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Cyclic superconducting refrigerators using guided fluxon propagation
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We propose cyclic refrigeration in solid state, employing a gas of magnetic field vortices in a type-II
superconductor—also known as fluxons—as the cooling agent. Refrigeration cycles are realized by envisioning
a racetrack geometry consisting of both adiabatic and isothermal arms, etched into a type-II superconductor.
The guided propagation of fluxons in the racetrack is achieved by applying an external electrical current, in
a Corbino geometry, through the sample. A gradient of magnetic field is set across the racetrack allowing
one to adiabatically cool down and heat up the fluxons, which subsequently exchange heat with the cold
and hot reservoirs, respectively. We characterize the steady state of refrigeration cycles thermodynamically
for both s-wave and d-wave pairing symmetries, and present their figures of merit such as the cooling power
delivered, and the coefficient of performance. Our cooling principle can offer significant cooling for on-chip
microrefrigeration purposes, by locally cooling below the base temperatures achievable in a conventional dilution
refrigerator. We estimate nW/mm2 of cooling power per unit area assuming a tunnel coupling with ∼M� µm2

specific resistance. Integrating the fluxon fridge to quantum circuits can enhance their coherence time by locally
suppressing thermal fluctuations, and improve the efficiency of single photon detectors and charge sensors.
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I. INTRODUCTION

Quantum thermal machines have attracted increasing
amounts of attention not only because of their fundamental
importance in developing the field of quantum thermody-
namics [1], but also because of the practical importance
of controlling thermal transport in cryogenic environments
[2]. Long-standing material science problems of low thermo-
electric efficiencies can be overcome via energy-structured
transport properties between coupled conductors [3]. In the
field of mesoscopic physics, extensive research has been car-
ried out to investigate thermoelectric devices [4], heat engines
[5], thermometers [6], heat diodes [7], heat transistors [8],
and refrigerators [9]. These devices are primarily focused
on electrons as the charge and heat carriers based on quan-
tum dots [10], quantum wells [11], quantum point contacts
[12] and superlattices [13]. However, research focusing on
other heat carriers including magnons [14], phonons [15],
photons [16,17] has also advanced quickly. Not only a the-
oretical discipline but groundbreaking experiments have also
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been performed, realizing refrigerators [18] and heat engines
leveraging the sharp energy transmission features of resonant
tunneling quantum dots [19], current rectification properties
of electron cavities coupled with quantum point contacts to
Ohmic contacts [20,21], phonon assisted heat transport in
double quantum dot [22], as well as driven superconductors to
control heat currents [23,24]. Among additional experimen-
tal breakthroughs, nanoscale three-terminal energy harvester
using coupled quantum dots [25], particle exchange heat en-
gine exhibiting near thermodynamic efficiency [26], nonlocal
thermoelectric current in a Cooper pair splitter comprised of
graphene quantum dots connected across aluminum supercon-
ductor [27] have been realized. Together, these experiments
have demonstrated high efficiency thermal machines operat-
ing on quantum principles.

Here, we consider another type of heat carrier, namely, a
collection of fluxons treated thermodynamically. In a type-II
superconductor, magnetic flux quanta can pierce the entropy-
free Cooper-paired superconducting state, to produce an
island of normal electrons in the core of each fluxon [28,29].
We utilize this fluxon as a bucket of entropy, shuttling it
back and forth between hot and cold reservoirs. To make a
thermodynamic cycle, our other control parameter is the local
magnetic field [30–33]. By magnetizing or demagnetizing
the fluxons, the small electron gas inside fluxon is cooled
or heated. Therefore, the working substance is a fluxon gas
which we treat at a thermodynamic level. When confined to
a racetrack geometry, Fig. 1, the fluxon gas undergoes suc-
cessive heating or cooling via the magnetic (de)magnetization
from a gradient (out of plane) magnetic field, together with
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FIG. 1. Schematic of the type-II superconducting refrigerator
geometry with two arms in contact with hot (TH) and cold (TC)
reservoirs. A magnetic field (out of the page) gradient from arm
(4) to arm (2) causes a gradient in the vortex density. An external
current (not shown) flows outward in the Corbino geometry, driving
the vortices along the arrow shown. The temperatures at the four
corners represent the temperatures of the fluxons at the end of each
stroke (see Secs. II and III). The values in the bracket represent the
corresponding temperatures scaled with respect to that of the hot
reservoir (see Sec. IV A). In subsequent analysis, we assume that the
magnetic field varies linearly along the arm. The variation is shown
in the plot below the schematic.

exposure to a hot or cold thermal reservoir. The remaining
piece of the thermodynamic cycle is the motive force needed
to drive the fluxons around the racetrack. This is provided by
the Lorentz force [34,35], applied via a current bias applied in
a Corbino geometry.

The thermal machine briefly described above may be used
as a refrigerator to cool the cold reservoir. We focus on the
physics of refrigeration using this concept of a cyclic super-
conducting refrigerator. Finding new cooling mechanisms at
low temperature that do not rely on liquid helium-3, a precious
resource, is an outstanding challenge to the low-temperature
physics community. Principles of superconductivity offer
another cooling paradigm, where the adiabatic magnetiza-
tion of superconductors has been predicted to produce a
cooling effect [36–38]. Efforts have been made to find re-
alistic applications for this approach since the early days
of superconductivity, especially using conventional (type-I)
superconductors [39]. Recently, it has also been proposed
that cyclic refrigerators can be conceptualized with type-I
superconductors as the working substance, which can lead to
practical quantum device implementations in solid state [40].

In contrast to type-I superconductors, the majority of
nonelemental superconductors undergo a type-II phase tran-
sition into a mixed state with the magnetic field lines forming
flux vortices [28,29], with each vortex, or fluxon, carry-
ing a quantum (h/2e) of magnetic flux. These flux vortices
are known to organize into characteristic lattice structures,
known as Abrikosov lattices [28,41–43]. Individual fluxons
have recently been proposed as information bits for efficient

random-access memory devices [44]. Fluxons also interact
with spin-waves in superconductor/ferromagnetic heterojunc-
tions, suggesting opportunities for new avenues of hybrid
electronic devices in the nanoscale [45]. On a related note,
heat transport due to flux vortices in long Josephson junctions
(also called Josephson vortices) has been studied [46–50].
The refrigerator proposed here further pushes the frontiers of
fluxon based technologies to solid-state integrable quantum
devices, which can offer substantial cooling below ambient
base temperatures in cryogenic environments.

This article is organized as follows. Section II describes
the refrigerator and provides an account of the relevant cy-
cles. We also calculate the heat exchanged, the cooling power
delivered, and the coefficient of performance for s-wave and
d-wave superconductor based refrigerators. Section III pro-
vides a phenomenological description of fluxon propagation
and heat exchange with the reservoirs for s-wave super-
conductors. In light of this description, we characterize the
performance of the refrigerator in Sec. IV. Lastly, we discuss
our findings in Sec. V and conclude in Sec. VI.

II. THE MODEL

We now expand on the description of our fluxon heat
engine, described in the Introduction. An insightful analogy
of this heat engine can be made to domestic refrigerators
operating based on the principles of free expansion and
compression of nonideal gases, cyclically moving through
a cooling system. The fluxons moving through the Corbino
racetrack geometry behave similarly, where the density of the
“fluxon gas” in different regions is controlled by the local
magnetic induction. Fluxons are colder in regions of high
magnetic field as opposed to regions of lower magnetic field,
owing to adiabatic conditions assumed. The effective descrip-
tion for a cooling cycle with adiabatic and isothermal arms
is presented in greater detail in the subsequent sections, and
is comparable to the well-known Otto cycles [51–53]. We
consider fluxons in type-II superconductors of both s-wave
and d-wave pairing symmetries, and provide a complete ther-
modynamic characterization, as well as discuss the laws of
thermodynamics for the cyclic refrigerator.

A. Refrigeration cycle

We propose to design a magnetic Otto-type refrigerator
with vortices in a type-II superconductor acting as the working
substance. Vortices circulate between two heat reservoirs with
temperatures TH > TC, extracting heat from the cold reservoir
C (on the right in Fig. 1), and using the hot one H (on the left in
Fig. 1) as a sink. In our analysis, vortex temperature refers to
the quasiparticle temperature in the vortices. The refrigerator
operates on a four-stroke cycle:

(1) Magnetization: Vortices at temperature TH move from
H to C along the upper arm of the racetrack through a positive
magnetic field gradient. This leads to an increase in the fluxon
density, and therefore increased density of states of the low
energy quasiparticle excitations in the vortices [54]. This has
the effect of cooling down the quasiparticles in the vortices to
a temperature TR < TC.
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(2) Heat extraction: The working substance at temperature
TR is put in contact with the cold reservoir C. Heat is extracted
from the latter as the temperature of the working substance in-
creases until it reaches the reservoir’s value TC. The magnetic
field is kept at the constant value HR throughout this step.

(3) Demagnetization: Vortices at temperature TC move
along the lower arm of the racetrack through a negative mag-
netic field gradient. The temperature of the working substance
thus rises up to a value TL > TH.

(4) Heat rejection: The working substance at temperature
TL is put in contact with the hot reservoir H, in which it rejects
heat until its temperature drops to TH. The magnetic field is
kept at the constant value HL throughout this step.

Note that this description is purely macroscopic and
thermodynamic. A microscopic description can also be inter-
esting. However, such a description is beyond the scope of this
article. In what follows, we assume the temperatures under
consideration are much lower than the critical temperature
of the superconductor. Additionally, the magnetic field is be-
tween the two critical values Hc1 < H < Hc2, and close to Hc1

so the intervortex interaction is negligible. Usually for type-II
superconductors (cuprates or FeAs or Nb based for exam-
ple), at T = 0, the first critical field μ0Hc1 values are around
0.001 − 0.1 T, while the second critical field μ0Hc2 values can
range between 10 − 100 T [55]. For our refrigeration cycles,
applied magnetic fields around μ0H � 1 T should be ideal
experimentally. For superconductors with coherence lengths
of the order of 1 nm, the intervortex distance ξ

√
Hc2/H

∼ 10 nm. Therefore, a sample of width ∼10 µm and ∼1 mm
length will allow a macroscopic thermodynamic description
of the vortices therein. We also assume that the magnetic
field gradient and the speed at which vortices move across the
racetrack are small enough such that magnetization and de-
magnetization strokes (1) and (3) are performed adiabatically.

B. s-wave model

We first consider the case of a conventional s-wave su-
perconductor. A thermodynamic analysis of the engine cycle
is possible given knowledge of the equation of state of the
fluxons. In this situation, the main contribution to the specific
heat comes from the vortex cores, each of them contributing a
constant to the total specific heat, which is proportional to the
vortex density as a result [54]. The specific heat [56], written
as a function of the temperature T and the magnetic field H ,
then reads

C(T, H ) = γ HT, (1)

where γ is a constant. Given the definition C(T, H ) =
T ∂S/∂T |H , we can take the entropy to be

S(T, H ) = γ HT . (2)

To obtain the amount of heat extracted from the cold
reservoir and the work that must be exerted on the work-
ing substance to power the refrigerator, one must calculate
the variations of the working substance’s internal energy
throughout each stroke of the cycle. We consequently intro-
duce the internal energy U through its differential, which
is naturally expressed in terms of the entropy S and the

magnetization M [55],

dU = T dS + μ0H dM, (3)

where μ0 denotes the vacuum permeability. However, the pair
of variables adapted to our cycle consists of the entropy S and
the magnetic field H since strokes (1) and (3) take place at
constant entropy and strokes (2) and (4) take place at constant
magnetic field. We obtain an expression for the energy differ-
ential in terms of S and H by expanding dM in Eq. (3) above,

dU =
(

T + μ0H
∂M

∂S

∣∣∣∣
H

)
dS + μ0H

∂M

∂H

∣∣∣∣
S

dH. (4)

We can obtain an expression for the partial derivative of the
magnetization with respect to the entropy using a Maxwell
relation [55]. We consider the magnetic enthalpy K = U −
μ0HM whose differential is given by

dK = T dS − μ0M dH. (5)

Invoking the symmetry of second derivatives, we find

∂M

∂S

∣∣∣∣
H

= − 1

μ0

∂T

∂H

∣∣∣∣
S

= S

μ0γ H2
, (6)

where we have used the explicit expression for the entropy
from Eq. (2). Integrating Eq. (6) above over the entropy then
yields

M(S, H ) = S2

2μ0γ H2
+ As(H ), (7)

where As(H ) denotes the integration “constant” for the inte-
gration over S and is thus a function of H only. Physically,
it corresponds to the magnetization at zero entropy, As(H ) =
M(S = 0, H ). Since M and H are thermodynamically conju-
gate variables, it is not possible to find an explicit expression
for As(H ) using Maxwell relations; it can only be derived from
a microscopic model. The energy differential in Eq. (4) can
eventually be rewritten as

dU = 2S

γ H
dS −

(
S2

γ H2
− μ0H

dAs

dH

)
dH. (8)

The energy changes during strokes (1) and (3) correspond
to the magnetic work done on the superconductor in order to
fuel the refrigeration process. We assume that these magneti-
zation and demagnetization steps are performed adiabatically.
Hence, S = S1 = γ HLTH throughout stroke (1) and S = S3 =
γ HRTC throughout stroke (3). We then derive the magnetic
work,

W =
∫

(1)
dU |S=S1

+
∫

(3)
dU |S=S3

= −S2
1 − S2

3

γ

∫ HR

HL

dH

H2

= γ (HR − HL)

(
HR

HL
T 2

C − HL

HR
T 2

H

)
. (9)

Further, the temperature of the working substance through-
out strokes (1) and (3) can be easily calculated using the fact
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that the entropy remains constant. In particular, the tempera-
tures TR and TL at the end of strokes (1) and (3) respectively
are given by

TR = S1

γ HR
= HL

HR
TH, (10)

TL = S3

γ HL
= HR

HL
TC. (11)

During stroke (2), the magnetic field stays constant, H =
HR, while the entropy varies from S1 to S3. The energy vari-
ation during this step corresponds to the heat extracted from
the cold reservoir,

QC =
∫

(2)
dU |H=HR

= 2

γ HR

∫ S3

S1

S dS

= γ HR

(
T 2

C − H2
L

H2
R

T 2
H

)
. (12)

Refrigeration takes place when heat is extracted from the
cold reservoir, that is QC � 0. We see in Eq. (13) that this
imposes

HL

HR
� TC

TH
. (13)

We also note that W � 0 when the condition in Eq. (13) is
satisfied.

The heat rejected in the hot reservoir during stroke (4)
can be calculated in a similar manner: During this step, the
magnetic field is constant during stroke (4), H = HL, while
the entropy goes from S3 to S1. We then find that

QH =
∫

(4)
dU |H=HL

= γ HL

(
T 2

H − H2
R

H2
L

T 2
C

)
. (14)

We immediately see that QH < 0 when the condition in
Eq. (13) is satisfied. Further, it is straightforward to check
that W + QC + QH = 0, which corresponds to the first law
of thermodynamics: The variation of internal energy during
a cycle is zero. As for the second law of thermodynamics, it
can be expressed via the Clausius inequality [57],

QC

TC
+ QH

TH
� 0. (15)

One can check that the expressions for QC and QH in Eqs. (13)
and (14) respectively satisfy Eq. (15) above.

The refrigerator’s coefficient of performance (COP) is
given by the ratio of the heat extracted from the cold reservoir
to the work supplied to the superconductor,

COP = QC

W
= HL

HR − HL
= μ

1 − μ
, (16)

similar to Otto cycle results, where μ = HL/HR. Using the
first and second laws of thermodynamics, one can show that
the refrigerator’s COP is upper bounded by the Carnot COP,
which is reached when the refrigerator operates reversibly,

COP = μ

1 − μ
� COPCarnot = TC

TH − TC
. (17)

Carnot’s theorem in Eq. (17) is equivalent to Eq. (13) in the
situation at stake. We then find that Carnot COP is reached
when μ = TC/TH, in which case QC = 0.

C. d-wave model

In the case of a d-wave superconductor, the specific heat
calculated using the Volovik model is given by [54,58]

C(T, H ) = α
√

HT, (18)

where α is again a constant. Applying the same treatment as
in the case of an s-wave superconductor, we first calculate the
entropy,

S = α
√

HT . (19)

We can now obtain a formal expression for the magnetization.
We have

∂M

∂S

∣∣∣∣
H

= − 1

μ0

∂T

∂H

∣∣∣∣
S

= S

2μ0αH3/2
, (20)

which leads to

M(S, H ) = S2

4μ0αH3/2
+ Ad (H ), (21)

where Ad (H ) = M(S = 0, H ) is an unknown function of the
magnetic field. As a consequence, the differential for the in-
ternal energy expressed in the relevant variables S and H is
given by

dU = 3S

2α
√

H
dS −

(
3S2

8αH3/2
− μ0H

dAd

dH

)
dH. (22)

The temperatures at the end of strokes (1) and (3) can be
again obtained using the constant entropy condition,

T d
R =

√
HL

HR
TH, (23)

T d
L =

√
HR

HL
TC, (24)

where we include superscript d to distinguish the tempera-
tures from Eqs. (10) and (11). The entropies during these two
strokes are Sd

1 = α
√

HLTH and Sd
3 = α

√
HRTC. The work sup-

plied to the superconductor during a cycle is then calculated
as in Eq. (10), and we obtain

W = 3α

4

(√
HR − √

HL
)⎛⎝

√
HR

HL
T 2

C −
√

HL

HR
T 2

H

⎞
⎠. (25)

Conversely, strokes (2) and (4) take place at constant magnetic
fields, and we calculate QC and QH as in Eqs. (13) and (14)
respectively to find

QC = 3α
√

HR

4

(
T 2

C − HL

HR
T 2

H

)
, (26)

QH = 3α
√

HL

4

(
T 2

H − HR

HL
T 2

C

)
. (27)

It is clear from Eq. (26) that refrigeration is only possible
when

HL

HR
� T 2

C

T 2
H

, (28)

in which case QC � 0, QH � 0 and W � 0.
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FIG. 2. These illustrations show the qualitative thermodynamic
behavior of the fluxons as they move along the racetrack. Panel
(a) shows the fluxons in ST plane as they complete a full cycle
for both s-wave (solid) and d-wave (dashed) superconductors. The
temperatures and entropies at the end of each stroke are mentioned.
For this illustration, we assume that γ in Eq. (2) and α in Eq. (19)
have values such that the fluxons have same entropy after they are
in contact with the cold bath [after stroke (2)], i.e., S3 = Sd

3 . The
cycle in ST plane for both types of superconductors are trapezoids
in shape. The slope of arms representing strokes (2) and (4) are pro-
portional to the corresponding magnetic field. Therefore, the slope
is smaller in magnitude for stroke (4). Panel (b) shows the behavior
of the fluxons in HM plane. We assume As(H ) = Ad (H ) = 0 for the
illustration. Here, M1 = γ

2μ0
T 2

H , M2 = γ

2μ0
T 2

R , M3 = γ

2μ0
T 2

C and M4 =
γ

2μ0
T 2

L . Similarly, Md
1 = α

4μ0

T 2
H√
HL

, Md
2 = α

4μ0

(T d
R )2

√
HR

, Md
3 = α

4μ0

T 2
C√
HR

, and

Md
4 = α

4μ0

(T d
L )2

√
HL

. Strokes (1) and (3) express the nonlinear dependence
of the magnetization M on H . The area inside the loops represent the
work done by the refrigerator.

Finally, the refrigerator’s COP is given by

COP = QC

W
=

√
HL√

HR − √
HL

=
√

μ

1 − √
μ

. (29)

Similarly to the case of an s-wave superconductor, the re-
frigeration condition in Eq. (28) is equivalent to COP �
COPCarnot. The Carnot coefficient of performance is achieved
when equality is realized in Eq. (28), in which case QC = 0.

In Fig. 2 we show the fluxons in ST and HM planes as
they complete the refrigeration cycles for both s-wave and
d-wave superconductors. The thermodynamic cycle in ST
plane is trapezoidal. In the HM plane they are represented

FIG. 3. Plot of the fluxon refrigerator COP as a function of the
ratio of the magnetic fields on the left and right arms. The blue dots
(red line) shows the COP for an s-wave (d-wave) superconductor.
We see that as the magnetic fields come closer to one another, the
COP increases. Also, the COP for a d-wave superconductor is higher
than that of an s-wave superconductor under the same conditions. For
both s and d-wave cases, the reservoir temperatures set the maximum
possible value of the magnetic field ratio [see Eqs. (13) and (28)]. The
dashed horizontal line corresponds to COPCarnot when TC/TH = 0.9.

by the enclosed region of two parallel lines and two smooth
nonlinear curves.

D. Results

From Eqs. (16) and (29), it is clear that the coefficient of
performance only depends on the applied magnetic fields for
both s-wave and d-wave superconductors. Figure 3 shows the
behavior of the coefficient of performance for both of these
cases as functions of the magnetic field ratio HL/HR. The COP
clearly increases with this ratio and reaches its maximal value
when the refrigerator operates reversibly, in which case no
refrigeration occurs. This is achieved when HL/HR = TC/TH

for s-wave superconductors and HL/HR = T 2
C /T 2

H for d-wave
superconductors. Additionally, both kinds of superconductors
exhibit similar behaviors, although d-wave superconductors
show slightly better performance. For simplicity, we focus
on s-wave superconductors throughout the rest of our anal-
ysis. Analogous explorations can be considered for d-wave
superconductors and are expected to lead to similar qualitative
conclusions.

III. FLUXON PROPAGATION AND DISSIPATION

In reality, this simple model above needs to be augmented
to take into account the energy loss of the fluxons as they are
being driven around the racetrack, and the effects of vortex
thermalization at finite velocities.

A. Propagation of fluxons in the steady state

Taking a mesoscopic sample of the fluxon lattice as the
working substance, we first consider the following simple
form for the heat capacity per unit volume for s-wave su-
perconductors C(T, H ) = γ HT . The entropy is S(T, H ) =
γ HT .
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Given that entropy S(T, H ) is a state function, it can be
written as an exact differential of the form,

dS

dx
= ∂S

∂T

dT

dx
+ ∂S

∂H

dH

dx
= γ (H∂xT + T ∂xH ), (30)

where x is the length along the arms.
Recall that adiabatic processes are processes where the

system is supposed to be thermally isolated from the envi-
ronment. Heat losses can be taken to account by modifying
dS
dx = 0 to dS

dx = 1
v

P(x)
T (x) , where P(x) is the power loss due to

dissipation along an arm and v is the speed of fluxons (also
see Appendix). The differential equations modify to

P(x)

T (x)
= γ v(H (x)∂xT (x) + T (x)∂xH (x)). (31)

This can be solved for different adiabatic and isothermal arms
of the cycle, accounting for additional dissipation mechanisms
in P(x).

B. Incorporating dissipation

In steady state, the damping coefficient η results in an
opposing force f = −ηv. The driving force from the current
is given by

�F = �J × φ0û, (32)

where the unit vector û is parallel to the vortex, and the
electrical current �J is arranged to flow from the inner edge
to the outer edge of the sample. φ0 = h

2e is the magnetic flux
quantum. In the steady state, the dissipative force cancels the
Lorentz-like force, resulting in the steady-state velocity of
v = Jφ0/η. We can utilize the discussion in the previous sec-
tion to incorporate the effect of dissipation in our description.
In this case P(x) = n(x)ηv2, where n(x) is the surface density
of fluxons at position x [55,59]. Therefore, for step (1) we
have (in the steady state),

∂S

∂x
= n(x)ηv

T (x)
. (33)

Next, we assume n(x) = nL(1 + x
Lx

(1/μ − 1)), where nL is
the fluxon density in the arm in contact with the hot reser-
voir and Lx is the length of the arms along which there is
a magnetic field gradient [i.e., arms (1) and (3)]. In other
words, assuming linearly varying magnetic field, and using
expression (2), for s-wave superconductors we get

TR =
(

μ2T̃ 2
H + 2μ0JLx

3γ
(1 + μ + μ2)

)1/2

. (34)

Here T̃H is the final temperature of the fluxons after step (4),
and could be different from TH due to dissipation (as we will
see soon). Similarly, after step (3)

TL =
(

T̃ 2
C

μ2
+ 2μ0JLx

3γμ2
(1 + μ + μ2)

)1/2

, (35)

where T̃C is the final temperature of fluxons after stroke (2).
Without dissipation, Eqs. (34) and (35) reduce to Eqs. (10)
and (11), as expected.

C. Simple dynamical model for heat exchanges

In this section, we introduce a simple model to analyze the
dynamics of the heat exchanges between the reservoirs and
the working substance as the latter moves along the super-
conductor geometry. At the beginning of stroke (2), y = 0, its
temperature is TR, and it is coupled to the cold reservoir at
temperature TC > TR.

The working substance moves at a constant speed v and
spends a time Ly/v in contact with the reservoir, where Ly

is the length of the racetrack in the relevant direction. The
magnetic field does not change during this process, H = HR.
As the working substance moves along the track, it receives
heat from the reservoir and dissipates energy due to vortex
drag. In time dt , the working substance moves a distance
dy = vdt along the track. During this infinitesimal distance
traveled, both the heat exchange with the reservoir and the
heat generated due to electrical current contributes to the
change in the fluxons’ internal energy. The energy balance
(per unit volume) in interval dy along the racetrack reads

U (y + dy) − U (y) = (Q̇ + nRηv2)
dy

v
, (36)

where U (y) is the energy density of the working substance
at position y, Q̇ is the heat current per unit volume from
the reservoir, and nR is the vortex density on the right arm.
The second term to the right-hand side above corresponds to
the energy transferred to the working substance so that the
vortex speed v remains constant despite the drag force. This
is done practically by imposing an electrical current flow in
the direction perpendicular to the vortex motion.

We introduce a phenomenological Fourier-type formula for
the heat current Q̇,

Q̇ = −κth(T − TC), (37)

where T is the temperature of the working substance, and κth

denotes the thermal conductivity (per unit volume) at the con-
tact with the reservoir. The thermal conductivity is assumed
to be temperature and position independent for simplicity (see
Sec. IV B). The expression for the heat current in Eq. (37)
is naturally valid when the temperature difference T − TC is
small, but it often holds outside this regime.

Finally, we choose temperature and magnetic field as the
relevant variables to describe the state of the working sub-
stance. As a consequence, the energy density is expressed
through these quantities,

U (y) = U (T (y), H (y)) = U (T (y), HR ). (38)

We can now rewrite the energy time derivative as

dU

dy
= dT

dy

∂U

∂T

∣∣∣∣
H

=
(

T
∂S

∂T

∣∣∣∣
H

+ μ0H
∂M

∂T

∣∣∣∣
H

)
dT

dy

= 2γ HT
dT

dy
, (39)

where ∂M/∂T |H has been calculated using the same technique
that yielded Eq. (6). The energy balance in Eq. (36) then
becomes

2vγ HRT
dT

dy
= −κth(T − TC) + nRηv2. (40)
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As a consequence, the temperature of the working substance
obeys the following differential equation:

dT

dy
= κthTC + nRηv2

2vγ HRT
− κth

2vγ HR
. (41)

The differential equation above can be solved analytically, and
we find that the temperature reads

T (y) = TfR

(
1 + W

((
TR
TfR

− 1
)

e
TR
TfR

−1−y/vτR

))
, (42)

where W denotes the Lambert function, while the constants
T̃fR and τR are given by

TfR = TC + nRηv2

κth
, τR = 2γ HRTfR

κth
. (43)

TfR is the final temperature reached by the working substance
if it were to stay in contact with reservoir C for an infinitely
long time, and τR is the characteristic time over which the
working substance reaches its final temperature.

We observe that the asymptotic final temperature of the
working substance TfR is higher than TC when dissipation is
taken into account. As a result, the heat current Q̇ starts to flow
from the working substance to the reservoir after some time
to the detriment of refrigeration. When the working substance
travels slowly across the racetrack, the final temperature ap-
proaches the reservoir temperature,

TfR � TC if v �
√

κthTC

nRη
. (44)

The total heat exchanged with the cold reservoir is given
by

QC =
∫ Ly

0
dy Q̇/v = − κth

v

∫ Ly

0
dy (T (y) − TC). (45)

The integration can be carried out analytically, and we find

QC = κthLy

v
(TC − TfR ) − κthτRTfR

2

(
TR
TfR

)2

+ κthτRTfR

2

(
1 + W

((
TR
TfR

− 1
)

e
TR
TfR

−1−Ly/vτR

))2

.

(46)

In a similar manner, stroke (4) leads to cooling of the working
substance from TL to a final temperature TfL. In this case,
Eq. (40) takes the form (assuming the same thermal conduc-
tivity)

dU

dy
= dT

dy

∂U

∂T

∣∣∣∣
H

⇒ 2vγ HLT
dT

dy
= −κth(T − TH) + nLηv2. (47)

Therefore,

T (y) = TfL

(
1 + W

((
TL
TfL

− 1
)

e
TL
TfL

−1−y/vτL

))
, (48)

where the constants TfL and τL are given by

TfL = TH + nLηv2

κth
, τL = 2γ HLTfL

κth
. (49)

Heat transferred to the hot reservoir is given by

QH = κthLy

v
(TfL − TH) + κthτLTfL

2

(
TL
TfL

)2

− κthτLTfL

2

(
1 + W

((
TL
TfL

− 1
)

eθL−1−Ly/vτL

))2
. (50)

IV. QUANTITATIVE ANALYSIS OF THE HEAT
EXCHANGED AND REFRIGERATOR PERFORMANCE

With all the necessary physics at hand, we now analyze
how the fluxon dynamics influence the heat exchanged and
the refrigerator’s performance.

A. Refrigeration cycle description in terms of dimensionless
control parameters

We can analyze the system’s behavior by looking at five
independent dimensionless parameters

l = Ly/Lx, μ = HL/HR, φC = TC/TH,

v̄ = v
2γ HRTH

κthLx
, � = μ0κthηL2

x

2φ0γ 2HRT 3
H

. (51)

Here l signifies the geometry of the superconducting material.
μ and φC are the magnetic field ratio and reservoir temper-
atures ratio respectively. v̄ is the dimensionless speed of the
fluxons. � is a parameter signifying dissipation and depends
on superconductor properties, length along x, magnetic field
on the right-hand side, and hot reservoir temperature. We also
define temperatures scaled with respect to the hot reservoir
temperature as φ = T/TH. The temperatures at the end of
stroke (2) and (4) are

φ̃C = φfR

(
1 + W

((
φR

φfR
− 1

)
e

φR

φfR
−1− l

v̄φfR

))
,

φ̃H = φfL

(
1 + W

((
φL

φfL
− 1

)
e

φL

φfL
−1− l

μv̄φfL

))
, (52)

with φfR = φC + 1
2 v̄2� and φfL = 1 + 1

2 v̄2μ�. Also,
Eqs. (34) and (35) become

φ2
R = μ2φ̃2

H + 2v̄�

3
(1 + μ + μ2),

φ2
L = φ̃2

C

μ2
+ 2v̄�

3μ2
(1 + μ + μ2). (53)

Figure 4 shows the behavior of the fluxon temperatures in
strokes 2 and 4 as functions of the distance traveled. At the end
of the stroke, they tend to the temperatures of corresponding
reservoirs.

The heat extracted from the cold reservoir is

QC = γ HRT 2
H

(−l v̄� + (
φ̃2

C − φ2
R

))
. (54)

When the speed v̄ is slow enough, the exponential factor
inside the Lambert function is negligible as compared with
any integer power of v̄. This allows us to neglect the Lambert
function in Eq. (52) to obtain φ̃C � φfR and

QC � γ HRT 2
H

(−l v̄� + (
φ2

fR − φ2
R

))
if v̄ � l

φC
. (55)
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FIG. 4. Temperature as a function of scaled length ȳ = y/Lx

along the arms in contact with reservoirs in stroke 2 (top) and 4
(bottom) for different values of the magnetic field ratio. Here we
have chosen φC = 0.8, l = 2.5, v̄ = 0.8, � = 0.01. We see that the
temperature in stroke 2 (4) increases (decreases) and tends to a value
close to φC (φH = 1). With the decrease of the magnetic field, the
initial temperature decreases (increases) in the top (bottom) plot.
This behavior can be understood from Eqs. (10) and (11), where
the temperature at the end of stroke 1 (3) is proportional (inversely
proportional) to the magnetic field ratio.

The condition v̄ � l
φC

provides a lower bound on the arm
length ratio needed to ensure sufficient time for the fluxons to
exchange heat with the cold reservoir. Using the approximate
expression in Eq. (55), one can check that QC decreases with v̄

at slow speeds. This behavior is well captured by a first-order
expansion in v, which amounts to neglecting the difference
between φfR and φC following the criterion in Eq. (44) (or
equivalently v̄ � √

1/�). We then have

QC � γ HRT 2
H

((
φ2

C − μ2
) − �

(
l + 2

3

(
1 + μ + μ2

))
v̄
)
. (56)

This decrease of QC with v̄ indicates that the refrigerator
can only operate at slow speeds. Indeed, QC becomes negative
when v̄ exceeds the speed limit v̄lim,R given by

v̄lim,R = φ2
C − μ2

�
(
l + 2

3 (1 + μ + μ2)
) . (57)

Numerical results using the analytical expression for QC in
Eq. (54) confirm that refrigeration is only possible at slow
speeds, with v̄lim,R in Eq. (57) being a good estimate for the
exact speed limit. Furthermore, the approximate expression
for QC in Eq. (56) shows that the maximum amount of heat
extracted from the cold reservoir is reached for v̄ → 0. We
then find

Qmax
C = γ HRT 2

H

(
φ2

C − μ2), (58)

which is the result in Eq. (13). Thus, for refrigeration to occur,
we must have φC � μ, see Eq. (13).

Our dynamical model also allows for the calculation of the
refrigerator’s cooling power. The latter is given by the ratio of
the heat extracted from the cold reservoir to the time necessary
to perform such extraction,

PC = QC

Ly/v
= κthTH

2

v̄

l

(−l v̄� + (
φ̃2

C − φ2
R

))
. (59)

We can use Eq. (56) to approximate

PC � κthTH

2

v̄

l

((
φ2

C − μ2
) − �

(
l + 2

3
(1 + μ + μ2)

)
v̄

)
.

(60)
We then find that the cooling power reaches its maximum
value for v̄ = v̄lim,R/2, and we have

Pmax
C � κthTH

2

(
φ2

C − μ2
)2

4l�
(
l + 2

3 (1 + μ + μ2)
) . (61)

It is noteworthy that Eqs. (52) and (54) are implicit in na-
ture, and could be solved numerically for arbitrary parameter
values.

In Fig. 5, we show the cooling power and the heat with-
drawn from the cold reservoir as functions of fluxon speed
for different values of the magnetic field ratios. The cooling
power has a parabola-like shape as a function of velocity,
while the heat exchanged decreases almost linearly. Such
parabolic dependence of cooling power on the velocity is typ-
ical in linear response theory. Similar dependence is observed
for power generated in thermoelectric devices as a function of
voltage. The approximations in Eqs. (56), (60), and (61) de-
scribe the behavior of the heat withdrawn and cooling power
really well for larger values of the magnetic field ratio, till the
point where refrigeration is no longer possible.

B. Experimentally realizable values of the cooling power
and fluxon speed

To provide an estimate of the achievable cooling power, we
assume that the cold reservoir is a normal metal, connected to
the superconducting material through a thin insulating barrier,
thus realizing a tunnel junction [60]. The heat transfer to the
magnetic field vortices occurs through quasiparticle tunneling
through the junction. Assuming the area of contact to be A
and the width of the racetrack circulating fluxons to be w,
the energy transported via the quasiparticles per unit time is
[40,61]

Pqp = 2A

e2Rs

∫ ∞

0
dE E ( fFD(TC) − fFD(T )). (62)

Here, fFD refers to the Fermi-Dirac distribution and Rs is the
specific resistance of the junction. A microscopic description
will require incorporation of junction properties as well as
energy barrier experienced by quasiparticles going in and out
of the surface [63]. Based on phenomenology, the junction
can be understood as an NSIN junction, including a thin
superconducting layer that separates flux vortices from the
interface. Such junction can be modeled as a NIN junction
with exponentially suppressed transition amplitude. Also, in
general the rate of energy transport depends on the position of
contact since fluxons away from the contact will experience
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FIG. 5. Plot of scaled cooling power (top) and heat withdrawn
from the cold reservoir (bottom) as functions of dimensionless fluxon
velocity v̄ for l = 2.5, � = 0.01, φC = 0.5 and different values of μ.
The velocities v can be estimated (see Sec. IV B) to be of the order of
0.1 m/s. The dots in the top panel show the corresponding approxi-
mate cooling power maxima calculated analytically in Eq. (61). The
crosses show Eq. (57), i.e., the velocity where both QC and PC are
0. As μ decreases, the analytical approximations become worse at
capturing the behavior. We can understand this by realizing that the
O(v̄3) term in Eq. (59) has a coefficient proportional to φC − μ3.
Therefore, for the chosen parameter regime, as μ decreases, the
higher-order effects become more prominent. Although not shown,
the same effect can be observed as we increase the value of φC.

a reduced tunneling rate. However, we ignore such compli-
cations in the following calculations and provide an order of
magnitude estimate. The above expression for small values of
temperature difference T − TC � (T + TC)/2 evaluates to

Pqp ≈ π2k2
BA

3e2Rs
(TC − T )TC. (63)

Since the Fourier formula in Eq. (37) deals with unit volume
heat transfer rate, comparing Pqp with Q̇ × wA leads to the
expression for κth,

κth = π2k2
BTC

3e2wRs
. (64)

In general, κth can depend on the position of contact. We
ignore the y dependence of κth for simplicity. Equivalently,
the thermal conductivity in Eq. (64) can be assumed to be
an average over the length of the arm (2). For numerical
estimation, we look at the maximum cooling power predicted

by expression (61)

Pcooling = Pmax
C × wA. (65)

Now, assuming that the critical temperature of the supercon-
ductor is of the order of 10 K, we assume TH ∼ TC = 1K .
Additionally, we assume A = 1mm2, Rs = 2Mωm2[40,62],
φC = 0.8, μ = 0.5, l = 1, � = 0.01. Using Eqs. (61), (64),
and (65) the maximum cooling power evaluates to be
Pcooling ∼ nW (or equivalently nW/mm2 of cooling power
per unit area). Note that the specific resistance is chosen
such that total resistance R = Rs/A ∼ 2�. For NIS junctions,
specific resistance of the order of 103 �m2 can be fabricated
[62], which can lead to a much higher cooling power. A
microscopic description will require incorporation of junction
properties as well as energy barrier experienced by fluxons
going in and out of surface [63].

Next, we compute the speed of vortices moving in the
Corbino geometry. From [54] we can write γ = γn

Hc2
, and we

assume an approximate value of γn ∼ 200 J/m3K2. Addition-
ally, we assume μ0Hc2 = 50 T and μ0HR = 1 T and a width
of w = 0.01 mm. Now, from Fig. 5, we assume a dimen-
sionless velocity v̄ = 1 and use Eqs. (51) and (64) to obtain
v ∼ 0.1 m/s, which is much smaller than Larkin-Ovchinnikov
flux flow instability critical velocity [64] in typical, e.g., in
Nb-based superconductors [65,66].

It is helpful to compare the estimated performance of our
device to other refrigeration schemes based on quasiparticle
tunneling, such as NIS junction refrigerators [6,60,67,68].
They are traditionally steady state refrigerators, where cooling
is achieved by a voltage bias that drives hot electrons from
a normal metal to a superconductor, against a temperature
gradient. The quasiparticle current across the junction is usu-
ally suppressed due to the energy gap in the superconductor;
however, the voltage bias supplies the necessary energy for
hot electrons from the normal lead to overcome the supercon-
ducting gap energy.

In comparison, our cooling principle uses adiabatic mag-
netization. It lowers the temperature of the working fluxons
to extract heat from the cold reservoir through quasiparticle
tunneling into the fluxons, which are effectively puddles of
normal regions. For otherwise identical parameters such as
tunnel resistance, a normal/insulator/normal junction is more
conductive than a superconducting/insulator/normal junction.
Also, the scaling of cooling power with respect to temperature
for NIS junction refrigerator is T 3/2

e [67,68], while for and
NIN junction it is T 2

e . Above Te refers to the temperature of
electrons.

C. Coefficient of performance

With insights on the fluxon temperatures throughout the
cycle and cooling power, we are now in a position to character-
ize the refrigerator’s performance. To compute the coefficient
of performance using the dimensionless parameters, we can
write Eq. (50) as

QH = γ HRT 2
H μ

(
l v̄� − (

φ̃2
H − φ2

L

))
,

= QC

μ
+ γ HRT 2

H v̄�

[
l (μ + 1/μ) + 4

3μ
(1 + μ + μ2)

]
.

(66)
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The total work done W = QH − QC

= γ HRT 2
H

(
l v̄�(1 + μ) − μ(φ̃2

H − φ2
L) − (

φ̃2
C − φ2

R

))
. (67)

Here, the first term corresponds to the work done by the
battery to maintain the electrical current. The rest of the terms
express the work done to move the fluxons along the magnetic
field gradient. Interestingly, the temperatures satisfy

φ2
L + φ̃2

H = 1
μ2

(
φ2

R + φ̃2
C

)
. (68)

We can write

QH

QC
= μ

(
l v̄� − (

φ̃2
H − φ2

L

))
−l v̄� + (

φ̃2
C − φ2

R

) . (69)

Using Eq. (69) we can calculate the coefficient of performance
as COP = 1

QH/QC−1 .
An important figure of merit for the refrigerator in view of

achievable cooling is its coefficient of performance when the
power output is maximum. For small fluxon speed, the coef-
ficient of performance at maximum power (i.e., v̄ = v̄lim,R/2)
turns out to be COP(Pmax

C ) �
μ

(
l + 2

3 (1 + μ + μ2)
)

(
l + 2

3 (1 + μ + μ2)
)
(3 − μ) − l (1 − μ2)

. (70)

Also, for v̄ � v̄lim,R, we have PC = 0 and QC = 0. From
Eq. (67) it is clear that, QH is not necessarily 0, leading
to the fact that COP(v̄ = v̄lim,R) = 0. Moreover, as v̄ → 0,
PC → 0 and QC is at a maximum value shown in Eq. (58).
The heat transferred to the hot reservoir attains the minimum
value Qmin

H = γ HRT 2
H (φ2

C − μ2)/μ. This leads to a maximum
coefficient of performance COPmax = μ

1−μ
. The highest value

it can achieve is the Carnot coefficient of performance φC

1−φC
as

μ → φC and the cooling power goes to 0.
We show the behavior of the coefficient of performance

[calculated using Eq. (69)] as a function of the dimensionless
parameters l , μ, φC, v̄, and � in Fig. 6. From the plots, it is
clear that the dissipation, understandably, causes a decrease in
the coefficient of performance. For small lengths l , the fluxons
do not get to interact with the cold reservoir for much time.
Therefore, with increasing length, the heat withdrawn, and
consequently, the coefficient of performance increases. How-
ever, as we keep increasing the length, QC reaches a limiting
value but the work done by the current source keeps in-
creasing. This decreases the coefficient of performance. This
observation also explains the flattening of the curves with de-
creasing � since the work needed to keep the current flowing
also decreases. We see a similar behavior of the coefficient of
performance as a function of the magnetic field ratio. As seen
in Fig. 3, the COP first rises as a function of μ. However, as μ

nears φC, the cooling power and therefore the COP decreases.
Next, as we increase φC, more heat can be exchanged with
the cold reservoir, thus leading to an increase in the COP. As
φC → 1, for small v̄, the COP tends to Eq. (16). Finally, it
can be argued that with increasing speed, the work done by
the current source increases, and the heat withdrawn from the
cold reservoir decreases, causing a significant decrease in the
coefficient of performance.

These insights allude to the fact that for a given �, φC, and
v̄, we can choose μ and l that maximize the COP. Figure 7

FIG. 6. Plots of the coefficient of performance as a function of
l (top left), μ (top right), φC (bottom left), and v̄ (bottom right) for
five different values of �. As one would anticipate, with decreasing
dissipation (or �), the coefficient of performance increases. From
the top left plot, we see that the COP first rises and then decreases
as a function of length. We see a similar situation for the COP as a
function of μ in the top right plot. As expected with refrigeration,
we see in the bottom left plot that with increasing temperature ratio,
the COP increases. It is worthwhile to mention that for the top two
panels and the bottom right panel, the COPCarnot is 4.

FIG. 7. Plot of the coefficient of performance as a function of
μ and l , for φC = 0.8, v̄ = 0.5, and � = 0.01. The brighter regions
correspond to higher COP. The black “×” shows the maxima of the
coefficient of performance calculated numerically. Due to dissipa-
tion, the maximum achievable COP (∼1.5) is less than COPCarnot

(= 4), while the cooling power at the maximum COP is nonzero
(∼0.06κthTH/2).
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shows the result of numerical maximization of the COP—or
minimization of Eq. (69)—with respect to μ and l . Thus, for
fixed bath temperatures, current and superconducting mate-
rial, this analysis can be used to find an optimal value of the
magnetic fields and the optimal geometry of the system.

V. DISCUSSION

Given that fluxons—which act like puddles of normal
regions—predominantly carry the heat around the race-track
cyclically, we considered a simple, Fourier law for heat trans-
port across the interface for the steady state, where the heat
current is proportional to the temperature difference across the
interface, with the proportionality constant being the thermal
conductivity of the interface. Such considerations, however,
ignore different additional contributions to the heat transport
possible in the system—originating from the energy level
structure of the junction, or external voltage biases—and
therefore have to be carefully accounted for to achieve the
predicted cooling behavior in an experiment. For example,
a small gap of the working superconductor can induce an
above-the-gap quasiparticle transport from the hot to the cold
reservoir across the sample, nullifying the cooling effect. Such
quasiparticle transport across the working superconductor can
be reduced by choosing either a superconductor of large gap
as the working superconductor, or by biasing the chemical
potential of the reservoirs below the gap energy of the working
superconductor. In this regime, only subgap transfer of charge
is possible, via Andreev reflections [69], as the quasiparti-
cle heat transport becomes hindered by the energy gap of
the working superconductor. Also, biasing the current source
(which generates the circulation of fluxons) below the gap
energy of the working superconductor further ensures that it
will be a supercurrent (with no associated heat transfer) that
generates the circulation, and not the above-the-gap quasipar-
ticle current (which would add another heat contribution).

On a related note, superconductors with d-wave pairing
symmetry have nodal directions where the gap energy goes
to zero. Along these nodal directions, quasiparticle excita-
tions can be present even at low temperatures (since they are
no longer suppressed by the gap energy), and therefore can
adversely affect the cooling process by inducing additional
quasiparticle heat currents in the system.

Before we conclude, we wish to also comment on the role
of phonons in the refrigeration process. The role of phonons
is twofold for the systems considered here. Presently, we
have assumed that quasielectrons and phonons decouple at
low temperatures. The electron-phonon coupling scales as T 5,
making their interaction very weak at low temperatures [6,70].
The cycles we describe are in the quasiequilibrium regime
where the temperatures of the phonons and quasiparticles are
different. As explained previously, along the adiabatic strokes,
the density of states of the quasiparticles change. There is ther-
malization between the vortices due to quasiparticle exchange.
At these low temperatures, we can ignore entropy exchanges
between electrons and phonons in the transport of fluxons
along the adiabatic arms of the cooling cycle. This results
in simple linear cooling laws upon adiabatic magnetization,
as we discussed here. On the other hand, when the inter-
actions between quasielectrons and lattice phonons (which

mediate superconductivity) occur much faster than the adi-
abatic timescale, we note that the cooperative effect of
lattice-phonons can actually help improve the cooling ef-
fect. This can happen through a mechanism that is similar
to adiabatic magnetization cooling of type-I superconduc-
tor [36,37,39,40]. When electron–lattice-phonon interactions
are not negligible, the entropy that is preserved in adiabatic
processes is the entropy of electrons plus the entropy of
lattice-phonons. This results in a cubic advantage in cooling at
low temperatures when electron–lattice-phonon interactions
are not negligible. To see this, note that in the superconducting
phase, electronic specific heat is negligible and the phononic
contribution to entropy dominates, so Si ≈ αT 3

i . In the final
normal state realized by adiabatic magnetization; however,
the electronic contribution to entropy dominates, therefore
S f ≈ γ (Hf )Tf . Equating both assuming that the process is
adiabatic, we find, Tf = T 3

i /T 2
∗ , where T∗ = √

γ (Hf )/α. This
effect could also be relevant for high-Tc, type-II superconduc-
tors, where one can operate the refrigerator cycles at higher
temperatures. A microscopic description of the electron-
phonon interaction can be interesting but is beyond the scope
of our discussion.

The second aspect is the effect of phonon-phonon inter-
actions across a given interface. Such interactions result in a
heat transport between phonon-phonon interfaces i, j that is ∝
(T 4

phi
− T 4

ph j
) (known as the Kapitza coupling [71]). Although

we have ignored the Kapitza coupling in our present paper,
assuming phonon mismatch across the relevant interfaces, we
note that it could become relevant, for example when cooling
down a substrate of phonons in stacked architectures.

VI. CONCLUSIONS AND OUTLOOK

We presented a cyclic refrigerator using magnetic field
vortices in a type-II superconductor as the working substance.
This design joins other mesoscopic engines based on applied
magnetic fields [7,40,72–74]. The thermodynamic cycle con-
sists of two adiabatic steps and two isothermal steps, where
the superconductor is in contact with thermal reservoirs in the
latter parts of the cycle. For both s-wave and d-wave models,
we describe the thermodynamic quantities associated with
the refrigerator and calculate the corresponding coefficient
of performance. We also discuss the limiting cases where
the thermodynamically permissible maximum (Carnot) coef-
ficient of performance is achieved, while the cooling power
generically drops to zero as the transport becomes reversible.
We show that the d-wave case, under otherwise identical con-
ditions, leads to a higher coefficient of performance. We also
characterize the heat flow dynamics from the superconductors
to the reservoirs and provide a transitory description of the
temperature of the fluxons. As we incorporate dissipation
into our narrative, we notice a decrease in the coefficient of
performance, as expected. Weak-pinning channels necessary
for guided transport of fluxons we consider have been char-
acterized experimentally in both linear [75,76] and circular
geometries [77,78], and thus point at the near-term feasibil-
ity of experimental realizations of the refrigerators proposed
here.
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Our dynamical model dictates that the velocity of the flux-
ons (and therefore the applied current) has to be small enough
to allow the fluxons to exchange heat with the reservoir during
the isothermal steps. We also calculate the cooling power and
show that it attains maxima for a certain value of the fluxon
speed. Additionally, we show that, depending on system pa-
rameters and applied fields, there is an optimal geometry of
the system that allows the highest coefficient of performance.

Our results point to several future ventures one could un-
dertake. Presently, we looked at the steady-state dynamics
of an ensemble of fluxons considering a mesoscopic sample.
Their thermodynamics is well described by the fluxon gas
limit as we discussed, and allows one to derive measurable
figures of merit for the cyclic refrigerator, which can be tested
in experiments. Beyond such explorations, it would also be
exciting to explore the time-dependent, and transient behav-
ior of the system considering a finite number of fluxons,
as it might lead to insights on cyclic refrigeration in the
small quantum systems’ regime of thermodynamics, where
fluctuations—including quantum fluctuations—also become
relevant [79,80]; For example, making quantum mechanical
observations of the dynamics of fluxons can incur a back-
reaction on their dynamics, which could be harnessed to
further improve the efficiencies of such microscopic devices
[81–84]. We defer such analyses to future work.
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APPENDIX: ALTERNATIVE ENTROPY GRADIENT
CALCULATION FOR THE DISSIPATIVE CASE

In this section, we provide an alternative dynamic strategy
of including energy dissipation into our consideration. For the
adiabatic processes stroke 1 and 2, heat dissipated in time
dt per unit volume at position x is dQ = n(x)ηv2dt . Now,
consider an element of length dx = vdt . Change in entropy of
the fluxons due to dissipation T dS = dQ. In time dt , fluxons
at x end up at x + dx. Therefore, if we express the unit volume
entropy as a function of x and t ,

S(x + dx, t + dt ) = S(x, t ) + n(x)ηv

T (x)
dx. (A1)

This leads to

∂S

∂x
+ v

∂S

∂t
= n(x)ηv

T (x)
. (A2)

For the steady state this reduces to

∂S

∂x
= n(x)ηv

T (x)
, (A3)

same as in Eq. (33).
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