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Quantum effects on dynamic structure factors in dense magnetized plasmas
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We extend the classical magnetohydrodynamics formalism to include nonlocal quantum behavior via the phe-
nomenological Bohm potential. We then solve the quantum magnetohydrodynamics equations to obtain a new
analytical form of the dynamic structure factor (DSF), a fundamental quantity linking theory and experiments.
Our results show that the three-peak structure—one central Rayleigh peak and two Brillouin peaks—of the
DSF arising from quantum hydrodynamic fluctuations becomes (in general) a five-peak structure—one central
Rayleigh peak and two pairs of peaks associated with fast and slow magnetosonic waves. The Bohm contribution
influences the positions and characteristics (height, width, and intensity) of the peaks by introducing three
significant modifications: (i) an increase in effective thermal pressure, (ii) a reduction in the adiabatic index, and
(iii) an enhancement of effective thermal diffusivity. The multiple DSF peaks enable concurrent measurements of
diverse plasma properties, transport coefficients, and thermodynamic parameters in magnetized dense plasmas.
The potential for experimental validation of our theory looms large, particularly through future experiments
conducted at state-of-the-art laser facilities.
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I. INTRODUCTION

In the universe, matter is often found in extreme states,
with densities comparable to solids and temperatures of a few
electron volts, known as warm dense matter (WDM). As the
temperature rises to the order of a few keV, one enters the
regime of a hot dense plasma. Matter under such extreme
conditions is characterized by partially degenerate electrons
and strongly correlated ions [1,2]. Precise measurements of
plasma conditions, including transport and thermodynamic
properties in both WDM and dense plasmas, are of high
importance for understanding high-energy density physics
phenomena. The applications span a wide range, from mod-
eling the atmosphere of neutron stars [3] and magnetars [4,5]
to investigating the interiors of giant planets [6,7], white [8,9]
and brown dwarfs [10], as well as for the advancement of
inertial confinement fusion [11,12], with its promise of poten-
tially abundant and clean energy for the future. However, the
extreme conditions pose significant challenges in diagnostics,
often preventing direct measurement of even basic plasma
properties.

A fundamental quantity that describes the microscopic
space- and time-dependent behavior of WDM and dense plas-
mas is the dynamic structure factor (DSF) [13]. The DSF
contains essential information on the energy and angular dis-
tribution of the scattering that results from the individual
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and collective behavior of electrons and ions. This property,
in turn, makes the DSF a function of macroscopic plasma
quantities such as density, temperature, and magnetic fields.
Since the DSF is directly proportional to the x-ray Thomson
scattering cross section, it can be probed through laser plasma
experiments [14]. The comparison between experimental and
calculated DSF not only validates theoretical models but also
allows the simultaneous measurement of plasma properties
that are otherwise challenging to determine. Thus, the DSF
serves as a powerful diagnostic tool for probing, understand-
ing, and characterizing the intricate behavior of WDM and
dense plasmas, making a significant contribution to the ad-
vancement of high-energy density physics research.

The DSF is formally defined as the Fourier transform in
space and time of the density autocorrelation function. For
density fluctuations, the hydrodynamic description is highly
successful due to its analytical solvability [13], connecting
fundamental thermodynamics and transport properties of plas-
mas in a simple physical form. These analytical results have
shown good agreement with molecular dynamic simulations
[15,16] in predicting the dynamical response of strongly cou-
pled classical plasmas. However, classical hydrodynamics
falls short in capturing various astrophysical and labora-
tory conditions, such as systems with dynamically dominant
magnetic fields and quantum effects. In the presence of a
background magnetic field, previous results have been limited
to special cases like weakly coupled plasmas [17,18] or those
neglecting particle correlations [19]. Recently, Bott and Gre-
gori [20] computed the DSF in a magnetized, high-density
plasma, describing collective excitations through magnetohy-
drodynamics (MHD).

In this paper, we extend the classical MHD formalism
to incorporate quantum effects through the introduction of
the Bohm potential [21–24]. This novel approach allows
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us to derive an analytical expression for the modified DSF
in strongly coupled, partially degenerate, and magnetized
plasmas. Our comprehensive framework encompasses finite
viscosity, thermal conductivity, electrical resistivity, and quan-
tum nonlocality. We demonstrate that quantum effects do
not change the number of excitation modes compared to
their classical counterparts. However, we will show that the
introduction of quantum contributions leads to substantial
modifications in the positions and characteristics of these DSF
resonances through (i) a significant enhancement of effective
thermal pressure, (ii) a reduction in the adiabatic index, and
(iii) an augmentation of effective thermal diffusivity.

Traditionally, the Landau-Placzek ratio [13], defined as the
ratio of the Rayleigh peak intensity to that of the two Bril-
louin peaks, offers a means to estimate the specific heat ratio
(adiabatic index) of fluids across a wide range of thermody-
namic conditions [25–28]. In quantum MHD, we demonstrate
that the expression for the Landau-Placzek ratio remains un-
changed as RLP = γ ′ − 1, with the adiabatic index γ being
modified due to the Bohm contributions. Additionally, we in-
troduce another significant parameter, the F-to-S ratio, which
quantifies the intensity ratio of the fast magnetosonic wave
peak to the slow magnetosonic wave peak. This ratio pro-
vides an experimental avenue for measuring the magnetic field
strength within the plasma medium.

The paper is organized as follows. In Sec. II, we present
the governing equations of MHD in a standard form, in-
corporating quantum dynamics through the Bohm potential.
Section III provides a derivation of the density autocorrela-
tion function, and consequently, the dynamic structure factor,
within the context of quantum MHD for small-amplitude fluc-
tuations. Moving on to Sec. IV, we derive the general form of
the dynamic structure factor for fluctuations with wave vectors
parallel to the magnetic field. This scenario closely resembles
quantum hydrodynamics fluctuations. In Sec. V, we extend
our analysis to derive the general form of the dynamic struc-
ture factor for oblique fluctuations within the quantum MHD
framework. Finally, the paper concludes with a summary in
Sec. VI.

II. GENERAL MAGNETOHYDRODYNAMICS EQUATIONS

We systematically present the general set of single-fluid
MHD equations governing an electron-ion plasma, incorpo-
rating considerations of heat conduction and quantum effects.
The ideal quantum MHD equations are derived from the
first-principles kinetic description of quantum plasmas [29].
In contrast, the relevant transport coefficients, essential for a
comprehensive description of the system, are derived from
classical kinetic theory [30]. Generalizing them to quantum,
nonideal plasmas is not a trivial task, and in the context of
this work, such coefficients must be assumed to provide only
a phenomenological description of the plasma. On the other
hand, if experimental data becomes available, the phenomeno-
logical description used here can be employed to extract those
coefficients from the data itself.

The governing equations for the conservation of mass,
momentum, magnetic flux, and internal energy are given,

respectively, by [31]

dρ

dt
= −ρ∇·u, (1a)

ρ
du
dt

= −∇p − ∇·� + (∇×B) × B
μ0

+ �Bohm, (1b)

dB
dt

= (B · ∇)u − B(∇·u) − ∇×(η∇×B), (1c)

ρ
dε

dt
= −p∇·u − � : ∇u + η

|∇×B|2
μ0

− ∇·q
+�Bohm · u, (1d)

where ρ is the mass density, t the time, u the bulk fluid veloc-
ity, p the pressure, � the viscosity tensor, �Bohm the quantum
Bohm potential, B the magnetic field, μ0 the permeability of
free space, η the magnetic diffusivity, ε the internal energy,
and q is the heat flux. Here, the convective derivative can
be written as d/dt ≡ ∂/∂t + u · ∇. The expressions for the
viscosity tensor, heat flux, and the quantum Bohm potential
(see Appendix A for more detail) are explicitly given by [31]

� = −ζs

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
− ζb(∇ · u)I, (2a)

q = −κ∇T, (2b)

�Bohm = h̄2ρ

2memi
∇

(
∇2√ρ√

ρ

)
, (2c)

where ζs is the shear viscosity (or the first coefficient of
viscosity), ζb the bulk viscosity (or the second coefficient of
viscosity), I the identity tensor, κ the thermal conductivity, T
the fluid temperature, h̄ the reduced Planck’s constant, me the
electron mass, and mi the ion mass. Note that the momentum
associated with a fluid element can change not only by the
pressure gradient and the inertial term but also because of
viscous drag, the Lorentz force, and quantum effects arising
from the contribution of the Bohm potential. The energy equa-
tion correctly describes the nonlocal quantum effects as well
as the effects arising from the nonideal heat flux.

It is worth rewriting the internal energy conservation law
(1d) as a temperature evolution equation in terms of density,
bulk flow velocity, and the magnetic field. Following the first
law of thermodynamics, and using thermodynamic identities
and Eq. (1a), we can rewrite Eq. (1d) as (see Appendix B for
details)

ρCV
dT

dt
= −γ − 1

αT
ρCV ∇ · u − � : ∇u

+ η
|∇ × B|2

μ0
− ∇ · q + �Bohm · u, (3)

where CV is the heat capacity at constant volume, γ the
adiabatic index, and αT the coefficient of thermal expansion.
Also, we eliminate the pressure gradient in Eq. (1b) using the
thermodynamic identity (see Appendix B for details)

∇p = c2
s

γ
(∇ρ + ραT ∇T ), (4)

where cs is the adiabatic sound speed.
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On substituting (2) and (4), we rewrite the set of MHD
equations as

dρ

dt
= −ρ∇·u, (5a)

ρ
du
dt

= −c2
s

γ
(∇ρ + ραT ∇T ) + (∇×B) × B

μ0

+�Bohm + ∇(ζb∇·u)

+∇·
[
ζs

{
∇u + (∇u)T − 2

3
(∇ · u)I

}]
, (5b)

dB
dt

= (B · ∇)u − B(∇·u) − ∇×(η∇×B), (5c)

ρ
dT

dt
= −γ − 1

αT
ρ∇·u − 1

CV
� : ∇u + η

|∇ × B|2
μ0CV

+ 1

CV
∇·(κ∇T ) + 1

CV
�Bohm · u. (5d)

In the temperature evolution equation, we have not writ-
ten down the full expression for viscous dissipation term for
brevity.

III. FLUCTUATIONS AND THE DYNAMIC
STRUCTURE FACTOR

We now focus on the calculation of the density autocor-
relation function, and thereby the quantum-MHD dynamic
structure factor in the limit of small-amplitude fluctuations.
To perform this calculation, we consider small fluctuations
of dynamic quantities for a fluid system in some equilibrium
state, and linearize the above quantum-MHD equations. We
assume the system is in equilibrium at a density ρ0, bulk
flow velocity u0 = 0, magnetic field B0, temperature T0, sound
speed cs0, adiabatic index γ0, coefficient of thermal expansion
αT 0, specific heat capacity at constant volume CV 0, thermal
conductivity κ0, bulk viscosity ζb0, shear viscosity ζs0, and
magnetic diffusivity η0. We then take the small-amplitude
fluctuations of dynamic quantities on this equilibrium state,
as

ρ = ρ0 + δρ, u = δu, B = B0 + δB, T = T0 + δT .

(6)

Substituting linearization (6) into Eqs. (5a)–(5d), and neglect-
ing terms quadratic or higher order in fluctuating quantities,
we obtain

∂δρ

∂t
= −ρ0∇ · δu, (7a)

ρ0
∂δu
∂t

= −c2
s0

γ0
(∇δρ + ρ0αT 0∇δT ) + B0 · ∇δB

μ0

−∇
(

B0 · δB
μ0

)
+ ζs0∇2δu + ζc0∇(∇ · δu)

+ h̄2

4memi
∇(∇2δρ), (7b)

∂δB
∂t

= B0 · ∇δu − B0∇ · δu + η0∇2δB, (7c)

∂δT

∂t
= −γ0 − 1

αT 0
∇ · δu + γ0χ0∇2δT, (7d)

where we have defined the compressive viscosity coefficient
ζc0 ≡ ζb0 − 2ζs0/3, and thermal diffusivity χ0 ≡ κ0/ρ0CV 0γ0.
Here, the terms with subscript 0 refer to the quantities at
equilibrium.

To obtain the MHD DSF, we apply to Eqs. (7a)–(7d) a
Laplace transform in time, and a Fourier transform in space.
For any plasma quantity δx, this operation is defined as

δ̃xk (s) =
∫ ∞

0
dt e−st

∫ +∞

−∞
d3r eik·r δx(r, t ),

where the quantity with tilde indicates the transformed one,
and s = ε + iω is the complex Laplace variable. Using stan-
dard properties of Fourier and Laplace transforms under
derivatives, we find

sδ̃ρk(s) = − iρ0k · δ̃uk(s) + δρk(0), (8a)

ρ0sδ̃uk(s) = −c2
s0

γ0
[ikδ̃ρk(s) + iρ0αT 0kδ̃T k(s)]

+ iδ̃Bk(s)
B0 · k
μ0

− ik
B0 · δ̃Bk(s)

μ0

− ζs0k2δ̃uk(s) − ζc0k[k · δ̃uk(s)]

− h̄2k2

4memi
ikδ̃ρk(s) + ρ0δuk(0), (8b)

sδ̃Bk(s) = i(B0 · k)δ̃uk(s) − iB0[k · δ̃uk(s)]

− η0k2δ̃Bk(s) + δBk(0), (8c)

sδ̃T k(s) = − i
γ0 − 1

αT 0
k · δ̃uk(s) − γ0χ0k2δ̃T k(s) + δTk(0).

(8d)

A. Density autocorrelation function

We assume that the initial density fluctuations δρk(0) are
uncorrelated with the initial velocity fluctuations δuk(0), the
initial magnetic field fluctuations δBk(0), and the initial tem-
perature fluctuations δT k(0). This assumption allows δuk(0),
δBk(0), and δT k(0) to be set to zero. Next, we write the mag-
netic field fluctuations δ̃Bk(s) and the temperature fluctuations
δ̃T k(s) in terms of velocity field fluctuations δ̃uk(s), using
Eqs. (8c) and (8d), respectively:

δ̃Bk(s) = i(k · B0)δ̃uk(s) − i[k · δ̃uk(s)]B0

s + η0k2
, (9a)

δ̃T k(s) = − i(γ0 − 1)[k · δ̃uk(s)]

αT 0(s + γ0χ0k2)
. (9b)

We then solve for B0 · δ̃uk(s) in terms of δ̃ρk(s) and
iρ0k · δ̃uk(s), by taking the scalar product of (8b) with B0, and
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substituting (9b). This gives

B0 · δ̃uk(s) = − i(k · B0)

(ρ0s + ζs0k2)

[(
c2

s0

γ0
+ h̄2k2

4memi

)
δ̃ρk(s) −

{
(γ0 − 1)c2

s0

γ0(s + γ0χ0k2)
+ νc0

}
iρ0k · δ̃uk(s)

]
. (10)

We subsequently evaluate iρ0k · δ̃uk(s) in terms of δ̃ρk(s) alone, using the scalar product between (8b) and ik, as well as
substituting (9a), (9b), and (10):

isρ0k · δ̃uk(s) =
(

k2c2
s0

γ0
+ h̄2k4

4memi

)[
1 + (k · B0)2

μ0(s + η0k2)(ρ0s + ζs0k2)

]
δ̃ρk(s) −

[
(γ0 − 1)k2c2

s0

γ0(s + γ0χ0k2)
+ νl0k2

+ k2B2
0

μ0ρ0(s + η0k2)
+ k2(k · B0)2

μ0(s + η0k2)(ρ0s + ζs0k2)

{
(γ0 − 1)c2

s0

γ0(s + γ0χ0k2)
+ νc0

}]
iρ0k · δ̃uk(s). (11)

After some rearrangement, this gives

iρ0k · δ̃uk(s) =
[

D(k, s)

N (k, s)
− s

]
δ̃ρk(s), (12)

where the functions N (k, s) and D(k, s) are defined as

N (k, s) = (s + γ0χ0k2)(s + νl0k2)(s + η0k2)(s + νs0k2)

+ γ0 − 1

γ0
k2c2

s0(s + η0k2)(s + νs0k2)

+ k2v2
A(s + γ0χ0k2)[s + k2(νs0 + νc0cos2θ )]

+γ0 − 1

γ0
k4v2

Ac2
s0cos2θ, (13a)

D(k, s) =
(

k2c2
s0

γ0
+ h̄2k4

4memi

)
(s + γ0χ0k2)

× [
(s + η0k2)(s + νs0k2) + k2v2

Acos2θ
]

+ sN (k, s). (13b)

Here, we define various additional quantities: shear kine-
matic viscosity νs0 ≡ ζs0/ρ0, compressive kinematic viscosity
νc0 = ζc0/ρ0, longitudinal kinematic viscosity νl0 = νs0 +
νc0, θ the angle between B0 and k, and vA ≡ B0/

√
μ0ρ0 the

Alfvèn speed, where B0 = |B0|.
Finally, we substitute (12) into (8a), and solve for δ̃ρk(s) in

terms of δρk(0),

δ̃ρk(s) = N (k, s)

D(k, s)
δρk(0). (14)

It provides the density autocorrelation function:

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 = N (k, s)

D(k, s)
. (15)

B. Dynamic structure factor

The dynamic structure factor Snn(k, ω) is [20]

2πSnn(k, ω)

Snn(k)
= 2Re

[
lim
ε→0

〈δρ∗
k (0)δ̃ρk(s = ε + iω)〉
〈δρ∗

k (0)δρk(0)〉

]
, (16)

where

Snn(k) =
∫

Snn(k, ω)dω, (17)

is the static structure factor.

IV. PARALLEL FLUCTUATIONS

We first consider fluctuations whose wave vector is parallel
to the magnetic field, i.e., cos θ = 1. In this case, we have

N (k, s) = [
(s + η0k2)(s + νs0k2) + k2v2

A

]
N‖(k, s), (18a)

D(k, s) = [
(s + η0k2)(s + νs0k2) + k2v2

A

]
D‖(k, s), (18b)

where

N‖(k, s) = (s + γ0χ0k2)(s + νl0k2) + γ0 − 1

γ0
k2c2

s0, (19a)

D‖(k, s) =
(

k2c2
s0

γ0
+ h̄2k4

4memi

)
(s + γ0χ0k2)

+ sN‖(k, s). (19b)

The density autocorrelation function becomes

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 = N‖(k, s)

D‖(k, s)
. (20)

First, neglecting all the diffusive effects, we find

N‖(k, s) = s2 + γ0 − 1

γ0
k2c2

s0, (21a)

D‖(k, s) = s

(
s2 + k2c2

s0 + h̄2k4

4memi

)
. (21b)

The roots are then

s∗ = 0, ±ikceff, (22)

where

ceff =
√

c2
s0 + c2

Q, with c2
Q = h̄2k2

4memi
. (23)
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FIG. 1. The dynamic structure factor in magnetized, high-density plasma with increasing quantum effects at θ = 0◦. The structure factor
is presented in a dimensionless form; this is obtained via s → skcs0. With this mapping, the magnitude of the various dissipative terms
are represented by the dimensionless numbers kχ0/cs0, kη0/cs0, kνs0/cs0, and kνc0/cs0. The peak magnitude is normalized to the classical
(cQ/cs0 = 0), parallel case. We choose γ0 = 5/3. The dimensionless values of the dissipative terms: (a) kχ0/cs0 = 0.05, kη0/cs0 = 0.05,
kνs0/cs0 = 0.0335 and kνc0/cs0 = 0.0165, and (b) kχ0/cs0 = 0.01, kη0/cs0 = 0.01, kνs0/cs0 = 0.0067 and kνc0/cs0 = 0.0033.

We then determine the density autocorrelation function in the
neighborhood of each of these roots in turn. The numerator
is N (k, s∗) �= 0 in each case. By reintroducing the diffusive
terms, we have [20]

(1) s∗ = 0: Let s = δs ∼ χ0k2, η0k2, νs0k2, νl0k2. Then,

D‖(k, s) ≈ k2cs0
2 (δs + χ0k2) + k2cQ

2 (δs + γ0χ0k2),

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈ (γ0 − 1)c2

s0

/(
γ0c2

eff

)
s + �χk2

, (24)

where

�χ = c2
s0 + γ0c2

Q

c2
eff

χ0 = Qχ0, (25)

and

Q = c2
s0 + γ0c2

Q

c2
eff

� 1. (26)

In the classical limit (i.e., cQ = 0), the factor Q becomes
unity.

(2) s∗ = ±ikceff: Let s = ±ikceff + δs, δs ∼ χ0k2, η0k2,

νs0k2, νl0k2. Then,

D‖(k, s) ≈ −2k2c2
eff (δs + �‖k2),

where

�‖ = 1
2 (νl0 + γ0χ0 − �χ ). (27)

It follows that

〈δρ∗
k (0)δ̃ρk(s)〉

〈δρ∗
k (0)δρk(0)〉 ≈

(
γ0c2

Q + c2
s0

)/(
2γ0c2

eff

)
s ∓ ikceff + �‖k2

. (28)

The dynamic structure factor can be derived using (16):

2πSnn(k, ω)

Snn(k)
≈ γ0 − 1

γ0

c2
s0

c2
eff

[
2�χk2

ω2 + (�χk2)2

]
+ Q

γ0

[
�‖k2

(�‖k2)2 + (ω + ceffk)2

+ �‖k2

(�‖k2)2 + (ω − ceffk)2

]
. (29)

The dynamic structure factors for parallel modes are shown in
Fig. 1 for different values of cQ/cs0. The calculated structure
factor is similar to the hydrodynamic structure factor with
some modifications arising from the contribution of the Bohm
potential. In MHD, parallel fluctuations of magnetic fields
propagate as the Alfvèn waves and do not have a density per-
turbation associated with them. Since the parallel compressive
fluctuations do not interact with the magnetic fields, the MHD
structure factor for parallel wave numbers becomes identical
to the hydrodynamic one. The spectrum consists of three
peaks: the central Rayleigh peak at ω = 0, and two Brillouin
peaks at ω = ±kceff. The physical nature of two different
peaks can be explained qualitatively through the thermody-
namic theory of fluctuations. Since the sound propagation is
an adiabatic process, the density fluctuations can be decom-
posed into two types: entropy fluctuation at constant pressure
and pressure fluctuation at constant entropy. The Rayleigh
peak is associated with the nonpropagating nature of the
entropy fluctuation, whereas two shifted Brillouin peaks are
associated with adiabatic pressure fluctuations, which propa-
gate as sound waves. Hence, the position of Brillouin peaks
is given by the dispersion relation of sound waves. The peak
shapes are Lorentzian, and these are broadened due to dif-
ferent dissipative processes, which damp out the fluctuations.
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The expressions of the full width at half-maximum (FWHM)
for Rayleigh and Brillouin peaks are given by, respectively,

WR = 2
�χk

cs0
, and WB = 2

�‖k

cs0
. (30)

The corresponding peak heights are

HR = 4

WR

(
1 − Q

γ0

)
, and HB = 2

WB

Q

γ0
. (31)

The total integrated intensity of the Rayleigh peak and each of
the two Brillouin peaks are

IR =
[
γ0 − 1

γ0

c2
s0

c2
eff

]
Snn(k) =

[
1 − Q

γ0

]
Snn(k), (32a)

IB = Q

2γ0
Snn(k). (32b)

Thus, IR + 2IB = Snn(k), which is a particular case of the
sum rule (17). The ratio of the intensity of the central Rayleigh
peak to that of the two shifted Brillouin peaks is given by

IR

2IB
=

(
γ0

Q
− 1

)
= (γ ′

0 − 1). (33)

This is known as the Landau-Placzek ratio.
In comparison with the classical hydrodynamic case, the

Bohm contribution brings a number of similarities and differ-
ences. While the frequency position of the central Rayleigh
peak remains unchanged, the frequency positions of the Bril-
louin peaks are shifted to ω = kceff � kcs0. Such modified
waves are physically similar to sound waves, except for
the effective equilibrium pressure being increased by ad-
ditional quantum pressure arising from the nonlocal Bohm
contribution. Most significantly, there are two important
modifications: (i) the quantum effects enhance the effective
thermal diffusivity by a factor of Q, i.e., χ ′

0 = Qχ0, and (ii)
it reduces the adiabatic index by the same factor of Q, i.e.,
γ ′

0 = γ0/Q.
For the Rayleigh peak, thermal diffusivity alone deter-

mines the width via �χ . With increasing quantum effects,
the FWHM of the Rayleigh peak increases due to the en-
hancement of the effective thermal diffusivity. The height of
the Rayleigh peak decreases with increasing quantum effects

because of the combined contributions of the enhanced ther-
mal diffusivity and a reduction in the adiabatic index as per
Eq. (31). On the other hand, the width of the Brillouin peak
depends on both viscosity and thermal diffusivity via �‖,
which decreases with increasing quantum effects. It further
enhances the height of the Brillouin peak following Eq. (31).
These claims are illustrated in Fig. 1.

V. OBLIQUE FLUCTUATIONS

Next, we focus on oblique fluctuations, where the wave
vector makes an arbitrary angle, θ , with the magnetic field.
The objective is to carry out an analytical calculation for
the DSF using the quantum MHD formalism. Through this
approach, we aim to gain a comprehensive understanding of
the scattering spectrum, considering various combinations of
oblique scattering angles, magnetic field strengths, and quan-
tum effects. We then discuss how these factors, along with
thermodynamic and transport coefficients, collectively influ-
ence the positions and shapes (height and width) of different
peaks in the scattering spectra.

The positions of various peaks can be obtained from the
roots of D(k, s). By neglecting all the diffusive effects, we
find

D(k, s) ≈ s
[
s4 + (

k2c2
eff + k2v2

A

)
s2 + k4v2

Ac2
effcos2θ

]
. (34)

The five roots are then

s∗ = 0, ±ikcF , ±ikcS, (35)

with associated peak frequencies

ω2 = 0, k2c2
F , k2c2

S, (36)

where

cF =
[

1

2

{(
c2

eff + v2
A

) +
√(

c2
eff + v2

A

)2 − 4c2
effv

2
Acos2θ

}]1/2

,

(37a)

cS =
[

1

2

{(
c2

eff + v2
A

) −
√(

c2
eff + v2

A

)2 − 4c2
effv

2
Acos2θ

}]1/2

.

(37b)

Using the same approach as for parallel fluctuations, an
analytical form of the DSF can be derived using Eq. (16):

2πSnn(k, ω)

Snn(k)
≈

(
1 − Q

γ0

)[
2�χk2

ω2 + (�χk2)2

]
+ Q

γ0

[(
c2

F − v2
A

2c2
F − v2

A − c2
eff

){
�F k2

(�F k2)2 + (ω + cF k)2

+ �F k2

(�F k2)2 + (ω − cF k)2

}
+

(
c2

S − v2
A

2c2
S − v2

A − c2
eff

){
�Sk2

(�Sk2)2 + (ω + cSk)2
+ �Sk2

(�Sk2)2 + (ω − cSk)2

}]
, (38)

where

�F = 1

2

[(
c2

F − v2
A

2c2
F − v2

A − c2
eff

)
(γ0 − Q)χ0 +

(
c2

F − c2
eff

2c2
F − v2

A − c2
eff

)
η0 + νs0 + c2

F

c2
eff

(
c2

F − v2
A

2c2
F − v2

A − c2
eff

)
νc0

]
, (39a)

�S = 1

2

[(
c2

S − v2
A

2c2
S − v2

A − c2
eff

)
(γ0 − Q)χ0 +

(
c2

S − c2
eff

2c2
S − v2

A − c2
eff

)
η0 + νs0 + c2

S

c2
eff

(
c2

S − v2
A

2c2
S − v2

A − c2
eff

)
νc0

]
. (39b)
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FIG. 2. The dynamic structure factor in magnetized, high density plasma at different oblique scattering angles. The plotted dynamic
structure factors are calculated in the same way as in Fig. 1(a), with the same dimensionless values for the dissipative terms. The other
parameters are: (a) cQ/cs0 = 0, and vA/cs0 = 1, and (b) cQ/cs0 = 1, and vA/cs0 = 1.

For oblique fluctuations, the dynamic structure factor con-
sists of five peaks instead of three. The central Rayleigh peak
at ω = 0 remains unchanged, as in the case of pure hydrody-
namic or parallel fluctuations. Among the four peaks, there
exist a pair of peaks at frequencies ω = kcF � kceff � kcs0,
and a new pair of peaks has emerged at frequencies ω = kcS .
The FWHMs of these different peaks are given by, respec-
tively,

WR = 2
�χk

cs0
,WF = 2

�F k

cs0
, and WS = 2

�Sk

cs0
. (40)

The width of both pairs of peaks depends on a linear com-
bination of thermal diffusivity, resistivity, and the viscosities
via their corresponding �′s. The heights of the corresponding
peaks are given by

HR = 4

WR

(
1 − Q

γ0

)
, (41a)

HF = 2

WF

Q

γ0

(
c2

F − v2
A

2c2
F − v2

A − c2
eff

)
, (41b)

HS = 2

WS

Q

γ0

(
c2

S − v2
A

2c2
S − v2

A − c2
eff

)
. (41c)

Physically, the entropy mode does not contain a mag-
netic component; thus, the central Rayleigh peak remains
unchanged in MHD. The emergence of additional peaks and
their characteristics can also be explained physically. Specif-
ically, these peaks correspond to two distinct MHD modes:
the fast magnetosonic wave, propagating with a speed cF ,
and the slow magnetosonic wave, propagating with a speed
cS . The frequency position of the fast magnetosonic mode is
always greater than that for the slow magnetosonic mode. This
is because of the effective equilibrium pressure for the fast
magnetosonic wave being enhanced by additional magnetic
pressure. The amount of enhancement depends on the oblique
scattering angle. First, we consider a classical MHD system in
which the equilibrium thermal and magnetic energy densities

are comparable; this is equivalent to vA = cs0. In the classical
MHD case, the speed associated with the quantum pressure
vanishes (i.e., cQ = 0). For quasiperpendicular perturbations
(i.e., cos θ � 1), the thermal and magnetic pressure fluctua-
tions are in phase for the fast magnetosonic waves. On the
other hand, the slow magnetosonic waves become almost in-
compressible with thermal and magnetic pressure fluctuations
acting out of phase. For the quasiparallel mode (i.e., cos θ �
1), the frequencies of the fast and slow magnetosonic modes
are of similar orders of magnitude at a given wave number,
but the fast mode’s frequency is always greater. At positive
frequencies, the positions of the fast and slow mode’s peak
become increasingly seperated as θ is increased. These points
are illustrated in Fig. 2(a), for a fixed magnetization (vA = cs0)
with increasing oblique scattering angles.

In the quantum MHD scenario, we start our analysis
by considering the equilibrium quantum speed equating to
the equilibrium sound speed, denoted as cQ = cs0. Further-
more, we assume vA = cs0. The resultant DSF is depicted
in Fig. 2(b). In comparison to the classical MHD case, due
to the introduction of Bohm contributions, the DSF exhibits
modified peaks. Quantum effects enhance the effective ther-
mal pressure for both magnetosonic waves. Consequently, the
peak positions associated with fast and slow magnetosonic
waves shift towards higher frequencies relative to their clas-
sical MHD counterparts. Another notable similarity is the
increasing separation of peak positions linked to the fast and
slow modes as the obliquity angle θ is increased. This behav-
ior primarily stems from the fast mode’s peak shifting to a
higher frequency and the slow mode’s peak shifting to a lower
frequency as θ increases, in accordance with Eq. (37). The
modification of cF and cS with θ directly impacts peak widths
through their influence on the corresponding �F,S [Eq. (39)].
For a given magnetic and quantum pressure, the coefficients
associated with various dissipative terms in the expressions
for �F,S change with the opposite sign as the oblique angle
changes. Specifically, for the fast mode, the coefficients tied
to thermal diffusivity and magnetic diffusivity diminish with
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FIG. 3. The FWHM of fast (solid curves) and slow (dashed
curves) magnetosonic modes in magnetized, high-density plasma
with increasing oblique scattering angles for classical (red curves)
and quantum (blue curves) MHD scenarios. We choose vA/cs0 = 1.
The magnitudes of various dissipative terms are consistent with those
in Fig. 1(a).

increasing oblique angle, while the coefficient connected to
compressive viscosity increases with rising θ . Consequently,
the width of the fast mode peak may either expand or contract,
depending on the relative magnitudes of these dissipative
terms. For a given set of dissipative terms, the width of the
peak linked to the fast mode increases with the oblique angle,
as shown in Fig. 3. Conversely, the slow mode experiences
a reduction in peak width due to the declining coefficients
associated with thermal diffusivity, magnetic diffusivity, and
compressive viscosity as θ increases. This is also illustrated in
Fig. 3.

In addition to changes in peak width, the peak heights
corresponding to the fast and slow modes exhibit diverse

variations as the oblique angle θ changes, while maintaining
constant magnetic and quantum pressure conditions, as illus-
trated in Fig. 2. The peak height is primarily governed by two
factors: (i) an inverse relationship with the peak width, and
(ii) a dependence on the velocity associated with the corre-
sponding mode, as per Eq. (41). Consequently, as θ increases
under fixed magnetic and quantum pressure, the peak height
decreases for the fast mode and increases for the slow mode.
This behavior remains consistent in both classical [Fig. 2(a)]
and quantum [Fig. 2(b)] MHD cases. However, the quantum
effects introduce further modifications through the Q factor,
which we will discuss in the following paragraph. In Fig. 4,
we provide an analysis of the influence of quantum effects on
the DSF under the conditions of a constant magnetic pressure
and an oblique angle. Figure 4(a) corresponds to the case
vA/cs0 = 1, and θ = 30◦, while Fig. 4(b) is for vA/cs0 = 0.
The nonmagnetic scenario [Fig. 4(b)] agrees with quantum
hydrodynamics [32], with no dependence on the oblique angle
θ , thus yielding a DSF identical to that for parallel fluctua-
tions, as illustrated in Fig. 1.

Within the framework of quantum MHD, as depicted in
Fig. 4(a), the DSF exhibits five peaks, as previously discussed.
The frequency position of the central Rayleigh peak remains
unaltered with variations in quantum pressure. Quantum ef-
fects, however, enhance the effective thermal pressure for both
magnetosonic waves. Consequently, the frequency positions
associated with the fast and slow modes shift towards higher
frequencies with increasing quantum pressure, as described
before. In addition, the Bohm contributions introduce two
significant modifications: (i) a reduction of the adiabatic index
by a factor of Q, i.e., γ ′

0 = γ0/Q, and (ii) an enhancement
of the effective thermal diffusivity by the same factor Q, i.e.,
χ ′

0 = Qχ0. Consequently, the product γ0χ0 remains invariant.
This modification is also observed in quantum hydrodynamics
(i.e., with no magnetic field present). The increased thermal
diffusivity due to quantum effects leads to the broadening of
the FWHM of the Rayleigh peak through �χ , resulting in

FIG. 4. The dynamic structure factor in magnetized, high-density plasma with increasing quantum effects. The plotted dynamic structure
factors are calculated in the same way as in Fig. 1(a), with the same dimensionless values for the dissipative terms. The other parameters are:
(a) vA/cs0 = 1, and θ = 30◦, and (b) vA/cs0 = 0, and θ → no role.
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FIG. 5. The dynamic structure factor in magnetized, high-density plasma with increasing magnetization. The plotted dynamic structure
factors are calculated in the same way as in Fig. 1(a), with the same dimensionless values for the dissipative terms. The other parameters are:
(a) cQ/cs0 = 0, and θ = 30◦, and (b) cQ/cs0 = 1, and θ = 30◦.

a reduction in peak height, as explained by Eq. (41a). The
width and height of both magnetosonic peaks are determined
by a complex interplay of thermal diffusivity, resistivity, and
viscosities, following Eqs. (40) and (41), respectively. Sim-
ilarly, the DSF structures for classical and quantum MHD
fluctuations are illustrated in Figs. 5(a) and 5(b), respectively,
for a fixed oblique scattering angle (θ = 30◦) with increasing
magnetization vA/cs0.

The total integrated intensity of the Rayleigh peak and each
of the F- and S-mode peaks are, respectively,

IR =
[
γ0 − 1

γ0

c2
s0

c2
eff

]
Snn(k) =

[
1 − Q

γ0

]
Snn(k), (42a)

IF = 1

2

[
Q

γ0

(
c2

F − v2
A

2c2
F − v2

A − c2
eff

)]
Snn(k), (42b)

IS = 1

2

[
Q

γ0

(
c2

S − v2
A

2c2
S − v2

A − c2
eff

)]
Snn(k). (42c)

Since, (2c2
F − v2

A − c2
eff ) = −(2c2

S − v2
A − c2

eff ) = c2
F − c2

S ,
it preserves the sum rule, IR + 2IF + 2IS = Snn(k). The ratio
of the intensity of the central Rayleigh peak to that of the four
shifted magnetosonic wave peaks is thus given by

IR

2IF + 2IS
=

(
γ0

Q
− 1

)
= (γ ′

0 − 1), (43)

and it follows the traditional Landau-Placzek ratio. Here, we
introduce an additional ratio: the ratio of the intensity of the
fast magnetosonic wave peak to that of the slow magnetosonic
wave peak,

IF

IS
= c2

F − v2
A

v2
A − c2

S

= c2
F − v2

A

c2
F − c2

eff

. (44)

From an experimental point of view, we note that the F-to-
S ratio [Eq. (44)] provides simultaneous sensitivity on both
the magnetic field and the effective sound speed, which in-
cludes the Bohm contribution, in a magnetized, high-density
plasma.

VI. CONCLUSIONS

In this paper, we have derived an analytical expression
for the dynamic structure factor in a nonrelativistic, magne-
tized, high-density quantum plasma. Our approach involves
describing collective excitations through the framework of
magnetohydrodynamics, in which nonlocal quantum behavior
is accounted for through the phenomenological Bohm po-
tential. The inclusion of quantum effects is shown to have
noticeable impacts in both hydrodynamics and magnetohy-
drodynamics conditions. Specifically, the Bohm contributions
introduce three significant modifications: (i) an enhancement
of the effective thermal pressure, (ii) a reduction of the
adiabatic index by a factor of Q, i.e., γ ′

0 = γ0/Q, and (iii)
an enhancement of the effective thermal diffusivity by the
same factor Q, i.e., χ ′

0 = Qχ0. It is noteworthy that our
analysis leads to the recovery of the same DSF structure
as observed in standard classical hydrodynamic fluctuations
when Q = 1.

In the quantum hydrodynamic case, the DSF is shown
to have the same three-peak structure—one central Rayleigh
peak and two Brillouin peaks—as in the case of classical
hydrodynamic fluctuations, but additional factors related to
the quantum Bohm potential are now affecting their position,
width, and intensity. The central Rayleigh peak is associated
with nonpropagating entropy fluctuations, thus its frequency
position remains unchanged. The width of the Rayleigh peak
is determined solely by thermal diffusivity through the pa-
rameter �χ = Qχ0, while its height is influenced by both γ ′

0
and �χ [Eq. (31)]. For the Brillouin peaks, quantum effects
shift the frequency position to a higher frequency due to the
enhanced effective thermal pressure from additional quantum
pressure. The width of the Brillouin peaks is determined by
both thermal diffusivity and viscosity, characterized by the
parameter �‖ [Eq. (27)], while their height is influenced by
γ ′

0 and �‖ [Eq. (31)].
In the context of quantum magnetohydrodynamics, the

DSF maintains a five-peak structure, featuring a central
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TABLE I. Parameters and quantities for plasma diagnostics using the DSF of a magnetized, high-density plasma.

Parameter/Quantity from DSFs Description Plasma Properties

Peak positions Associated with two magnetosonic waves Values for cF and cS

Landau-Placzek ratio (RLP) IR/(2IF + 2IS ) = (γ ′
0 − 1) Adiabatic index (γ ′

0 )
F-to-S ratio (RFS) IF /IS = (

c2
F − v2

A

)/(
v2

A − c2
S

)
Alfvèn speed (vA), and hence,

magnetic field strength
Identity I [obtained from Eq. (37)] c2

F + c2
S = v2

A + c2
eff Speed associated with the effective

thermal pressure (ceff)
Identity II [obtained from Eq. (37)] c2

F c2
S = v2

Ac2
effcos2θ Oblique angle (θ )

Width of the central Rayleigh peak via �χ �χ = χ ′
0 Thermal diffusivity (χ ′

0)
Width of the fast and slow mode peaks via �F,S Expressions given in Eqs. (39a) and (39b) Correlations a between resistivity (η0)

and viscosities (νs0 and νc0)

aNote: It is important to note that the three unknown transport coefficients—resistivity, bulk viscosity and shear viscosity—cannot be
simultaneously determined from two known equations [Eqs. (39a) and (39b)], unless one of these coefficients is known to be small.

Rayleigh peak and two pairs of peaks associated with fast
and slow magnetosonic waves, as seen in classical mag-
netohydrodynamic fluctuations [20]. However, the quantum
Bohm potential introduces significant alterations, impacting
their characteristics, including position, width, and intensity.
In MHD, the structure of the DSF is contingent on the angle
of fluctuations relative to the prevailing magnetic field within
the medium. For fluctuations parallel to the magnetic field, the
DSF retains its hydrodynamic nature, as expected. However,
oblique fluctuations introduce an extra pair of peaks, asso-
ciated with magnetic field fluctuations coupled with density
fluctuations. Notably, both magnetosonic waves possess sig-
nificant magnetic and thermal components. The enhancement
of effective thermal pressure due to the quantum Bohm po-
tential leads to a shift in the frequency positions of both pairs
of peaks towards higher frequencies. Concurrently, resistive,
viscous, and conductive dissipative processes dampen fast and
slow magnetosonic waves. These damping factors determine
the peak width through the respective parameter �F,S , the gen-
eral expression for which is provided in Eq. (39). The height
of these peaks is contingent upon their width (inversely pro-
portional), the modified adiabatic index shaped by quantum
effects, and the relative propagation speeds of various waves,
following Eq. (41). Finally, the central Rayleigh peak, rep-
resenting the zero-frequency, nonpropagating entropy mode
and devoid of any magnetic component, remains unaltered in
MHD.

From an experimental perspective, the presence of mul-
tiple peaks in the DSF offers a unique opportunity for the
simultaneous measurement of various plasma properties, as
well as transport and thermodynamic coefficients in magne-
tized laboratory plasmas. An important parameter connecting
theoretical predictions and experimental observations is the
Landau-Placzek ratio, denoted as RLP = IR/2IB = (γ0 − 1).
This ratio was originally derived from a Rayleigh-Brillouin
triplet and provides a direct means to determine the specific
heat ratio of diverse liquids and gases through experiments
[25–28]. In the context of quantum hydrodynamics, we have
found that this ratio modifies to RLP = IR/2IB = (γ ′

0 − 1). For
DSFs featuring a five-peak structure, as observed in magne-
tohydrodynamics, the equivalent form of the Landau-Placzek
ratio becomes IR/(2IF + 2IS ) = (γ ′

0 − 1). Additionally, we

introduce another significant ratio known as the F-to-S ra-
tio, denoted as IF /IS = (c2

F − v2
A)/(v2

A − c2
S ). A suggested

strategy for measuring various plasma properties is outlined
sequentially in Table I. Hence, the DSF can serve as a robust
diagnostic tool for plasma properties that are otherwise very
challenging to measure.
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APPENDIX A: QUANTUM POTENTIAL

Here, we follow the original derivation provided by Bohm
for a single particle using the representation of the wave func-
tion ψ (x, t ) in terms of amplitude R(x, t ) and phase φ(x, t ),
we write [21,22]

ψ (x, t ) = R(x, t )eiφ(x,t )/h̄. (A1)

Both R(x, t ) and φ(x, t ) are real-valued functions of the posi-
tion vector x and time t . Employing this ansatz for ψ , the real
and imaginary parts of the Schrödinger equation become

∂φ

∂t
+ Vext + VQ + (∇φ)2

2m
= 0, (A2a)

∂R2

∂t
+ ∇ ·

(
R2 ∇φ

m

)
= 0, (A2b)

where Vext is the external potential, and

VQ = − h̄2

2m

∇2R

R
. (A3)

Up to this point, Bohm’s formalism is exactly equivalent to
Schrödinger’s description. In correspondence to the classical
system, we can treat R2 = ρ as representing the density of a
set of classical systems in configuration space, and u = ∇φ/m
as representing the kinetic velocity associated with the wave
function ψ . Equation (A2b) thus describes the continuity
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equation, while Eq. (A2a) takes the form of a Hamilton-
Jacobi equation, with the additional quantum potential given
by Eq. (A3). In the classical limit (h̄ → 0), this additional
quantum potential automatically vanishes.

APPENDIX B: THERMODYNAMIC IDENTITIES

In this Appendix, we derive the temperature evolu-
tion equation [Eq. (3)] from the internal energy equa-
tion [Eq. (1d)]. Here, we also derive Eq. (4) for pressure
in terms of state variables density and temperature. Using
the first law of thermodynamics and the continuity equation
[Eq. (1a)], we write down the internal energy per unit mass as

dε

dt
= T

dS

dt
+ p

ρ2

dρ

dt
= T

dS

dt
− p

ρ
∇·u, (B1)

where S represents the specific entropy. Substituting Eq. (B1)
into Eq. (1d), we obtain a conservation law for specific en-
tropy, as given by

ρT
dS

dt
= −� : ∇u + η

|∇×B|2
μ0

− ∇·q + �Bohm · u. (B2)

Assuming that the specific entropy S = S(ρ, T ), the total dif-
ferential is given by

dS =
(

∂S

∂ρ

)
T

dρ +
(

∂S

∂T

)
ρ

dT . (B3)

Applying Maxwell’s identities and the first law of thermody-
namics, we determine(

∂S

∂ρ

)
T

= − 1

ρ2

(
∂ p

∂T

)
ρ

= CV − CP

αT ρT
,

(
∂S

∂T

)
ρ

= CV

T
,

(B4)

where CV is the heat capacity at constant volume, CP is the
heat capacity at constant pressure, and αT ≡ −ρ−1(∂ρ/∂T )p

is the coefficient of thermal expansion. We obtain

dS = CV

T

(
dT − γ − 1

αT ρ
dρ

)
, (B5)

where we have used γ = CP/CV . Using the continuity equa-
tion [Eq. (1a)], we can finally write

dS

dt
= CV

T

(
dT

dt
− γ − 1

αT ρ

dρ

dt

)
= CV

T

(
dT

dt
+ γ − 1

αT
∇·u

)
.

(B6)

Substituting Eq. (B6) into Eq. (B2) yields the desired temper-
ature evolution equation [Eq. (3)].

Similarly, for the pressure p = p(ρ, T ), we determine the
total differential

d p =
(

∂ p

∂ρ

)
T

dρ +
(

∂ p

∂T

)
ρ

dT . (B7)

Using reciprocity and Maxwell’s identities, we obtain(
∂ p

∂ρ

)
T

= CV

CP

(
∂ p

∂ρ

)
S

= c2
s

γ
,(

∂ p

∂T

)
ρ

= −
(

∂ p

∂ρ

)
T

(
∂ρ

∂T

)
p

= c2
s

γ
ραT , (B8)

where c2
s ≡ (∂ p/∂ρ)S represents the adiabatic sound speed.

These expressions lead to the final expression

d p = c2
s

γ
(dρ + ραT dT ), (B9)

from which Eq. (4) follows trivially.
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