4249 × 10−93

0.334375 0 0 3.2153 × 10−88

0.337500 0 0 1.9099 × 10−83

0.350000 0 0 1.280 × 10−189 1.3299 × 10−68

0.356250 0 0 2.575 × 10−147 5.2761 × 10−63

0.359375 0 0 1.572 × 10−132 1.5520 × 10−60

0.362500 0 0 1.927 × 10−120 2.9667 × 10−58

0.375000 0 0 2.9758 × 10−88 1.2427 × 10−50

0.381250 0 0 7.3936 × 10−78 1.5765 × 10−47

0.384375 0 0 1.5728 × 10−73 4.0684 × 10−46

0.387500 0 0 1.1665 × 10−69 8.6837 × 10−45

0.400000 0 0 1.4701 × 10−57 3.6303 × 10−40

0.412500 0 0 4.6208 × 10−49 2.0135 × 10−36

0.418750 0 0 1.0688 × 10−45 8.3380 × 10−35

0.421875 0 3.4799 × 10−44 4.7395 × 10−34

0.425000 0 9.0343×10−43 2.4979 × 10−33

0.450000 0 2.007 × 10−112 4.3625 × 10−34 1.6146 × 10−28

0.462500 0 1.2949 × 10−79 5.7451 × 10−31 1.2998 × 10−26

0.465625 0 3.2625 × 10−74 2.8157 × 10−30 3.5458 × 10−26

0.468750 0 1.6743 × 10−69 1.2848 × 10−29 9.3524×10−26

0.475000 0 1.0989 × 10−61 2.1986 × 10−28 5.9198 × 10−25

0.500000 0 1.4072 × 10−42 2.0830 × 10−24 2.8734 × 10−22

0.525000 0 1.1742 × 10−32 2.2786 × 10−21 4.9251 × 10−20

0.531250 0 7.2448 × 10−31 9.7356×10−21 1.4711 × 10−19

0.534375 0 4.8022 × 10−30 1.9460 × 10−20 2.4908 × 10−19

0.537500 0 2.8769 × 10−29 3.8086 × 10−20 4.1629 × 10−19

0.550000 0 1.5595 × 10−26 4.6101 × 10−19 2.8777 × 10−18

0.600000 0 2.0370 × 10−19 9.6175 × 10−16 1.4137 × 10−15

0.618750 0 1.1135 × 10−17 8.4689 × 10−15 8.9310 × 10−15

0.621875 0 2.0163 × 10−17 1.1839 × 10−14 1.1902 × 10−14

0.625000 0 3.5848 × 10−17 1.6431 × 10−14 1.5776 × 10−14

0.650000 6.976 × 10−162 2.0240 × 10−15 1.7896 × 10−13 1.2623 × 10−13

0.700000 2.0992 × 10−37 7.2375 × 10−13 7.9388 × 10−12 3.7862 × 10−12

0.750000 1.3675 × 10−21 4.2496 × 10−11 1.4054 × 10−10 5.4233 × 10−11

0.800000 2.1308 × 10−15 8.3996 × 10−10 1.3343 × 10−09 4.6029 × 10−10

0.825000 1.5734 × 10−13 2.8191 × 10−09 3.4548 × 10−09 1.1534 × 10−09

0.837500 9.0592 × 10−13 4.8863 × 10−09 5.3631 × 10−09 1.7689 × 10−09

0.843750 2.0085 × 10−12 6.3537 × 10−09 6.6275 × 10−09 2.1747 × 10−09

0.846875 2.9382 × 10−12 7.2240 × 10−09 7.3530 × 10−09 2.4070 × 10−09

0.850000 4.2506 × 10−12 8.1979 × 10−09 8.1475 × 10−09 2.6612 × 10−09

0.900000 4.7595 × 10−10 4.9371 × 10−08 3.5988 × 10−08 1.1516 × 10−08

0.950000 1.1847 × 10−08 2.1071 × 10−07 1.2450 × 10−07 3.9840 × 10−08

1.000000 1.1952 × 10−07 6.8526 × 10−07 3.5015 × 10−07 1.1361 × 10−07

1.125000 5.1861 × 10−06 6.5649 × 10−06 2.7484 × 10−06 9.4091 × 10−07

1.156250 1.0027 × 10−05 1.0202 × 10−05 4.1536 × 10−06 1.4455 × 10−06

1.187500 1.8013 × 10−05 1.5295 × 10−05 6.0903 × 10−06 2.1568 × 10−06

1.218750 3.0440 × 10−05 2.2195 × 10−05 8.6879 × 10−06 3.1285 × 10−06

1.250000 4.8980 × 10−05 3.1356 × 10−05 1.2097 × 10−05 4.4263 × 10−06
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TABLE IV. Superconducting temperatures T (	)
c (in units of the Fermi temperature TF) for different rs from RPA-GR. The symbol “−”

indicates that the value of Tc is too small to be represented by a double-precision floating-point number.

rs T (0)
c T (1)

c T (2)
c T (3)

c

0.337500 0 0 0 1.848 × 10−248

0.350000 0 0 0 2.831 × 10−181

0.356250 0 0 0 5.646 × 10−160

0.359375 0 0 0 3.665 × 10−151

0.362500 0 0 0 2.615 × 10−143

0.375000 0 0 6.452 × 10−119

0.381250 0 0 1.003 × 10−109

0.384375 0 0 1.130 × 10−105

0.387500 0 0 1.366 × 10−313 6.269 × 10−102

0.400000 0 0 2.412 × 10−207 6.6615 × 10−90

0.412500 0 0 3.464 × 10−153 7.7736 × 10−80

0.418750 0 0 3.555 × 10−136 7.7817 × 10−76

0.425000 0 0 1.111 × 10−122 2.9707 × 10−72

0.450000 0 0 1.8986 × 10−88 4.9793 × 10−61

0.456250 0 0 8.2578 × 10−83 8.3200 × 10−59

0.459375 0 0 2.8627 × 10−80 9.1969 × 10−58

0.462500 0 0 6.8269 × 10−78 9.2354 × 10−57

0.475000 0 0 9.8906 × 10−70 3.9974 × 10−53

0.500000 0 4.3555 × 10−58 2.2543 × 10−47

0.506250 0 8.491 × 10−282 1.2004 × 10−55 5.0364 × 10−46

0.509375 0 9.489 × 10−249 1.4192 × 10−54 1.9576 × 10−45

0.512500 0 9.849 × 10−223 1.5107 × 10−53 7.3012 × 10−45

0.525000 0 1.667 × 10−157 7.6809 × 10−50 9.6863 × 10−43

0.550000 0 3.180 × 10−100 6.1712 × 10−44 3.7644 × 10−39

0.575000 0 3.8725 × 10−74 1.9191 × 10−39 3.1175 × 10−36

0.587500 0 8.6714 × 10−66 1.4080 × 10−37 5.7148 × 10−35

0.590625 0 5.2670 × 10−64 3.8236 × 10−37 1.1358 × 10−34

0.593750 0 2.5354 × 10−62 1.0101 × 10−36 2.2238 × 10−34

0.600000 0 2.6681 × 10−59 5.8416 × 10−36 7.2998 × 10−34

0.650000 0 7.7443 × 10−43 1.0118 × 10−30 4.8374 × 10−30

0.675000 0 7.4252 × 10−38 9.2698 × 10−29 1.5266 × 10−28

0.687500 0 7.9884 × 10−36 6.8043 × 10−28 7.2234 × 10−28

0.690625 0 2.3548 × 10−35 1.0932 × 10−27 1.0485 × 10−27

0.693750 0 6.7210 × 10−35 1.7405 × 10−27 1.5126 × 10−27

0.700000 0 4.7454 × 10−34 4.0702 × 10−27 2.9090 × 10−27

0.750000 0 1.5585 × 10−28 2.0370 × 10−24 4.5382 × 10−25

0.800000 0 8.5340 × 10−25 2.2287 × 10−22 2.3030 × 10−23

0.850000 9.797 × 10−120 4.6114 × 10−22 9.6861 × 10−21 6.0225 × 10−22

0.900000 5.7897 × 10−58 5.2413 × 10−20 1.9609 × 10−19 8.5010 × 10−21

0.950000 3.8577 × 10−39 2.2112 × 10−18 2.4495 × 10−18 8.2838 × 10−20

0.953125 2.2514 × 10−38 2.7177 × 10−18 2.8234 × 10−18 9.4232 × 10−20

0.956250 1.2216 × 10−37 3.3309 × 10−18 3.2494 × 10−18 1.0706 × 10−19

0.962500 2.9409 × 10−36 4.9637 × 10−18 4.2845 × 10−18 1.3767 × 10−19

0.975000 8.4522 × 10−34 1.0689 × 10−17 7.3212 × 10−18 2.2440 × 10−19

1.000000 9.0407 × 10−30 4.3732 × 10−17 1.9723 × 10−17 5.5433 × 10−19

1.250000 1.1905 × 10−14 3.8819 × 10−13 1.9591 × 10−14 3.7003 × 10−16

1.375000 4.8188 × 10−12 5.2926 × 10−12 1.6566 × 10−13 2.9358 × 10−15

1.390625 8.5285 × 10−12 6.9704 × 10−12 2.0832 × 10−13 3.6727 × 10−15

1.406250 1.4732 × 10−11 9.0872 × 10−12 2.6001 × 10−13 4.5643 × 10−15
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