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Universal transport in periodically driven systems without long-lived quasiparticles
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An intriguing regime of universal charge transport at high entropy density has been proposed for periodically
driven interacting one-dimensional systems with Bloch bands separated by a large single-particle band gap.
For weak interactions, a simple picture based on well-defined Floquet quasiparticles suggests that the system
should host a quasisteady state current that depends only on the populations of the system’s Floquet-Bloch
bands and their associated quasienergy winding numbers. Here we show that such topological transport persists
into the strongly interacting regime where the single-particle lifetime becomes shorter than the drive period.
Analytically, we show that the value of the current is insensitive to interaction-induced band renormalizations
and lifetime broadening when certain conditions are met by the system’s nonequilibrium distribution function.
We show that these conditions correspond to a quasisteady state. We support these predictions through numerical
simulation of a system of strongly interacting fermions in a periodically modulated chain of Sachdev-Ye-Kitaev
dots. Our paper establishes universal transport at high entropy density as a robust far from equilibrium topological
phenomenon, which can be readily realized with cold atoms in optical lattices.
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I. INTRODUCTION

The interplay of topology and far from equilibrium dy-
namics became an important arena of research in recent years
[1–35]. In equilibrium, the field of topology has substantially
influenced the modern understanding of electronic systems,
contributing to the introduction of fundamental concepts
such as topological robustness of quantum states, topologi-
cal degeneracies of ground states, and non-Abelian anyonic
statistics [36–47]. Extension of these concepts to nonequi-
librium systems provides the means for dynamical control
of topological properties and design of topological phases
“on demand” [48–57]. Recently, periodic drives were em-
ployed to induce exotic phases of matter without equilibrium
analogs [58–69].

An important paradigmatic model of an intrinsically
nonequilibrium topological system is the topological pump.
The topological pump, originally introduced by Thouless
[70], describes a one-dimensional atomic chain with an adia-
batically slowly and periodically in time modulated potential.
Such a system when tuned to its topological phase supports a
robust quantized transport [71–79]. The precise quantization

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and robustness of adiabatic pumps to external perturbations
make them important candidates for applications in quantum
metrology [80–84] and processing of quantum information
[85–87]. Adiabatic pumps were recently experimentally re-
alized in photonic systems and cold atoms [88–97].

The realization of topological pumps in metallic interacting
systems is challenging due to an interplay of interparticle
interactions and the nonadiabatic evolution stimulated by the
periodic drive. Such an interplay often results in an extensive
generation of entropy and incessant heating up of the system
to a featureless, high-entropy state [98–100]. The heating can
be significantly slowed down in the high driving frequency
regime or under special conditions, giving rise to a long-
lived prethermal state [101–113]. Recently it was shown that
a slowly driven topological pump in the weakly interacting
limit can form a quasisteady state [114–116]. In this limit,
the quasisteady state can be understood heuristically on the
level of free dynamics and weak scattering of particles in
well-defined Floquet-Bloch bands. Notably, the quasisteady
state hosts a universal current that depends only on the popula-
tions of the system’s Floquet-Bloch bands and their associated
quasienergy winding numbers.

Here we show that the quasisteady state persists into the
strongly interacting regime where the single-particle scatter-
ing lifetime is shorter than the drive period. Furthermore, in
this regime, the current exhibits a similar universal value as in
the weakly interacting case, despite the absence of long-lived
single-particle Floquet states.

2643-1564/2024/6(1)/013094(15) 013094-1 Published by the American Physical Society

https://orcid.org/0000-0003-2959-0617
https://orcid.org/0000-0001-5529-4358
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013094&domain=pdf&date_stamp=2024-01-25
https://doi.org/10.1103/PhysRevResearch.6.013094
https://creativecommons.org/licenses/by/4.0/


ILIYA ESIN et al. PHYSICAL REVIEW RESEARCH 6, 013094 (2024)

(a)

(b) (c) (d)

FIG. 1. The model and the single-particle spectrum. (a) Illustra-
tion of the system. A chain of atoms with time-modulated hopping
and staggered potential, following the driving protocol realizing an
adiabatic pump, as shown in the right bottom corner of panel (a) [we
denote �d (t ) = d+(0, t ) − d−(0, t )]. In the numerical simulation,
each site is an SYK dot with N → ∞ orbitals that interact through
random interactions [see Eq. (2)]. (b) The single-particle spectrum of
the system at t < 0, before the drive is switched on. The dashed line
represents the Fermi level and the colored section represents initially
occupied states, constituting a quarter of all the states in the system.
The shaded gray areas show the instantaneous levels of the driven
system in one period. The band structure is calculated for J0 = 1,
J1 = 0.85, v0 = 2.55, and � = 0.5 [see Eq. (1) for the definition
of the single-particle Hamiltonian]. (c) The period averaged spectral
function of the noninteracting system, ḡ�(k; ω). The labels “L” and
“R” indicate the left-movers and the right-movers bands correspond-
ingly. Energy and frequency in panels (b) and (c) are plotted in units
of J0 = 1. (d) The period-averaged noninteracting density of states
(DOS).

In order to establish the universality of the quasisteady
state and demonstrate its emergence across a wide range of
interacting models, we studied two models: a topological
pump featuring generic short-ranged interactions, and a
time-modulated chain of Sachdev-Ye-Kitaev (SYK) dots
[117–122] [see Fig. 1(a)]. Despite the contrasting features of
these models, we show that they both result in quasisteady
states that possess common universal properties. The model
with generic short-ranged interactions was employed to
provide an analytical account of the quasisteady state and to
prove that the current, normalized by the particle density, is
quantized in this state.

The time-modulated chain of SYK dots is used to
provide numerical evidence of the quasisteady state in
a system of strongly interacting fermions with SYK in-
teractions. Our paper demonstrates an approach for nu-
merically exact simulations of driven, strongly interacting
chains of many sites, by specializing in SYK-type inter-
actions. This approach is closely related to recent studies
of quench dynamics of SYK dots [123–128]. Further-
more, it provides generalization of topological SYK con-
structions [129,130] into the nonequilibrium topological
regime. Our method outperforms the conventional exact

diagonalization methods that can be applied to significantly
smaller systems. In turn, approximate methods such as
Hilbert space decimation (i.e., the time-dependent density
matrix renormalization group [131,132]) cannot be applied
here, because thermalization dynamics generates long-ranged
correlations.

II. DEFINITION OF THE PROBLEM

In this paper, we consider a one-dimensional bipartite chain
of L unit cells with periodic boundary conditions, hosting
N flavors of otherwise spinless fermions [see Fig. 1(a)]. We
label the two sublattices by A and B, and denote the lattice
constant by a. For simplicity of notation, throughout we set
h̄ = kB = e = 1.

At times t � 0, the evolution of the system is
described by the time-periodic Hamiltonian Ĥ(t ) = ∑

kα

ĉ†
kα

H0(k, t )ĉkα + Ĥint, where H0(k, t ) denotes the time-
periodic single-particle Bloch Hamiltonian and Ĥint denotes
the electron-electron interactions. Here, ĉ†

kα
= (ĉ†

A,kα
, ĉ†

B,kα
);

ĉ†
s,kα

= 1√
L

∑
j∈ js

eika j/2ĉ†
jα , where ĉ†

jα creates a fermion at a
position j with flavor index α; js includes all the odd (even)
sites for s = A(B). The single-particle Hamiltonian describes
the Rice-Mele model [133] with time-periodically modulated
parameters:

H0(k, t ) =
(

v(t ) − μ0 d (k, t )
d∗(k, t ) −v(t ) − μ0

)
. (1)

Here, d (k, t ) = d+(k, t ) + d−(k, t ) and d±(k, t ) = e∓ika/2

[J0 ± J1 sin(�t )] and v(t ) = v0 cos(�t ), where � = 2π/T
is the driving frequency and v0, J0, and J1 are constants. The
chemical potential μ0 sets the average density of the fermions
in the chain [see Fig. 1(b)]. For t < 0, the system is assumed
to be in an equilibrium state with respect to the Hamiltonian
Ĥ(t = 0), at inverse temperature β0.

The interparticle interactions are described by the Hamil-
tonian

Ĥint =
∑

j j′

∑
αβγ δ

Uαβγ δ ( j, j′)ĉ†
jα ĉ jβ ĉ†

j′γ ĉ j′δ + H.c. (2)

In our analytical study, we assume a single flavor,
α = 1, and generic short-ranged interactions of characteris-
tic strength Uαβγ δ ( j, j′) = Uχ (| j − j′|), where χ (| j − j′|) is
a rapidly decaying dimensionless function of its argument,
with χ (1) = 1. (Note that for a single species of fermions,
the on-site interaction terms, j = j′, do not contribute.) We
assume that χ (| j − j′|) is a short-range function with ex-
ponential decay. In the numerical study, we consider the
limit of a large number of flavors, N , with N → ∞ [see
Fig. 1(a) for an illustration]. Particles of different flavors
can locally interact through an SYK-type on-site interaction
term, where we consider random and constant in space inter-
actions, Uαβγ δ ( j, j′) = Uχαβγ δ ( j, j′), with χαβγ δ ( j, j′) = 0

and χ2
αβγ δ ( j, j′) = δ j j′/N3, such that the system preserves

invariance to translations for every realization of disor-
dered couplings [121,122]. We expect the model to be
self-averaging [134,135], thus providing the same result for
any given realization of the random interaction term.
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III. NONINTERACTING DYNAMICS

Before studying the interacting model, we briefly sum-
marize the dynamics of the noninteracting topological pump
[2,70,77,114,136,137]. We initialize the pump in an equilib-
rium state of H(0), at inverse temperature β0 and a chemical
potential μ0 that fixes the average density of particles at n0

[see Fig. 1(b)]. The spectral function is initially periodic in k,
following the spectrum of the static Hamiltonian, H(0), as is
demonstrated in Fig. 1(b).

After switching on the drive (i.e., for t > 0), the dynam-
ics of the system follows the time-dependent Hamiltonian
H(t ). Shortly after the quench, the bands of high intensity
in the spectral function develop a pronounced structure of
sidebands, spaced by the drive frequency �, and further-
more obtain nonvanishing net slopes [2] as a function of
k [see Fig. 1(c) and attached video [138]]. The peaks of
the spectral function at each k correspond to quasienergies
associated with the single-particle Floquet state solutions
[33,139] of the time-periodic Rice-Mele problem, [i∂t −
H0(k, t )]|�ν (k, t )〉 = 0, with the multiple values across the
different sideband peaks capturing the indeterminacy of
quasienergy up to integer multiples of the drive frequency,
�. The single-particle Floquet states [140,141] are given
by |�ν (k, t )〉 = e−iεν (k)t ∑

m e−i�mt |φm
ν (k)〉, where {|φm

ν (k)〉}
are time-independent states. Here, εν (k) is the corresponding
quasienergy of the single-particle state with crystal momen-
tum k, and chirality (or Floquet band) index ν = {L, R} for the
net left- and right-moving bands, respectively. We denote the
bandwidth of the Floquet bands by WF and the gap between
them by �. The net chiralities of the bands are determined by
the topological index [2,33] W = �−1

∮
dk ∂kεR/L (k) = ±1,

where the + (−) sign corresponds to the R (L) band. The
chiralities of the bands are exhibited by the spectral func-
tion shown in Fig. 1(c). As the momentum changes from
k = −π/a to k = π/a, the peaks of the spectral function of
the R (L) band shift in frequency from ω to ω ± �.

IV. TIME EVOLUTION TOWARDS
THE QUASISTEADY STATE

We now study the dynamics of the system in the interacting
case. In particular, we focus on the evolution of the two-point
Green’s functions, providing information about expectation
values of one-body operators, such as particle densities and
the current (see below). The time evolution of the interact-
ing system’s two-point Green’s functions is described by the
Kadanoff-Baym equations [142]

[i∂t − H0(t )]GR(k; t, t ′) = δ(t − t ′) + �R ◦ GR, (3a)

[i∂t − H0(t )]G<(k; t, t ′) = �R ◦ G< + �< ◦ GA, (3b)

where for brevity we have suppressed the crystal momentum
and time indices on the right hand sides of these equations,
and the ◦ symbol indicates a convolution over time and
matrix product in the sublattice indices. In Eq. (3), the (flavor-
averaged) retarded and lesser Green’s functions are defined

as GR
ss′ (k; t, t ′) = − i

N θ (t − t ′)
∑N

α=1 〈{ĉs,kα (t ), ĉ†
s′,kα

(t ′)}〉
ρ0

,

and G<
ss′ (k; t, t ′) = i

N

∑N
α=1 〈ĉ†

s′,kα
(t ′)ĉs,kα (t )〉

ρ0
, while GA

ss′

(k; t, t ′) = GR
s′s(k; t ′, t )†. In these expressions, the expectation

FIG. 2. Renormalization of the spectrum by interactions. (a) First
row: Dyson’s expansion for the band resolved Green’s function.
The double and single blue lines indicate the band-resolved renor-
malized and bare functions respectively. Black lines denote the full
bare Green’s function. Second row: Diagrammatic expansion of the
self-energy, used in the analytical model (shown up to order U 2).
In the numerics, we considered SYK interactions in the infinite N
limit, in which all the diagrams with an odd number of interaction
vertices or with crossed lines are averaged to zero [i.e., only the last
diagram in (a) contributes]. (b) Period-averaged trace of the spectral
function, Ḡ�(k; ω) = ∑

s
1
T

∫ T
0 dt̄G�

ss(k; ω, t̄ ), renormalized by the
SYK interactions with U = 1. (c) Period-averaged trace of the lesser
function, Ḡ<(k; ω) = ∑

s
1
T

∫ T
0 dt̄G<

ss(k; ω, t̄ ), indicating occupation
after 30 periods of the drive, for the same parameters as in (b).
Note the weak, yet finite occupation of the upper band produced
by the interband processes. (d) Inverse lifetime of the quasiparticles,
γ , extracted from the spectral function width, as a function of U .
The dashed line denotes the driving frequency, �. (e) The renor-
malized period-averaged single-particle DOS. In the presence of
interaction, the noninteracting DOS appearing in Fig. 1(d) broadens,
obtaining exponential tails ξν . The broadening creates an overlap
between the upper and lower bands, forming an interband heating
channel (indicated by the wiggly arrow). Frequencies are plotted in
units of J0 = 1.

values are calculated with respect to the initial state described
by the density matrix ρ0, describing an equilibrium state with
respect to H(0) with temperature β0 and average density
of particles n0. The bar denotes averaging over the random
interaction strength (in the case of the SYK interactions),
“{, }” denotes an anticommutator, and θ (t ) is the Heaviside
step function. Throughout, we omit the sublattice indices s, s′,
leaving the 2 × 2 matrix structure of the Green’s functions
implicit. The retarded and lesser components of self-energy
are denoted by �R(k; t, t ′) and �<(k; t, t ′), respectively [see
Fig. 2(a) and Appendix C for technical details].

A. Single-particle spectral function

The renormalized single-particle spectrum of the nonequi-
librium system is encoded in the retarded Green’s function,
whose time evolution is given by Eq. (3a). In order to facilitate
the separation of intraband and interband scattering processes
below, we write the full retarded Green’s function as a sum of
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R- and L-band projected Green’s functions: GR = GR
R + GR

L .
The band-resolved Green’s functions are defined through the
Dyson series shown in Fig. 2(a), corresponding to Dyson’s
equation,

GR
ν (k; t, t ′) = gR

ν (k; t, t ′) + gR
ν ◦ �R ◦ GR, (4)

where, as in Eqs. (3a) and (3b), we suppress the crystal mo-
mentum and time indices on the last term for brevity. Here,
gR

ν (k; t, t ′) is the noninteracting retarded Green’s function pro-
jected to band ν (see Appendix A for more details).

We define the renormalized band-resolved spectral func-
tions as G�

ν (k; ω, t̄ ) = i[GR
ν (k; ω, t̄ ) − GA

ν (k; ω, t̄ )], where
GR

ν (k; ω, t̄ ) is obtained via the Wigner transform of the
two-time function, GR

ν (k; t, t ′), with t̄ = 1
2 (t + t ′), and

GA
ν (k; ω, t̄ ) = [GR

ν (k; ω, t̄ )]†. The renormalized band-resolved
spectral functions exhibit the same chiralities as the bare ones,
as can be observed from the frequency shifts of the peaks of
Ḡ�(k; ω) from ω to ω ± � as k changes from −π/a to π/a
[compare Figs. 1(c) and 2(b)]. With interactions, the peaks of
the spectral function become broad, with tails extending into
the gap while decaying approximately as e−ω/ξν .

The renormalization of the single-particle spectral func-
tion is caused by the dressing of the noninteracting Floquet
bands by virtual electron-hole pair creation and annihila-
tion processes. Our analytical estimate near the quasisteady
state (see Appendix C) suggests that the broadening of G�

L
in the limit WF � U � � is approximately given by ξL ≈
− WF / ln(U 2

�2 [ f 0
L f̄ 0

L + f 0
R f̄ 0

R ]), where f 0
L and f 0

R are the oc-
cupation probabilities of the Floquet bands (see below) and
f̄ 0
ν = 1 − f 0

ν .
Furthermore, the width of G�

L is associated with the
lifetime of the quasiparticles. Figure 2(d) demonstrates the
inverse quasiparticle lifetime, γ , extracted at k = 0 (γ is ap-
proximately uniform in k), as a function of U , with the red
dashed line indicating the driving frequency, �. Remarkably,
near U = 1, the quasiparticle lifetime becomes shorter than
the period of the drive. This is an intriguing regime in which
the Floquet states and the associated Floquet spectrum cannot
be resolved. In what follows, we are particularly interested
in the quasisteady state in this regime, where naïvely, the
topological pumping should not persist.

B. The kinetic equation and population dynamics

To study the formation and properties of the quasisteady
state, we define occupation probabilities by parametrizing the
lesser Green’s function as

G<(k; t, t ′) = fR ◦ GA
R − GR

R ◦ fR + fL ◦ GA
L − GR

L ◦ fL, (5)

where crystal momentum and time indices are suppressed
on the right hand side. By analogy to the case of thermo-
dynamic equilibrium, where the (Fourier-transformed) lesser
Green’s function and the spectral function are related via the
Fermi occupation function, in Eq. (5) the Hermitian matrices
fR(k; t, t ′) and fL(k; t, t ′) play the roles of distribution func-
tions for the two bands. As we will discuss further below,
this interpretation is most meaningful when fR(k; t, t ′) and
fL(k; t, t ′) take simple forms in terms of their matrix and time
(or frequency) structures. We will see that such a simple form
naturally emerges in the quasisteady state of the system.

To assess the dynamics of the distribution functions we
derive a kinetic equation for ∂t̄ fL(k; ω, t̄ ), where fL(k; ω, t̄ )
is obtained via the Wigner transform of the two-time func-
tion, fL(k; t, t ′). A similar approach is often employed in
studies of dynamical systems [143–145] using an “on-shell”
approximation. Such an approximation would not correctly
capture interband scattering, which occurs through high-
order processes in U . To capture these processes we derive
the kinetic equation for fν without imposing the on-shell
approximation [146].

The kinetic equation is obtained by combining the Wigner
transforms of Eqs. (5) and (3b) and subtracting terms propor-
tional to ∂t̄ GR(k; ω, t̄ ), which itself is described by Eq. (3a)
(see Appendix D for the full derivation). Generically, the
kinetic equation for fL can be written as [147] ∂t̄ fL(k; ω, t̄ ) =
IL(k; ω, t̄ ){ fR, fL}, where the collision integral IL is a func-
tional of fR and fL with a matrix structure in the sublattice
indices. Notably, for values of ω where G�

L (k; ω, t ) has signif-
icant weight, i.e., near the lower band [see Fig. 2(d)], the net
collision integral is exponentially small if its arguments are in-
dependent of k and ω (see Appendix D): f (qs)

L (k; ω, t̄ ) = f 0
L 1,

f (qs)
R (k; ω, t̄ ) = f 0

R 1, where f 0
L and f 0

R are constants and 1 de-
notes the identity matrix in sublattice space. In particular, we
estimate IL{ f (qs)

L , f (qs)
R } ∝ e−�/ξ δ f , where δ f = f 0

R − f 0
L . A

state described by this form of f (qs)
ν , characterized by uniform

occupation within each band, exhibits exponentially slow pop-
ulation dynamics and thus describes a long-lived quasisteady
state of the system.

Therefore, following Eq. (5) and the expressions for
f (qs)
L/R (k; ω, t̄ ), the lesser function in the quasisteady state

reads

G<
(qs)(k; ω, t̄ ) = f 0

R G�
R (k; ω, t̄ ) + f 0

L G�
L (k; ω, t̄ ) + O(e−�/ξ ).

(6)

This relation between the lesser function and the chirality-
projected spectral functions in the quasisteady state is
manifested in Figs. 2(b) and 2(c). Comparing these two fig-
ures, we see that the lower band of G< is proportional to the
lower band of G� and the upper band of G< is proportional
to the upper band of G�, with the proportionality constants
f 0
L ≈ an0, and f 0

R ≈ 0.

C. Universal value of the current

Using the form of the quasisteady state found above in
terms of two-point Green’s functions, we can now charac-
terize observables in the quasisteady state. In particular we
focus on the value of the time-averaged current, which was
previously conjectured to take a universal value based on a
weak-coupling picture and evidence from numerical simula-
tions on modestly sized systems.

The instantaneous current averaged along the chain in a
generic translation-invariant state described by G< reads

J (t ) = −i
∫

dk

2π
Tr{G<(k; t, t + 0+)∂kH0(k, t )}, (7)

where the momentum integral is performed over the
first Brillouin zone. Next, we evaluate Eq. (7) in the
quasisteady state given by Eq. (6). At equal times, G<

(qs) can be
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(a) (b)

(c) (d)

FIG. 3. Relaxation to the quasisteady state. (a) “Distance” to
equilibrium, Deq(t ), defined in Eq. (8), as a function of time. Lines
of different colors in this and following panels correspond to the dif-
ferent interaction strengths indicated on the top of the figure, in units
of J0 = 1. Shaded areas indicate error bars due to the extrapolation
procedure; see text. At t = 0, the extrapolation yields nonphysical,
negative values of Deq(t ) due to the quench; we thus cut off these
values in the plot. (b) Effective temperature of the lower band min-
imizing Deq(t ) in units of J0 = 1, as a function of time. The blue
dashed line indicates the point where Teff = WF. (c) Entropy density
of the system’s one-body reduced density matrix as a function of
time, defined in Eq. (9). A dashed line indicates maximal entropy
for a quarter-filled system, when all the particles occupy the lower
band. (d) Period averaged current normalized by the total density of
particles and driving frequency, J̄ (t )(T/ν0 ) as a function of time.

further simplified using G�
ν (k; t, t + 0+) = g�

ν (k; t, t + 0+).
The latter identity directly follows from Eq. (4), because the
time-convolution integrals in the right hand side of Eq. (4)
vanish for t ′ → t . In the frequency domain this identity reads∫

dωG�
ν (k; ω, t̄ ) = ∫

dωg�
ν (k; ω, t̄ ), yielding conservation of

the total spectral weight in each chirality.
Substituting the resulting quasisteady state form of G<

(qs)

into Eq. (7), we obtain J (t ) = f 0
RJ 0

R (t ) + f 0
LJ 0

L (t ), where
J 0

ν = ∫
dk
2π

〈�ν |∂kH0|�ν〉 is the current carried by Floquet
band ν of the system in the absence of interactions, when
fully filled (see Appendix A). As defined in Sec. III above,
|�ν (k, t )〉 denotes the single-particle Floquet state with
crystal momentum k in band ν of the system in the absence
of interactions. In the adiabatic limit, the period averaged
current J̄ 0

ν = 1
T

∫ T
0 dtJ 0

ν is quantized [70] as J̄ 0
R,L = ± 1

T .
In a system where the upper (R) band is initially empty
and the lower (L) band has fractional filling ν0 = an0, we
therefore expect f 0

L = ν0 and f 0
R = 0, such that the current

in the quasisteady state is equal to J̄ (qs) = ν0
T + O(e−�/ξ ),

where the correction captures the deviation of the quasisteady
state from the maximal entropy state in which the upper
band is empty. Figure 3(d) demonstrates the quantization
of the current normalized by ν0 in the quasisteady

state obtained in the numerical simulation (see the
details below).

This is a remarkable result: even in a limit where the
single-particle scattering lifetime may be short compared with
the driving period [see Fig. 2(d)], where the single-particle
Floquet states and associated spectrum are not well resolved
or defined, the current still attains a universal value associated
with the nontrivial topology of the system’s single-particle
Floquet spectrum in the absence of interactions. The universal
value of current holds, up to an exponentially small correc-
tion, provided that the scattering rate (and associated level
broadening, captured by ξ ) remains small compared with the
single-particle band gap, �.

V. NUMERICAL ANALYSIS

To provide extra support of the quasisteady state and
demonstrate its pertinence in a class of interacting models, we
numerically simulated the model given in Eqs. (1) and (2),
with SYK interactions. The SYK-type interactions provide
exact solutions in the large-N limit. We note that the unique
critical properties of the SYK model [119] are not important
here, because the single-particle gap, �, is the dominant scale.
In addition to the terms described above, we also included a
weak random quadratic term ĤSYK−2 = ∑

j,αβ Kαβ ĉ†
jα ĉ jβ +

H.c., where Kαβ = 0 and K2
αβ = K2/N , with K = 0.05. This

additional term is essential for stabilizing the numerics in the
weakly interacting regime. We set the value of K to about 1%
of �, ensuring its impact on the dynamics is negligible.

The unique structure of the SYK interactions allows us
to simulate considerably larger systems compared to exact
diagonalization methods applied to systems with conventional
interactions. Here, we simulated the time evolution of a chain
of 100 SYK dots arranged into L = 50 unit cells. We used
the Kadanoff-Baym equations [given in Eq. (3)] to evolve
the Keldysh-ordered Green’s functions in time [112,123–
128,148,149]; for further details see Appendix E. The system
is initialized in an equilibrium state of Ĥ(0) with temperature
β−1

0 = 0.1 and μ0 = −2.93, which is set to fix the density
of electrons approximately at quarter filling [see Fig. 1(b)].
For the model itself, we select the parameter values: J0 = 1,
J1 = 0.85, v0 = 2.55, � = 0.5 [see Eq. (1) and surrounding
text for the definitions of the Hamiltonian and its parameters].
We note that all the energies and frequencies are given in units
in which J0 = 1.

The time-evolution algorithm is based on the discretiza-
tion of the time and frequency domains, with small steps δt
and δω, respectively. We performed the evolution for several
values of steps in the range 0.08 � δt � 0.16 and 0.015 �
δω � 0.04, and performed a two-dimensional linear extrap-
olation to δt = δω = 0. In the numerical results we present
the extrapolated values with error bars indicating the
uncertainty of the extrapolation procedure (defined as the
difference between the extrapolated value and the closest nu-
merically determined point).

A. Formation of the quasisteady state

We first analyze the formation of the quasisteady state,
wherein the distribution functions fL and fR for the two
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bands become independent of crystal momentum and fre-
quency, while the total populations of the two bands remain
approximately constant. As a means of characterizing the
nonequilibrium state of the system, and to enable the extrac-
tion of an effective temperature (when it is appropriate to do
so), we define the “distance” of the distribution from a thermal
equilibrium state as

Deq(t̄ ) = min
β,μ

∫
adk

2π

∫ ωc

−∞

dω

2π
Tr|iG< + fFD(β,μ)G

�|, (8)

where ωc is the center of the spectrum and the Green’s
functions are evaluated in the Wigner transformed rep-
resentation and averaged over one period: G

<
(k; ω, t̄ ) ≡

1
T

∫ T/2
−T/2 ds G<(k; ω, t̄ + s) and similarly for G

�
(k; ω, t̄ ).

Here, fFD(β,μ) = [1 + eβ(ω−μ)]−1 is the Fermi function. For
a system in thermal equilibrium, the integrand in Eq. (8)
vanishes for all k and ω, corresponding to Deq = 0.

In Figs. 3(a) and 3(b) we plot the evolution of the distance
to equilibrium Deq(t̄ ) and the extracted effective temperature
Teff = β−1

min, corresponding to the minimization in Eq. (8).
When the drive is quenched at t̄ = 0, Deq rapidly grows,
indicating evolution into a far from equilibrium state. We
should note that Deq exhibits a small signal even at t̄ < 0,
which arises because Deq is defined from Wigner functions
that possess uncertainty in t̄ . During the quench, the system
undergoes a highly nonequilibrium evolution. As a result, the
expectation values become unstable, which is manifested by
large error bars (indicated by shaded areas in Fig. 3).

Following the quench, the “distance to equilibrium”
rapidly increases, indicating the formation of a nonequilib-
rium state, because the population after the quench is not
diagonal in the Floquet basis. However, it is important to note
that the momentum distribution of the population immediately
after the quench is the same as the prequench distribution,
leading to only a slight change in Teff [150]. Following the
rapid increase, Deq decays to zero as the system relaxes to
a quasisteady state. Simultaneously, the effective temperature
grows approximately exponentially with a rate �intra: Teff ∼
β−1

0 e�intrat [Fig. 3(b)]. Importantly, at short times after the
quench, the fluctuation-dissipation theorem is not applicable,
as indicated by a large Deq. Consequently, Teff is ill defined in
this regime, giving rise to large error bars near t = 0.

The quasisteady state observed in the simulation approxi-
mately realizes the conditions discussed in Sec. IV B, once the
effective temperature exceeds the width of the single-particle
Floquet bands, Teff � WF, indicated by blue dashed line (and
for Deq � 1). The curves of different colors in Figs. 3(a)
and 3(b) correspond to different interaction strengths, U ; the
time to reach the quasisteady state rapidly decreases with
interaction strength, U .

To track the system’s evolution towards a high entropy
density state, we calculated the average von Neumann entropy
density of the system’s one-body reduced density matrix:

S(t̄ ) = −Tr
∫

dk

2π
[(−iG

<
) log(−iG

<
) + (iG

>
) log(iG

>
)],

(9)

where Ḡ> = −iḠ� + Ḡ< and the Green’s functions are evalu-
ated at equal times t = t ′ = t̄ [see Fig. 3(c)]. The value of S(t̄ )

(a) (b)

FIG. 4. Heating and current in the quasisteady state. (a) Density
of electrons excited to the upper band as a function of time, in the
interacting and noninteracting cases. Circles represent the period
averaged density. In the interacting case, the density of excitations
increases with an approximately constant rate �inter , while in the
noninteracting case the average charge is constant, following an
initial jump at t = 0. (b) Intraband (�intra) and interband (�inter)
equilibration rates as a function of the interaction strength. The
intraband equilibration rate is extracted from the temperature growth
[see Fig. 3(b)]. The interband equilibration rate is extracted from the
slope of the period-averaged excitation density, in (a).

for a maximal entropy density state in a quarter-filled system,
subject to the constraint that all the particles occupy the lower
band, is given by Smax

L = log(2)/a. As can be seen in Fig. 3(c),
the entropy density stabilizes slightly above this value due
to a small population excited to the upper band at t = 0.
After stabilizing near S(t ) ≈ Smax

L , the entropy slowly grows
further due to interband transitions. In the infinite time limit,
we expect S → Smax ≈ 1.12/a corresponding to one-quarter
filling of the entire system.

In Fig. 3(d), we extracted the period-averaged current nor-
malized by the filling, J̄ /ν0 [see Eq. (7)]. As follows from the
discussion below Eq. (7), we expect an approximately quan-
tized value in the units of T −1 for the normalized current in
the quasisteady state. Figure 4(b) shows the period-averaged
current normalized by ν0 as a function of the stroboscopic
time. The gray strips indicate the uncertainty intervals associ-
ated with the extrapolation to infinitesimal grid spacing in the
simulations, as described above. In the regime of strong inter-
actions, the average current rapidly increases on a timescale
set by ∼�intra. When the quasisteady state is reached, the
current obtains the expected universal value to within the
uncertainties of the numerical simulation, as expected. For
later times, the current slowly decays with the rate �inter due
to interband heating. In the weakly interacting case, the nor-
malized current remains nonuniversal for much longer times;
for these cases, the quasisteady state was not reached within
the time window that we were able to simulate. Interestingly,
slowly driven Fermi liquids have been shown to persist in
nonthermal states for parametrically long timescales [112].
The connection between the slow intraband heating observed
here and the mechanism in Ref. [112] will be interesting to
investigate in future work.

B. Interband heating and universal current

To investigate the interband scattering processes and
measure their rates, in Fig. 4(a) we extracted the den-
sity of excitations in the (renormalized) R band from our
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simulations. We define the excitation density as nex(t̄ ) =
−i

∫ ∞
ωc

dω
2π

∫
dk
2π

Tr{G<(k; ω, t̄ )}. The period-averaged density
of excitations jumps at t̄ = 0, when the drive is switched on
[137], and then gradually increases with an approximately
constant rate �inter. The interband equilibration rate, �inter,
compared to the intraband equilibration rate, �intra, is shown
as a function of the interaction strength in Fig. 4(b).

Figure 2(c) shows the period averaged lesser Green’s
function as a function of momentum and frequency, after
30 periods of the drive. The excited population can be seen
as a pale strip at the location of the upper band. Note that the
features are heavily broadened due to fast intraband scattering,
such that for the selected parameters the Floquet harmonic
sidebands are nearly completely washed out.

VI. DISCUSSION AND OUTLOOK

Periodically driven systems can host Floquet-Bloch bands
with unique topological properties that cannot be obtained
in equilibrium systems. In the presence of interactions, it is
natural to wonder if rapid scattering on timescales comparable
to the driving period might mask any dynamical features ex-
pected to arise from the single-particle Floquet states. In this
paper we showed that this need not be the case: even in a state
with high entropy density and rapid scattering, universal trans-
port associated with the topological properties of the system’s
Floquet Bloch bands persists, when the instantaneous gap is
the dominant energy scale in the problem. We demonstrated
this phenomenon in the context of a topological pump with
noninteger filling, which exhibits a long-lived quasisteady
state with maximal entropy density (subject to the constraint
of fixed particle number in each band). We derived conditions
under which the quasisteady state hosts quantized transport
(in units of the particle density), up to an exponentially small
correction in the ratio of the system’s band gap to its renor-
malized bandwidth.

To support these arguments, we studied this phenomenon
numerically in an SYK-type chain. This setup enabled us to
examine the dynamics in a regime of strong scattering, in
system sizes much larger than could be accessed by exact
evolution. This advantage is gained from the fact that the
SYK system can be solved by time evolution of the Kadanoff-
Baym equations. Our numerical results allowed us to study
the dynamics leading to the formation of the quasisteady state.
Importantly, we showed that quantized transport persists even
when quasiparticles are short lived due to fast intraband scat-
tering and the Floquet sidebands are hence not well resolved.
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APPENDIX A: THE BAND-RESOLVED
BARE GREEN’S FUNCTION

Here, we present the derivation of the retarded band-
resolved bare Green’s function [see Figs. 1(c) and 1(d)]. In
the noninteracting case the flavors [denoted by α in Eq. (2)]
are independent of each other. We thus focus on α = 1 and
omit the flavor index. The bare retarded Green’s function is
defined as

gR
ss′ (k; t, t ′) = −i〈{ĉs,k (t ), ĉ†

s′,k (t ′)}〉θ (t − t ′), (A1)

where s, s′ = {A, B} are the sublattice indices, and ĉs,k (t ) =
Û †(t )ĉs,k (0)Û (t ). The unitary evolution operator is given by
Û (t ) = T e−i

∫ t
−∞ Ĥ(t ′ )dt ′

, where Ĥ(t ) is given in Eq. (1). For t
and t ′ well after the quench, the time-dependent Hamiltonian
can be diagonalized, by the Floquet eigenstates |�ν (k, t )〉, for
ν = R, L. In this eigenbasis the fermionic operators read

ĉs,k (t ) = 〈s|�R(k, t )〉d̂R,k + 〈s|�L(k, t )〉d̂L,k, (A2)

where d̂ν,k annihilate the Floquet state |�ν (k, t )〉 and
〈s|�ν (k, t )〉 is the amplitude of the Floquet state projected
onto a sublattice s. Substituting Eq. (A2) in Eq. (A1), and
evaluating 〈{d̂†

ν,k, d̂ν ′,k}〉 = δνν ′ , we arrive at

gR
ss′ (k; t, t ′) = − iθ (t − t ′)

× [〈s|�R(k, t )〉〈�R(k, t ′)|s′〉
+ 〈s|�L(k, t )〉〈�L(k, t ′)|s′〉]. (A3)

Following Eq. (A3), we define the right/left chirality Green’s
functions as

gR
ν (k; t, t ′) = −iθ (t − t ′)|�ν (k, t )〉〈�ν (k, t ′)|. (A4)

Note that gR
ν (k; t, t ′) is essentially a projector to one of the

Floquet bands and therefore has a matrix structure in the
sublattice indices. The original Green’s function [defined in
Eq. (A1)] is given by the sum of the band-resolved Green’s
functions, gR

ss′ (k; t, t ′) = 〈s|gR
R(k; t, t ′) + gR

L(k; t, t ′)|s′〉.

1. Wigner representation of the retarded Green’s function

Next, we derive the Winger-transformed representation of
the band-resolved Green’s function, given in Eq. (A4). The
Wigner transform of g(k; t, t ′) is defined as

g(k; ω, t̄ ) =
∫

eiωδt g(k; t̄ + δt/2, t̄ − δt/2)dδt . (A5)

To evaluate Eq. (A5), we substitute the harmonic expansion
of the Floquet states, |�ν (k, t )〉 = e−iεν (k)t ∑

m e−i�mt |φm
ν (k)〉

(see Sec. IV) in Eq. (A4). We then perform the δt integral,
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yielding [151]

gR
ν (k; ω, t̄ ) =

∑
m,n

∣∣φm+n
ν (k)

〉〈
φm−n

ν (k)
∣∣

ω − εν (k) + m� + i0+ e−2in�t̄ . (A6)

The period averaged Green’s function [see Fig. 1(c)] can be
extracted from the n = 0 terms in Eq. (A6), yielding

ḡR
ν (k; ω) =

∑
m

∣∣φm
ν (k)

〉〈
φm

ν (k)
∣∣

ω − εν (k) + m� + i0+ . (A7)

APPENDIX B: DEFINITION OF THE KELDYSH-FLOQUET
GREEN’S FUNCTIONS IN THE GAUGE-INVARIANT FORM

Due to the nonequilibrium nature of the Floquet-Keldysh
Green’s functions, the energy in the collision processes is
only conserved modulo �. This property complicates the
calculations using the Keldysh formalism, as multiple photon
absorption/emission processes have to be taken into account
in each collision. Here, we present a gauge invariant definition
of the Green’s functions in which the ω index is conserved
in the collision processes, and show how the convolution and
product of the two-time Green’s functions are defined with
this gauge choice. Such a definition allows us to operate the
Keldysh-Floquet Green’s functions as equilibrium Keldysh
Green’s functions with additional matrix structure in the Flo-
quet harmonics.

Given the Wigner-transformed Green’s function G(ω, t̄ )
[see Eq. (A5) for definition], we define the Green’s function
in the harmonic basis (with indices m, n ∈ Z) as

Gmn(ω) = 1

T

∫ T

0
dt̄G(ω + m + n

2
�, t̄ )ei�(m−n)t̄ . (B1)

This definition is invariant under the transformation Gm,n(ω +
l�) = Gm+l,n+l (ω) for any integer l . A convolution C(t, t ′) =∫

dsA(t, s)B(s, t ) reads

Cmn(ω) =
∑

l

Aml (ω)Bln(ω). (B2)

Similarly, a product of two same-time functions, P(t, t ′) =
A(t, t ′)B(t, t ′), is given by

Pmn(ω) =
∑

l

∫
dω′

2π
Am−l,n(ω − ω′)Bl,0(ω′). (B3)

APPENDIX C: EVALUATION OF THE SELF-ENERGY
AND RENORMALIZATION OF THE SPECTRAL

FUNCTION

Here, we estimate the broadening ξ of the renormalized
bandwidth of the Floquet bands in the quasisteady state, dis-
cussed in Sec. IV A. In all the expressions in this section,
we assume the Green’s functions in the frequency domain
are defined as matrices in the harmonic basis [as defined
in Eq. (B1)], and implicitly contract the harmonic indices
following the rules given in Eqs. (B2) and (B3). The renor-
malization of the spectral width can be understood from the
definition of the renormalized Green’s function in terms of
the bare one:

[GR(ω)]−1 = [gR(ω)]−1 − �R(ω), (C1)

(a) (c)

(b)

FIG. 5. Examples of diagrams contributing to the self-energy,
�>(ω), arranged such that the vertices on the positive Keldysh
branch are at the left side and the vertices on the negative Keldysh
branch are at the right side. Notice that the left diagram would not
contribute in the case of the SYK interactions, since it is subleading
in the number of the SYK flavors.

following from Eq. (3a). Focusing on the values of ω at the
gap of the bare function, i.e., where g�(ω) = 0, the renormal-
ized spectral function reads

G�(ω) ≈ − [gR(ω)]2��(ω). (C2)

Therefore, to estimate the broadening of the spectral function,
we need to estimate ��(ω). In what follows, we estimate
the momentum-averaged lesser and greater components of
the self-energy �≶(ω), constituting the spectral component,
�� = i�> − i�<.

To estimate the self-energy, we need to sum over all
irreducible diagrams allowed by the interaction term [the
first four terms in the expansion are demonstrated in
Fig. 2(a)]. We begin by estimating the greater component
of the self-energy, �>(ω). Consider a generic irreducible
diagram in this sum, corresponding to the order U p in
the interaction strength (see Fig. 5). Such a diagram
contains p interaction vertices evaluated at the times t1,
t2, . . . , tp and positions on the Keldysh contour i1, . . . , ip,
where ip = ± corresponding to positive (+) and nega-
tive (−) branches on the Keldysh contour. The vertices
are connected by the noninteracting propagators gi,i′ (t, t ′),
with the convention g+− = g<, g−+ = g>, g++ = gT , and
g−− = gT̃ . For a specific combination of ip, it is useful
to arrange the diagram such that all the vertices on the
positive branch are on the left side and all the vertices
on the negative branch are on the right side (see Fig. 5).
Notice that by the definition of �> the incoming vertex
belongs to the negative Keldysh branch and the outgoing
vertex belongs to the positive branch.

Next, we transform the expression for the self-energy fol-
lowing the transformation given in Eq. (B1). For convenience,
we enumerate the frequencies of the l propagators going from
the left to the right side of the diagram by ω1, ω2, . . . , ωl , and
l − 1 propagators going from the right side to the left side
by ωl+1, ωl+2, . . . , ω2l−1, for l � 1. The maximal value of l
is limited by p. We define the sum of the frequencies of the
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propagators crossing the center of the diagram with opposite
signs by �ω = ω1 + ... + ωl − ωl+1 − ... − ω2l−1. From the
conservation of frequency, �ω = ω, where ω is the frequency
associated with self-energy.

By construction, the propagators directed from the left to
right correspond to the greater component of the Green’s
function, g>(k1, ω1), . . . , g>(kl , ωl ) while the ones directed
oppositely correspond to the lesser components of the Green’s
function, g<(kl+1, ωl+1), . . . , g<(k2l−1, ω2l−1). Therefore, the
greater component of the self-energy of a single diagram to
the order U p is given by

�>
p (ω) =U p

∫
d2l−1 �ωd2l−1�k

(2π )4l−2
δ(ω − �ω)

× g>(k1, ω1) · · · g<(k2l−1, ω2l−1)Fp(�k, �ω), (C3)

where �ω = (ω1, . . . , ω2l−1) and �k = (k1, . . . , k2l−1). The
function Fp(�k, �ω) depends on the spatial form of the inter-
actions, χ (r), and also includes contributions from all the
propagators that do not cross the center of the diagram, which
include the time-ordered and antitime-ordered components.
To keep the notation as simple as possible, we focused on the
single species case for the derivation. However, generalization
to the multispecies case is straightforward.

Our goal is to find an approximate spread of the self-
energy. Therefore, instead of evaluating Eq. (C3), we will
estimate its upper bound, �>

p (ω) � �̃>
p (ω), which is easier

to evaluate. To find the bound, we use the Cauchy-Schwarz
inequality, giving rise to

�̃>
p (ω) =U p

∫
dω1...dω2l−1

(2π )2l−1
δ(ω − �ω)

× ḡ>(ω1) · · · ḡ<(ω2l−1)F̄p(ω1, . . . , ω2l−1). (C4)

where F̄p(�ω) =
√∫

d2l−1�k
(2π )2l−1 |Fp(�k, �ω)|2 and ḡ(ω) =√∫

dk
2π

|g(k, ω)|2. Importantly, the bound in Eq. (C4) is
independent of the specific spatial dependence of χ (r),
because it only depends on the averaged value, F̄p(�ω). The
result converges as long as F̄p(�ω) is analytic.

Our goal is to estimate �̃>(ω) for ω away from the support
of the noninteracting density of states. The dominant con-
tribution to the self-energy would arise from ladder-shaped
diagram, as is shown in Fig. 5(c). Such a diagram has maxi-
mal number of lines crossing the center of the diagram, with
minimal constraints on the intermediate frequencies.

The unique topology of this diagram allows us to write it
as a recursive relation

�̃>
p+2(ω) =U 2

∫
dω1dω2dω3

(2π )2
δ(ω3 − ω + ω1 − ω2)

× ḡ>(ω1)ḡ<(ω2)ḡT (ω3)ḡT̃ (ω3)�>
p (ω3) (C5)

with the initial condition

�̃>
2 (ω) = U 2

∫
dω1dω2

(2π )2
ḡ>(ω1)ḡ<(ω2)ḡ>(ω − ω1 + ω2).

(C6)

For simplicity, we assume a nearly quasisteady state in
which the lesser and greater functions can be approxi-
mated by ḡ>(ω) ≈ i f̄ 0

R ḡ�
R (ω) + i f̄ 0

L ḡ�
L (ω) and ḡ<(ω) ≈ −

i f 0
R ḡ�

R (ω) − i f 0
L ḡ�

L (ω). The dominant contribution arises from
diagrams where each pair of propagators in Eqs. (C5) and
(C6) corresponds to the same band, i.e., ḡ>(ω1)ḡ<(ω2) →
( fL f̄L + fR f̄R)ḡ�

0 (ω1)ḡ�
0 (ω2), where ḡ�

0 (ω) is the density of
states of one of the bands shifted to the center of the energy.
We also approximate ḡT (ω)ḡT̃ (ω) ≈ 1/ω2.

The solution to Eq. (C6), can be written as �̃>
2 (ω)

≈ iU 2 ( fL f̄L + fR f̄R) [ f̄R g̃�
R (3WF , ω) + f̄Lg̃�

L (3WF , ω)],
where g̃�

ν (d, ω) is a function of width d centered
around the νth band. Applying Eq. (C5), we obtain
�̃>

4 (ω) ≈ i U 4

((3/2)WF )2 ( fL f̄L + fR f̄R)2[ f̄Rg̃�
R (5WF , ω) + f̄L g̃�

L

(5WF , ω)]. Similarly, after p iterations, we arrive at
�̃>

2p(ω) ≈ iU 2p

(p!)2W 2p−2
F

( fL f̄L + fR f̄R)p[ f̄Rg̃�
R ((2p + 1)WF , ω) +

f̄Lg̃�
L ((2p + 1)WF , ω)]. We separate the self-energy

to �̃>
2p(ω) = �̃>

L,2p(ω) + �̃>
R,2p(ω) where �̃>

ν,2p(ω) ≈
iU 2p

(p!)2W 2p−2
F

( fL f̄L + fR f̄R)p f̄ν g̃�
ν ((2p + 1)WF , ω).

For a distance |ω| from the left band, the leading or-
der in p is proportional to p ∼ |ω/WF |. Therefore, the
bound on the self-energy to this order reads �̃>

L (ω) ≈
iU f̄L

(�|ω/WF |�!)2 [ U 2

W 2
F

( fL f̄L + fR f̄R)]|ω|/WF . Using Stirling’s approx-

imation p! ≈ pp, we obtain �̃>
L (ω) ≈ iU f̄L[U 2

ω2 ( fL f̄L +
fR f̄R)]|ω|/WF . For ω of the order of �, we arrive at �>

L (ω) �
�̃>

L (ω) ∝ iU f̄Le−|ω|/ξ , where

ξ ≈ − WF / ln

(
U 2

�2
[ fL f̄L + fR f̄R]

)
. (C7)

Similarly, the lesser component of the self-energy reads
�<

L (ω) ∝ −i U fLe−|ω|/ξ . Therefore, �� = i �> − i�< ∝
Ue−|ω|/ξ . Using Eq. (C2), we obtain

G�
L (ω) ∝ e−|ω|/ξ . (C8)

A similar calculation near the upper band leads to the same
energy scale for the broadening.

APPENDIX D: KINETIC EQUATION

In this section, we derive the kinetic equation for the oc-
cupation probabilities, defined in Eq. (5), and demonstrate
that this equation is solved by constant occupations of the
bands fL = f 0

L and fR = f 0
R , up to terms proportional to

O(δ f e−�/ξ ), where δ f = f 0
L − f 0

R . This means that the fixed
point of the kinetic equation to the order e−�/ξ corresponds
to an infinite temperature distribution in each of the bands. If
these terms are included, the fixed point is a global infinite
temperature state, in which δ f = 0.

To derive the kinetic equation, we substitute Eq. (5), in
Eq. (3b). Before, performing the substitution, we rewrite
Eq. (3b) in the frequency-momentum domain by perform-
ing the Wigner transformation of the time-frequency domain,
yielding

[ω − H0(k, t ) � G<(k; ω, t )]

= �R ◦ G< − G< ◦ �A − GR ◦ �< + �< ◦ GA. (D1)

Here, “◦” denotes the Moyal and matrix product and [A �

B] = A ◦ B − B ◦ A. To the first order in the derivatives and
commutators the Moyal commutator reads [A � B] = [A, B] +
i∂t A∂ωB − i∂wA∂t B. Our goal is to derive an equation for ḟL
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and ḟR without imposing the on-shell approximation, which
otherwise would not include the interband transitions occur-
ring off shell. Equation (D1) describes the time evolution
of G<, which includes time evolutions of both the spectral
function and the occupations [see Eq. (5)]. On the other hand,
the evolution of G� alone can be derived from Eq. (3a), and
reads

[ω − H0(k, t ) � G�(k; ω, t )]

= �R ◦ G� − G� ◦ �A − GR ◦ �� + �� ◦ GA. (D2)

To separate the kinetic equation for fL from the kinetic
equation for G�, we define IL(k; ω, t ) ≡ [ω − H0 � G<] +
fL ◦ [ω − H0 � G�]. Evaluating the left hand side of Eqs. (D1)
and (D2), we obtain

IL = [ω − H0 � G< + fL ◦ G�] − [ω − H0 � fL] ◦ G�. (D3)

To simplify, we rewrite Eq. (5) as G< = − fL ◦ G�
L − fR ◦

G�
R + δG<, where δG< = [ fL � GR

L] + [ fR � GR
R]. Therefore,

G< + fL ◦ G� = δ f ◦ G�
R + δG<. To simplify even further,

we assume a close to steady state, such that we can keep
only the first order terms in the derivatives and commuta-
tors of fν . With this assumption δG< is already given to the
leading order and its Moyal commutator will be of higher
order and thus can be neglected. In addition, focusing on
ω ≈ − �/2, the spectral function scales as G�

R ≈ e−�/ξ [see
Eq. (C8)]. Therefore, this term can be neglected compared to
fL ◦ G�

L . With these approximations and explicitly computing
the Moyal commutator of fL in Eq. (D3) to the leading order,
we obtain

IL = (i ḟL + iḢ0∂ω fL − [H0, fL])G�
L . (D4)

Equation (D4) is essentially the left hand side of the
Boltzmann-like equation (up to the band-renormalization
terms discussed below).

Similarly, we evaluate IL using the right hand side of
Eqs. (D1) and (D2), yielding the collision term (and band-
renormalization terms). An explicit calculation yields

IL = G< ◦ �� − G� ◦ �<

+ [�R
� G< + fL ◦ G�] − [�R

� fL] ◦ G�

+ [�< + fL ◦ ��
� GA] − [ fL � GA] ◦ ��. (D5)

Evaluation of Eq. (D5) in a generic state is complex and is
performed in the numerical part. As a first order check, we
will verify that the quasisteady state, given in Eq. (6), corre-
sponding to an infinite temperature state for each of the bands
fν = f 0

ν , with f 0
L �= f 0

R almost nullifies the collision integral
and estimate the timescale for the full thermalization of the
system to an infinite temperature state (in which f 0

R = f 0
L ).

Under the assumption of constant occupations, Eq. (D5) sim-
plifies to

IL = δ f
(
G�

R ◦ ��
L − G�

L ◦ ��
R

)
+ [�R

� δ f G�
R ] + [δ f ��

R � GA]. (D6)

Here, we denote by �L(ω) the self-energy near ω = −�/2,
and similarly �R(ω), denotes the self-energy near ω = �/2.
We also used �<

L ≈ − i f 0
L ��

L and �<
R ≈ − i f 0

R��
R . Impor-

tantly, all the terms in IL are proportional to � f and to either

FIG. 6. Self-consistent relations for a Thouless pump with SYK
interactions. Single lines represent the noninteracting Green’s func-
tion gss′ (k; t, t ′). Double lines represent the renormalized Green’s
functions Gss′ (k; t, t ′).

G�
R or ��

R , that are exponentially small near ω = −�/2. This
exponentially small value of IL is proportional to the rate
of thermalization to the infinite temperature state, in which
δ f = 0. In this state Eq. (D6) becomes identically zero, IL =
0.

APPENDIX E: DETAILS
OF THE NUMERICAL SIMULATION

Here, we present the details of the numerical simulation
of the time evolution of the Kadanoff-Baym equations [see
Eq. (3)]. The time evolution is performed with respect to the
SYK Hamiltonian, given in Eq. (2), with N → ∞. To stabilize
the numerics in the weakly interacting limit, we added a weak
random quadratic term

ĤSYK−2 =
∑
j,αβ

Kαβ ĉ†
jα ĉ jβ + H.c., (E1)

where Kαβ = 0 and K2
αβ = K2/N .

Instead of evolving in time the GR and G< functions, as
appears in Eq. (3), we found it more convenient to evolve
the retarded GR, and Keldysh components GK . The latter is
defined as

GK
ss′ (k; t, t ′) = G>

ss′ (k; t, t ′) + G<
ss′ (k; t, t ′). (E2)

The Kadanoff-Baym equations for these two components read

[i∂t − H0(t )]GR = δ(t − t ′) + �R ◦ GR, (E3a)

[i∂t − H0(t )]GK = �R ◦ GK + �K ◦ GA. (E3b)

The disorder-averaged self-energy for the chain of SYK
dots with SYK-4 [Eq. (2)] and SYK-2 [Eq. (E1)] interactions
can be written in the self-consistent form. The diagrammatic
structure of the self-energy to the leading order in N is shown
in Fig. 6 [119]. As follows from this diagram, the greater and
lesser components of the self-energy are given by

�
≷
ss′ (x; t, t ′) = K2G≷

ss′ (x; t, t ′)

+ J2[G≷
ss′ (x; t, t ′)]2G≶

s′s(−x; t ′, t ). (E4)

Here, x is obtained from the Fourier transform of the
momentum, k, index. The retarded and Keldysh Green’s
functions GR and GK [appearing in Eq. (E3)] are related
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FIG. 7. Time evolution of the retarded and Keldysh Green’s
functions according to the Kadanoff-Baym equations [Eqs. (E3)].
The square in the bottom left corner represents the initial conditions
for the Green’s function, Geq(t, t ′). At each step of the evolution a
new row, column, and cell on the diagonal are added to the matrix,
corresponding to G(t0 + δt, t ), G(t, t0 + δt ), and G(t0 + δt, t0 + δt ).

to G≷ via GR
ss′ (k; t, t ′) = θ (t − t ′)[G>

ss′ (k; t, t ′) − G<
ss′ (k; t, t ′)]

and Eq. (E2). In turn, the inverse relations read G≷ = 1
2 [GK ±

(GR − GA)], where GA
ss′ (k; t, t ′) = GR

s′s(k; t ′, t )†. The relations
for the self-energy are similar, with G replaced by �.

1. Equilibrium solution

Equations (E3) and (E4) constitute a set of integro-
differential equations which determine the time evolution
of the Green’s functions. Initial conditions for this time
evolution are set by the state ρ0, corresponding to equilibrium
with an inverse temperature β0 and Hamiltonian Ĥ(0).
Due to invariance to time translations in equilibrium,
the equilibrium Green’s functions depend only on the
time difference �t = t − t ′. To find the equilibrium solution,
we evaluate Eq. (E3a) for H0(t ) at t = 0 and transform �t to

the frequency space ω, giving rise to

[ω − H0(0)]GR(ω) = 1 + �R(ω)GR(ω). (E5)

Furthermore, Eq. (E3b) is trivially satisfied in equilibrium,
due to the fluctuation-dissipation theorem [144,145,152]:

GK
ss′ (ω) = F (ω)

[
GR

ss′ (ω) − GA
ss′ (ω)

]
, (E6)

where F (ω) = tanh(β0ω/2). The equilibrium Green’s
function is obtained from the self-consistent solution of
Eqs. (E4)–(E6).

2. Time evolution

Having found an equilibrium solution, GR
eq(k; t − t ′)

and GK
eq(k; t − t ′), we rearrange the vectors into matrices

[GR
eq]ss′ (k; t, t ′) and [GK

eq]ss′ (k; t, t ′) of size Nt × Nt in the
time domain and 2 × 2 in the sublattice space, for a vector
of crystal momenta of size L. In our simulations, we used
Nt = 3000 (smaller values of Nt are used to vary δω and δt),
and L = 50. We used the equilibrium solution as the starting
point of the simulation to propagate the Green’s functions
by one time step δt in each iteration according to Eq. (E3)
[148] (see Fig. 7). In particular, given GR(t0, t ′), we evolve GR

according to

GR(t0 + δt, t ′) = U0(t0)

[
GR(t0, t ′) − i

2
δt,t ′

]
− iδt IR(t ′)

(E7)

for t ′ � t0; GR(t, t0 + δt ) = 0 for t � t0; and GR(t0 + δt, t0 +
δt ) = GR(t0, t0). Here we defined U0(t ) = e−iδtH0(t ) and
IR(t ′) = ∫

�R(t0, s)GR(s, t ′)ds.
To optimize the efficiency of the simulation, we keep the

overall size of the matrices constant. Therefore, for each new
element of the Green’s function calculated in the future, we
erase one element in the past. Such a truncation of the Green’s
function fixes the required memory of the simulation and
significantly reduces the computational resources used. The
attached movies in the Supplemental Material demonstrate
the time evolution of the lesser function G<(k, ω, t̄ ) and the
spectral function G�(k, ω, t̄ ), as a function of t̄ [138].
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