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Almost optimal measurement scheduling of molecular Hamiltonian via finite projective plane
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We propose an efficient and almost optimal scheme for measuring molecular Hamiltonians in quantum
chemistry on quantum computers, which requires 2N2 distinct measurements in the leading order with N
being the number of molecular orbitals. It achieves the state-of-the-art by improving a previous proposal by
Bonet-Monroig et al. [Phys. Rev. X 10, 031064 (2020)], which exhibits 10

3 N2 scaling in the leading order. We
develop a method based on a finite projective plane to construct sets of simultaneously measurable operators
contained in molecular Hamiltonians. Each measurement only requires a depth-O(N ) circuit consisting of O(N2)
one- and two-qubit gates under the Jordan-Wigner and parity mapping, assuming the linear connectivity of
qubits on quantum hardwares. We perform numerical simulation of our method for molecular Hamiltonians
of hydrogen chains. We count the number of sets of simultaneously measurable operators generated by our
method and estimate the number of measurement shots required to achieve the small standard deviation of the
energy expectation value for precise quantum chemistry calculations. Because evaluating expectation values
of molecular Hamiltonians is one of the major bottlenecks in the applications of quantum devices to quantum
chemistry, our finding is expected to accelerate such applications.
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I. INTRODUCTION

One of the most promising, practical, and industry-relevant
applications of quantum computers is quantum chemistry
calculation [1,2]. Measuring expectation values of operators
(relevant to a physical or chemical system of interest) is
an important and often indispensable subroutine in such ap-
plication. For example, the variational quantum eigensolver
(VQE) [3,4], which has been intensively studied for utilizing
noisy quantum computers called the noisy intermediate-scale
quantum devices (NISQ devices) [5], is a method to prepare
an approximate ground state of a given Hamiltonian by iter-
atively minimizing the expectation value of the Hamiltonian
for a trial quantum state. In VQE, measuring the expecta-
tion value of the Hamiltonian is essential and consists of
the most important part of the algorithm. Even for more ad-
vanced algorithms in the quantum chemistry applications of
quantum computers, such as quantum phase estimation [6,7],
measuring expectation values of operators is important. It is
because the phase estimation algorithm allows us to sample
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eigenvalues and eigenstates of the Hamiltonian but it does not
provide properties of the eigenstates. For example, expecta-
tion values of operators with respect to the ground state are
often required to investigate properties of simulated molecules
or materials, such as the force acted on molecule [8,9] or tran-
sition amplitude with respect to some perturbation [10,11].
Considering that the operators arising in these applications
share the same form with the Hamiltonian, we believe that
a strategy for measuring the expectation value of the Hamilto-
nian will remain to be an essential tool even in the future when
the quantum phase estimation is executable on fault-tolerant
quantum computers.

The number of copies of quantum states needed to estimate
the expectation value of the Hamiltonian with sufficient accu-
racy becomes very large even for relatively small systems, due
to the need to estimate expectation values of O(N4) distinct
fermionic operators contained in the Hamiltonian for a sys-
tem with 2N fermions [see Eq. (1)]. Even for small systems
corresponding to ∼20 qubits, the required number of copies
of quantum states can be over 109 using naive strategies [12].
Gonthier et al. [13] recently pointed out that several days may
be needed to evaluate the expectation value of the Hamiltonian
just one time to analyze the combustion energies of small or-
ganic molecules with sufficient accuracy, assuming the current
speed of NISQ devices. Improvement for the fast evaluation of
the expectation values is therefore highly demanded for practi-
cal applications of quantum computers to quantum chemistry.
We note that the expectation value of the Hamiltonian can
be evaluated by the fermionic one-particle and two-particle
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reduced density matrices [fermionic 1,2-RDMs, Eq. (37)] and
that such fermionic RDMs are utilized in several algorithms
of quantum computational chemistry such as orbital optimiza-
tion [14–16].

There have been various studies to tackle the problem of a
large number of measurements for evaluating the expectation
value of the Hamiltonian [9,17–32]. Especially, efforts have
been put to reduce the number of the sets of the simultane-
ously measurable operators in the Hamiltonian. One can use
commutativity or anticommutativity of the Pauli operators in
the qubit representation of the Hamiltonian to group those op-
erators into simultaneously measurable sets. Bonet-Monroig,
Babbush, and O’Brien [29,33] showed that the number of
such simultaneously measurable sets to evaluate the fermionic
2-RDM, which is sufficient to determine the expectation value
of the Hamiltonian, is lower bounded by �(N2) for 2N
fermion systems. They also presented an algorithm to con-
struct the 10

3 N2 + O(N ) sets of simultaneously-measurable
operators for evaluating the fermionic 2-RDM (see Sec. V C),
which is optimal up to a constant factor, by using a tech-
nique based on a binary partitioning of 2N integers. Hereafter,
we call their algorithm BBO algorithm after the initials of
the authors.

In this paper, we provide an algorithm based on a fi-
nite projective plane in mathematics to construct 2N2 sets
of simultaneously measurable fermion operators, which are
sufficient to determine the expectation value of generic molec-
ular Hamiltonian in quantum chemistry [Eq. (1)]. By using
the symmetry of the coefficients of the quantum chemistry
Hamiltonian [Eq. (4)], we classify terms in the Hamiltonian
into several types and associate each of them with sets of
simultaneously measurable operators and quantum circuits
to measure the operators in the set. The crucial contribution
of our algorithm is the use of a finite projective plane to
construct the sets of simultaneously measurable operators for
evaluating expectation values of the products of four distinct
fermion operators (Sec. III B 4). We formulate the problem
of finding the sets of simultaneously measurable operators
as a minimal edge clique cover problem of a certain graph,
and find the almost optimal solution of it by using the finite
projective plane. The total number of the sets of simultane-
ously measurable operators for the whole Hamiltonian scales
as 2N2 + O(N ) for 2N fermion systems in our algorithm when
N = �K for a prime � and an integer K > 0. It improves
the BBO algorithm, which scales as 10N2/3 + O(N ) when
applied in the same setup. We also show that the quantum
circuits for measuring those sets can be constructed by O(N2)
one- and two-qubit gates with O(N ) depth in the case of
Jordan-Wigner mapping [34] and the parity mapping [35]. We
perform numerical simulation of our method for molecular
Hamiltonians of hydrogen chains up to N = 30 orbitals. Our
paper gives a simple and efficient protocol to measure the
expectation value of the molecular Hamiltonian in quantum
chemistry so it can accelerate various applications of quantum
computers to quantum chemistry calculation. Moreover, since
the minimum edge clique cover problem for general graphs is
known to be NP-hard, our algorithm using the finite projective
plane to create an almost optimal solution for the specific
graph may be of an independent interest in the graph theory
(we stress that our algorithm does not solve the minimum

edge clique cover problem for general graphs; it does solve
for the specific graph corresponding to the quantum chemistry
Hamiltonians).

This article is organized as follows. We define our problem
of measuring the expectation value of the Hamiltonian in
Sec. II. Section III describes our main results: an algorithm
to measure the expectation value of the Hamiltonian with 2N2

distinct quantum circuits. We discuss our result and compare
it with the previous studies in Sec. V. Summary and outlook
are presented in Sec. VI.

II. PROBLEM DEFINITION

In this section, we describe a concrete setup of the problem,
which we study.

A. Electronic structure Hamiltonian in quantum chemistry

A central task in applying quantum computers to quantum
chemistry calculations is to estimate an expectation value of
the electronic structure Hamiltonian with 2N spin orbitals
(fermions) in the form of

H = En +
∑

σ=↑,↓

N−1∑
p,q=0

hpq,σ a†
pσ aqσ

+ 1

2

∑
σ,τ=↑,↓

N−1∑
p,q,r,s=0

gpqrs,σ τ a†
pσ aqσ a†

rτ asτ , (1)

where En is a nuclear repulsion energy (scalar), a†
pσ

and aqσ are fermion creation and annihilation opera-
tors, respectively, satisfying the fermion anticommuta-
tion relation {a†

pσ , a†
qτ } := a†

pσ a†
qτ + a†

qτ a†
pσ = 0, {apσ , aqτ } =

0, {a†
pσ , aqτ } = δpqδστ . Two-electron integral gpqrs,σ τ is de-

fined as

gpqrs,σ τ =
∫∫

φ∗
pσ (r1)φqσ (r1)

1

|r1 − r2|φ
∗
rτ (r2)φsτ (r2)dr1dr2,

(2)

and hpq,σ is defined as

hpq,σ = −1

2

∑
r

gprrq,σσ

+
∫

φ∗
pσ (r1)

(
−1

2
∇2

r1
−

Na∑
A=1

ZA

|r1 − RA|

)
φqσ (r1)dr1,

(3)

where φpσ (r) is a one-particle wavefunction for the orbital p
with spin σ , Na is the number of nuclei in the molecule, and
RA(ZA) is the coordinate (charge) of the nucleus A, respec-
tively.

When the orbital φpσ (r) is real valued, which is the case
for most calculations in quantum chemistry 1, there are sym-
metries in the coefficients of the Hamiltonian,

gpqrs,σ τ = gqprs,σ τ = gpqsr,σ τ , hpq,σ = hqp,σ . (4)

1Complex-valued orbitals are used, for example, when there is a
magnetic field or the relativistic effect.
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Using these symmetries, we can rewrite the Hamiltonian as

H = En + 1

2

∑
σ=↑,↓

N−1∑
p,q=0

hpq,σ Apq,σ

+ 1

8

∑
σ,τ=↑,↓

N−1∑
p,q,r,s=0

gpqrs,σ τ Apq,σ Ars,τ , (5)

where Apq,σ is defined as

Apq,σ := a†
pσ aqσ + a†

qσ apσ . (6)

We can therefore estimate the expectation value of Hamil-
tonian for a given state |ψ〉 by measuring 〈Apq,σ 〉 :=
〈ψ |Apq,σ |ψ〉 and 〈Apq,σ Ars,τ 〉 := 〈ψ |Apq,σ Ars,τ |ψ〉 for all pos-
sible combinations of p, q, r, s, σ, τ . In the rest of this article,
we describe how to measure such expectation values.

B. Measurement cliques

Mutually commuting operators are simultaneously mea-
surable. We call a set of mutually commuting operators a
measurement clique. For a given measurement clique, we can
associate it with one quantum circuit to perform projective
measurement on simultaneous eigenstates of all the operators
in the measurement clique. Repetitive execution of that circuit
yields an estimate of an expectation value of any product
of the operators in the measurement clique. For example,
when a measurement clique consists of two commuting op-
erators O1 and O2 satisfying [O1, O2] := O1O2 − O2O1 = 0,
we can estimate the expectation values such as 〈O1〉, 〈O2〉, and
〈O1O2〉 by the projective measurement on the simultaneous
eigenstates of O1 and O2.

We want to construct a set of measurement cliques that
covers all operators contained in the Hamiltonian [Eq. (5)],
namely,

U = {C1, · · · , CM},
Ci = {

O(i)
1 , · · · , O(i)

Li

∣∣[O(i)
j , O(i)

k

] = 0 for all j, k
}
, (7)

where Ci is ith measurement clique, M is the total number of
the measurement cliques, O(i)

j is jth operator in Ci, and Li is
the number operators in Ci. We require U to satisfy the condi-
tion that all Apq,σ and Apq,σ Ars,τ in the Hamiltonian [Eq. (5)]
can be written as a single operator or a product of operators
contained in some measurement clique Ci. If that condition
is satisfied, we can measure all the expectation values of
〈Apq,σ 〉 and 〈Apq,σ Ars,τ 〉 by using M distinct quantum circuits.
Therefore, the problem of estimating the expectation value
of the Hamiltonian with a small number of distinct quantum
circuits is reduced to find a set of measurement cliques whose
number is as small as possible. We construct such a set with
M ∼ 2N2 + O(N ) in the next section.

III. MAIN RESULT: AN EFFICIENT MEASUREMENT
SCHEME FOR MOLECULAR HAMILTONIANS

We explain our main results in this section. First we clas-
sify the terms in the molecular Hamiltonian [Eq. (5)] into
several types. We then construct measurement cliques to cover
all the types of the terms. There are O(N4) terms in the

Hamiltonian, but the number of measurement cliques can be
reduced to O(N2) by the strategy that the terms in the Hamil-
tonian are reconstructed by a product of two operators in the
clique. Finally, we explain the quantum circuits associated
with those measurement cliques and discuss their number of
gates.

For the later use, we define the particle number operator of
fermion as npσ := a†

pσ apσ . We also define σ̄ representing the
opposite spin of σ , i.e., ↑̄ =↓, ↓̄ =↑.

A. Classification of terms

The Hamiltonian (5) consists of Apq,σ and Apq,σ Ars,τ . Inde-
pendent terms coming from Apq,σ can be classified into two
types by considering two cases p = q and p 	= q:

(1–1) npσ for p = 0, · · · , N − 1 and σ =↑,↓.
(1–2) Apq,σ for 0 � p < q � N − 1 and σ =↑,↓.
We note that we have only to consider p > q when p 	= q

because Apq,σ = Aqp,σ .
Similarly, independent terms coming from Apq,σ Ars,τ can

be classified as follows. When σ 	= τ , there are three types of
terms:

(2–1) npσ nqσ̄ for 0 � p < q � N − 1 and σ =↑,↓,
(2–2) Apq,σ nrσ̄ for 0 � p < q � N − 1, r = 0, · · · ,

N − 1, and σ =↑,↓,
(2–3) Apq,σ Ars,σ̄ for 0 � p < q � N − 1, 0 � r < s �

N − 1, and σ =↑,↓.
When σ = τ , we have
(2–4) npσ , npσ nqσ for 0 � p < q � N − 1 and σ =↑,↓,
(2–5) Apq,σ for 0 � p < q � N − 1 and σ =↑,↓ [this is

the same as (1–2)],
(2–6) Apq,σ nrσ for 0 � p < q � N − 1, r = 0, · · · ,

N − 1, r 	= p, r 	= q, and σ =↑,↓,
(2–7) Apq,σ Ars,σ with mutually different p, q, r, s satisfying

0 � p < q � N − 1, 0 � r < s � N − 1, and σ =↑,↓.
The number of terms for the cases (2–3)(2–7) is O(N4) and

that for (2–2)(2–6) is O(N3) while the other cases (2–1)(2–
4)(2–5) contain O(N2) terms. Therefore, the challenge lies in
how to cover the four cases (2–3)(2–7)(2–2)(2–6) with O(N2)
measurement cliques.

B. Construction of measurement cliques

Here we construct a set of measurement cliques to cover all
the types in the Hamiltonian discussed above. The resulting
measurement cliques are summarized as Table I.

1. Measurement clique for particle number operators

The first measurement clique is for the particle number
operator,

Cpart = {n0↑, · · · , nN−1↑, n0↓, · · · , nN−1↓}. (8)

This is a measurement clique because all the particle number
operators commute: [npσ , nqτ ] = 0. Cpart can determine the
expectation values of the terms of the types (1–1), (2–1), and
(2–4).

2. Measurement clique for Apq,σ

Next, we consider a measurement clique that can evaluate
〈Apq,σ 〉 with 0 � p < q � N − 1. By observing that Apq,σ and
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TABLE I. Summary of measurement cliques, the number of cliques for each type (when the number of molecular orbitals N satisfies
N = �K + 1 for a prime � and an integer K > 0), and corresponding terms in the Hamiltonian.

Definition of cliques Construction Number of cliques Corresponding terms described in Sec. III A

Cpart [Eq. (8)] Particle number operators for all
molecular orbitals and spins.
(Sec. III B 1)

1 (1–1), (2–1), (2–4)

U [1] [Eqs. (9)–(13)] Iteration through all possible
parings of integers
0, · · · , N − 1, which can be
done through scheduling of
round-robin tournaments.
(Sec. III B 2)

2(N − 1) (1–2), (2–2), (2–5)

U [2,diff] [Eq. (14)] Direct product of cliques C[1]
i,σ

[Eq. (10)] for opposite spins.
(Sec. III B 3)

(N − 1)2 (2–3)

U [2,same] [Eq. (17)] Using a finite projective plane
(Fig. 2) and this is our main
contribution. (Sec. III B 4)

(N − 1)2 (2–6), (2–7)

Ars,σ commute if p, q, r, s are mutually different, a set of pairs
of integers,

Ii = {(
p(i)

1 , q(i)
1

)
, · · · ,

(
p(i)

Li
, q(i)

Li

)∣∣0
� p(i)

j < q(i)
j � N − 1 and p(i)

j , q(i)
k for j,

k = 1, · · · , Li are mutually different.
}

(9)

can define a measurement clique

C[1]
i,σ = {Apq,σ |(p, q) ∈ Ii }. (10)

Therefore, it suffices to find the sets I1, I2, · · · , IM[1] satisfying
Eq. (9) and

M[1]⋃
i=1

Ii = {(p, q)|0 � p < q � N − 1 } (11)

to estimate all expectation values of 〈Apq,σ 〉 with p < q. For
any given p < q, there is some Ii such that (p, q) ∈ Ii so that
we can evaluate 〈Apq,σ 〉 by the measurement clique C[1]

i,σ . One
of the ways to find such sets was proposed in the paper of
BBO algorithm [29] but we can also use various schedul-
ing algorithm for round-robin tournaments. The number of
measurement cliques is M[1] = N − 1 (M[1] = N) when N is
even (odd).

Finally, for measuring the terms of types (1–2), (2–2), and
(2–5), we use the following set of measurement cliques.

U [1] := U [1]
↑ ∪ U [1]

↓ , (12)

U [1]
σ := {

C̃[1]
1,σ , · · · , C̃[1]

M[1],σ

}
, C̃[1]

i,σ := C[1]
i,σ ∪ {n0σ̄ , · · · , nN−1σ̄ }.

(13)

Note that we add the particle number operators of the opposite
spin to C[1]

i,σ to cover the type (2–2). The total number of cliques
contained in U [1] is 2M[1].

3. Measurement clique for Apq,σArs,τ with different spin

Expectation values 〈Apq,σ Ars,τ 〉 with different spin σ 	= τ

can be measured with (M[1] )2 distinct measurement cliques
as follows. We consider a direct product of the sets,

{C[1]
1,↑, · · · , C[1]

M[1],↑} × {C[1]
1,↓, · · · , C[1]

M[1],↓}. Namely, the set of
measurement cliques

U [2,diff] := {
C[1]

i,↑ ∪ C[1]
j,↓

∣∣i, j = 1, · · · , M[1] } (14)

can evaluate all expectation values 〈Apq,σ Ars,τ 〉 with σ 	= τ

(note that [Apq,σ , Ars,τ ] = 0 for any p, q, r, s when σ 	= τ ).
The number of the measurement cliques in U [2,diff] is appar-
ently (M[1] )2. The type (2–3) is covered by U [2,diff].

4. Measurement clique for Apq,σArs,τ with the same spin

Expectation values 〈Apq,σ Ars,σ 〉 and 〈npσ Ars,σ 〉 [the same
spin case, the types (2–6) and (2–7)] are most nontrivial to
construct measurement cliques. Here, we propose a novel
algorithm to create the measurement cliques for them by using
a projective finite plane. This part is one of the main contribu-
tions of this study.

First, observe that the following equations:

[Apq,σ , Ars,σ ] = 0, [npσ , Ars,σ ] = 0, (15)

hold if p, q, r, s are mutually different. We want to find sets of
pairs of integers J1, J2, · · · , JM[2] ,

Ji = {(
r (i)

1 , s(i)
1

)
, · · · ,

(
r (i)

Mi
, s(i)

Mi

)∣∣0 � r (i)
j � s(i)

j � N − 1
}
,

(16)

satisfying three conditions,
(i) r (i)

j , s(i)
k for j, k = 1, · · · , Mi are mutually different ex-

cept for the cases r (i)
j = s(i)

j .
(ii) For any mutually distinct integers 0 � p, q, r, s �

N − 1 with p < q and r < s, there exists some Ji that contains
(p, q) and (r, s).

(iii) For any mutually distinct integers 0 � p, r, s �
N − 1 with r < s, there exists some Ji that contains (p, p) and
(r, s).

Note that the set Ji allows a pair of the same integer like
(p, p) in contrast with Ii in Eq. (9). Once such sets are found,
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FIG. 1. The graph G defined in the main text for N = 6. The
bold colored edges correspond to the clique found by the procedure
shown in Fig. 3. The red and blue edges corresponds to the cliques
corresponding to Pγ (4, 3) and Pγ (4, 0), respectively.

the measurement cliques

U [2,same] := {
C[2]

1 , · · · , C[2]
M[2]

}
,

C[2]
i = C[2]

i,↑ ∪ C[2]
i,↓, C[2]

i,σ := {Apq,σ |(p, q) ∈ Ji}. (17)

can evaluate all the expectation values 〈Apq,σ Ars,σ 〉 and
〈npσ Ars,σ 〉 for any mutually distinct integers 0 � p, q, r, s �
N − 1 with p < q and r < s. We note that App,σ = 2npσ .

Formulation as a edge clique cover problem. We then focus
on how to obtain the sets Ji for a given N . We formulate the
problem of finding the sets Ji as a clique cover of a graph. Let
us define a graph G with a set of vertices

V = V1 ∪ V2, V1 = {(p, p)|p = 0, 1, · · · , N − 1},
V2 = {(p, q)|0 � p < q � N − 1}. (18)

A vertex v = (p, q) corresponds to an operator Apq,σ . Edges
of the graph G between two vertices va = (va,1, va,2) and
vb = (vb,1, vb,2) are placed if either of the following three
cases is met: (1) va, vb ∈ V1, va,1 	= vb,1, (2) va ∈ V1, vb ∈ V2

and va,1, vb,1, vb,2 are mutually different, and (3) va, vb ∈ V2

and va,1, va,2, vb,1, vb,2 are mutually different. When an oper-
ator corresponding to a vertex v = (p, q) is denoted Ov , i.e.,
Ov := Apq,σ , this graph G has an edge between va and vb if
and only if [Ova , Ovb] = 0. As an example, Fig. 1 shows G
for N = 6. It means that a clique C (a subset of vertices with
edges between all pairs of vertices contained in the set) of G
can define a measurement clique. Moreover, the edge between
va and vb can be associated with the operator Ova Ovb , and all
the operators 〈Apq,σ Ars,σ 〉 and 〈npσ Ars,σ 〉 with any mutually
distinct integers 0 � p, q, r, s � N − 1 with p < q and r < s
are associated to the edges of the graph with one-to-one corre-
spondence. Therefore, finding the sets of Ji for measurement
cliques is reduced to the problem of finding the edge clique
cover of the graph G. Finding an edge clique cover of a given
graph with the minimal number of the cliques is NP-hard in
general. However, in our case, we know the property of the
graph well and we can explicitly construct the edge clique
cover having an almost optimal number of cliques with the

FIG. 2. The projective plane used in our algorithm for
N = 6 (� = 5). Each grid represents a point of the projective plane.
As an example of a line, Lγ (1, 0) is represented by shaded grids. We
label N points {S(k)}�

k=0 such that a line passes either only one S(k)
or two S(k)’s. For each point that are not labeled S(k), our algorithm
lists all lines that pass it. The set of all lines that pass a specific point
specifies a measurement clique, that is, the sets of operators that are
simultaneously measurable. Examples are given in Fig. 3.

classical computational time of O(N3). We note that our graph
G is different from those in the previous studies [19–26]
where the Pauli terms of the Hamiltonian are vertices; rather,
edges correspond to the terms in the Hamiltonian in our graph
similarly to the BBO’s approach [29].

Construction of cliques using the finite projective plane.
Our algorithm works when N = �K + 1 for a prime � and
an integer K > 0. When this is not the case, it suffices to
choose the smallest �K larger than N − 1. We consider a
finite projective plane of the order �K as the Desarguesian
plane using the finite field F�K [36]. Below, for simplicity,
we restrict ourselves to the case of K = 1 where the finite
field is Z� and all the arithmetics (addition, multiplication,
and their inverse operations) on the elements of the field are
those of integers modulo �. All the discussion described here
applies to the case of arbitrary K > 1 by considering the
corresponding arithmetics on the finite field.

The projective plane is defined by P , a set called points,
and L, a family of the subset of P , which is called lines.
The set P consists of three types of points: a single point Pα ,
� points {Pβ (y)}�−1

y=0 , and �2 points {Pγ (x, y)}�−1
x,y=0. (see also

Fig. 2). The lines also consists of three types of the subset of
points: L = {Lα} ∪ {Lβ (i)}�−1

i=0 ∪ {Lγ (i, j)}�−1
i, j=0, defined as

Lα = {Pα, Pβ (0), . . . , Pβ (� − 1)},
Lβ (i) = {Pα, Pγ (i, 0), . . . , Pγ (i,� − 1)},

Lγ (i, j) = {Pβ (i), Pγ (k, (ik + j) mod �)}�−1
k=0 . (19)

The total number of lines is �2 + � + 1. Intuitively, the point
{Pγ (x, y)} is interpreted as a two-dimensional plane with co-
ordinates x, y = 0, · · · ,� − 1, and the points {Pβ (x)} and Pα

are points at infinity. P and L are known to constitute a finite
projective plane. This means that for any two points in P there
exists only one line that contains (passes) both. Also, for any
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FIG. 3. Example of how our algorithm works for N = 6 (� = 5). On the left, we show the lines that passes Pγ (4, 3). On the right, we show
those for Pγ (4, 0). Grids with different colors correspond to distinct lines. (Left) The darkest gray line passes S(0) and S(2), the next darkest
does S(1) and S(3), and the lightest does S(4) and S(5). Therefore, the clique corresponding to Pγ (4, 3) is C = {(0, 2), (1, 3), (4, 5)}, which is
colored red in Fig. 1. This clique corresponds to a set of operators {A02,σ , A13,σ , A45,σ } that are simultaneously measurable. (Right) The darkest
gray line passes S(3) only. The next darkest does S(0) only. The next one does S(1) and S(2), and the lightest does S(4) and S(5). Therefore,
the clique corresponding to Pγ (4, 3) is C = {(0, 0), (1, 2), (3, 3), (4, 5)}, which is colored blue in Fig. 1. This clique corresponds to a set of
operators {A00,σ , A12,σ , A33,σ , A45,σ } that are simultaneously measurable.

two lines in L, there exists only one point that is contained by
both simultaneously.

Our idea to find a edge clique cover of G begins by
placing � + 1 = N points on the plane. Namely, we define
S = {S(0), · · · , S(�)}, a subset of P , as (see Fig. 2)

S(�) = Pα, S(k) = Pγ (k, k2 mod �) (k = 0, 1, · · · ,�− 1).

(20)

We then associate a line Lv of the plane to each vertex v of
the graph G as follows. For v = (l, l ) ∈ V1 [Eq. (18)], the line
Lv is defined as the line that passes S(l ) and does not pass
other points in S . There always exists only one such line on
the plane (see Appendix A 2 for proof). For v = (l, l ′) ∈ V2

[Eq. (18)], the line Lv is defined as the line that passes both
S(l ) and S(l ′). The property of the finite projective plane
assures the existence and uniqueness of such line. Moreover,
distinct vertices are always associated to distinct lines, i.e.,
v 	= v′ ∈ V ⇔ Lv 	= Lv′ holds because there is no line that
passes three distinct points in S [37,38] (for completeness,
we prove this fact in Appendix A 1).

The complementary set of S in P , K := P \ S , consists of
(�2 + � + 1) − (� + 1) = �2 points. To a given point pk in
K (k = 1, · · · ,�2), we associate a set of vertices Ck defined
as (see Fig. 3),

Ck := {v ∈ V such that Lv passes pk}. (21)

We claim that C1, · · · , C�2 are cliques of the graph G and
constitute a edge clique cover of G.

Proposition 1. A set {Ck}�2

k=1 satisfies the followings:
(a) Each Ck is a clique of the graph G.
(b) {Ck}�2

k=1 is a edge clique cover of G. That is, for any
edge between two distinct vertices v and v′ on the graph G,
there exists some Ck satisfying v, v′ ∈ Ck .

Proof. To prove (a), consider two distinct vertices v =
(v1, v2), v′ = (v′

1, v
′
2) in Ck . Two distinct lines Lv, Lv′ asso-

ciated to these vertices intersects at pk ∈ K by definition.

Suppose that there does not exist an edge between v and
v′. If v, v′ ∈ V1, the nonexistence of the edge implies v1 =
v2 = v′

1 = v′
2, but this contradicts with v 	= v′. If v ∈ V1 and

v′ ∈ V2, the nonexistence of the edge implies v1 = v2 = v′
1 	=

v′
2 (or v1 = v2 = v′

2 	= v′
1) holds and that Lv Lv′ intersects at

the point S(v1) ∈ S other than pk . This contradicts with the
uniqueness of the intersection between two lines. Similarly, if
v, v′ ∈ V2, the nonexistence of the edge implies that Lv and
Lv′ intersects at some point in S other than pk . Again this
contradicts with the uniqueness of the intersection between
two lines. Therefore, there must exist an edge between v and
v′ on the graph G, which proves (a).

To prove (b), let us take an edge between v and v′ on
the graph G (note that v 	= v′). There are two distinct lines
Lv and Lv′ , and it has exactly one intersection P ∈ P on the
plane. The point P must be in K due to the same argument to
prove (a). Therefore, there is some k satisfying pk = P, and
Ck contains v and v′.

Definition of measurement clique. Now that we have a set
of pairs of integers {Ck}�2

k=1 by using the finite projective plane,
which satisfies Eq. (16) and the conditions described there, the
measurement clique to evaluate all the terms 〈Apq,σ Ars,σ 〉 and
〈npσ Ars,σ 〉 for both σ =↑,↓ can be explicitly constructed by
taking Jk = Ck in Eq. (17). The number of the measurement
cliques is �2 = (N − 1)2.

5. Summary for measurement cliques

To summarize, the measurement cliques we need to evalu-
ate all the terms in the Hamiltonian [Eq. (5)] are

U = {Cpart} ∪ U [1] ∪ U [2,diff] ∪ U [2,same]. (22)

The number of the total measurement cliques is
1 + 2(N − 1) + (N − 1)2 + (N − 1)2 = 2N2 − 2N + 1 =
2N2 + O(N ). The result is summarized in Table I.

Note again that, when N = �K + 1 for a prime � does
not hold, we can take the smallest �K to construct U [2,same].
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This strategy, in fact, upper-bounds the number of cliques
contained in U [2,same] by N2 + O(N (log N )2) for any practi-
cal N . It is because (c.f. Cramér’s conjecture) �n+1 − �n <

(ln �n)2 holds for 7 < �n � 5 × 1016, where �n denotes nth
prime [39]. This guarantees that, for a given (practical) N , we
can choose a prime � > N such that � = N + O((log N )2)
and run the algorithm to obtain �2 = N2 + O(N ( log(N ))2)
cliques.

C. Quantum circuits for measuring operators in cliques

After constructing the measurement cliques, we consider
how to measure all the operators Apq,σ contained in each
measurement clique simultaneously. Strategies for measur-
ing a single Apq,σ on a quantum computer depends strongly
on the choice of the fermion-to-qubit mapping. However,
typical mappings (e.g., Jordan-Winger, parity, or Bravyi-
Kitaev; see also [40]) transform fermionic states with the
fixed particle number, | f0↑, · · · , fN−1↑, f0↓, · · · , fN−1↓〉 :=∏

p,σ (a†
pσ ) fpσ |vac〉 with fpσ = 0, 1 and |vac〉 being the

fermionic vacuum state, into a computational basis state of
qubits and thus a particle number operator npσ of fermions
into a projection operator on computational basis states. For
such cases, measurement of Apq,σ reduces to a computational
basis measurement after applying a unitary Upq,σ such that
U †

pq,σ Apq,σUpq,σ can be written by the number operators.
In the language of fermions, Upq,σ can, for example, be

Upq,σ = exp
[
−π

4
(a†

pσ aqσ − a†
qσ apσ )

]
, (23)

which leads to

U †
pq,σ Apq,σUpq,σ = npσ − nqσ . (24)

The challenge is how to efficiently implement such Upq,σ for
all operators in a clique on a quantum computer with possi-
bly limited connectivity. One choice is to use the product of
Eq. (23) for all Apq,σ in the clique. The overall unitary in this
case becomes a spin-conserving fermionic orbital rotation.
It is known that such a rotation can be performed using a
depth-(2N − 3) quantum circuit on linearly connected qubits
under the Jordan-Wigner encoding [41]. This indeed is an ef-
ficient strategy, but below we will present even more efficient
strategy, which uses parallel application of nearest-neighbor
fermionic swap gates for at most N times. Our construction is
essentially parallel to that of BBO [29].

Suppose that we want to measure m operators in a clique,

C = {Ak0k1,σ0 , · · · , Ak2m−2k2m−1,σm−1} (25)

The measurement cliques other than Cpart can be written in
this form. The operators in C can always be reordered in up-
then-down order as

C = {Ak0k1,↑, · · · , Ak2m↑−2k2m↑−1,↑, Ak2m↑ k2m↑+1,↓,

× · · · , Ak2m−2k2m−1,↓}, (26)

where mσ is the number of σ -spin operators in the clique. For
simplicity, we explain the algorithm for the cases where C con-
tains only Akk′,σ with k 	= k′. The extension of the algorithm
to the cases with Akk,σ is straightforward.

Our strategy for measuring the operators in the clique C
consists of two main steps.

(1) Apply nearest-neighbor fermionic swap gates
[Eq. (29)] to sort the indices of the operators in
Eq. (26) into

{A01,↑, · · · , A2m↑−2,2m↑−1,↑, A01,↓, · · · , A2m↓−2,2m↓−1,↓}.
(27)

The total number of the fermionic swap gates for this sorting is
at most N2 and the depth (counting a parallel fermionic swaps
as one layer) is at most N .

(2) Transform the operators in Eq. (27) to number opera-
tors. For example, this can be done by the parallel application
of orbital rotations given in Eq. (23). However, as we will
see later, it is not the only choice. By inspecting the concrete
forms of Aj, j+1,σ under specific fermion-qubit mappings, we
can design simpler quantum circuits for diagonalizing them.
We find that the Bell measurement circuit suffices our purpose
for Jordan-Wigner mapping and a single layer of Hadamard
gates does for parity and Bravyi-Kitaev mappings.

We explain these two steps in order.

1. Sorting operators in the clique by fermionic swaps

We want to find a unitary U swap such that

(U swap)†Akik j ,σU swap = Ai j,σ , (28)

which is equivalent to the transformation from Eq. (26) to
Eq. (27). To this end, we utilize the fermionic swap gate,

f swap
i j,σ = 1 + a†

iσ a jσ + a†
jσ aiσ − a†

iσ aiσ − a†
jσ a jσ , (29)

which is a Hermitian and unitary operator, i.e., ( f swap
i j,σ )2 = I .

Its action can be described as

f swap
i j,σ aiσ f swap

i j,σ = a jσ , f swap
i j,σ a jσ f swap

i j,σ = aiσ ,

f swap
i j,σ akτ f swap

i j,σ = akσ (k 	= i, j ∨ σ 	= τ ). (30)

We construct U swap as a product of M↑ + M↓ fermionic swap
gates U swap = U swap

↑ U swap
↓ where U swap

↑ = f swap
i1 j1,↑ · · · f swap

iM↑ jM↑ ,↑
and U swap

↓ = f swap
i1 j1,↓ · · · f swap

iM↓ jM↓ ,↓. U swap
↑ and U swap

↓ can be con-

structed exactly in the same manner, so we consider how to
construct U swap

↑ below.
Define the following integers pl for l = 0, 1, · · · , N − 1 as

pl =
{

m (if there is m � 2m↑ − 1 such that km = l )
−1 (otherwise) ,

(31)

which indicates the position of the integer l in the
sequence (k0, k1, ..., k2m↑−1). pl = −1 corresponds to the
case where l is not found in the sequence. Note that pl is
well defined and there is one-to-one correspondence between
(k0, k1, ..., k2m↑−1) and (p0, p1, ..., pN−1) because we assume
k0, k1, · · · , k2m↑−1 are mutually different. Applying fermionic
swap gate f swap

i j,↑ to the operators in the clique C invokes a
change in pl as an exchange between pi and p j and cor-
responding change in k. Therefore, the problem reduces to
finding a sequence of swaps for the elements of pl , which
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results in

p′
0 = 0, p′

1 = 1, · · · , p′
2m↑−1 = 2m↑ − 1,

p′
2m↑ = · · · = p′

N−1 = −1, (32)

because this p′
l corresponds to

k′
0 = 0, k′

1 = 1, · · · , k′
2m↑−1 = 2m↑ − 1. (33)

This problem can be solved by applying the odd-even sort
algorithm [42] to pl . This algorithm first compares the odd
adjacent pairs (p1, p2), · · · , (pN−3, pN−2) and exchanges two
components in each pair if necessary. Second, it does the same
for the even adjacent pairs (p0, p1), · · · , (pN−2, pN−1). Each
of these steps requires N/2 operations at most but they can
be executed in parallel. Iterating this process, it successfully
sorts the integer with N steps (i.e., with N/2 even and N/2
odd steps) at most. Hence we can construct U swap

↑ by inter-

preting exchanges in the sort algorithm as the fermionic swap
gates. U swap

↓ can be constructed in the same manner and can
be executed in parallel with U swap

↑ . Therefore, U swap in this
construction consists of at most N layers of at most N parallel
fermionic swap gates.

The actual representation of the fermionic swap gate f swap
i j,σ

on qubits depends on the fermion-qubit mapping, but it be-
comes typically local when the swap is occurred at adjacent
sites, i = l, j = l + 1 for some integer l . To see this, let us
first define fermionic operators ã j with j = 0, 1, · · · , 2N − 1
labeling both the orbital and the spin simultaneously by

ã j :=
{

a j,↑ (0 � j � N − 1)
a j−N,↓ (N � j � 2N − 1) . (34)

This is the so-called up-then-down convention for order-
ing spin-orbitals. The Jordan-Wigner [34], parity [35], and
Bravyi-Kitaev [35,43,44] transformation respectively maps
ãk to

ã j →

⎧⎪⎨
⎪⎩

(Xj + iYj )Zj−1 · · · Z0/2 (Jordan-Wigner)(
Zj−1Xj + iYj

)
Xj+1 · · · X2N/2 (parity)(

XU ( j)ZP( j) + iXU ( j)\{ j}YjZP( j+1)\{ j}
)
/2 (Bravyi-Kitaev)

, (35)

where U ( j) and P( j) are set of indices defined in Appendix B, and the notation like XU ( j) means
∏

l∈U ( j) Xl . From the definition
of f swap

i,i+1,σ [Eq. (29)], f swap
i,i+1,σ becomes a two- and three-qubit operator in the Jordan-Wigner and parity mappings, respectively,

because the chain of Pauli Z operators and X operators cancels out. For the Bravyi-Kitaev mapping, it becomes a O(log N )-qubit
operator since the number of elements in the sets U ( j) and P( j) is O(log N ).

2. Diagonalizing Aj, j+1,σ in specific fermion-to-qubit mappings

Let Ãkk′ := ã†
k ãk′ + ã†

k′ ãk . Note that the sorted clique [Eq. (27)] only contains Ã2 j,2 j+1 and therefore we only need to consider
how to diagonalize them. Under three different fermion-to-qubit mappings, Ã2 j,2 j+1 becomes

Ã2l,2l+1 →

⎧⎪⎨
⎪⎩

(X2l X2l+1 + Y2lY2l+1)/2 (Jordan-Wigner)

(−Z2l−1X2lZ2l+1 + X2l )/2 (parity)(−Z2l+1X2l ZP(2l+2)\{2l+1}ZP(2l ) + X2l
)
/2 (Bravyi-Kitaev)

.. (36)

It is easy to see that, for the Jordan-Wigner mapping, we
can diagonalize it by applying the Bell measurement circuit
to qubits 2l and 2l + 1. Also, it can be seen that the set
P(2l + 2) \ {2l + 1} and P(2l ) contains odd integers i < 2l
by inspecting Algorithm 1 in Appendix B. This means that,
for the parity and Bravyi-Kitaev mappings, the Hadamard gate
to all even-site qubits suffices our purpose. The total number
of local gates are O(N ) and the depth is O(1) in all of three
cases.

Algorithm 1 Generation of P(l )

Input: l
i ← l
P ← {l − 1}
while i > 0

i ← i − LSB(i)
P ← P ∪ {i − 1}

return P

IV. NUMERICAL SIMULATION FOR HYDROGEN CHAINS

In this section, we apply our method to the molecular
Hamiltonians for hydrogen chains. We compute the number of
measurement cliques for these Hamiltonians and estimate the
number of measurement shots to realize the standard deviation
of the energy typically required by precise quantum chemistry
calculations.

A. Setup

We consider hydrogen chains H4, H6, H8, · · · , H30 where
the atomic distance between two adjacent hydrogens is 1 Å.
We employ the STO-3G basis set to perform the Hartree-Fock
calculation with the numerical library PySCF [45,46], and
the Hartree-Fock orbitals are used to construct the molecular
Hamiltonian [Eq. (1)]. Note that the number of orbitals N is
the same as the number of hydrogens with this setup (e.g.,
N = 4 for H4). The Jordan-Wigner transformation [34] is
used to map the fermionic Hamiltonian into the qubit one,
implemented by the library OpenFermion [47].
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FIG. 4. Computational time required for performing each grouping methods. We show two plots for our method. The blue one shows the
time required for generating grouped qubit operators, that is, generating {Gi} with Gi = {Pi

j} where Pi
j is a 2N-qubit Pauli operators such that

[Pi
j, Pi

j′ ] = 0 for all i, j, j ′. This is for a fair comparison with GC and QWC methods, which generate such lists of groups. The light blue plot
illustrates the time required to construct all cliques, represented by U , defined as lists of integer pairs.

We compare our method with two existing grouping tech-
niques: qubit-wise commuting (QWC) [18,21] and general
commuting (GC) grouping [22,26]. Both methods divide the
terms in the Hamiltonian (1) into simultaneously-measurable
Pauli operators. Note that the methods based on the fac-
torization of fermionic Hamiltonians is more efficient than
these [27]. However, since such methods require us to apply
fermionic orbital rotation operations, which are non-Clifford
and need more gates depending on hardware, they cannot be
directly compared to our methods. We thus omit comparison
with them in this work. For QWC grouping, the quantum
circuits for measurement consist of O(N ) one-qubit Clif-
ford gates with depth one. For GC grouping, the number of
two-qubit gates (CZ or CNOT, both are Clifford) for the mea-
surement circuits is O(N2/ log N ) [26,48]. We implemented
the “sorted insertion” algorithm for both groupings [26]. The
details of both grouping methods and their implementations
can be found in Appendix C 1.

After the grouping, we estimate the number of shots
required to suppress the standard deviation of the energy
expectation value down to 10−3 Hartree. This value (10−3

Hartree) is comparable to the so-called chemical accuracy that
is typically targeted at in precise quantum chemistry calcula-
tions. The concrete procedures to estimate the number of shots
are in Appendix C 2.

B. Numerical results

We performed grouping of the hydrogen chain Hamiltoni-
ans by our method up to N = 30, while we did it by QWC
and GC grouping up to N = 20. This is because the classical
computational time is much longer for the two (QWC and
GC) methods as illustrated in Fig. 4. Our implementations
of grouping methods are pure-Python strongly depending on
OpenFermion [47], works as a single-thread, and is not opti-
mized for speed. The CPU used in this experiment is AMD

EPYC 7252. Figure 4 shows that our method is highly effi-
cient compared to the existing methods.

Numerical results are shown in Fig. 5. In Fig. 5(a), we com-
pare the number of groups (measurement cliques) obtained
by each grouping method. To see the scaling of the number
of groups, we also fit the results by the function aNb, where
a, b are the fitting parameters, by the linear regression of the
data points with N � 10 on the log-log plot. This fitting yields
b = 2.03(7) for our method, b = 2.34(3) for GC grouping,
and b = 4.017(3) for QWC grouping. We observed that GC
grouping exhibits the slightly smaller number of groups than
that of our method for N � 20. However, the predicted scaling
exponent of GC grouping is larger than that of our method.
We expect that our method beats GC grouping for larger N
in terms of the number of groups (see the fitting lines in the
figure). We also note that the number of groups of our method
seems to follow the theoretical scaling 2N2 − 2N + 1 (the
total number of all cliques [Eq. (22)].

In Fig. 5(b), we compare the number of shots required to
make the standard deviation of the energy 10−3 Hartree. We
again performed the fitting of the data by the function aNb

in the same way as we did for the number of groups, which
results in b = 3.51(5) for our method, b = 3.12(7) for GC
grouping, and b = 4.542(7) for QWC grouping. We observe
that GC grouping shows the smaller number of shots than
that of our method. In contrast to the number of groups, the
scaling exponent is smaller in GC grouping, indicating that
it would performed well than our method if we could exe-
cute GC grouping for larger N > 20. This is because “sorted
insertion” algorithm performs grouping considering the mag-
nitudes of coefficients of Pauli operators while our method are
not aware of such information. We stress that, however, the
huge classical computational cost will prevent GC grouping
to be applied for larger N . Our method can be seen as a
practical and effective way to group the Pauli operators in the
Hamiltonian and reduce the number of shots for the desired
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FIG. 5. Numerical results for the molecular Hamiltonians for hydrogen chains HN . (a) The number of groups for each grouping method.
Fitting lines for the data points with N � 10 are also shown. The black dotted line denotes the theoretical scaling for our method, 2N2 −
2N + 1. (b) The number of shots required to achieve the standard deviation of the energy lower than 10−3 Hartree, estimated by Haar random
averaging (see main text).

accuracy of the energy expectation value. It might be possible
to further reduce the number of shots of our method by taking
the information about coefficients into account.

V. DISCUSSION

We here discuss several points of our study and compare
our result with the previous studies.

A. Optimality of the obtained solution

Our construction of cliques for the graph G in Sec. III B 4 is
almost optimal from the viewpoint of the minimal edge clique
cover problem. To show this, we give a lower bound to the
number of cliques to cover edges of G. Consider a subgraph G′
where we remove all of vertices in V1 and corresponding edges
in G. The number of cliques to cover all edges in G′ is clearly
less than or equal to that of G, and it follows that a lower
bound for the number of cliques for the edge cover of G′ is
also a lower bound for G. First, we claim that a clique in G′ can
have at most N/2 vertices and thus N

2 ( N
2 − 1)/2 edges. This

is because there is an edge between two vertices (p, q) and
(r, s) in V2 if and only if p, q, r, s are mutually different, and
thus a clique corresponds to a pairing of N integers. Second,
the number of edges in G′ is N (N − 1)(N − 2)(N − 3)/8. To
see this, for every tuple of four integers (p, q, r, s) such that
p < q < r < s, there are three edges each of which connects
the vertices {(p, q), (r, s)}, {(p, r), (q, s)}, and {(p, s), (q, r)}
in a graph G′. The number of combinations of such inte-
gers is

(N
4

)
, and therefore the statement follows. Combining

these two facts, we conclude that the number of cliques to
cover all edges in G′ must be at least [N (N − 1)(N − 2)(N −
3)/8]/[ N

2 ( N
2 − 1)/2] = (N − 1)(N − 3). Therefore, our algo-

rithm, where the number of cliques is (N − 1)2, provides an
optimal solution to the minimal edge clique cover problem of
G up to the subleading order terms.

B. Classical computational cost for
constructing measurement cliques

The classical computational cost for constructing the mea-
surement cliques in our method is O(N3), which comes from
creating a set Ck in Eq. (21). For each pk ∈ K [the number of
k is �2 = O(N2)], we add a vertex v on G to Ck by inspecting
the line passing pk and S(i) (the total number of i is � + 1 =
N): when the line passes S(i) and S( j), we add (i, j) or ( j, i)
to Ck , and when the line passes only S(i), we add (i, i) to Ck .
The exponent observed in Fig. 4 is slightly worse than this
theoretical scaling, which we attribute to additional logarith-
mic costs (the overhead happening when N 	= � + 1, memory
access, integer arithmetics, etc.). Note that this computational
cost is optimal when we seek to find O(N2) measurement
cliques, because the output of the algorithm must be of size
O(N3) [O(N2) cliques with O(N ) vertices] by the discussion
in Sec. V A. BBO’s paper [29] does not explicitly give the
classical computational cost, but the size of the output of their
algorithm is also O(N3) and thus its classical computational
cost cannot be less than O(N3).

This O(N3) scaling of the classical computational cost
is much smaller than the methods to create the measure-
ment clique consisting of the terms of the Hamiltonian as
is [17–25]. In those methods, one should calculate the com-
mutativity or anticommutativity of pairs of the O(N4) terms in
the Hamiltonian, which results in as huge as O(N8) classical
computational cost. The target problem of the application of
quantum computers in quantum chemistry lies for more than
N ∼ 50, and such scaling can be problematic in practice.

C. Comparison of the number of measurement cliques
in our algorithm with that of previous studies

Our algorithm can determine the expectation value of the
quantum chemistry Hamiltonian with O(N2) measurement
cliques. Again, this is advantageous over the conventional
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methods to create the measurement cliques consisting of the
terms of the Hamiltonian [17–25], in which the total number
of the measurement cliques is O(N3) [23,25].

Let us compare our algorithm with BBO algorithm [29].
The fermionic 1,2-RDMs are defined as

ρ[1]
pq = 〈ã†

pãq〉, ρ[2]
pqrs = 〈ã†

pã†
qãr ãs〉, (37)

for mutually distinct integers p, q, r, s = 0, · · · , 2N − 1.
BBO algorithm can determine the fermionic 2-RDM with
O(N2) measurement clique, so the scaling is the same as
ours. It is based on the Majorana representation of the
fermions and constructs measurement cliques of the Majorana
operators by considering sets of integers similar to Eq. (16).
That is, the products of two Majorana operators, rather
than the products of four Majorana operators, consist the
measurement cliques to evaluate the fermionic 2-RDM (rep-
resented as products of four Majorana operators). The authors
(BBO) [29,33] claimed that the number of measurement
cliques to evaluate the fermionic 2-RDM is

4N2

(
16

3
4−Nsym + 21−Nsym

)
, (38)

where Nsym is the number of Pauli operators W such that
[H,W ] = 0 2. For general Hamiltonians for quantum chem-
istry calculation [Eq. (1)], typically we have two such
symmetries: the numbers of spin-up and spin-down elec-
trons [49]. Putting Nsym = 2 in the above equation yields

4N2

(
16

3
4−2 + 2−1

)
= 10

3
N2, (39)

which is slightly larger than our method, 2N2. We note that our
method determines only the “symmetric part” of the fermionic
2-RDM,

〈ÃpqÃrs〉 = ρ[2]
pqrs + ρ[2]

qprs + ρ[2]
pqsr + ρ[2]

qpsr, (40)

which is sufficient to determine the expectation value of the
molecular Hamiltonian [Eq. (1)] with the symmetries (4).
In contrast, BBO algorithm evaluates all elements of the
fermionic 2-RDM.

VI. SUMMARY AND OUTLOOK

In this study, we have proposed a measurement scheme
for general molecular Hamiltonians in quantum chemistry
[Eq. (1)]. We have used the symmetries of the coefficients
in the Hamiltonian and reduced the problem of evaluating
the expectation value of the Hamiltonian into the evaluation
of the terms 〈Apq,σ 〉 and 〈Apq,σ Ars,τ 〉. We have classified all
the possible terms appearing in the Hamiltonian and proposed
a measurement clique for each type of the terms. Espe-
cially, the measurement cliques for the terms 〈Apq,σ Ars,σ 〉 with
mutually-different p, q, r, s have been constructed by finding
the edge clique cover of the specific graph using the method

2The expression differs by the factor of 4 from the BBO’s original
paper [29]. It comes from the different definition of N , that is, we
define N as the number of molecular orbitals while BBO defines N
as the number of spin orbitals.

based on the finite projective plane. The total number of
the distinct measurement cliques (or measurement circuits)
is 2N2 + O(N ) with 2N being the number of spin orbitals
(fermions), which exhibits better scaling compared with the
previous method (BBO algorithm). We have shown explicit
quantum circuits to measure operators in the measurement
cliques, and those circuits consist of O(N2) one- or two-
qubit gates with depth O(N ) for Jordan-Wigner and parity
mappings. We have also performed numerical simulation for
molecular Hamiltonians of hydrogen chains and evaluated
the number of groups of simultaneously-measurable operators
generated by our method as well as the number of measure-
ment shots required to estimate the energy expectation values
with sufficient accuracy. Evaluation of the expectation value
of the Hamiltonian is one of the most fundamental subroutines
among various algorithms for the applications of quantum
computers to quantum chemistry, so our method can be uti-
lized in broad studies on quantum algorithms.

As future work, it is intriguing to apply the proposed
method to actual Hamiltonians in quantum chemistry and
numerically investigate a standard deviation of the estimated
energy expectation value with using our measurement cliques.
Another interesting direction is to generalize our method
using the finite projective plane to higher order fermionic
RDMs, such as 〈ã†

pã†
qã†

r asat au〉.
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APPENDIX A: PROOF FOR SEVERAL PROPERTIES
OF POINTS S ON FINITE PROJECTIVE PLANE

In this Appendix, we prove several properties of points S
on the finite projective plane described in Sec. III B 4.

1. Three points in S never appear on a single line

We prove the following:
Lemma 1. Three distinct points in S never appear on a

single line.
Proof. From the definition of Lα , there is a single point

S(�) = Pα on Lα . Similarly, Lβ (i) has only two points
S(�) = Pα and S(i) = Pγ (i, i2 mod �) in S . For Lγ (i, j),
suppose that Lγ (i, j) has three distinct points S(a), S(b), and
S(c) in S. This implies

a2 ≡ ia + j mod �, b2 ≡ ib + j mod �. (A1)

Subtracting them results in

a2 − b2 ≡ i(a − b) mod �. (A2)
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FIG. 6. Illustration of Fenwick tree of size n = 16, which is a basis of Bravyi-Kitaev mapping. An n-dimensional vector x can be
transformed to the Fenwick tree y by taking appropriate range sums defined in Eq. (B1). Arrows represent what is stored as yi.

By using the assumption a 	= b, we reach

a + b ≡ i mod �. (A3)

Similarly, we can show

a + c ≡ i mod �. (A4)

by using the assumption a 	= c. These two equations (A3)
and (A4) lead to b = c, but this contradicts with the assump-
tion that three points S(a), S(b), and S(c) are distinct.

2. There is only one line that passes a point in S
We prove the following property,
Lemma 2. For any S(k) ∈ S , there is only one line that

passes S(k) and does not pass any other points in S .
Proof. For S(�) = Pα , Lα, Lβ (0), · · · , Lβ (� − 1) are the

only lines passing S(�). Among these lines, only the
line Lα passes S(�) and does not pass any other
points in S . For S(k) = Pγ (k, k2 mod �) with k = 0, · · · ,

� − 1, Lβ (k) and Lγ (a, k2 − ak mod �) for a = 0, · · · ,

� − 1 are the only lines passing S(k). The line Lβ (k) passes
two points in S , namely, S(k) and S(�) = Pα . For l =
0, · · · , k − 1, k + 1, · · · ,� − 1, the line Lγ (k + l, k2 − (k +
l )k mod �) passes the point S(l ) = Pγ (l, l2 mod �) as
well as S(k). We show that the remaining line Lγ (2k, k2 − 2k ·
k mod �) = Lγ (2k,−k2 mod �) do not pass the points
in S other than S(k) as follows. Suppose that Lγ (2k,−k2

mod �) passes S(m) = Pγ (m, m2 mod �) for S(m) 	= S(k).
Then we have

m2 ≡ 2km − k2 mod � ⇔ (m − k)2 ≡ 0 mod �.

(A5)

Since � is a prime, this means m ≡ k mod �. This contra-
dicts with S(k) 	= S(m).

APPENDIX B: MEASUREMENT QUANTUM CIRCUITS
FOR BRAVYI-KITAEV MAPPING

Here, we provide further details on the Bravyi-Kitaev map-
ping, complementing the discussion in Sec. III C 2. We follow
the Fenwick-tree-based construction introduced in [44].

The Fenwick tree, also known as the binary indexed tree,
is a data structure that allows us to efficiently perform range
sums of N-dimensional vector x = (x0, x1, ..., xN−1). Let us
first represent an index i of the vector as binary string: i =∑n

k=0 ik2k where n = �log2 N� and ik ∈ {0, 1}. We define a
least significant bit of an index i as LSB(i) = ik̃2k̃ where k̃ is
the smallest k such that ik = 1. Fenwick tree of x is a vector
y = (y0, y1, ..., yN−1) defined as

yi =
i∑

j=i+1−LSB(i+1)

x j . (B1)

Its structure can be illustrated as Fig. 6. A range sum
∑l−1

i=0 xi

for any l > 0 can be obtained by summing up O( log(N ))
elements of y. Specifically, define a set of indices P(l )
by Algorithm 1, which contains O( log(N )) indices. Then,∑l−1

i=0 xi = ∑
i∈P(l ) yi. The Fenwick tree can also be updated

in O( log(N )) time. Specifically, consider adding a constant
c to xl . This corresponds to adding c to yi for every index i
in a set U (l ) defined by Algorithm 2, which again contains
O( log(N )) indices.

The Bravyi-Kitaev mapping can be viewed as a fermion-to-
qubit correspondence where we associate the fermionic state
(a†

0)x0 (a†
1)x1 · · · (a†

N−1)xN−1 |vac〉 to a qubit state |y0y1 . . . yN−1〉
using the Fenwick tree y of x. Here, we assume the sum to
construct yi is taken modulo 2. Since Jordan-Wigner map-
ping associate (a†

1)x0 (a†
2)x1 · · · (a†

N−1)xN−1 |vac〉 to a qubit state
|x0x1 . . . xN−1〉, an fermionic operator Bfermion that is mapped
to a qubit operator BJW in Jordan-Wigner mapping corre-
sponds to a qubit operator BBK = W BJWW † in Bravyi-Kitaev

Algorithm 2 Generation of U (l )

Input: l
i ← l + 1
U ← {l}
while i < N

i ← i + LSB(i)
U ← U ∪ {i − 1}

return U
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mapping, where W is a unitary such that W |x0x1 · · · xN−1〉 =
|y0y1 · · · yN−1〉.

Now, we consider how W transforms single-qubit Pauli
operators. First, W XlW † = XU (l ) because applying Xl to
|x0x1 · · · xN−1〉 corresponds to adding 1 to the lth bit
and it is equivalent to adding 1 to every bit that is
contained in U (l ) from the property of Fenwick tree.
Second, W ZlW † = ZP(l+1)ZP(l ). To see this, note that ap-
plying Zl to |x0x1 · · · xN−1〉 corresponds to multiplying
(−1)xl to the state. On the other hand, applying ZP(l )

to |y0y1 · · · yN−1〉 corresponds to (−1)
∑

i∈P(l ) yi = (−1)
∑l−1

i=0 xi .
ZP(l+1)ZP(l ), when applied to |y0y1 · · · yN−1〉, therefore mul-

tiplies (−1)
∑l

i=0 xi (−1)
∑l−1

i=0 xi = (−1)xl to the state, and this
action is equivalent to Zl applied to |x0x1 · · · xN−1〉. Fi-
nally, WYlW † = iXU (l )ZP(l+1)ZP(l ) because Yl = iXlZl . Note
that both of P(l + 1) and U (l ) always contain l and this allows
us to write WYlW † = XU (l )\{l}YlZP(l+1)\{l}ZP(l ).

By observing these relations, it is straightforward to
see that Eq. (36) holds. First, X2l X2l+1 that appears
in Jordan-Wigner mapping corresponds to XU (2l )XU (2l+1).
From Algorithm 2, U (2l ) \ U (2l + 1) = {2l} and therefore
XU (2l )XU (2l+1) = X2l . Second, consider Y2lY2l+1 that appears
in Jordan-Wigner mapping. This corresponds to

XU (2l )\{2l}Y2lZP(2l+1)\{2l}ZP(2l ) · XU (2l+1)\{2l+1}Y2l+1

ZP(2l+2)\{2l+1}ZP(2l+1). (B2)

Note that i < l holds if i ∈ P(l ) or i ∈ P(l + 1) \ {l} for any l .
Also, i > l holds if i ∈ U (l ) \ {l}. This allows us to simplify
Eq. (B2) as

XU (2l )\{2l}XU (2l+1)\{2l+1} · Y2lY2l+1 · ZP(2l+1)\{2l}ZP(2l )

ZP(2l+2)\{2l+1}ZP(2l+1) (B3)

= X2l+1 · Y2lY2l+1 · Z2l ZP(2l+2)\{2l+1}ZP(2l ) (B4)

= −Z2l+1X2l ZP(2l+2)\{2l+1}ZP(2l ). (B5)

Note that we used [U (2l ) \ {2l}] \ [U (2l + 1) \ {2l + 1}] =
{2l + 1}, P(2l + 1) \ [P(2l + 1) \ {2l}] = {2l} for the first
equality, and the second equality follows from X2l+1Y2l+1 =
iZ2l+1 and Y2lZ2l = iX2l .

APPENDIX C: DETAILS OF NUMERICAL CALCULATION

We describe the details of the numerical calculation
in Sec. IV.

1. Details of QWC and GC grouping

Let us consider the qubit Hamiltonian Hq = ∑L
i=1 ciPi,

where Pi is 2N-qubit Pauli operators and ci is its coefficient.
We assume that Pi is not the identity operator. In GC grouping
with the “sorted insertion” algorithm [26], the Pauli operators
{Pi}L

i=1 are sorted by descending order of the absolute values
of their coefficients |ci|. We denote the sorted Pauli operators
{P′

i }L
i=1. We make the first group and include P′

1 in that group.
Then, we iterate the Pauli operators P′

2, P′
3, · · · and include it

if it commutes with all terms in the group. The creation of
the first group ends when we reach P′

L, i.e., all of the remain-
ing Pauli operators are checked. The second group is made
by including P′

k , where k is the smallest number among the
remaining Pauli operators that are not included in the first
group. We grow the second group by checking all of the re-
maining Pauli operators and picking them up if they commute
with all terms in the group. We repeat the creation of the
groups in the same way until all Pauli operators are included
in some group.

In QWC grouping with the sorted insertion algorithm,
two 2N-qubit Pauli operators P = P(1) ⊗ · · · ⊗ P(2N ) and Q =
Q(1) ⊗ · · · ⊗ Q(2N ), where P(i) and Q(i) are single-qubit Pauli
operators I, X,Y, Z acting the site i, are said qubit-wise
commuting if and only if [P(i), Q(i)] = 0 holds for all i =
1, · · · , 2N . QWC grouping is performed in the same way as
GC grouping, but we include a Pauli operator in some group
when it satisfies qubit-wise commuting with all operators in
the group.

2. Calculation of the number of shots

We omit the constant term in the qubit Hamiltonian and
safely assume that Pi is not the identity operator. Suppose that
we group the Hamiltonian as

Hq =
G∑

g=1

Og, Og =
Lg∑

j=1

c(g)
j P(g)

j ,

where Og is the gth group, c(g)
j (P(g)

j ) is the jth coefficient
(Pauli operator) of the gth group ( j = 1, · · · , Lg), and G is
the total number of groups. The Pauli operators in each group
mutually commute so that we can simultaneously measure all
operators in each group: [P(g)

j , P(g)
j′ ] = 0 for all j, j′. When the

total number of shots is s, the smallest standard deviation of
the energy expectation value, 〈ψ |Hq|ψ〉, for a quantum state
|ψ〉 by the optimal shot allocation for the groups is known
as [26,51]

σ (s) = γ√
s
, γ =

√√√√∑
g

√∑
j, j′

c(g)
j c(g)

j′
(〈ψ |P(g)

j P(g)
j′ |ψ〉 − 〈ψ |P(g)

j |ψ〉〈ψ |P(g)
j′ |ψ〉).

In the numerical calculations, we estimate the standard deviation of the energy by replacing the exportation values in this
expression by Haar random average [13] (〈P〉 = 0 for any nonidentity Pauli operator P)

σ ′(s) = γ ′
√

s
, γ ′ =

√√√√∑
g

√∑
j

(
c(g)

j

)2
,
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because the exact ground state of the Hamiltonian |ψGS〉 is not available for the systems as large as N � 16. The number of shots
required to realize the standard deviation of 10−3 Hartree is calculated from this equation, i.e., sest = (γ ′/(10−3 Hartree))2.
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