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Stick-slip in a stack: How slip dissonance reveals aging

Samuel Poincloux ,1,2 Pedro M. Reis ,1 and Tom W. J. de Geus 3,*

1École Polytechnique Fédérale de Lausanne (EPFL), Flexible Structures Laboratory, CH-1015 Lausanne, Switzerland
2Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Received 5 April 2023; accepted 4 October 2023; published 22 January 2024)

We perform physical and numerical experiments to study the stick-slip response of a stack of slabs in contact
through dry frictional interfaces driven in quasistatic shear. The ratio between the drive’s stiffness and the slab’s
shear stiffness controls the presence or absence of slip synchronization. A sufficiently high stiffness ratio leads
to synchronization, comprising periodic slip events in which all interfaces slip simultaneously. A lower stiffness
ratio leads to asynchronous slips and, experimentally, to the stick-slip amplitude becoming broadly distributed
as the number of layers in the stack increases. We interpret this broadening in light of the combined effect of
complex loading paths, due to the asynchronous slips, and interface aging. Consequently, the aging rate of the
interfaces can be readily extracted from the stick-slip cycles, and it is found to be of the same order of magnitude
as existing experimental results on a similar material. Finally, we discuss the emergence of slow slips and an
increase in aging-rate variations when more slabs are added to the stack.
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I. INTRODUCTION

Multiple frictional interfaces coupled by elasticity are
ubiquitous in such everyday objects as books [1,2], textiles
[3–5], and multilayer composites [6,7]. In geology, systems
comprising multiple frictional interfaces are the norm rather
than an exception. For example, layered rocks such as shale
can show multiple sliding interfaces under shear [8,9]. At
the larger scales relevant for terrestrial faults, slips producing
earthquakes are usually not isolated but embedded into com-
plex fault networks [10]. The mechanical response of such
assemblies of frictional interfaces involves coupling between
the elastic deformation of the layers and the barriers to sliding
of the interfaces.

Predicting the onset of slipping is a long-standing problem
even for a single frictional interface [11]. Physical insight and
understanding of this class of problems have been driven pri-
marily by high-precision experiments of sliding poly(methyl
methacrylate) (PMMA) blocks whose optical transparency
enabled the spatiotemporal tracking of the local contact area
[12]. These pioneering experiments have elucidated that the
onset of slip involves a rupture front that “unzips” the in-
terface. A correlation with strain measurements close to the
interface showed that the stress field and dynamics of the
front are well described by fracture mechanics with the frac-
ture energy as the sole fitting parameter [13]. However, the
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mechanism underlying the nucleation of the rupture front
remains elusive, primarily due to experimental limitations, for
which novel protocols are being proposed [14].

From a theoretical perspective, the most common models
for the onset of frictional slippage [15–18] capture the phe-
nomenology that sliding starts, and after a transient, continues
in a steady state when the shear force F balances the friction
forces μN , where N is the normal force and μ is the “fric-
tion coefficient”. In these “rate-and-state” models, μ depends
nonlinearly on the slip rate v and history θ : μ = μ(v, θ ). At
intermediate values of v, the friction coefficient is usually
assumed to display slip weakening (μ is a decreasing function
of v) such that the interface is unstable. During slip nucleation,
the elasticity and inertia of the bulk have a stabilizing effect
[19–22], such that there exists an effective flow curve whose
steady state displays a minimum μc at v = vc [19]. Conse-
quently, any perturbation decays and vanishes if the applied
load is F/N < μc [23]. At higher applied loads, the interface
destabilizes if a slip patch reaches a critical size [21] beyond
which its dynamics are well described by a sharp rupture
front [19,21,24] that can be modeled by linear elastic fracture
mechanics [13,25,26]. A significantly debated question is the
nature of the instability and consequently how the critical size
diverges as a function of F/N − μc, e.g., [12,21,22,27].

A direct consequence of the phenomenology described
above is that the interface can display stick-slip behavior when
driven quasistatically (at a rate V � vc). The link between
the stick-slip amplitude and the parameters of the rate-and-
state models is debated [14,21,22,28–31]. One of the authors
[22,29] recently proposed an encompassing theory linking
the cited rate dependence and the nucleation of an instability
by avalanches of microscopic failures. Beyond this athermal
view, it is a well-known experimental fact that the initial onset
to sliding is history-dependent and increases with the time that
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the interfaces were at rest [17,32–34]. This aging behavior
is associated with creep [35] and described by rate-and-state
models where the variable θ introduced above is regarded
as time. Creeping of the interfaces must affect the stick-slip
amplitude, but disentangling its contribution is challenging
because slip events occur at a narrowly distributed interval
(on which statistical fluctuations of the stick-slip amplitude
overwhelm the effect of aging [12]).

Beyond a single frictional interface, when multiple fric-
tional interfaces are present, the elasticity of the bulk may
potentially lead to a nontrivial coupling. For example, elas-
tic interactions between faults may strongly affect their slip
dynamics [36,37]. In addition, acoustic waves transmitted
through the elastic bulk may lead to remote triggering of earth-
quakes [38,39], though the large temporal separation suggests
a complex coupling. Predicting the mechanical response of an
assembly of elastic frictional interfaces is then a formidable
but important challenge. In particular, identifying the key pa-
rameters coupling the layers together and elucidating the role
of the number of interfaces are open questions.

Here, we report results from a combined experimental and
numerical investigation on the quasistatic stick-slip response
of a stack of elastic slabs in contact through frictional inter-
faces. Based on the ratio between the stiffness of the drive and
the shear stiffness of the slab, we distinguish two regimes:
“stiff” and “compliant” driving. In the stiff-driving regime,
our numerical results exhibit periodic slips involving all the
layers leading to narrowly distributed force drops. By contrast,
in the compliant-driving regime, we observe both numerically
and experimentally a decoupling of the slip events along the
different layers, with interfaces sliding one by one. In the ex-
periments, we find that this loss of periodicity is accompanied
by a broadening of the distribution of the stick-slip amplitudes
with the number of layers. We highlight the role of interface
aging in this broadening, exposed by the complex loading
paths of the interfaces induced by mechanical coupling be-
tween the increasing number of layers. Overall, the stick-slip
response of a stack to shear is controlled by the stiffness ratio
between the drive and the layers, whereby in the stiff-driving
case the stack acts as one layer with periodic slips, while in
the compliant-driving case a rich coupling between the layers
makes slips much more unpredictable.

II. DEFINITION OF THE PROBLEM

We assess the shear response of a model system comprising
a stack of n ∈ [1, 5] identical slabs of thickness h resting
on a surface whose position is fixed. In Fig. 1, we present
a schematic diagram of the system and a photograph of our
experimental setup. Each slab, and its lowermost frictional
interface, are numbered as i = 1, 2, . . . , n from below. We im-
pose homogeneous shear between all the slabs by connecting
each slab through identical springs of stiffness K to a lever that
is driven to rotate around a fixed axis at a set rate [Fig. 1(a)].
The spring connecting to the ith layer is attached to the lever
at a distance ih from the rotation axis.

For the drive, we impose the lever’s top horizontal dis-
placement U (t ) = V t , where t represents time and V is the
imposed velocity, taken to be small enough for the interfaces
to display stick-slip (such that V < vc [22,33] has to hold).

FIG. 1. (a) Schematic of our model system, shown here with
n = 4 active (driven) layers. The color code of the layers is used
throughout the figures. (b) Photograph of the corresponding experi-
mental apparatus.

Thus, our drive imposes a shear rate γ̇ ≡ V/H , where H is the
height of the lever, driving each spring i at a velocity vi = ihγ̇ .
During the periods in which the interfaces are “stuck”, this
drive causes a monotonically increasing shear stress at each
of the interfaces.

Our study seeks to address the following questions: (i)
What are the relevant parameters controlling the slip synchro-
nization of the interfaces? (ii) How does the shear response
evolve with an increasing number of layers n?

III. STIFF VERSUS COMPLIANT DRIVING

For a system with a single frictional interface, the stick-slip
instability occurs only if the driving stiffness K < Kc, where
Kc depends on the flow properties of the interface and the
applied driving rate [15,16,33,40]; a summary of the calcu-
lation for a rate-and-state model is provided in Ref. [33]. The
experimental and numerical systems are taken in the stick-slip
regime (such that K < Kc has to hold). We will argue below
that with multiple interfaces, the rigidity of the drive also
controls the degree of slip synchronization.

To gain insight into the effect of the drive on the shear
response of a stack, we regard the driving “springs” as a
parabolic potential energy imposing the mean position of each
slab, such that the slab is free to build up shear. We now dis-
cuss what happens in the limit of stiff and compliant driving,
defined next.

Rigidity ratio �. We define the rigidity ratio � ≡ K/Ks,
where K is the rigidity of the driving springs, and Ks = AG/h
is the shear rigidity of the slabs, with G the shear modulus, A is
the surface area of the frictional interface, and h is the slab’s
height. This ratio � then quantifies the relative deformation
of the driving springs in comparison to the shear deformation
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FIG. 2. Schematic of the loading and consecutive slip of the
interfaces in the compliant (a) and stiff (b) regimes.

of the slabs. Below, we investigate and discuss two limit
regimes: stiff (high-�) and compliant (low-�) driving. In the
first, significant deformations occur within the layers (and the
springs are stiff), whereas in the second, the deformations
occur in the springs (and the layers are stiff). The loading
and slip behaviors of the stacks in these two limit regimes are
schematically represented in Fig. 2.

Stiff driving (high-�). Let us suppose that the interface
a = 1 starts slipping. As the mean position of slab a is fixed by
the stiff spring, the slab can only react with a negative shear
deformation. Consequently, the shear stress on the interface
above, i = a + 1, is increased. This can trigger a slip on that
interface, which in turn causes a stress increase and slip on
the interface above for the same reason, and so on for the
rest of the stack. The cascade results in a multislip event that
erases all memory of the system. In this case, the multilayered
system thus acts as a system with a single interface with
effective properties [41], showing periodic stick-slip cycles.

Compliant driving (low-�). With soft springs, the system
can respond to a slip at interface a by advancing the mean
position of slabs i > a and compressing the driving springs.
Therefore, the stress on the interfaces i > a relaxes, making
a macroscopic multislip event unlikely. A sequence of single-
slip events is thus to be expected. With an increasing number
of layers, the slip sequence of the multiple interfaces may lose
its periodicity.

IV. NUMERICAL SIMULATIONS

A. Numerical model

We implement the model system shown schematically in
Fig. 1(a) into numerical simulations. The numerical model
consists of n + 1 identical elastic layers separated by frictional
interfaces. Following [29], we idealize the frictional contact
problem in order to focus on the disorder in the shear response
along the frictional interface. We assume that the interface

is disordered but perfectly flat. Furthermore, we assume that
contacts detach when a critical shear stress is reached. As
such, the system is macroscopically at zero temperature (con-
tacts do not detach spontaneously due to random fluctuations
caused by an external temperature). Moreover, fluctuations
of normal stress—e.g., due to an inhomogeneous load [12],
inhomogeneous pore pressures [42], or partial slip [43]—do
not affect the contact strength. In particular, we consider a
mesoscopic scale on which an effective “block” of a finite
width resists elastically to shear up to a threshold, after which
it yields. The local slip then propagates until a new “contact”
is formed (i.e., it is again elastic but with a new threshold). In
this framework, each block represents a frictional contact (or
a patch of contacts that are so strongly coupled by elasticity
that they act as an effective contact) that, upon yielding, forms
a new contact with a new yielding threshold.

Geometrically, we do not seek to precisely model Fig. 1(a)
as its numerical treatment, together with the disorder, requires
an intractably large number of blocks. Therefore, we consider
periodic boundary conditions in the horizontal direction and
control the mean position of each slab through a parabolic
potential energy.

The details of the numerical model are as follows: each
frictional interface consists of nx equal-sized square blocks of
linear size l0 that are completely linear elastic under volumet-
ric deformation but yield under shear (deviatoric deformation)
when a set yield stress is reached. Assuming that the yield
threshold is isotropic in principal deviatoric strain space, this
model now corresponds to a deviatoric potential energy that
consists of a sequence of parabolic potentials in equivalent de-
viatoric strain space. The disorder arises from independently
randomly drawing the yield strain sequence of each block.
We assume that the blocks and the bulk have the same elastic
moduli.

Differently from [29], we add a parabolic potential (with
curvature K) to the mean horizontal position of each of the
elastic slabs i > 0, adding a homogeneous force density per
layer. The bottom layer is not driven through its mean posi-
tion; instead, the position of the bottom edge is fixed. We set
the mean horizontal position of a slab i equal to γ ih, such that
γ represents the lever rotation [see Fig. 1(a)].

A key feature of the model is that shear can be applied
according to the quasistatic protocol. Moreover, the linear
elastic response permits an event-driven protocol. In alterna-
tion, we increase the shear by a finite amount �γ (t ) that is
maximized with the constraint that no microscopic yielding
takes place (preserving mechanical equilibrium), and then
add an infinitesimal shear δγ to trigger a microscopic event
(after which we minimize energy). This allows us to perfectly
separate events.

We choose nx = 2 × 36, which is still tractable to simulate,
but of the minimal order not to be dominated by finite-
size effects, as we checked for a single frictional interface
[22,29]. Furthermore, we take h/�0 ≈ nx/4 based on balanc-
ing h/(�0nx ) small enough to have acoustic interactions while
avoiding driving the blocks in a fixed displacement such that
collective effects are suppressed if h � nx�0 (e.g., [44]).

The above model predicts stick-slip behavior [29] when
full inertial dynamics are considered (using overdamped dy-
namics, this model predicts the abundantly studied depinning
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transition [45]). We consider such inertial dynamics by apply-
ing the finite element method to discretize space. Along the
frictional interface(s), elements coincide with the mesoscopic
blocks. In the elastic slabs away from the frictional interface,
the elements are coarsened to gain numerical efficiency (such
that the height h is only approximated as we fix the aspect
ratio of elements to 1; see Appendix E). We use the velocity
Verlet algorithm to integrate discrete time (with a time step
significantly smaller than the time of a single oscillation in a
well in one block). We remark that assuming periodicity re-
quires us to add a small damping term to the inertial dynamics
such that waves with a wavelength equal to the horizontal size
of the system (nxl0) are critically damped. Consequently, we
must take h/�0 < nx to have acoustic coupling between the
interfaces.

We note that following the underdamped dynamics in such
a disordered system is very costly—it requires on the order of
one billion time steps per realization. We are able to perform
such simulations by using a dedicated optimized code, but
mostly because we make two important assumptions. First,
we coarsen elements in the elastic bulk as we discuss above.
This is known to lead to spurious wave reflections [46], but
we presume that these are not important because disorder
already leads to a broad spectrum of wavelengths. Second,
we assume small strains and rotations, such that the integra-
tion volume is assumed constant—reducing the computational
cost of numerical integration. To still solve significant slips,
the yield strains of each block are scaled by a small factor
(all presented results have been renormalized to eliminate this
factor). However, this still inherently limits the description to
moderate slips. As such, we cannot choose an arbitrarily small
driving stiffness K .

B. Numerical results

Our numerical model allows us to first illustrate the simple
argumentation on the role of driving that we made above. We
consider a driving rigidity such that � � 10−3 (stiff driving)
and � � 10−6 (compliant driving). In the two-dimensional
model, A = nx�0, such that Ks = 4G for our geometry; we use
K = 10−3 and K = 10−6 and G = 1/2. In Figs. 3(a) and 3(b),
for stiff and compliant driving, respectively, we plot a typical
macroscopic stress � (volume-averaged stress) as a function
of applied shear γ . Note that the stress is shown in units of the
typical yield stress of one block, and the rotation in units of
the rotation needed to yield a typical block at i = 1.

Macroscopic slip events are defined when all blocks along
one or more layers yield at least once. Below, we will refer
to sliding interfaces and associated quantities by an index a,
while i will be kept as the running index for the layers. Slip
events correspond to macroscopic stress drops in Figs. 3(a)
and 3(b), and we distinguish between “single-slip” events (all
blocks on a single layer yield at least once) and “multislip”
events (all blocks on more than one layer yield at least once).
Stress drops produced by single-slip events are labeled follow-
ing the color code introduced in Fig. 1, while multislip events
are kept black. These slip events are separated by “stick”
intervals during which only microscopic events are observed,
where one or several blocks yield at least once, as indicated
with markers (black dots).

FIG. 3. Numerical results: (a), (b) Typical steady-state global
stress � response as a function of applied shear γ for n = 3 for
(a) stiff driving and (b) compliant driving. We indicate all (micro-
scopic) yielding events with a black dot marker. Slip events on a
single layer are indicated in color (see the legend), while slip events
in black involve more than one interface. (c) The fraction ρ(s)
of macroscopic slip events involving s = 1, . . . , n layers, for stiff
(dashed) and compliant (solid) driving; see the legend in (d) for the
color-map and markers. (d) Distribution of stress drops at the slipping
interface for different n in the compliant regime [for slip events on a
single layer, for which s = 1 in (c)]. See the main text for definitions
and units.

The results confirm that stiff driving causes a periodic
stick-slip sequence with many slip events corresponding to
multislip events [Fig. 3(a)], while compliant driving results
in a seemingly less periodic sequence of single-slip events in
Fig. 3(b). This finding is supported by plotting the fraction of
slip events involving s = 1, . . . , n interfaces in Fig. 3(c) for
different n [see the legend in Fig. 3(d)]. On the one hand, stiff
driving results in single- and multislip events for a comparable
fraction of loading history (we discuss in Appendix F that
sequences of single and multislip events alternate). On the
other hand, compliant driving shows single slip in the large
majority of slip events.

In the compliant regime, a direct measurement of the stress
drop along the slipping interface a, �μa, displays no n depen-
dence in Fig. 3(d). The quantity μa is defined as the volume
average stress on the blocks corresponding to weak layer a,
also shown in units of the typical yield stress of one block.
Given that, by construction, normal stress plays no role in our
model, here μa is akin to a friction coefficient. The finite width
of the distribution is attributed to the inherent disorder of the
interfaces.
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As we have shown that, for high-� (stiff driving), mul-
tilayer stick-slip is apparently similar to that of a single
interface, we concentrate next on the low-� regime to explore
a potential influence of the number of plates n.

V. EXPERIMENTS

We proceed by proposing an experimental realization of
the sheared-multilayer model system of Fig. 1(a), adapted to
measure the effect of the number of sliding layers n on the
slip synchronicity and amplitude; see Fig. 1(b). Similarly to
the numerical model, the position of each slab is driven by
connecting it to the driving lever through linear springs [see
the schematic in Fig. 1(a)]. Naturally, connecting the spring
to the edges of the slabs might introduce boundary effects, but
this is mitigated by the fact that our experimental system is
effectively much larger than our numerical model (given that
it presumably has much more local contact patches).

A. Experimental apparatus

The experimental setup shown in Fig. 1(b) comprises a
stack of frictional plates (color-coded from purple to orange),
an actuating lever (green), and driving springs (pink). Each
component of the setup is detailed in Fig. 4 and below.

The stack is made of a set of rectangular PMMA slabs
(Snow WH10 DC by Röhm), each of dimensions h = 10 mm,
L = 150 mm, and an out-of-plane width of 80 mm. A normal
force N is applied on the topmost slab by a dead weight of
5 kg (N = 49 N). To ensure a spatially homogeneous con-
tacting surface at this relatively low normal force (compared
to other PMMA-PMMA friction experiments [13,14,47]), we
use acrylic plates whose surface was preroughened with as-
perities of size ∼25 μm that are larger than potential natural
height variations of PMMA [Fig. 4(d)]. We assume that the
normal force is uniformly distributed and that it is the same
for each layer (the weight of each slab is less than 3% of that
of the dead weight).

The stack is sheared by imposing the displacement at the
top of the lever (H = 100 mm) at a constant speed V =
10 μm/s (i.e., γ̇ = V/H = 10−4 s−1), using a dc linear ac-
tuator (L-220.70DG, Physiks Instruments) that is attached via
a steel junction assumed rigid [Fig. 4(a.1)]. The PMMA lever,
made of two 6-mm-thick and 100-mm-wide parallel slabs,
is sufficiently wide not to bend while pulling the slabs and
rotates smoothly on ball bearings around its rotation axis. The
total horizontal force F needed to rotate the lever (Fig. 1)
is measured using a uniaxial force sensor (LRM200 25 lb,
Futek) placed between the steel junction and the actuator
[Fig. 4(a.2)].

The springs connecting the slabs to the lever are curved
beams laser-cut from PMMA [colored in pink in Fig. 1(b)],
with an equivalent stiffness of K = 55 N/mm when pulled
or compressed along the horizontal axis. The beams have a
rectangular 5 × 5 mm cross-section and are precurved with
a radius of curvature of 100 mm over a cord of 150 mm in
the middle and extended on both sides by two 25 mm straight
portions.

The ends of the springs are attached to both the slabs and
lever via ball-bearing links to ensure a free rotation and, thus,

FIG. 4. Technical details on the main components of the ex-
perimental apparatus. Top: overview of the setup with the location
of the different parts: (a) force measurement, (b) lever-spring link,
(c) spring-slab link, (d) frictional slabs surface, and (e) position mea-
surement. Relevant details are shown in the bottom panels [numbered
(a.1), etc.]; see the text for details.

horizontal driving forces. The links are inserted between the
two slabs of the lever and are made of a central steel pin
press-fitted at the end of the spring [Fig. 4(b.1), orange]. This
pin is embedded into small ball bearings on each side (green),
allowing a free relative rotation between the springs and the
lever. The bearings are then press-fitted into acrylic compo-
nents (pink) with two threaded holes. These components are
screwed directly on both sides of the lever. The rotation axis of
the pins is aligned precisely along a line passing through the
center of rotation of the lever. Figures 4(b.1) and 4(b.2) show
the side and top-side views of the link, and Fig. 4(b.3) shows
the link prior to attachment to the lever. The other sides of the
springs are linked to the frictional slabs. The spring-slab links
have a similar design, but here the acrylic components are
press-fit into the slabs. The height of the acrylic components is
slightly smaller than the height of the slabs (8 versus 10 mm)
to avoid any contact with the interfaces. Figures 4(c.1) and
4(c.2) show top and side views of the links, respectively,
attached and out of a frictional slab. These links ensure a
rigid connection between all the components, so that only the
springs deform during actuation. Moreover, the ball bearings
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ensure that the force transmission remains horizontal as the
lever rotates. The steel junction between the lever and force
sensor is also attached via analogous links to remain horizon-
tal at all times.

The experimental setup, with its springs and PMMA slabs,
corresponds to the compliant driving limit with � � 6 ×
10−5, of the same order as for the compliant regime in the
numerics. Indeed, � ≡ K/Ks, with Ks = AG/h the shear stiff-
ness of the slabs and G ≡ E/[2(1 + ν)], with, for PMMA,
Young’s modulus E = 2 GPa and Poisson’s ratio ν = 0.3.

In addition to the global force measurement F , we also
measure the absolute average horizontal position of each slab
xi by tracking a red marker placed on their side [Fig. 4(e.1)],
from photographs taken at a rate of 5 fps using a digital camera
(Flea3 FL3-U3-20E4C, Flir, linear pixel size: 70 μm). Using
a color threshold, the red markers are extracted, as shown in
Fig. 4(e.2), and their geometric center is located (red crosses).
Due to the large size of the markers (154 mm2, corresponding
to approximately 30 000 pixels), xi can be determined with
a subpixel resolution of 5 μm. The relative displacement be-
tween slabs is Ri ≡ xi − xi−1 [see Fig. 1(a)], which serves as a
proxy for the total slip at the interface i (neglecting the shear
deformation of the slabs).

To vary the number of sliding interfaces n, we keep the
same number of slabs (5) but remove 5 − n springs, starting
from the top [see Fig. 1(b), where n = 4]. This procedure
ensures robust image detection and reduces external contami-
nation of the interfaces by keeping them in contact. Each time
the slabs are disassembled to vary n, the interfaces are cleaned
with isopropanol and quickly dried using compressed air. For
each value of n, we perform 10 runs during which we drive
over a range �γ = 0.6 rad, starting at γ = −0.30 rad, each
time excluding γ between −0.3 and −0.27 rad (300 s) to
ensure measuring in a steady state. After each run, the lever
is reset back to γ = −0.30 rad. On average, each connected
layer is forced to move by a total relative distance of Rtot =
h�γ = 6 mm during a run that lasts 6000 s in total.

B. Measurements and lever kinematic

For a stack with n = 4, we present in Fig. 5(a) a typical
time series extract of the force F (t ) required to actuate the
lever (top-left plot), together with the corresponding relative
position of the slabs Ri(t) (bottom-left plot). The experiments
exhibit stick-slip, with stick periods when the slabs are immo-
bile (Ri ≈ const) and F increases monotonically, punctuated
by macroscopic slip events. These slip events are identified by
a sudden position jump, �Ra > 0 (with a denoting the sliding
interface), accompanied by an abrupt force drop �F > 0; cf.
Fig. 5(a). On all occasions, we find that only one layer slips at
a time, recovering similar dynamics as in the numerical model
in the compliant driving regime with a similar value for �

[Fig. 3(b)]. However, we note that during the stick periods,
we observe what seems to be “slow slip” where an interface
moves gradually, leading to a nonlinear force response. These
are out of our primary focus but are discussed at the end of the
section.

For each value of n, we acquire an ensemble of at least
100 slip events per layer, such that the slip quantities as-
sociated can be represented as probability distributions. For
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FIG. 5. (a) Top plot: extract of a time series of the macroscopic
force F (t ) for a system of n = 4 frictional interfaces. The color of
the force drops �F follows the color code in Fig. 1 and indicates
the index a of the slipping interface. Bottom plot: corresponding
relative displacement (total slip) Ri(t ) − Ri(t0) (with t0 = 5400 s an
arbitrary value) of each interface i. Each slip event is characterized
by �Ra. We denote Ta, the time between subsequent slip events on
the same interface. Note that we show i = 5 only for completeness,
by definition, R5 = 0 if n = 4. (b) Probability distribution function
P(�F ) for slip at interface a = 1 for an increasing number of layers
n. (c) Comparison between a direct measurement of �Ra, and the
computed �Ra(�F ), obtained through Eq. (5), for each detected slip
event.

example, in Fig. 5(b), we show the probability distribution of
force drops, P(�F ), occurring on the interface a = 1, for all
cases of n considered. Starting from the peaked distribution
for n = 1, as n increases, the distributions broaden and take
higher average values.

In contrast with more classic stick-slip experiments with a
single interface [32], the global measure �F is not a direct
quantification of the frictional properties of the interface but
couples with the specific kinematic of the lever. Still, the fact
that only one interface slips allows us to extract a jump in a
frictionlike quantity �μa (or stick-slip amplitude) from �F .
We define the friction μi of an interface i as the horizontal
force acting on this interface divided by the normal force.
Considering the horizontal force balance on an interface i,
the interface has to resist the combined forces of the pulling
springs of the slabs j � i, such that

μi =
n∑

j=i

f j

N
, (1)

where f j is the force due to the driving spring on slab j [see
Fig. 1(a) for a visual representation of μi and f j]. When an
interface a slides by �Ra, the relative positions of the other
interfaces remain unchanged (we only observe single-slip
events). Consequently, the absolute horizontal position xi of
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the layers above a is increased by �Ra:

�xi =
{
�Ra > 0 if i � a,

0 if i < a.
(2)

This sliding induces a drop in the spring forces: � fi =
K�xi = K�Ra for i � a, and � fi = 0 for i < a. Note that
for consistency, we define � fi to be positive. From Eq. (1),
we can then express �μa as a function of the slip distance
�Ra:

�μa = K

N
(n − a + 1)�Ra. (3)

We proceed by linking �Ra to the global force drop �F ,
using the fact that only one interface slips at a time. Through
moment balance on the lever, we obtain

F =
n∑

i=1

fi
ih

H
. (4)

Combining Eqs. (2) and (4), we obtain a relation between the
global quantity �F and the local �Ra:

�F =
n∑

i=a

K�Ra
ih

H
= K�Ra

h

H

(n + a)(n − a + 1)

2
. (5)

(Note that i is the only varying term in the sum and
∑n

i=a i =
[n(n + 1) − a(a + 1)]/2 = (n + a)(n − a + 1)/2.) This re-
sult is verified in Fig. 5(c). Indeed, a direct measurement of
�Ra is very close to the inversion of Eq. (5), in which �Ra

follows from the measured �F without any fitting parameter.
Finally, we combine Eqs. (3) and (5) to obtain the sought

relation between �μa and �F :

�μa = H

h

2

(n + a)

�F

N
. (6)

We have thereby disentangled the friction properties of the
interface from the kinematics of the lever. Using Eq. (6), we
can now obtain a measure of the stick-slip amplitude of the
interfaces �μa, extracted directly from the global force �F .
The position measurements Ri are used only to identify the
slipping interface a.

The lever kinematics introduces a strong coupling between
the interfaces. Via Eqs. (1) and (2), a slip on an interface a will
induce drops of friction μi on all the other interfaces, even if
no slip occurs on them.

Central experimental result. Next, we assess the effect of
having multiple sheared interfaces on their frictional prop-
erties. Figure 6 shows the probability distributions P(�μa)
associated with the different sliding interfaces a (different
panels) and the increasing number of total active interfaces
n (different colors). Each interface is compared to its response
when sliding individually (n = 1 in black, see Sec. A for
the experimental protocol). For all the interfaces, the stacks
exhibit significantly enriched statistics when compared to
a single sliding layer (n = 1), in contrast to the numerical
predictions reported above [Fig. 3(c)], where �μa was inde-
pendent of n. With increasing n, the location of the major peak
of P(�μa) shifts to lower values of �μa and the respective
distributions become broader as secondary peaks emerge.

(b)

(c) (d)

(a)
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FIG. 6. Probability distribution functions of the stick-slip ampli-
tude P(�μa) as a function of n for the different interfaces: (a) a = 1,
(b) a = 2, (c) a = 3, and (d) a = 4.

C. Interpretation

We seek to interpret the above experimental findings evi-
dencing a variation of the frictional properties as more layers
are added to the stack (Fig. 6), whereas they are indepen-
dent of n in the numerics [Fig. 3(d)]. Our methodology is to
identify the possible mechanisms contributing to variations of
�μa and quantify their potential signature in the physical and
numerical experiments. First, we will attribute the finite width
of the peaks in the P(�μa) distributions, even for n = 1, to the
interface disorder also present in the numerics. Then, we will
argue that the major changes with n observed in P(�μa) result
from the combined effect of increasingly complex loading
paths and aging of the interfaces. Finally, we speculate how
creep of the interfaces, at the origin of aging and slow slip,
could be influenced by the increase of an effective temperature
with n.

Interface disorder. Even when sliding individually (n=1),
the frictional properties of the interfaces are distributed:
P(�μa) has a finite width; see black curves with circles in
Fig. 6. These underlying statistical fluctuations, also present in
the numerical model [Fig. 3(d)], are considered to be related to
the disorder of the contacting interfaces. The rough interface
induces a broad distribution of barriers, leading to collective
events with nontrivially distributed sizes. These collective
events nucleate the macroscopic slip [22,29], such that the
stress at which slip is nucleated is distributed.

Let us now verify experimentally that, in the case of in-
dividually sliding layers (n = 1), the measured fluctuations
of �μa correspond to distinct frictional interface strength. In
the individual configuration, the spring drives the layer at a
constant rate ḟa = Khγ̇ (in practice, the shear rate imposed
by the lever is adapted for each a and set to γ̇ /a to account
for the difference in height; see Sec. A). The shear applied to
the interface then grows at a rate μ̇a = ḟa/N = Khγ̇ /N . As
such, we expect the stick-slip amplitude to be proportional to
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FIG. 7. (a) For an interface sliding individually (n = 1), stick-
slip amplitude �μa as a function of the waiting time since the last
slip event Ta. The black line corresponds to the prediction of Eq. (7).
For multiple sliding interfaces (n � 1): (b) probability distribution of
the waiting time Ta between two consecutive slip events at interface
a = 1, for increasing n. (c) For each detected slip event, correlation
between �μa and its corresponding waiting time Ta (semilogarith-
mic scale). The black markers correspond to the mean values for
a logarithmic binning of Ta (error bars indicate the standard de-
viation for that bin), and the dotted line is a fit of Eq. (8) with
B = 0.053 ± 0.005. Alternative representations of this data set are
displayed in Appendix C. (d) Schematic of the proposed mechanism
leading to multimodal and wider distributions of Ta (and thus �μa)
as n increases.

the time between consecutive slips Ta, following:

�μa = TaKhγ̇ /N. (7)

This is consistent with our data in Fig. 7(a), thus confirming
that the finite width of the primary and secondary peaks in
P(�μa) results from statistical fluctuations of frictional inter-
face strength. However, these fluctuations do not account for
the shifts of the peaks and the appearance of secondary peaks.

In the following, we argue that coupling via the lever is
responsible for increasingly complex loading paths with n,
leading to broadly distributed waiting times between slips Ta

(i). Then, aging of the interface, present in the experiments but
not in the numerics, becomes significant in broadening �μa

(ii).
(i) Complex loading path. The coupling of the interfaces

via the driving lever has two effects.
First, the loading rate at a given interface increases with n.

Using Eq. (1) and ḟi = Kihγ̇ while no interfaces are sliding,
an interface a in a stack of n layers undergoes a loading rate of
μ̇a = K γ̇ h(n + a)(n − a + 1)/(2N ), which is an increasing
function of n. With this increased loading rate with n, we thus
expect the time between slips Ta to typically decrease with n
for all interfaces (note that this effect is not captured by our
quasistatic numerics in which γ̇ = 0).

Second, the lever couples the load on an interface to slips
on other interfaces via Eqs. (2) and (1). Slip on one interface
unloads the interface itself, but also all the other interfaces
in the stack, even if no slip occurs on them. In particular,
if no slip occurs anywhere, μa is a linear function of time
and reaches its frictional strength with a time Ta, which is a
decreasing function with n. But as n increases, slips occurring
on other interfaces decrease μa instantaneously (with a K- and
n-dependent amplitude [48]). This delays the time where the
interface reaches its frictional strength, leading to various Ta.

In Fig. 7(b), we plot the probability distribution function
of Ta for a = 1 and increasing n. We indeed recover that the
peaked distribution for n = 1 shifts to lower values of Ta with
increasing n (when loading the interface without interruption
by other slips). Moreover, secondary peaks in P(Ta) start to
appear, which we interpret to be due to slip events on the other
layers. These observations are robust for the other interfaces
(see Appendix B). The change in loading rate with n, together
with the complex loading path, allows our experimental sys-
tem to probe a broad distribution of Ta on all its interfaces.

(ii) Aging. It is a known experimental fact that the macro-
scopic stress required for the onset of sliding, characterized by
μs (the “static friction coefficient” in Amontons-Coulomb’s
terminology [11,33]), depends on the duration T that the inter-
face was static: μs = B ln(T/T0) [17,32–34], where the aging
rate of the interface B remains a constitutive parameter and T0

a microscopic timescale. Let us now consider �μa as a proxy
for μs, assuming that a slip event unloads the interface to a
well-defined and constant quantity (μd the “dynamic friction
coefficient”), as is supported by [32]. We expect to find, for
each sliding interface a and over a wide range of Ta, that the
stick-slip amplitude follows:

�μa = B ln(Ta/T0). (8)

Thereby T0 is an unknown microscopic timescale that we
take equal to one second following common experimental
literature (summarized, e.g., in [33]). In Fig. 7(c), we assess
this expectation experimentally by plotting �μa versus Ta

in a semilogarithmic scale. To capture the general trend, we
bin logarithmically Ta, corresponding to the black markers
with corresponding error bars in Fig. 7(c). These averaged
values of �μa are indeed consistent with a straight line in
the semilog plot, and we extract the slope B = 0.053 ± 0.005,
which is of the same order of magnitude as measured in
classical stop-and-go experiments that are in the 10−2 order
[33], and of a direct surface observation on PMMA at room
temperature that reports B = 0.009 ± 0.001 [47]. Aging of the
interface’s contacts then translates the large peak shifts and
the emergence of new ones in the Ta distributions [Fig. 7(b)]
into qualitatively similar changes in the �μa distributions as
observed in Fig. 6.

In Fig. 7(d), we schematically represent the coupled role of
(i), (ii), and disorder, following the evolution of the interfacial
stress of an interface μa with time, starting from the last slip
event. The layer slips when it reaches μa = μs(Ta), whereby
μs is distributed in some way for fixed Ta because of disorder
(illustrated as a red-shaded area, where for simplicity we lump
all fluctuations in the threshold to sliding) and it increases
logarithmically with time because of aging. For n = 1 (black
line), μa increases linearly at the same rate for all the events,
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FIG. 8. (a) Distribution of the aging rate Ba = �μa/ ln(Ta/T0 )
for all events on the interface a = 1 and all n. (b) Standard deviation
of Ba for all layers a, normalized by that quantity for n = 1, as a func-
tion of n. (c) For n = 5, a typical time evolution displaying slow slip
of the relative position Ra(t ) − Ra(t0), of the layer a = 2. The sliding
distance Rtot is categorized as slip events of amplitude �Ra, and slow
slip. The fraction of slow slip is defined by Rslow = 1 − ∑

�Ra/Rtot .
(d) Fraction of slow slip Rslow for all layers a as a function of the
number of layers n. Error bars represent the minimal and maximal
values of Rslow obtained over 10 experimental runs.

thus exploring a narrow region of μs (the shaded red region
due to disorder) and Ta, following Eq. (7). In the case of
multiple active interfaces (n > 1, green lines), μa increases
faster given that μ̇a is an increasing function of n, and several
scenarios arise. If no other slip events occur in the stack, μa

linearly reaches μs, resulting in a lower value of Ta and �μa.
However, if sliding events occur elsewhere during loading, μa

will drop before linearly increasing again, delaying slip and
thus increasing Ta, and consequently �μa, because of aging.

Creep effective temperature. During stick intervals, mi-
croscopic events occur on the interfaces, propagating elastic
waves across the system [29]. As we increase the number
of interfaces in the system, we can expect that the overall
mechanical noise created by the microscopic events also in-
creases. If we speculatively interpret this mechanical noise as
an effective temperature, we would expect a change of aging
rate B with n. Let us define the aging rate for a single event
as Ba ≡ �μa/ ln(Ta/T0) and associated probability distribu-
tions for all associated events [see Fig. 8(a) for a = 1, and
Appendix B for the other interfaces]. Although the mean of
P(Ba) does not change with n, we do find that the width of the
distribution P(Ba) is an increasing function of n mainly for the
lowermost interfaces (i � 2), as shown in Fig. 8(b).

For the same interfaces (i � 2), we also observe distinctly
different slip dynamics when n > 1. In particular, as n in-
creases, we find that interfaces i = 1 and 2 are increasingly
subject to slow slip, defined as sliding significantly slower
than the slip events [see Fig. 8(c) for an example and Ap-
pendix D for a quantitative characterization]. Slow slip is not
accompanied by a sudden macroscopic stress drop but rather

by a slow decrease of Ḟ . In Fig. 8(d), we estimate the fraction
of slow slip Rslow compared to the total sliding distance Rtot. It
is computed by comparing Rtot to the total accumulated slip
during individual slip events (sum of all slip events �Ra),
such that Rslow ≡ 1 − ∑

�Ra/Rtot. Once a slow slip event
starts, it appears to be stopped only by slip events occurring
either on the same interface or on any other interface. An
increase in the effective temperature of the interface with n
could also act as a potential destabilization factor of the con-
tacts at the interfaces, increasing the occurrence of slow slips
with n.

VI. DISCUSSION AND CONCLUSION

A. Summary

We have explored the stick-slip response of a system with
multiple interfaces by proposing a model system comprising
n vertically stacked slabs, each connected to a lever whose
rotation is imposed. The interfaces were driven in quasistatic
(homogeneous) shear. We proposed a dimensionless quantity
� as the ratio between the driving stiffness and the elastic
shear stiffness of the slabs. We have argued and demonstrated
numerically that the system displays synchronization if � is
sufficiently large (� � 10−3). In that case, the system acts
close to a single frictional interface with effective properties.
If � is small (� ∼ 10−6), interfaces slip one by one, as also
confirmed experimentally.

We expect nontrivial collective effects with increasing n
only in the low-� limit, which we addressed through ex-
periments. In the numerics, the stick-slip amplitude of the
interfaces �μa displays a distribution with finite width be-
cause of statistical fluctuations of the interfaces, but no
measurable changes with n. By contrast, we measured ex-
perimentally that the probability distribution of stick-slip
amplitude �μa shows a general broadening with n, with peaks
shifting to lower values and secondary peaks appearing. The
interfaces are coupled via the lever, exposing them to a com-
plex loading path, and leading to a broad distribution of the
waiting times Ta between two slip events on an interface. We
find that Ta is now spanning two decades, such that the aging
of the interfaces plays a crucial role in the broadening of �μa.
The complex distributions of �μa can then be interpreted
as the combined effect of interface disorder, also observed
numerically, and aging. For narrow waiting times Ta, multiple
slips explore the statistical fluctuations of the contacting inter-
faces, giving the finite width of the peaks in the distributions.
In addition, creep-induced aging gives a long-time general
trend over widely distributed Ta.

Furthermore, we observe that increasing n has a significant
impact on creep-induced phenomena like aging rate and slow
slip. We suggest that these additional consequences of adding
more layers to the stack might be evidence of an increase in
an effective interface temperature due to the mechanical noise
of microscopic events.

In conclusion, the relative rigidity of the drive against the
layers dictates whether a stack of interfaces responds syn-
chronously or not. When layers slide one by one, increasing
their number leads to a complex coupling, making the predic-
tion of the next slip more challenging.
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B. Limitations and outlook

It is pertinent to discuss some limitations of our model
system and provide suggestions for future work.

Stiffness ratio. We have defined the stiff and compliant
driving regimes, as characterized by the relative order-of-
magnitude estimation of the respective stiffness ratio �.
Identifying an equivalent of � in systems with more intricate
geometries, such as fault networks, might contribute to clari-
fying their dynamics and help slip predictions. Hence, a more
systematic exploration of the response of stacks with varying
� would be of great interest.

However, we are currently restricted to a limited range
of �. For our numerics, low-� are challenging due to a
combination of the assumption of small rotations and finite
machine precision. To be able to continue sliding indefinitely,
our model should be extended with the possibility to reset
the local deformation along the frictional interface to a zero
average while keeping the identical stress state. In contrast,
high-� are challenging experimentally with the current setup.
If the driving stiffness is increased, the motor/lever system
can no longer be considered rigid, invalidating the relation
between global (�F ) and local (�μa) force drops [Eq. (5)].
Instead, if the shear stiffness of the slab materials is signif-
icantly lowered, a different class of frictional properties is
expected as soft materials tend to be adhesive [49].

Creep. Our proposed model system allowed us to measure
the aging rate B of the interfaces thanks to complex stick-
slip sequences without the need for stop-and-go experiments.
However, while our measured value of B is compatible with
previous experiments on PMMA [33,47], it differs by a factor
of 5. Possible sources of differences are roughness, inter-
realization variations, and stress inhomogeneities. First, the
PMMA plates used here have a much higher surface rough-
ness than in [33,47]. If our model is extended with thermal
fluctuations, it likely displays creep such that the relationship
between the distribution of barriers, linked to surface rough-
ness, and creep could be investigated. Second, we measure B
on an ensemble of n = 5 interfaces. Between interfaces it is
estimated that B differs by a factor of about 2. Third, recent
experimental observations find a relationship between the ag-
ing rate B and the applied shear load [50]. Our setup naturally
imposes a broad range of shear loads on the interface. How-
ever, to measure the empirical law by [50], our setup would
need to be augmented to also provide stress measurements

per interface by measuring individually the internal forces fi

of the driving springs. To study this effect numerically, on
top of adding temperature to capture creep, the model would
likely have to be made sensitive to pressure inhomogeneities
that may arise from the normal load or partial slip events,
commonly thought to be a significant perturbation [43].

Slow slip. The origin of the experimentally observed slow
slip is unknown. A tempting hypothesis is that smooth sliding
is the result of activated yielding events due to increasing
mechanical noise on other interfaces. However, it is not
clear why this interpretation would lead to slow slip occur-
ring predominantly on the lowermost interfaces (which is
qualitatively robust to changing the order of the slabs; see
Appendix D). Furthermore, slow slip is not observed nu-
merically. This could, however, be due in part to our small
homogeneous background damping term (currently chosen
to avoid nonphysical periodic wave propagation). An alter-
native hypothesis is that, by increasing n, the loading rate
becomes sufficiently high to drive the interfaces away from
the stick-slip regime (if v � vc). This second interpretation
is consistent with slow slip being predominantly observed
on the lowermost interfaces. Note that, different from the
experiments, our numerical model drives infinitely slowly.

Aftershocks. Aftershocks appear if creep is added to the
drive of a simple spring-block model [51,52]. A creeping
drive is often associated with the high temperatures in Earth’s
core [51]. Our experimental system displays slow sliding of
“deep” layers already at room temperature. A key question
is if aftershocks appear in the top layers of our system as
well. Answering this question experimentally would require
exposing microscopic events, which would likely involve
studying acoustic emissions (for which PMMA may not be
the optimal choice).
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FIG. 9. (a) Verification of �Ra(�F ) [Eq. (A1)] for individual interfaces. (b) The probability distributions of the drop of force �F for
the different interfaces a are shown using a different color and marker. (c) Probability distributions of the corresponding drop in frictional
resistance �μa as estimated from �F using Eq. (A2).
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FIG. 10. For each interface a ∈ {1, . . . , 4}, probability distribution of the quantities associated with each slip event for all relevant numbers
of active interface n. (a.1–4) Stick-slip amplitude �μa, (b.1–4) time between slip events Ta, and (c.1–4) effective aging rate Ba.

APPENDIX A: INDIVIDUAL SLIDING

Each of the interfaces is tested individually while in their
stacked configuration, such that the two contacting surfaces

are the same as in the n > 1 configuration. To test the interface
a, we only keep spring a, while the slabs below it (i < a)
are clamped such that their absolute position is fixed. That
way, only the bottom interface of slab a is allowed to slide.
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FIG. 11. For each slip event, its stick-slip amplitude �μa as a function of waiting time Ta, corresponding to the duration between the
current slip event and the last slip event on the same interface. The dotted line in all the panels is the aging law �μa = B ln(Ta/T0 ) [Eq. (8),
dotted line] with B = 0.053. (a) Reproduction of Fig. 7(c), where each event is colored by the interface a that it occurred on, and its symbol
reflects the number of interfaces n. The black markers are the average �μa per bin of Ta, used to fit the aging law. (b) The same data as
previously are presented, with this time colors indicating n, and different symbols the sliding interface. (c) On top of the previous data, the
events measured on the interface sliding individually are included using black markers. Over this narrow range of Ta, disorder at the interface is
sampled following the proportionality given by Eq. (7) (solid line). (d) The data of (a) are biased to only events in which there was no detected
slow slip after the last slip event on the same interface.
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FIG. 12. (a) Time series of the relative position Ri(t ) of the slabs for n = 5. The frames detected as belonging to a slip event are marked by
a black dot. (b) Corresponding time series of the velocity of the slabs, after a running average over five frames has been applied. The horizontal
dashed line marks the limit above which we consider that sliding is fast enough to be categorized as a slip event. (c) Same as Fig. 8(b) with an
additional measurement for n = 5 where the slabs are shuffled (1, 2, 3, 4, 5 to 4, 3, 2, 1, 5). The resulting data points are shown at n ≈ 5.3 for
visibility. After shuffling, it is still the lowest interfaces that show most of the slow sliding.

In this case, the slip �Ra and the macroscopic force drop are
related as

�F = K�Ra ah/H, (A1)

which is verified by the data in Fig. 9(a). The drop of frictional
resistance then reads

�μa = K�Ra

N
= �F

N

H

ah
. (A2)

In addition, to ensure testing the interface at the same shear
rate γ̇ = 10−4 s−1, despite the different heights onto which
they are attached to the lever, the shear rate is adapted
for each layer such that γ̇a = γ̇ /a. With �Ra = Taahγ̇a =
Tahγ̇ , we have that �μa = KTahγ̇ /N . Figures 9(b) and 9(c)
show P(�F ) and the extracted P(�μa), respectively, for a =
1, 2, . . . , 5. The interfaces exhibit significant differences in
the mean values of �μa, ranging from 0.15 to 0.3 [with the
differences in mean values larger than the scatter of the differ-
ent P(�μa)] even though the material, preparation protocol,
and environmental conditions are the same for each of these
interfaces/experiments.

APPENDIX B: SLIP DISTRIBUTIONS

For each detected slip event, we measure its stick-slip
amplitude �μa [Eq. (6)], the waiting time since the last
slip on the same interface Ta and its effective aging rate
Ba = �μa/ ln(Ta/T0). In Fig. 10 we plot the corresponding
probability distributions, P(�μa), P(Ta), and P(Ba), for each
layer a and for different values of n.

APPENDIX C: AGING VARIATIONS

To provide a better visualization of the experimental mea-
surements related to the aging of the interface, we display
the corresponding data shown in Fig. 7(c) and reproduced in
Fig. 11(a) under various angles. To emphasize the differences
between the interfaces, Fig. 11(a) shows each slipping event
colored corresponding to the interface a where the slip oc-
curred, while the size of the stack n is marked by different
symbols. In contrast, to stress the role of adding layers to the
stack, Fig. 11(b) shows the same data with a color code for
n and different symbols for each interface a. In Fig. 11(c)

we highlight the different roles of disorder and aging of the
interfaces, both contributing to widening the measured distri-
butions of P(�μa). On top of the data presented in Fig. 11(b)
showing the logarithmic aging described by Eq. (8) (dotted
line), we included the events measured when the interfaces
are tested individually [Fig. 7(a)]. In this situation, each slip
samples the distribution of interfacial strength caused by dis-
order, thus only a narrow window of Ta is explored and �μa

is directly proportional to Ta and follows a linear relation with
time [Eq. (7), solid line]. Finally, in Fig. 11(d) we display
only the slip events where no slow slips occurred after the
last slip event on the same interface. To quantify the amount
of slow slip between two events on an interface, we compare
its relative position just after a slip event Ra(t+

n ) and just
before the next event Ra(t−

n+1). We consider that no slow slip
occurred if Ra(t−

n+1) − Ra(t+
n ) < 3 μm. The overall aging rate

pe
rio

di
c

pe
rio

di
c

parabolic potential 
for the mean position 

of each layer 
(not connected to boundary)

FIG. 13. Finite element mesh of the numerical model for n = 4.
The colors indicate the different layers (color coding is the same as in
Fig. 1). The positions of the bottommost nodes are fixed as indicated.
The shear γ is imposed by a parabolic potential of curvature K
associated with the mean position of each layer (the representation
of the lever and springs is thus schematic).
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FIG. 14. Shear increment �γa between slip events on the first interface (a = 1) as a function of n for stiff driving (a) and compliant driving
(b). Note that we consider any slip event involving a = 1, i.e., also those in which multiple interfaces slip.

of the events without slow slip is not significantly different
compared to the ones following some slow slip. It thus seems
that the amount of slow slip is not sufficient to rejuvenate the
contacts and significantly affect the aging rate.

APPENDIX D: SLOW SLIP

To discriminate slip events from slow slip, we use the
following velocity criterion. The velocity of each slab is com-
puted as [Ri(t + �t ) − Ri(t )]/�t , with �t the time between
frames (�t = 0.2 s), and smoothed by a running average over
five frames [Fig. 12(b)]. Slip events are then defined by all
clusters of at least three frames having a velocity greater than
0.02 mm/s [identified by black dots in Figs. 12(a) and 12(b)].
In Fig. 12(c) we verify that smooth sliding is consistently
observed on the lowermost interfaces even if the slabs are
shuffled.

APPENDIX E: NUMERICAL MODEL

Parameters. All implementation details are identical to
[29], and available in its supplementary material. Furthermore
the entire implementation is open-source; see [54] and its
dependencies. Compared to [29] the only differences are as
follows: (i) The discretization, which now comprises n fric-
tional interfaces; see Fig. 13. (ii) The boundary conditions
are such that the position of the bottom nodes is fixed while
the top nodes are free. The displacement of the right nodes is
set equal to that of the left nodes corresponding to periodic
boundary conditions in the horizontal direction. Finally, all
elements that constitute to an elastic layer i = 1, 2, . . . , n are
connected to a parabolic potential of curvature K that has
its minimum at a shear γ (t̃ )ih [with γ (t̃ ) applied using an
event-driven protocol as described in the main text, such that
t̃ only schematically represent time]. This potential is imple-
mented as a force density and added to each node using the
node’s volume as a weight factor. We use K = 10−3 for stiff
driving, and K = 10−6 for compliant driving. (iii) We use a
bulk modulus that is 4.5 times larger than the shear modulus,
in accordance with PMMA (see [29] for the definitions of the
bulk and shear modulus).

Units. Macroscopic stress �, defined as the equivalent de-
viatoric part of the macroscopic stress tensor �i j ≡ ∫

σi j (�r)d�r
with σi j (�r) the deviatoric stress at a material point (i.e., at
an integration point in our spatial discretization), and �r the
position. Thereby �2 ≡ 2�i j�i j . All reported stresses have
been normalized by the typical yield stress. For the numerical
results, γ is normalized by γ0, which is defined as the shear
corresponding to a yield event in a system in which all blocks
of the first interface (i = 1) have a yield strain equal to the
typical yield strain.

APPENDIX F: SLIP SEQUENCES—NUMERICS

We argue that the waiting time between slip on an interface,
Ta, is a crucial quantity. Since the numerics run a quasistatic
protocol, Ta is not defined. The closest equivalent quantity is
the increment is the shear �γa between two slip events on a
layer a. We plot this quantity in Fig. 14 for a = 1 for both
stiff and compliant driving. This plot should be qualitatively
compared with Fig. 7(b) of the main text. However, only a
coarse qualitative comparison is possible due to the following
differences between the numerics and the experiments. First,

FIG. 15. Fraction of slip events that are part of a sequence of
single- or multislip events for (a) stiff and (b) compliant driving.
The plot is constructed such that the blue line (square markers)
corresponds to the total fraction of events that is part of a sequence of
consecutive single- or multislip events. The red line (circular mark-
ers) is the fraction of events that are part of sequences of single-slip
events. The area between the red and blue curves, highlighted in blue,
thus corresponds to the fraction of events that are part of a sequence
of multislip events.
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FIG. 16. (a), (b) Event-map of two typical simulations for n = 2. Each panel contains two plots above each other, one for each interface i.
In each plot, the horizontal axis is the horizontal position r normalized by the size of one block along each of the weak layers �0. The vertical
axis is the time t since triggering the first failure anywhere in the system, normalized by the time it takes a shear wave to travel the height h of
each layer (cs/h, with cs the shear wave speed). A point is drawn every time there is a failure (failure in the direction of applied shear in black,
and in the opposite direction in blue).

the numerics follow a quasistatic loading protocol such that
γ̇ ≡ 0 and is independent of n. Second, numerically we use
a force density to control the mean position of each plate.
Consequently, the applied force does not increase with n.
Lastly, the simulations are athermal and hence without aging.
What remains is that the higher fraction of single-slip events at
lower K leads to a slightly differently distribution P(�γ ) for
n > 1 in Fig. 14(b). A better comparison with Fig. 7(b) would
require a lower K , currently outside our reach. In addition, the
relationship between Ta and �γa would have to be calibrated
for the quasistatic protocol for each n.

We comment on the fraction of events that are part of a
sequence of single- or multislip events using Fig. 15. For
stiff driving, in Fig. 15(a), sequences of single- and multi-
slip events alternate. As n increases, such sequences alternate
more often as reflected by the decreasing fraction of events
that are part of any sequence (blue line). Of these sequences,
there is an equal partitioning in the number of single- and
multislip sequences (the two highlighted regions have an ap-
proximately equal height for every n). For compliant driving,
the situation is simple: there are almost exclusively single slip
events; see Fig. 15(b).

APPENDIX G: FRONT DYNAMICS—NUMERICS

We briefly discuss the dynamics of a multislip event—in
which multiple layers slip during a macroscopic event. For

simplicity we consider a system with n = 2. Figures 16(a) and
16(b) show event maps of two typical system-spanning events
(in which all blocks of each interface fail at least once). As
observed, the applied infinitesimal increase of applied shear
triggers an avalanche on one of the layers. This avalanche

FIG. 17. Probability distribution of the duration τ between activ-
ity on the primary and secondary slipping layer for n = 2, normalized
by the time it takes a shear wave to travel one layer.
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propagates as a fractal object in space-time until it transi-
tions to a ballistic event that propagates through the entire
system [22,29] with a front velocity c f of about twice the
shear wave speed cs [see the fit in Fig. 16(a)]. With a delay
of the order of the time a shear wave takes to propagate
through the layer above or below (cs/h, with h the height
of each layer), the other layer starts to fail. In contrast to
the first slipping layer, by chance avalanches can nucleate at
multiple locations [e.g., Fig. 16(a)]. These avalanches start

to propagate independently before linking-up. We note that
nucleating a single avalanche on the secondary slipping layer
is also frequently observed [e.g., Fig. 16(b)]. We quantify the
delay of activity on the secondary slipping layer. We measure
the duration τ between the first event on the first layer with
activity and the first event on the other layer. The distribution
of τ is shown in Fig. 17, confirming that the delay is of the
order of the time it takes a shear wave to propagate through
a layer.
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