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Noise within: Signal-to-noise enhancement via coherent wave amplification
in the mammalian cochlea
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The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due
to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically
arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively
referred to as the “cochlear amplifier” to boost the cochlear response to faint sounds. While simplistic views
attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of
internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification
requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an
intriguing challenge. Here we analyze the effects of spatially distributed cochlear-like amplification on both
signals and internal noise. By combining a straightforward mathematical analysis with a simplified model of
cochlear mechanics designed to capture the essential physics, we generalize previous results about the impact of
spatially coherent amplification on signal degradation in active gain media. We identify and describe the strategy
employed by the cochlea to amplify signals more than internal noise and thereby enhance the sensitivity of
hearing. For narrow-band signals, this effective, wave-based strategy consists of spatially amplifying the signal
within a localized cochlear region, followed by rapid attenuation. Location-dependent wave amplification and
attenuation meet the necessary conditions for amplifying near-characteristic frequency (CF) signals more than
internal noise components of the same frequency. Our analysis reveals that the sharp wave cutoff past the CF
location greatly reduces noise contamination. The distinctive asymmetric shape of the “cochlear filters” thus
underlies a crucial but previously unrecognized mechanism of cochlear noise reduction.
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I. INTRODUCTION

In the 19th century, Bernhard Riemann made the remark-
able observation that the sound of a foghorn could be heard
from a distance of five miles. He concluded that the human
ear must be capable of detecting sounds that generate only
subatomic motions of the eardrum [1]. During the succeed-
ing one and a half centuries, Riemann’s conjecture has been
repeatedly verified [2]. The extraordinary sensitivity of the
mammalian ear can be attributed to the coordinated, piezo-
electric behavior of outer hair cells (OHCs) [3]. Arranged in
rows along the sensory tissue (the organ of Corti), these cells
act as actuators capable of boosting sound-induced vibrations
of the sensory tissue by more than two orders of magnitude
[4]. The prevailing belief in the field posits that OHCs actively
amplify sound-induced waves as they propagate along the
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spiral structure of the cochlea. Collectively, the mechanisms
involved are known as the “cochlear amplifier.”

However, whether cochlear amplification constitutes a vi-
able strategy for enhancing the sensitivity of hearing remains
controversial. Because the minimum signal level to which
sensory neurons can meaningfully respond is inherently lim-
ited by the level of internal noise (see, e.g., Ref. [5]), it
remains unclear how the cochlear amplifier, while amplifying
signals, can avoid amplifying the accompanying internal noise
[6]. Although the dominant sources of intracochlear mechan-
ical noise remain to be firmly identified—these necessarily
include both thermal noise and mechanical noise generated
by stochastic gating of hair-cells ion channels (see, e.g.,
Refs. [5–7])—intracochlear mechanical noise is both present
and measurable, and it depends on the same mechanisms
that control signal amplification [8]. While previous work has
focused on the effects of noise on the mechanical sensitivity of
inner-hair-cell stereocilia (see, e.g., Refs. [5,7]), propagation
and amplification of intracochlear mechanical noise remains
unexplored.

In this study, we investigate the impact of spatially
distributed amplification on both signals and internal
noise using two distinct but complementary approaches:
a mathematical model of spatially distributed amplification
and an active model of the cochlea. We begin by examining
the simplest scenario, which involves a highly anisotropic,
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FIG. 1. (a) Effect of spatially distributed “one-way” amplification on signal and internal noise. The model consists of a chain of linear
amplifiers (multipliers) with gain g; the effect of internal noise is simulated by adding noise before and after each amplification stage. (b) SNR
enhancement (R) at the N th node of the amplifier chain (shown for N = 10 and N = 20) as a function of the amplifier gain, g. (c) Bidirectional
noisy amplification model. In this model, internal noise propagates and is amplified identically in both directions. (d) Equivalent one-way
amplification model to the study noise and signal response at the nth node. (e) Example of enhancement factor at different nodes in a chain of
N = 10 bidirectional amplifiers. In this example, the amplifier gain is chosen to improve the SNR at node 5 (see text) by setting gm = 3 for
m < 5 and gm = 0.1 for m � 5.

one-dimensional (1D) medium comprising a series of
cascaded “noisy” amplifiers in which signals and noise
propagate in only a single direction. We then move to the more
challenging but biologically relevant case where the medium
is nearly isotropic, so that signals and noise propagate and
are amplified in both directions. Finally, we investigate signal
and noise amplification within a simplified but physically
realistic linear model of the cochlea. Importantly, our analysis
concerns only noise sources that are located within the
cochlea: The ear processes external noise in the same way
that it processes signals [9]. Furthermore, as we all know
from cocktail parties, which sounds are “signals” and which
are “noise” depends entirely on what one wants to listen to.

II. SPATIALLY DISTRIBUTED AMPLIFICATION
IN NOISY ACTIVE MEDIA

A. Propagation of signals and noise in one direction

We start by considering the simple scenario of the dis-
tributed “one-way” noisy amplifier, depicted in Fig. 1(a). The
model consists of a chain of amplifiers that multiply the input
signal (S[0]) by a factor g, representing the amplifier gain.
The medium’s noise is represented by noise sources that are
summed with the propagating signal after each amplifica-
tion stage. To remove the ambiguity regarding whether noise
should be included before or after the amplification stage,
the model includes noise sources located both at the input
of the first amplifier and at the output of last. This model
approximates a strongly anisotropic medium, where signals
and noise propagate only in one direction [from left to right
in Fig. 1(a)]. This scenario accurately represents what occurs

in many human-made systems, such as cascaded electronic
amplifiers or radio repeaters—indeed, the formulae we derive
here are essentially the same used to calculate the noise fig-
ure of cascaded electronic amplifiers [10].

In this model we can turn amplification “off”—and thereby
model signal propagation in a lossless, noisy medium—by
imposing the condition g = 1. Or we can turn it “on” by
setting g �= 1. When g > 1, the chain amplifies signals as they
propagate. When g < 1, the distributed amplifiers become
distributed, attenuating “brakes.” By comparing signal and
noise for the three conditions (g = 1, g > 1, and g < 1), we
quantify the impact of amplification and attenuation on the
signal-to-noise ratio (SNR) along the chain [i.e., at the nodes
Out1,2...n in Fig. 1(a)].

The root-mean-square (rms) amplitude of the signal at a
given node n is simply the rms amplitude of the input signal
passed through n multipliers (Srms[n] = gnSrms[0]). Turning
on the amplifier thus boosts the signal amplitude by the
factor

Gsignal[n] = gn. (1)

We focus our analysis on the physically relevant case
where the noise sources are uncorrelated, meaning that the
noise in the medium is spatially incoherent. For simplicity,
we assume that the various noise sources are independent
versions of the same stochastic process, with rms amplitude γ .
In this case, the rms amplitude of the noise (Nrms) at node n can
be calculated by incoherent summation (i.e., linear summation
of power) of the various amplified noise terms. Specifically,
the noise power at node n can be expressed as a geometric
series, where the m-th term represents the contribution of
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the (n − m)-th source, amplified (or attenuated) m times. The
expression for Nrms[n] can be simplified based on different
scenarios:

Nrms[n] =
√√√√ n∑

m=0

g2mγ =

⎧⎪⎪⎨
⎪⎪⎩

√
g2(n+1)−1

g2−1 γ for g �= 1,

√
n + 1γ for g = 1.

(2)

Hence, turning on the amplifier boosts the noise gain by a
factor of

Gnoise[n] = Nrms[n]|g�=1

Nrms[n]|g=1
=

√
g2(n+1) − 1

(n + 1)(g2 − 1)
. (3)

The SNR at node n is given by Rn = Srms[n]/Nrms[n]. The
effect of amplification on the system’s sensitivity can be
quantified by the SNR enhancement factor [11]:

R[n] = Rn(on)/Rn(off ) = Gsignal/Gnoise, (4)

where R(on) and R(off ) are the SNR with the amplifier on
(g �= 1) and off (g = 1), respectively. Figure 1(b) illustrates
the enhancement factor as a function of g for two values of
n. When R > 1 the signal is amplified more than the internal
noise, and the SNR increases at the considered node. Con-
versely, when R < 1, the signal is amplified less than the
noise, and the SNR decreases. It follows from Eqs. (1) and (3)
that amplification (g > 1) boosts signals more than internal
noise, increasing the SNR at all nodes. In particular, the larger
the gain, the larger R, resulting in a greater improvement in
SNR at any node. Additionally, the longer the chain of ampli-
fiers, the larger the benefit of distributed amplification on the
SNR and the greater the increase in the system’s sensitivity.
Conversely, when the amplifiers act as attenuators (g < 1),
R < 1, meaning that the signal is attenuated more than the
internal noise.

As the signal propagates along the line, noise from the
growing number of contributing sources accumulates. A rel-
evant measure of the resulting signal degradation is the noise
factor Fn = Rn/R0, which quantifies how the SNR degrades
along the transmission line. In our case

Fn =
√

g2(n+1)(1 − g−2)

g2(n+1) − 1
, (5)

which approaches 1 (i.e., no significant SNR degradation
along the line) when g � 1. Importantly, this result—namely
that distributed amplification prevents signal degradation—
generalizes to the case when internal noise sources are
spatially coherent [12].

B. Signal vs noise amplification in isotropic active media

We now extend the simple chain-of-amplifiers model de-
scribed above by considering the case of an active medium
where waves propagate in both directions, as in the mam-
malian cochlea [13]. In our simplified treatment, we assume
that the medium is isotropic. Thus, we assume that the am-
plifiers boost signals propagating in either direction by the
same amount [Fig. 1(c)]. We simplify the analysis further by
ignoring potential scattering effects within the medium and
by assuming that the various noise sources all have equal

amplitudes. In this case, however, we allow the amplifier
gain to vary along the line. When considering signal and
noise propagation to node n, the system can be depicted
as the combination of two “one-way” amplification models
[Fig. 1(d)], representing the contribution from sources located
to the right and to the left of the node n. Note that whereas
signals come only from the left, noise comes from both
directions.

Signal propagation from a source node n′ to a receiver node
n is encapsulated by the discrete Green’s function G[n, n′]. In
the simplified model, where each node n amplifies the signal
by the factor gn:

G[n, n′] =
max(n,n′ )−1∏
m=min(n,n′ )

gm. (6)

Note that the Green’s function is symmetric: G[n′, n] =
G[n, n′]. In this model, the signal is effectively a source at
node 0; its amplitude at node n is therefore

Srms[n] = Srms[0]G[n, 0]. (7)

The noise response at node n can be decomposed into the
incoherent summation of noise from both the left and right
sides of the node [Fig. 1(d)]:

Nrms[n] =
√√√√ N∑

n′=0

(G[n, n′]γ )2

= γ

√√√√ n∑
n′=0

(G[n, n′])2 +
N∑

n′=n+1

(G[n, n′])2. (8)

In this case, unlike the simpler anisotropic model of
Fig. 1(a), amplification is not necessarily beneficial for the
SNR. When the goal is to maximize the SNR at node n, the
optimal gain distribution along the amplifier chain is

gn′ � 1 for n′ < n

gn′ � 1 for n′ � n. (9)

In this case, the system approaches the performance of the
one-way amplification model at the nth node. Unlike the one-
way model, however, it is not possible to increase the SNR at
all nodes simultaneously [see Fig. 1(e)].

III. SIGNAL-VS-NOISE AMPLIFICATION
IN THE MAMMALIAN COCHLEA

A. Preliminaries

Figures 2(a) and 2(b) illustrate the general function of
the mammalian ear. Briefly, sound-induced vibration of
the stapes (the third of the three middle-ear ossicles in the
chain that connects the eardrum to the cochlea) displaces
the fluid in the inner ear, launching hydromechanical waves
that propagate slowly from the base (i.e., the entrance)
toward the apex (i.e., the “end”) of the cochlea. Cochlear
wave propagation is frequency dependent, so that waves
peak on the BM at locations that depend on frequency. In
this way, the cochlea maps frequency into position, with
higher frequencies mapping closer to the stapes. As they
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FIG. 2. (a) Simplified anatomical view of the mammalian cochlea. (b) BM magnitude responses in vivo (amplifier on) and postmortem
(amplifier off) to stimulus tones of 10 kHz and 30 kHz calculated in a 2D finite-difference model of the mouse cochlea. (c) Apical and basal
noise propagation functions for narrow-band noise centered around 10 kHz. At each location, these functions quantify the expected noise
power due to distributed basal and apical noise sources of equal strength, respectively. The gray vertical line marks the characteristic place.
(d) BM response magnitude to sound signal and narrow-band internal noise at 10 and 30 kHz for both postmortem and invivo models. The
curves are normalized so that the signal and noise magnitudes at the characteristic places (vertical gray lines) are the same postmortem. The
difference between in vivo signal and noise responses demonstrates that turning on the amplifier boosts the SNR at the characteristic place. (e)
Enhancement factor (i.e., the ratio between the SNR with the amplifier on and the amplifier off) along the cochlea calculated for narrow-band
near-CF signals and noise and for broadband signals and noise (assumed white over the band from 4 to 70 kHz). The figure shows that the
near-CF positive SNR enhancement caused by turning on the amplifier produces a global, broadband increase in SNR.

travel apically beyond their peak location, cochlear waves
are dramatically attenuated. Cochlear wave propagation
is also nonlinear (intensity dependent) and varies with
cochlear health [e.g., in vivo vs postmortem, see Fig. 2(b)]. In
particular, the location of maximal vibration depends both on
sound level and on physiological status. However, at sound
levels near the threshold of hearing, where issues concerning
SNR are most pressing, cochlear mechanical responses are
approximately linear. For this reason, we employ linear
models for our analysis. At any location we define the
characteristic frequency (CF) as the frequency that evokes the
largest in vivo BM response at low sounds levels; conversely,
we define the characteristic place as the location where a wave
of given frequency peaks on the BM at low sound levels.

In vivo, the cochlear amplifier boosts waves as they prop-
agate towards their characteristic places, producing stronger
and more spatially localized responses than in a dead cochlea
[Fig. 2(b)]. Equivalently, because of the well-established sym-
metry between spatial and frequency tuning [14], the cochlear
amplifier narrows the bandwidth of BM frequency responses
measured at a given location (colloquially, these frequency

responses are known as “cochlear filters”). By narrowing
the bandwidth of the cochlear filters, amplification enhances
cochlear sensitivity through well-known principles [15]. In-
deed, narrowing the bandwidth of a receiver means reducing
its response to background broadband noise relative to the
response to a signal within the receiver passband. However,
because it is theoretically possible to narrow the bandwidth
of the cochlear filters without resorting to amplification (e.g.,
Ref. [16]), we make a dedicated effort to isolate the effects
of signal amplification from the effects of amplifier-induced
bandwidth reduction.

B. Cochlear amplification

In our analysis of cochlear mechanics, we consider a
general linear model that describes the frequency-domain
relationship between the velocity of the cochlear partition
(VCP) and the pressure difference (P0) across it. The cochlear
partition comprises the organ of Corti and the overlying tec-
torial membrane, and VCP denotes the velocity of its center
of mass. The pressure-velocity relation is characterized by a
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phenomenological admittance, Y , defined as VCP = Y P0. (For
simplicity, the implicit frequency dependence is not shown.)
By applying mass conservation and Newton’s second law, we
have that (see Appendix A and Ref. [17])

1

A

d

dx

(
A

dP̄

dx

)
+ αZY P̄ = 0. (10)

In this equation, P̄ is the pressure difference between the “up-
per” and “lower” fluid chambers [see Fig. 2(a)] averaged over
their cross-sectional area (A). The term Z = iωM represents
the “longitudinal” impedance due to the effective acoustic
mass (M) of the fluids, and the complex function α = P0/P̄
relates the driving pressure to the scalae-averaged pressure
[18]; it depends on wavelength and on model geometry. For
simplicity, we assume 1D wave propagation, which allows
us to set α = 1 and P̄ = P0. The equations for 2D and 3D
models are more complex and can be found in Appendix A.
However, and as we will illustrate through numerical sim-
ulations [19], the qualitative implications derived from the
1D model remain applicable in more realistic 2D and 3D
geometries.

For simplicity, our analytic treatment focuses on pressure,
whose spatial amplification is similar to that of BM veloc-
ity [20]. The numerical simulations we show in Figs. 2(d)
and 2(e) verify that the main results apply to BM veloc-
ity in a more complete model [21]. Importantly, the signal
enhancement mechanism we elucidate here relies on active
amplification that boosts the energy of sound-induced trav-
eling waves more than that of internal noise; in these types
of models, pressure amplification serves as a proxy of power
amplification [22].

When we assume “reflectionless” boundary conditions at
the apical and basal ends of the cochlea, the 1D Green’s
function becomes (see Appendix)

G(x, x′) ≈ 1

2i

√
A(x′)
A(x)

1

k(x)k(x′)
exp

[
−i

∫ max(x,x′ )

min(x,x′ )
k(x̂) dx̂

]
,

(11)

where k(x) is the complex wave number. The pressure
response when the cochlea is driven from the stapes is
simply [23]

P̄(x) = 2iP̄(0)k(0)G(x, 0). (12)

When the spatial gradients of cross-sectional area (A) and
wave number (k) are gentle enough, the gain per unit length
(g) is primarily determined by Im(k), the imaginary part of k.
Specifically, the log-gain per unit length can be approximated
as d log(|G|)/dx ∼ Im(k). When Im(k) > 0, the gain per unit
length is greater than 1, and the wave undergoes power am-
plification. On the other hand, when Im(k) < 0, the gain per
unit length is less than 1, indicating attenuation. When the
cochlear amplifier is inactive, Im(k) is everywhere negative
[Im(k) < 0]. But when the amplifier is maximally active,
Im(k) is positive basal to the characteristic place and negative
apical to it. In other words, the wave peaks near the point x̂
where Im(k) = 0, with Im(k) > 0 for x < x̂ and Im(k) < 0
for x > x̂ [24]. Importantly, waves cut off dramatically just
apical to their characteristic place [see Fig. 2(b)], so that

g � 1 for x > x̂. In summary, whereas traveling waves are
amplified (g > 1) before they reach their characteristic place
(x̂), they are rapidly attentuated (g � 1) as they pass beyond
it. According to our analysis of the bidirectional amplifier
[Eq. (9) and Fig. 1(c)], this arrangement fulfills the conditions
necessary for boosting the SNR at the characteristic place.

C. Amplification of narrow-band signals and noise

For the purposes of analyzing the effects of spatial amplifi-
cation on SNR enhancement, we focus on a narrow frequency
band centered around the signal frequency. Within an arbi-
trarily narrow frequency band, the internal noise can be ap-
proximated using spatially incoherent sinusoidal sources with
randomly distributed amplitudes and phases. In particular, we
assume that the noise sources are sinusoids with phases uni-
formly distributed on [0, 2π ) and magnitudes given by a non-
negative random variable with mean μ and variance σ 2. Using
this simplified noise model allows us to examine the impact of
signal amplification on SNR without the confounding effects
of bandwidth reduction induced by amplification. The rms
noise pressure at a given location x can be approximated as

P̄noise(x) ≈ γ

√∫ L

0
|G(x, x′)|2 dx′, (13)

where γ 2 = μ2 + σ 2. This expression represents the
statistical average of the noise pressure implied by the
amplitude distribution of incoherent sinusoidal sources. The
integral

∫ L
0 |G(x, x′)|2 dx′ captures the propagation of noise

power from basal and apical noise sources to the location
x. Assuming that the wave number at the cochlear entrance
[k(0)] is independent of cochlear amplification, we have that
the SNR is [25]

R(x) ∝ |G(x, 0)|√∫ x
0 |G(x, x′)|2 dx′ + ∫ L

x |G(x, x′)|2 dx′
, (14)

where the two integrals,
∫ x

0 |G(x, x′)|2dx′ and∫ L
x |G(x, x′)|2dx′, represent the propagated contributions

of noise sources located basal and apical to x, respectively.
The values of these integrals, calculated using a previously
developed 2D model (see figure caption and Appendix B for
details), are shown in Fig. 2(c). The figure shows that at the
characteristic place, the contribution of apical noise sources
is negligible compared to that of basal noise sources.

Figure 2(d) depicts the differential effects of amplification
on signal and internal noise in the 2D cochlear model for
frequencies of 10 and 30 kHz. As expected from the analysis
of the bidirectional amplifier, turning on the cochlear amplifier
boosts the signal more than the internal noise near the charac-
teristic place. This is evident in the plot, where the in vivo
signal amplitude is larger than that of noise near the region
of maximal BM response. (Note that signal and noise levels
are normalized so that postmortem they are the same at the
characteristic place.) However, as one moves basally away
from the characteristic place towards the cochlear entrance,
amplification becomes more pronounced for the internal noise
compared to the signal. The differential effect of amplifi-
cation on signal and internal noise highlights the selective
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enhancement of the signal relative to the noise at the charac-
teristic place, where the cochlea achieves optimal sensitivity
for sound detection.

D. Amplification of broadband signals and noise

Figure 2(e) shows the enhancement factor as a function of
distance along the cochlea when both signals and noise are
broadband. In these simulations, signal and noise have white
spectra over the frequency band spanning the full range of
CFs represented by the cochlear model (4–70 kHz). Except
near the cochlear entrance—where CF waves do not travel far
enough to experience substantial amplification, to the point
that there is no SNR enhancement even at CF [open symbols
in Fig. 2(e)]—amplification substantially boosts the broad-
band SNR, by ∼10 dB at the most sensitive locations. These
results demonstrate that spatially restricted amplification pro-
duces a global increase in cochlear sensitivity to broadband
sounds.

IV. DISCUSSION

While the inner ear possesses astounding mechanical sen-
sitivity, the origin of this sensitivity within the context of
amplification has been largely overlooked. Indeed, the text-
book view in the field is that the cochlear amplifier increases
the sensitivity of hearing by boosting the mechanical vibra-
tions that displace the stereocilia of the sensory neurons. This
simplistic account ignores the fact that the sensitivity of a
system depends on the internal noise [6,26]. The handful of
previous attempts at relating cochlear amplification with (true)
cochlear sensitivity (e.g., Refs. [27,28]) ignore the contribu-
tions of wave propagation, relying instead on nonequilibrium
oscillator models whose relevance to cochlear mechanics re-
mains uncertain.

We have shown here that established mechanisms of
cochlear wave amplification produce significant signal en-
hancement. The mechanisms are analogous to human-made
wave-based systems such as lasers and active transmission
lines [11,29]. Indeed, the cochlear amplifier has been likened
to the gain medium of a laser amplifier [30]. By ampli-
fying different frequencies in different regions, the cochlea
effectively employs narrow-band “laserlike” amplification to
boost sensitivity to both narrow- and broad-band signals
[Fig. 2(d)]. The waveguide structure of the cochlea allows
it to act as an inhomogeneous transmission line in which
the cutoff frequency changes with location [31]. In this way,
waves within the operating frequency range are greatly atten-
uated before reaching the apical end (see also Refs. [32,33]).
Consequently, the cochlea eliminates noise “build-up” due
to scattering from the apical termination, an effect which
can greatly degrade the performance of active transmission
lines [29].

Our results also highlight the functional importance of
the asymmetric shape of the cochlear filters (i.e., of the BM
frequency response measured at each location). The cochlear
filters have a steep high-frequency flank arising from the
wave cutoff apical to the CF place. As a result, near-CF
waves coming from more basal locations are amplified while
those arising at more apical locations—where there are noise

sources but no signal—are squelched. Thus, the steep wave
cutoff underlies a peculiar form of spatial filtering of near-CF
components, optimized to reject noise [34]. It is worth noting
that the ear-horn-like geometry of the cochlea contributes
significantly to this “optimized spatial filtering.” The tapered
geometry facilitates the propagation of waves from the base
to the apex, allowing for efficient signal propagation and
amplification [23].

The strategy elucidated here for enhancing signal to noise
within the cochlea is compelling because it is simple, robust,
and consistent with established facts of active cochlear me-
chanics: first and foremost, that traveling waves are initially
amplified and then dramatically attenuated as they propagate.
But to what extent does this mechanism boost the sensitivity
of hearing in actual practice? Although a precise answer to
this question is currently out of reach—it requires details that
are largely unknown and are likely to remain unknown for a
long time (e.g., the power of the dominant intracochlear noise
sources)—considerable insight can be gained by reviewing
the empirical evidence in light of our findings. Specifically,
Nuttall and colleagues [8] measured BM-velocity noise in the
base of sensitive guinea-pig cochleae, carefully minimizing
external interferance to ensure that the recordings were dom-
inated by internal cochlear noise sources. At frequencies near
CF, they found a BM mechanical noise floor approximately
15 dB below the BM vibration amplitude produced by tones
at intensities corresponding to neural threshold. More recent
recordings [35], in the apex of the mouse cochlea, yield sim-
ilar results for the tectorial membrane [36]. In a nutshell, the
experimental data suggest that the cochlear mechanical SNR,
measured for narrow-band frequencies near-CF in response
to threshold-level tones, is on the order of 15 dB. Strikingly,
in our model amplification enhances the SNR of the BM
responses by a similar amount [Fig. 2(e)]. In other words,
our results suggest that without amplification cochlear me-
chanical responses to faint but detectable sounds would fall
perilously close to the internal noise floor. Although there
is no scarcity of factors that impact the neural encoding of
sound—including hair-cell noise [37,38] and the stochastic
nature of auditory-nerve firing [39]—our analysis suggests
that spatially distributed cochlear amplification plays a central
role in enhancing the sensitivity of hearing.

ACKNOWLEDGMENTS

Supported by Grants No. R21 DC019712 (A.A.) and No.
R01 DC003687 (C.A.S.) from the NIH/NIDCD. We thank S.
Elliott, P. Teal, K. Grosh, J. Faber, E. Olson, and one anony-
mous reviewer for their helpful comments and suggestions.

APPENDIX A: GREEN’S FUNCTIONS IN ONE,
TWO, AND THREE DIMENSIONS

1. Equations of motion

The average pressure difference between the two scalae
(P̄) and the velocity of the partition’s center of mass
(VCP) are related by the well-known transmission-line
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equations:

dP̄

dx
= − iωρ

A
U,

dU

dx
= −bVCP, (A1)

where U is the volume velocity of the fluids in the duct, A
is the duct’s effective acoustic area, ρ is the fluid density,
ω is the angular frequency, and b is the partition’s effective
width. The partition velocity can be expressed as the product
of the pressure difference across the tissue P0 and a complex
admittance YCP,

VCP = P0YCP = αP̄YCP, (A2)

where α = P0/P̄ is the short-wave hydrodynamic factor. Com-
bining Eqs. (A1) and (A2) we find the following expression
for P̄,

1

A

d

dx

(
A

dP̄

dx

)
+ k2

x P̄ = 0, (A3)

where k2
x = αZY is the square of the complex wave number

and Z = iωρ/A is the acoustic impedance of the scalae.

2. One-dimensional models

In 1D models, the pressure field is a function only of
longitudinal distance from the stapes (x) so that P̄ ≡ P0 and
α = 1. The Green’s function G1D(x, x′) is the response to a
unitary point pressure source at x′, and hence can be expressed
as

1

A

d

dx

(
A

dG1D

dx

)
+ k2

x G1D = −δ(x − x′), (A4)

where δ is the Dirac delta function. Note that the pressure
source has unit of pressure over length squared. We assume
reflections boundary conditions and calculate G1D using the
Wentzel-Kramers-Brillouin (WKB) approximation. To do so
we make a change of variable in Eq. (A4). In particular, we
introduce the acoustic distance χ ,

χ = A(0)
∫ x

0

dx

A(x)
, (A5)

and define the corresponding wave number as k̂ = Akx/A(0).
Equation (A4) can be then rewritten as

d2G1D

dχ2
+ k̂2G1D = − A2

A2(0)
δ(x − x′)

= −A(x′)
A(0)

δ(χ − χ ′). (A6)

In the χ domain, the 1D Green’s function is [31]

G(χ, χ ′) = 1

2i

√
1

k̂(χ )k̂(χ ′)
exp

[
−i

∫ max(χ,χ ′ )

min(χ,χ ′ )
k̂(χ̂ )dχ̂

]
.

(A7)

Accounting for the source amplitude in the χ domain
[Eq. (A6)], and converting the solution back into the x domain,

yields

G1D(x, x′) = 1

2i

√
A(x′)
A(x)

1

k(x)k(x′)
exp

[
−i

∫ max(x,x′ )

min(x,x′ )
k(x̂)dx̂

]
.

(A8)

3. Two-dimensional and simplified three-dimensional models

A tapered 2D “box” model can be interpreted physically
as a model where the cross-sectional area of the duct is a
rectangle with constant width and varying height, while the
partition spans the entire cochlear width and moves up and
down as a piston (“wall-to-wall carpeting,” see Ref. [31]).
The equations for a 2D model are approximately valid for a
3D model where the cochlear duct and partition have circular
cross-sectional shapes. When the radius of the partition is suf-
ficiently small, the pressure can be approximated as a function
of distance from the stapes (x) and radial distance from the
partition center (r). With these approximations the 3D model
is effectively 2D in cylindrical coordinates [40,41].

Importantly, although the equations for a 2D box model
are valid for a 3D cylindrical model, the parameters and
their spatial gradients in the two models are different [see
also 22]. While the partition admittance can be strategically
chosen so that the wave number kx is the same in 2D and 3D
[42], the spatial gradient of the cross-sectional area A (which
determines the important geometric pressure gain factor [23])
differs in the two models. In the tapered box model A ∝ H ,
while in the 3D cylindrical model A ∝ H2, where H is the
scala height (or radius).

Keeping in mind these important caveats, we now proceed
to heuristically determine the reduced 2D Green’s function
Ḡ2D(x, x′) which describes the scalae-average pressure at x
resulting from a 2D source placed at the center of the partition
(i.e., at y = 0). Following [31], we note that the 2D reduced
Green’s function must obey the following relation:

1

A

d

dx

[
A

dḠ2D(x, x′)
dx

]
+ k2

x Ḡ2D(x, x′) = Fδ(x − x′), (A9)

where F is a function to be determined that accounts for the
fact that the source, unlike in the 1D model, is also two dimen-
sional. Following the results of Ref. [31] obtained in a box
model of constant cross-sectional area, we have that F |x′ ∝
α(x′). Because in our tapered model the area changes with
location, we further need to figure out if there are systematic
differences between 1D, 2D, and 3D sources that change with
the cross-sectional area. In this regard, we note that a 2D point
source is s2D = δ(x − x′)δ(y) while a one-dimensional source
is s1D = δ(x − x′). Their respective source strengths, averaged
over the cross sectional area of a two-dimensional model, are
a factor of H (x′) larger in 1D than in 2D [43]. Likewise a
3D source is s3D = δ(x − x′)δ(y)δ(z), whose strength is A(x′)
smaller than a 1D one.

Based on these consideration, and further noting that
A(x′) ∝ H (x′) in 2D (so that we can write equations that
are valid in 2D and 3D models), we conclude that F ≈
α(x′)/A(x′):

Ḡ2D(x, x′) ≈ α(x′)
A(x′)

G1D(x, x′). (A10)
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We now define Ĝ2D(x, x′) = G2D(x, 0, x′, 0), where
G2D(x, y, x′, y′) is the “true” 2D Green’s function, i.e.,
the function that describes the pressure response at x, y to a
unit point source at x′, y′. Exploiting the definition of α, we
have that

Ĝ2D(x, x′) ≈ α(x)α(x′)
2i

√
1

k(x)k(x′)A(x′)A(x)

× exp

[
−i

∫ max(x,x′ )

min(x,x′ )
k(x̂)dx̂

]
, (A11)

where it can be appreciated that Ĝ2D(x, x′) = Ĝ2D(x′, x).
The same Green’s function holds for the simple 3D model
[G3D(x, x′) ≈ Ĝ2D(x, x′)], keeping in mind the caveats regard-
ing the cross-sectional areas in the two models.

4. Nonideal boundary conditions and numerical solutions

The solutions for the Green’s functions shown above were
obtained under the assumption of no significant scattering
from the basal and apical boundaries. While this is a good
approximation for the apical boundary—because traveling
waves are dramatically attenuated before reaching it [32]—the
same is not true for the basal boundary at the stapes, where
any impedance mismatch at the boundary with the middle ear
has the effect of backscattering a significant fraction of wave
power [44]. When the wave frequency is sufficiently smaller
than the CF near the stapes we can assume long-wave behav-
ior near the stapes. In this case, we can easily include the effect
of wave reflection and calculate the WKB approximation for
this nonidealized Green’s function

G̃2D(x, x′) = Ĝ2D(x, x′) + RstḠ2D(0, x′)α(x)

√
A(0)k(0)

A(x)k(x)

× exp

[
−i

∫ x

0
k(x̂)dx̂

]
, (A12)

where Rst is the complex reflectance of the stapes [44]. The
second term on the right side of Eq. (A12) represents a wave
traveling from the base to the apex, generated by the pressure
reflected from the stapes [RstḠ2D(0, x′)].

5. Numerical and semianalytical calculations

We cross-checked the quality of our calculations by com-
paring the 2D WKB approximation of the Green’s function
against numerical calculations performed in a tapered 2D
finite-difference model [45,46], some of which are shown in
Fig. 3(a). Because calculating the WKB approximation for
α requires iterative methods that introduce various inaccura-
cies, we calculated α numerically, driving the finite-difference
model from the stapes. Figure 3(b) shows the WKB so-
lution for the Green’s function of a 3D model with the
same wave number (k) and height (H) as the 2D model in
Fig. 3(a). While the agreement between the WKB approx-
imation and the numerical solution is generally excellent,
the WKB approximation can introduce significant errors (due
to the nonuniqueness of the WKB solution in the cutoff
region [47]), rendering the calculations noisy, especially at
high frequencies. For this reason, in the main text we present

FIG. 3. (a) Example of Green’s function for a 2D model with
reflective basal boundary (|Rst| ≈ 0.14), calculated numerically in a
finite-difference model (solid line) or with the WKB approximation
[Eqs. (A11) and (A12), dashed lines]. The source locations for the
various curves are indicated with vertical arrows; the source fre-
quency is 10 kHz. (b) Approximate Green’s function for a simplified
3D model (see text).

results obtained using the 2D finite-difference model—the
differences between 2D and 3D models are relatively minor,
although it is worth mentioning that in 3D the enhancement
factors are slightly larger thanks to the more dramatic tapering
of the cross-sectional area in 3D than in 2D models.

APPENDIX B: MODELING DETAILS

We performed all calculations using an “overturned model”
of the mouse cochlea [41], whose parameters are the same
as those used in Ref. [48]. In this model, unlike in clas-
sic models where the organ of Corti does not deform, the
transverse (up-down) velocity of the center of mass is VCP =
(VBM + Vtop)/2, where VBM and Vtop indicate the velocity of
the bottom (BM) and the top-side (the reticular lamina and
tectorial membrane) of the organ of Corti—their differential
velocity is Vint = Vtop − VBM. Postmortem, VBM and Vtop are
similar, so that to a first approximation Vint ≈ 0 in a passive
cochlea, while Vint �= 0 in vivo. The center-of-mass velocity
can be rewritten in the compact form VCP = VBM + Vint/2,
where Vint is attributed to the piezoelectric action of the OHCs
and is effectively the (velocity) source of wave amplification
in the model.

Because the BM stiffness is about one order of magni-
tude larger than that of the structures surrounding the OHCs,
OHC forces produce large displacements of the top side of
the organ of Corti while having secondary effects on lo-
cal BM motion [49,50]. We therefore assume that internal
OHC forces have negligible effects on BM motion so that
the mechanical admittance of the BM (YBM = VBM/P0) is
constant, independent of whether the cochlear amplifier is
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turned “on” or “off.” For simplicity, we also assume that YBM

represents the admittance of a damped harmonic oscillator. By
exploiting the relationships between VCP, VBM, and Vint, we
can express the admittance of the organ of Corti admittance
as YCP = YBM(1 + 1

2Vint/VBM). Following previous results, we

assume that in vivo at low sound levels 1
2Vint/VBM ≈ iβτ ,

where β = f /CF is normalized frequency and τ is a (real)
constant. Following Ref. [23], we assume that YCP is scaling
symmetric (i.e., a function only of normalized frequency, β)
throughout the cochlea.
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